You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1215 lines
40KB

  1. /*
  2. * TwinVQ decoder
  3. * Copyright (c) 2009 Vitor Sessak
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include <math.h>
  22. #include <stdint.h>
  23. #include "libavutil/channel_layout.h"
  24. #include "libavutil/float_dsp.h"
  25. #include "avcodec.h"
  26. #include "get_bits.h"
  27. #include "fft.h"
  28. #include "internal.h"
  29. #include "lsp.h"
  30. #include "sinewin.h"
  31. #include "twinvq_data.h"
  32. enum FrameType {
  33. FT_SHORT = 0, ///< Short frame (divided in n sub-blocks)
  34. FT_MEDIUM, ///< Medium frame (divided in m<n sub-blocks)
  35. FT_LONG, ///< Long frame (single sub-block + PPC)
  36. FT_PPC, ///< Periodic Peak Component (part of the long frame)
  37. };
  38. /**
  39. * Parameters and tables that are different for each frame type
  40. */
  41. struct FrameMode {
  42. uint8_t sub; ///< Number subblocks in each frame
  43. const uint16_t *bark_tab;
  44. /** number of distinct bark scale envelope values */
  45. uint8_t bark_env_size;
  46. const int16_t *bark_cb; ///< codebook for the bark scale envelope (BSE)
  47. uint8_t bark_n_coef;///< number of BSE CB coefficients to read
  48. uint8_t bark_n_bit; ///< number of bits of the BSE coefs
  49. //@{
  50. /** main codebooks for spectrum data */
  51. const int16_t *cb0;
  52. const int16_t *cb1;
  53. //@}
  54. uint8_t cb_len_read; ///< number of spectrum coefficients to read
  55. };
  56. /**
  57. * Parameters and tables that are different for every combination of
  58. * bitrate/sample rate
  59. */
  60. typedef struct {
  61. struct FrameMode fmode[3]; ///< frame type-dependant parameters
  62. uint16_t size; ///< frame size in samples
  63. uint8_t n_lsp; ///< number of lsp coefficients
  64. const float *lspcodebook;
  65. /* number of bits of the different LSP CB coefficients */
  66. uint8_t lsp_bit0;
  67. uint8_t lsp_bit1;
  68. uint8_t lsp_bit2;
  69. uint8_t lsp_split; ///< number of CB entries for the LSP decoding
  70. const int16_t *ppc_shape_cb; ///< PPC shape CB
  71. /** number of the bits for the PPC period value */
  72. uint8_t ppc_period_bit;
  73. uint8_t ppc_shape_bit; ///< number of bits of the PPC shape CB coeffs
  74. uint8_t ppc_shape_len; ///< size of PPC shape CB
  75. uint8_t pgain_bit; ///< bits for PPC gain
  76. /** constant for peak period to peak width conversion */
  77. uint16_t peak_per2wid;
  78. } ModeTab;
  79. static const ModeTab mode_08_08 = {
  80. {
  81. { 8, bark_tab_s08_64, 10, tab.fcb08s, 1, 5, tab.cb0808s0, tab.cb0808s1, 18 },
  82. { 2, bark_tab_m08_256, 20, tab.fcb08m, 2, 5, tab.cb0808m0, tab.cb0808m1, 16 },
  83. { 1, bark_tab_l08_512, 30, tab.fcb08l, 3, 6, tab.cb0808l0, tab.cb0808l1, 17 }
  84. },
  85. 512, 12, tab.lsp08, 1, 5, 3, 3, tab.shape08, 8, 28, 20, 6, 40
  86. };
  87. static const ModeTab mode_11_08 = {
  88. {
  89. { 8, bark_tab_s11_64, 10, tab.fcb11s, 1, 5, tab.cb1108s0, tab.cb1108s1, 29 },
  90. { 2, bark_tab_m11_256, 20, tab.fcb11m, 2, 5, tab.cb1108m0, tab.cb1108m1, 24 },
  91. { 1, bark_tab_l11_512, 30, tab.fcb11l, 3, 6, tab.cb1108l0, tab.cb1108l1, 27 }
  92. },
  93. 512, 16, tab.lsp11, 1, 6, 4, 3, tab.shape11, 9, 36, 30, 7, 90
  94. };
  95. static const ModeTab mode_11_10 = {
  96. {
  97. { 8, bark_tab_s11_64, 10, tab.fcb11s, 1, 5, tab.cb1110s0, tab.cb1110s1, 21 },
  98. { 2, bark_tab_m11_256, 20, tab.fcb11m, 2, 5, tab.cb1110m0, tab.cb1110m1, 18 },
  99. { 1, bark_tab_l11_512, 30, tab.fcb11l, 3, 6, tab.cb1110l0, tab.cb1110l1, 20 }
  100. },
  101. 512, 16, tab.lsp11, 1, 6, 4, 3, tab.shape11, 9, 36, 30, 7, 90
  102. };
  103. static const ModeTab mode_16_16 = {
  104. {
  105. { 8, bark_tab_s16_128, 10, tab.fcb16s, 1, 5, tab.cb1616s0, tab.cb1616s1, 16 },
  106. { 2, bark_tab_m16_512, 20, tab.fcb16m, 2, 5, tab.cb1616m0, tab.cb1616m1, 15 },
  107. { 1, bark_tab_l16_1024, 30, tab.fcb16l, 3, 6, tab.cb1616l0, tab.cb1616l1, 16 }
  108. },
  109. 1024, 16, tab.lsp16, 1, 6, 4, 3, tab.shape16, 9, 56, 60, 7, 180
  110. };
  111. static const ModeTab mode_22_20 = {
  112. {
  113. { 8, bark_tab_s22_128, 10, tab.fcb22s_1, 1, 6, tab.cb2220s0, tab.cb2220s1, 18 },
  114. { 2, bark_tab_m22_512, 20, tab.fcb22m_1, 2, 6, tab.cb2220m0, tab.cb2220m1, 17 },
  115. { 1, bark_tab_l22_1024, 32, tab.fcb22l_1, 4, 6, tab.cb2220l0, tab.cb2220l1, 18 }
  116. },
  117. 1024, 16, tab.lsp22_1, 1, 6, 4, 3, tab.shape22_1, 9, 56, 36, 7, 144
  118. };
  119. static const ModeTab mode_22_24 = {
  120. {
  121. { 8, bark_tab_s22_128, 10, tab.fcb22s_1, 1, 6, tab.cb2224s0, tab.cb2224s1, 15 },
  122. { 2, bark_tab_m22_512, 20, tab.fcb22m_1, 2, 6, tab.cb2224m0, tab.cb2224m1, 14 },
  123. { 1, bark_tab_l22_1024, 32, tab.fcb22l_1, 4, 6, tab.cb2224l0, tab.cb2224l1, 15 }
  124. },
  125. 1024, 16, tab.lsp22_1, 1, 6, 4, 3, tab.shape22_1, 9, 56, 36, 7, 144
  126. };
  127. static const ModeTab mode_22_32 = {
  128. {
  129. { 4, bark_tab_s22_128, 10, tab.fcb22s_2, 1, 6, tab.cb2232s0, tab.cb2232s1, 11 },
  130. { 2, bark_tab_m22_256, 20, tab.fcb22m_2, 2, 6, tab.cb2232m0, tab.cb2232m1, 11 },
  131. { 1, bark_tab_l22_512, 32, tab.fcb22l_2, 4, 6, tab.cb2232l0, tab.cb2232l1, 12 }
  132. },
  133. 512, 16, tab.lsp22_2, 1, 6, 4, 4, tab.shape22_2, 9, 56, 36, 7, 72
  134. };
  135. static const ModeTab mode_44_40 = {
  136. {
  137. { 16, bark_tab_s44_128, 10, tab.fcb44s, 1, 6, tab.cb4440s0, tab.cb4440s1, 18 },
  138. { 4, bark_tab_m44_512, 20, tab.fcb44m, 2, 6, tab.cb4440m0, tab.cb4440m1, 17 },
  139. { 1, bark_tab_l44_2048, 40, tab.fcb44l, 4, 6, tab.cb4440l0, tab.cb4440l1, 17 }
  140. },
  141. 2048, 20, tab.lsp44, 1, 6, 4, 4, tab.shape44, 9, 84, 54, 7, 432
  142. };
  143. static const ModeTab mode_44_48 = {
  144. {
  145. { 16, bark_tab_s44_128, 10, tab.fcb44s, 1, 6, tab.cb4448s0, tab.cb4448s1, 15 },
  146. { 4, bark_tab_m44_512, 20, tab.fcb44m, 2, 6, tab.cb4448m0, tab.cb4448m1, 14 },
  147. { 1, bark_tab_l44_2048, 40, tab.fcb44l, 4, 6, tab.cb4448l0, tab.cb4448l1, 14 }
  148. },
  149. 2048, 20, tab.lsp44, 1, 6, 4, 4, tab.shape44, 9, 84, 54, 7, 432
  150. };
  151. typedef struct TwinContext {
  152. AVCodecContext *avctx;
  153. AVFloatDSPContext fdsp;
  154. FFTContext mdct_ctx[3];
  155. const ModeTab *mtab;
  156. // history
  157. float lsp_hist[2][20]; ///< LSP coefficients of the last frame
  158. float bark_hist[3][2][40]; ///< BSE coefficients of last frame
  159. // bitstream parameters
  160. int16_t permut[4][4096];
  161. uint8_t length[4][2]; ///< main codebook stride
  162. uint8_t length_change[4];
  163. uint8_t bits_main_spec[2][4][2]; ///< bits for the main codebook
  164. int bits_main_spec_change[4];
  165. int n_div[4];
  166. float *spectrum;
  167. float *curr_frame; ///< non-interleaved output
  168. float *prev_frame; ///< non-interleaved previous frame
  169. int last_block_pos[2];
  170. int discarded_packets;
  171. float *cos_tabs[3];
  172. // scratch buffers
  173. float *tmp_buf;
  174. } TwinContext;
  175. #define PPC_SHAPE_CB_SIZE 64
  176. #define PPC_SHAPE_LEN_MAX 60
  177. #define SUB_AMP_MAX 4500.0
  178. #define MULAW_MU 100.0
  179. #define GAIN_BITS 8
  180. #define AMP_MAX 13000.0
  181. #define SUB_GAIN_BITS 5
  182. #define WINDOW_TYPE_BITS 4
  183. #define PGAIN_MU 200
  184. #define LSP_COEFS_MAX 20
  185. #define LSP_SPLIT_MAX 4
  186. #define CHANNELS_MAX 2
  187. #define SUBBLOCKS_MAX 16
  188. #define BARK_N_COEF_MAX 4
  189. /** @note not speed critical, hence not optimized */
  190. static void memset_float(float *buf, float val, int size)
  191. {
  192. while (size--)
  193. *buf++ = val;
  194. }
  195. /**
  196. * Evaluate a single LPC amplitude spectrum envelope coefficient from the line
  197. * spectrum pairs.
  198. *
  199. * @param lsp a vector of the cosine of the LSP values
  200. * @param cos_val cos(PI*i/N) where i is the index of the LPC amplitude
  201. * @param order the order of the LSP (and the size of the *lsp buffer). Must
  202. * be a multiple of four.
  203. * @return the LPC value
  204. *
  205. * @todo reuse code from Vorbis decoder: vorbis_floor0_decode
  206. */
  207. static float eval_lpc_spectrum(const float *lsp, float cos_val, int order)
  208. {
  209. int j;
  210. float p = 0.5f;
  211. float q = 0.5f;
  212. float two_cos_w = 2.0f * cos_val;
  213. for (j = 0; j + 1 < order; j += 2 * 2) {
  214. // Unroll the loop once since order is a multiple of four
  215. q *= lsp[j] - two_cos_w;
  216. p *= lsp[j + 1] - two_cos_w;
  217. q *= lsp[j + 2] - two_cos_w;
  218. p *= lsp[j + 3] - two_cos_w;
  219. }
  220. p *= p * (2.0f - two_cos_w);
  221. q *= q * (2.0f + two_cos_w);
  222. return 0.5 / (p + q);
  223. }
  224. /**
  225. * Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs.
  226. */
  227. static void eval_lpcenv(TwinContext *tctx, const float *cos_vals, float *lpc)
  228. {
  229. int i;
  230. const ModeTab *mtab = tctx->mtab;
  231. int size_s = mtab->size / mtab->fmode[FT_SHORT].sub;
  232. for (i = 0; i < size_s / 2; i++) {
  233. float cos_i = tctx->cos_tabs[0][i];
  234. lpc[i] = eval_lpc_spectrum(cos_vals, cos_i, mtab->n_lsp);
  235. lpc[size_s - i - 1] = eval_lpc_spectrum(cos_vals, -cos_i, mtab->n_lsp);
  236. }
  237. }
  238. static void interpolate(float *out, float v1, float v2, int size)
  239. {
  240. int i;
  241. float step = (v1 - v2) / (size + 1);
  242. for (i = 0; i < size; i++) {
  243. v2 += step;
  244. out[i] = v2;
  245. }
  246. }
  247. static inline float get_cos(int idx, int part, const float *cos_tab, int size)
  248. {
  249. return part ? -cos_tab[size - idx - 1]
  250. : cos_tab[idx];
  251. }
  252. /**
  253. * Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs.
  254. * Probably for speed reasons, the coefficients are evaluated as
  255. * siiiibiiiisiiiibiiiisiiiibiiiisiiiibiiiis ...
  256. * where s is an evaluated value, i is a value interpolated from the others
  257. * and b might be either calculated or interpolated, depending on an
  258. * unexplained condition.
  259. *
  260. * @param step the size of a block "siiiibiiii"
  261. * @param in the cosine of the LSP data
  262. * @param part is 0 for 0...PI (positive cosine values) and 1 for PI...2PI
  263. * (negative cosine values)
  264. * @param size the size of the whole output
  265. */
  266. static inline void eval_lpcenv_or_interp(TwinContext *tctx,
  267. enum FrameType ftype,
  268. float *out, const float *in,
  269. int size, int step, int part)
  270. {
  271. int i;
  272. const ModeTab *mtab = tctx->mtab;
  273. const float *cos_tab = tctx->cos_tabs[ftype];
  274. // Fill the 's'
  275. for (i = 0; i < size; i += step)
  276. out[i] =
  277. eval_lpc_spectrum(in,
  278. get_cos(i, part, cos_tab, size),
  279. mtab->n_lsp);
  280. // Fill the 'iiiibiiii'
  281. for (i = step; i <= size - 2 * step; i += step) {
  282. if (out[i + step] + out[i - step] > 1.95 * out[i] ||
  283. out[i + step] >= out[i - step]) {
  284. interpolate(out + i - step + 1, out[i], out[i - step], step - 1);
  285. } else {
  286. out[i - step / 2] =
  287. eval_lpc_spectrum(in,
  288. get_cos(i - step / 2, part, cos_tab, size),
  289. mtab->n_lsp);
  290. interpolate(out + i - step + 1, out[i - step / 2],
  291. out[i - step], step / 2 - 1);
  292. interpolate(out + i - step / 2 + 1, out[i],
  293. out[i - step / 2], step / 2 - 1);
  294. }
  295. }
  296. interpolate(out + size - 2 * step + 1, out[size - step],
  297. out[size - 2 * step], step - 1);
  298. }
  299. static void eval_lpcenv_2parts(TwinContext *tctx, enum FrameType ftype,
  300. const float *buf, float *lpc,
  301. int size, int step)
  302. {
  303. eval_lpcenv_or_interp(tctx, ftype, lpc, buf, size / 2, step, 0);
  304. eval_lpcenv_or_interp(tctx, ftype, lpc + size / 2, buf, size / 2,
  305. 2 * step, 1);
  306. interpolate(lpc + size / 2 - step + 1, lpc[size / 2],
  307. lpc[size / 2 - step], step);
  308. memset_float(lpc + size - 2 * step + 1, lpc[size - 2 * step], 2 * step - 1);
  309. }
  310. /**
  311. * Inverse quantization. Read CB coefficients for cb1 and cb2 from the
  312. * bitstream, sum the corresponding vectors and write the result to *out
  313. * after permutation.
  314. */
  315. static void dequant(TwinContext *tctx, GetBitContext *gb, float *out,
  316. enum FrameType ftype,
  317. const int16_t *cb0, const int16_t *cb1, int cb_len)
  318. {
  319. int pos = 0;
  320. int i, j;
  321. for (i = 0; i < tctx->n_div[ftype]; i++) {
  322. int tmp0, tmp1;
  323. int sign0 = 1;
  324. int sign1 = 1;
  325. const int16_t *tab0, *tab1;
  326. int length = tctx->length[ftype][i >= tctx->length_change[ftype]];
  327. int bitstream_second_part = (i >= tctx->bits_main_spec_change[ftype]);
  328. int bits = tctx->bits_main_spec[0][ftype][bitstream_second_part];
  329. if (bits == 7) {
  330. if (get_bits1(gb))
  331. sign0 = -1;
  332. bits = 6;
  333. }
  334. tmp0 = get_bits(gb, bits);
  335. bits = tctx->bits_main_spec[1][ftype][bitstream_second_part];
  336. if (bits == 7) {
  337. if (get_bits1(gb))
  338. sign1 = -1;
  339. bits = 6;
  340. }
  341. tmp1 = get_bits(gb, bits);
  342. tab0 = cb0 + tmp0 * cb_len;
  343. tab1 = cb1 + tmp1 * cb_len;
  344. for (j = 0; j < length; j++)
  345. out[tctx->permut[ftype][pos + j]] = sign0 * tab0[j] +
  346. sign1 * tab1[j];
  347. pos += length;
  348. }
  349. }
  350. static inline float mulawinv(float y, float clip, float mu)
  351. {
  352. y = av_clipf(y / clip, -1, 1);
  353. return clip * FFSIGN(y) * (exp(log(1 + mu) * fabs(y)) - 1) / mu;
  354. }
  355. /**
  356. * Evaluate a * b / 400 rounded to the nearest integer. When, for example,
  357. * a * b == 200 and the nearest integer is ill-defined, use a table to emulate
  358. * the following broken float-based implementation used by the binary decoder:
  359. *
  360. * @code
  361. * static int very_broken_op(int a, int b)
  362. * {
  363. * static float test; // Ugh, force gcc to do the division first...
  364. *
  365. * test = a / 400.0;
  366. * return b * test + 0.5;
  367. * }
  368. * @endcode
  369. *
  370. * @note if this function is replaced by just ROUNDED_DIV(a * b, 400.0), the
  371. * stddev between the original file (before encoding with Yamaha encoder) and
  372. * the decoded output increases, which leads one to believe that the encoder
  373. * expects exactly this broken calculation.
  374. */
  375. static int very_broken_op(int a, int b)
  376. {
  377. int x = a * b + 200;
  378. int size;
  379. const uint8_t *rtab;
  380. if (x % 400 || b % 5)
  381. return x / 400;
  382. x /= 400;
  383. size = tabs[b / 5].size;
  384. rtab = tabs[b / 5].tab;
  385. return x - rtab[size * av_log2(2 * (x - 1) / size) + (x - 1) % size];
  386. }
  387. /**
  388. * Sum to data a periodic peak of a given period, width and shape.
  389. *
  390. * @param period the period of the peak divised by 400.0
  391. */
  392. static void add_peak(int period, int width, const float *shape,
  393. float ppc_gain, float *speech, int len)
  394. {
  395. int i, j;
  396. const float *shape_end = shape + len;
  397. int center;
  398. // First peak centered around zero
  399. for (i = 0; i < width / 2; i++)
  400. speech[i] += ppc_gain * *shape++;
  401. for (i = 1; i < ROUNDED_DIV(len, width); i++) {
  402. center = very_broken_op(period, i);
  403. for (j = -width / 2; j < (width + 1) / 2; j++)
  404. speech[j + center] += ppc_gain * *shape++;
  405. }
  406. // For the last block, be careful not to go beyond the end of the buffer
  407. center = very_broken_op(period, i);
  408. for (j = -width / 2; j < (width + 1) / 2 && shape < shape_end; j++)
  409. speech[j + center] += ppc_gain * *shape++;
  410. }
  411. static void decode_ppc(TwinContext *tctx, int period_coef, const float *shape,
  412. float ppc_gain, float *speech)
  413. {
  414. const ModeTab *mtab = tctx->mtab;
  415. int isampf = tctx->avctx->sample_rate / 1000;
  416. int ibps = tctx->avctx->bit_rate / (1000 * tctx->avctx->channels);
  417. int min_period = ROUNDED_DIV(40 * 2 * mtab->size, isampf);
  418. int max_period = ROUNDED_DIV(40 * 2 * mtab->size * 6, isampf);
  419. int period_range = max_period - min_period;
  420. // This is actually the period multiplied by 400. It is just linearly coded
  421. // between its maximum and minimum value.
  422. int period = min_period +
  423. ROUNDED_DIV(period_coef * period_range,
  424. (1 << mtab->ppc_period_bit) - 1);
  425. int width;
  426. if (isampf == 22 && ibps == 32) {
  427. // For some unknown reason, NTT decided to code this case differently...
  428. width = ROUNDED_DIV((period + 800) * mtab->peak_per2wid,
  429. 400 * mtab->size);
  430. } else
  431. width = period * mtab->peak_per2wid / (400 * mtab->size);
  432. add_peak(period, width, shape, ppc_gain, speech, mtab->ppc_shape_len);
  433. }
  434. static void dec_gain(TwinContext *tctx, GetBitContext *gb, enum FrameType ftype,
  435. float *out)
  436. {
  437. const ModeTab *mtab = tctx->mtab;
  438. int i, j;
  439. int sub = mtab->fmode[ftype].sub;
  440. float step = AMP_MAX / ((1 << GAIN_BITS) - 1);
  441. float sub_step = SUB_AMP_MAX / ((1 << SUB_GAIN_BITS) - 1);
  442. if (ftype == FT_LONG) {
  443. for (i = 0; i < tctx->avctx->channels; i++)
  444. out[i] = (1.0 / (1 << 13)) *
  445. mulawinv(step * 0.5 + step * get_bits(gb, GAIN_BITS),
  446. AMP_MAX, MULAW_MU);
  447. } else {
  448. for (i = 0; i < tctx->avctx->channels; i++) {
  449. float val = (1.0 / (1 << 23)) *
  450. mulawinv(step * 0.5 + step * get_bits(gb, GAIN_BITS),
  451. AMP_MAX, MULAW_MU);
  452. for (j = 0; j < sub; j++)
  453. out[i * sub + j] =
  454. val * mulawinv(sub_step * 0.5 +
  455. sub_step * get_bits(gb, SUB_GAIN_BITS),
  456. SUB_AMP_MAX, MULAW_MU);
  457. }
  458. }
  459. }
  460. /**
  461. * Rearrange the LSP coefficients so that they have a minimum distance of
  462. * min_dist. This function does it exactly as described in section of 3.2.4
  463. * of the G.729 specification (but interestingly is different from what the
  464. * reference decoder actually does).
  465. */
  466. static void rearrange_lsp(int order, float *lsp, float min_dist)
  467. {
  468. int i;
  469. float min_dist2 = min_dist * 0.5;
  470. for (i = 1; i < order; i++)
  471. if (lsp[i] - lsp[i - 1] < min_dist) {
  472. float avg = (lsp[i] + lsp[i - 1]) * 0.5;
  473. lsp[i - 1] = avg - min_dist2;
  474. lsp[i] = avg + min_dist2;
  475. }
  476. }
  477. static void decode_lsp(TwinContext *tctx, int lpc_idx1, uint8_t *lpc_idx2,
  478. int lpc_hist_idx, float *lsp, float *hist)
  479. {
  480. const ModeTab *mtab = tctx->mtab;
  481. int i, j;
  482. const float *cb = mtab->lspcodebook;
  483. const float *cb2 = cb + (1 << mtab->lsp_bit1) * mtab->n_lsp;
  484. const float *cb3 = cb2 + (1 << mtab->lsp_bit2) * mtab->n_lsp;
  485. const int8_t funny_rounding[4] = {
  486. -2,
  487. mtab->lsp_split == 4 ? -2 : 1,
  488. mtab->lsp_split == 4 ? -2 : 1,
  489. 0
  490. };
  491. j = 0;
  492. for (i = 0; i < mtab->lsp_split; i++) {
  493. int chunk_end = ((i + 1) * mtab->n_lsp + funny_rounding[i]) /
  494. mtab->lsp_split;
  495. for (; j < chunk_end; j++)
  496. lsp[j] = cb[lpc_idx1 * mtab->n_lsp + j] +
  497. cb2[lpc_idx2[i] * mtab->n_lsp + j];
  498. }
  499. rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
  500. for (i = 0; i < mtab->n_lsp; i++) {
  501. float tmp1 = 1.0 - cb3[lpc_hist_idx * mtab->n_lsp + i];
  502. float tmp2 = hist[i] * cb3[lpc_hist_idx * mtab->n_lsp + i];
  503. hist[i] = lsp[i];
  504. lsp[i] = lsp[i] * tmp1 + tmp2;
  505. }
  506. rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
  507. rearrange_lsp(mtab->n_lsp, lsp, 0.000095);
  508. ff_sort_nearly_sorted_floats(lsp, mtab->n_lsp);
  509. }
  510. static void dec_lpc_spectrum_inv(TwinContext *tctx, float *lsp,
  511. enum FrameType ftype, float *lpc)
  512. {
  513. int i;
  514. int size = tctx->mtab->size / tctx->mtab->fmode[ftype].sub;
  515. for (i = 0; i < tctx->mtab->n_lsp; i++)
  516. lsp[i] = 2 * cos(lsp[i]);
  517. switch (ftype) {
  518. case FT_LONG:
  519. eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 8);
  520. break;
  521. case FT_MEDIUM:
  522. eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 2);
  523. break;
  524. case FT_SHORT:
  525. eval_lpcenv(tctx, lsp, lpc);
  526. break;
  527. }
  528. }
  529. static const uint8_t wtype_to_wsize[] = { 0, 0, 2, 2, 2, 1, 0, 1, 1 };
  530. static void imdct_and_window(TwinContext *tctx, enum FrameType ftype, int wtype,
  531. float *in, float *prev, int ch)
  532. {
  533. FFTContext *mdct = &tctx->mdct_ctx[ftype];
  534. const ModeTab *mtab = tctx->mtab;
  535. int bsize = mtab->size / mtab->fmode[ftype].sub;
  536. int size = mtab->size;
  537. float *buf1 = tctx->tmp_buf;
  538. int j, first_wsize, wsize; // Window size
  539. float *out = tctx->curr_frame + 2 * ch * mtab->size;
  540. float *out2 = out;
  541. float *prev_buf;
  542. int types_sizes[] = {
  543. mtab->size / mtab->fmode[FT_LONG].sub,
  544. mtab->size / mtab->fmode[FT_MEDIUM].sub,
  545. mtab->size / (mtab->fmode[FT_SHORT].sub * 2),
  546. };
  547. wsize = types_sizes[wtype_to_wsize[wtype]];
  548. first_wsize = wsize;
  549. prev_buf = prev + (size - bsize) / 2;
  550. for (j = 0; j < mtab->fmode[ftype].sub; j++) {
  551. int sub_wtype = ftype == FT_MEDIUM ? 8 : wtype;
  552. if (!j && wtype == 4)
  553. sub_wtype = 4;
  554. else if (j == mtab->fmode[ftype].sub - 1 && wtype == 7)
  555. sub_wtype = 7;
  556. wsize = types_sizes[wtype_to_wsize[sub_wtype]];
  557. mdct->imdct_half(mdct, buf1 + bsize * j, in + bsize * j);
  558. tctx->fdsp.vector_fmul_window(out2, prev_buf + (bsize - wsize) / 2,
  559. buf1 + bsize * j,
  560. ff_sine_windows[av_log2(wsize)],
  561. wsize / 2);
  562. out2 += wsize;
  563. memcpy(out2, buf1 + bsize * j + wsize / 2,
  564. (bsize - wsize / 2) * sizeof(float));
  565. out2 += ftype == FT_MEDIUM ? (bsize - wsize) / 2 : bsize - wsize;
  566. prev_buf = buf1 + bsize * j + bsize / 2;
  567. }
  568. tctx->last_block_pos[ch] = (size + first_wsize) / 2;
  569. }
  570. static void imdct_output(TwinContext *tctx, enum FrameType ftype, int wtype,
  571. float **out)
  572. {
  573. const ModeTab *mtab = tctx->mtab;
  574. float *prev_buf = tctx->prev_frame + tctx->last_block_pos[0];
  575. int size1, size2, i;
  576. for (i = 0; i < tctx->avctx->channels; i++)
  577. imdct_and_window(tctx, ftype, wtype,
  578. tctx->spectrum + i * mtab->size,
  579. prev_buf + 2 * i * mtab->size,
  580. i);
  581. if (!out)
  582. return;
  583. size2 = tctx->last_block_pos[0];
  584. size1 = mtab->size - size2;
  585. memcpy(&out[0][0], prev_buf, size1 * sizeof(out[0][0]));
  586. memcpy(&out[0][size1], tctx->curr_frame, size2 * sizeof(out[0][0]));
  587. if (tctx->avctx->channels == 2) {
  588. memcpy(&out[1][0], &prev_buf[2 * mtab->size],
  589. size1 * sizeof(out[1][0]));
  590. memcpy(&out[1][size1], &tctx->curr_frame[2 * mtab->size],
  591. size2 * sizeof(out[1][0]));
  592. tctx->fdsp.butterflies_float(out[0], out[1], mtab->size);
  593. }
  594. }
  595. static void dec_bark_env(TwinContext *tctx, const uint8_t *in, int use_hist,
  596. int ch, float *out, float gain, enum FrameType ftype)
  597. {
  598. const ModeTab *mtab = tctx->mtab;
  599. int i, j;
  600. float *hist = tctx->bark_hist[ftype][ch];
  601. float val = ((const float []) { 0.4, 0.35, 0.28 })[ftype];
  602. int bark_n_coef = mtab->fmode[ftype].bark_n_coef;
  603. int fw_cb_len = mtab->fmode[ftype].bark_env_size / bark_n_coef;
  604. int idx = 0;
  605. for (i = 0; i < fw_cb_len; i++)
  606. for (j = 0; j < bark_n_coef; j++, idx++) {
  607. float tmp2 = mtab->fmode[ftype].bark_cb[fw_cb_len * in[j] + i] *
  608. (1.0 / 4096);
  609. float st = use_hist ? (1.0 - val) * tmp2 + val * hist[idx] + 1.0
  610. : tmp2 + 1.0;
  611. hist[idx] = tmp2;
  612. if (st < -1.0)
  613. st = 1.0;
  614. memset_float(out, st * gain, mtab->fmode[ftype].bark_tab[idx]);
  615. out += mtab->fmode[ftype].bark_tab[idx];
  616. }
  617. }
  618. static void read_and_decode_spectrum(TwinContext *tctx, GetBitContext *gb,
  619. float *out, enum FrameType ftype)
  620. {
  621. const ModeTab *mtab = tctx->mtab;
  622. int channels = tctx->avctx->channels;
  623. int sub = mtab->fmode[ftype].sub;
  624. int block_size = mtab->size / sub;
  625. float gain[CHANNELS_MAX * SUBBLOCKS_MAX];
  626. float ppc_shape[PPC_SHAPE_LEN_MAX * CHANNELS_MAX * 4];
  627. uint8_t bark1[CHANNELS_MAX][SUBBLOCKS_MAX][BARK_N_COEF_MAX];
  628. uint8_t bark_use_hist[CHANNELS_MAX][SUBBLOCKS_MAX];
  629. uint8_t lpc_idx1[CHANNELS_MAX];
  630. uint8_t lpc_idx2[CHANNELS_MAX][LSP_SPLIT_MAX];
  631. uint8_t lpc_hist_idx[CHANNELS_MAX];
  632. int i, j, k;
  633. dequant(tctx, gb, out, ftype,
  634. mtab->fmode[ftype].cb0, mtab->fmode[ftype].cb1,
  635. mtab->fmode[ftype].cb_len_read);
  636. for (i = 0; i < channels; i++)
  637. for (j = 0; j < sub; j++)
  638. for (k = 0; k < mtab->fmode[ftype].bark_n_coef; k++)
  639. bark1[i][j][k] =
  640. get_bits(gb, mtab->fmode[ftype].bark_n_bit);
  641. for (i = 0; i < channels; i++)
  642. for (j = 0; j < sub; j++)
  643. bark_use_hist[i][j] = get_bits1(gb);
  644. dec_gain(tctx, gb, ftype, gain);
  645. for (i = 0; i < channels; i++) {
  646. lpc_hist_idx[i] = get_bits(gb, tctx->mtab->lsp_bit0);
  647. lpc_idx1[i] = get_bits(gb, tctx->mtab->lsp_bit1);
  648. for (j = 0; j < tctx->mtab->lsp_split; j++)
  649. lpc_idx2[i][j] = get_bits(gb, tctx->mtab->lsp_bit2);
  650. }
  651. if (ftype == FT_LONG) {
  652. int cb_len_p = (tctx->n_div[3] + mtab->ppc_shape_len * channels - 1) /
  653. tctx->n_div[3];
  654. dequant(tctx, gb, ppc_shape, FT_PPC, mtab->ppc_shape_cb,
  655. mtab->ppc_shape_cb + cb_len_p * PPC_SHAPE_CB_SIZE, cb_len_p);
  656. }
  657. for (i = 0; i < channels; i++) {
  658. float *chunk = out + mtab->size * i;
  659. float lsp[LSP_COEFS_MAX];
  660. for (j = 0; j < sub; j++) {
  661. dec_bark_env(tctx, bark1[i][j], bark_use_hist[i][j], i,
  662. tctx->tmp_buf, gain[sub * i + j], ftype);
  663. tctx->fdsp.vector_fmul(chunk + block_size * j,
  664. chunk + block_size * j,
  665. tctx->tmp_buf, block_size);
  666. }
  667. if (ftype == FT_LONG) {
  668. float pgain_step = 25000.0 / ((1 << mtab->pgain_bit) - 1);
  669. int p_coef = get_bits(gb, tctx->mtab->ppc_period_bit);
  670. int g_coef = get_bits(gb, tctx->mtab->pgain_bit);
  671. float v = 1.0 / 8192 *
  672. mulawinv(pgain_step * g_coef + pgain_step / 2,
  673. 25000.0, PGAIN_MU);
  674. decode_ppc(tctx, p_coef, ppc_shape + i * mtab->ppc_shape_len, v,
  675. chunk);
  676. }
  677. decode_lsp(tctx, lpc_idx1[i], lpc_idx2[i], lpc_hist_idx[i], lsp,
  678. tctx->lsp_hist[i]);
  679. dec_lpc_spectrum_inv(tctx, lsp, ftype, tctx->tmp_buf);
  680. for (j = 0; j < mtab->fmode[ftype].sub; j++) {
  681. tctx->fdsp.vector_fmul(chunk, chunk, tctx->tmp_buf, block_size);
  682. chunk += block_size;
  683. }
  684. }
  685. }
  686. static int twin_decode_frame(AVCodecContext *avctx, void *data,
  687. int *got_frame_ptr, AVPacket *avpkt)
  688. {
  689. AVFrame *frame = data;
  690. const uint8_t *buf = avpkt->data;
  691. int buf_size = avpkt->size;
  692. TwinContext *tctx = avctx->priv_data;
  693. GetBitContext gb;
  694. const ModeTab *mtab = tctx->mtab;
  695. float **out = NULL;
  696. enum FrameType ftype;
  697. int window_type, ret;
  698. static const enum FrameType wtype_to_ftype_table[] = {
  699. FT_LONG, FT_LONG, FT_SHORT, FT_LONG,
  700. FT_MEDIUM, FT_LONG, FT_LONG, FT_MEDIUM, FT_MEDIUM
  701. };
  702. if (buf_size * 8 < avctx->bit_rate * mtab->size / avctx->sample_rate + 8) {
  703. av_log(avctx, AV_LOG_ERROR,
  704. "Frame too small (%d bytes). Truncated file?\n", buf_size);
  705. return AVERROR(EINVAL);
  706. }
  707. /* get output buffer */
  708. if (tctx->discarded_packets >= 2) {
  709. frame->nb_samples = mtab->size;
  710. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
  711. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  712. return ret;
  713. }
  714. out = (float **)frame->extended_data;
  715. }
  716. init_get_bits(&gb, buf, buf_size * 8);
  717. skip_bits(&gb, get_bits(&gb, 8));
  718. window_type = get_bits(&gb, WINDOW_TYPE_BITS);
  719. if (window_type > 8) {
  720. av_log(avctx, AV_LOG_ERROR, "Invalid window type, broken sample?\n");
  721. return -1;
  722. }
  723. ftype = wtype_to_ftype_table[window_type];
  724. read_and_decode_spectrum(tctx, &gb, tctx->spectrum, ftype);
  725. imdct_output(tctx, ftype, window_type, out);
  726. FFSWAP(float *, tctx->curr_frame, tctx->prev_frame);
  727. if (tctx->discarded_packets < 2) {
  728. tctx->discarded_packets++;
  729. *got_frame_ptr = 0;
  730. return buf_size;
  731. }
  732. *got_frame_ptr = 1;
  733. return buf_size;
  734. }
  735. /**
  736. * Init IMDCT and windowing tables
  737. */
  738. static av_cold int init_mdct_win(TwinContext *tctx)
  739. {
  740. int i, j, ret;
  741. const ModeTab *mtab = tctx->mtab;
  742. int size_s = mtab->size / mtab->fmode[FT_SHORT].sub;
  743. int size_m = mtab->size / mtab->fmode[FT_MEDIUM].sub;
  744. int channels = tctx->avctx->channels;
  745. float norm = channels == 1 ? 2.0 : 1.0;
  746. for (i = 0; i < 3; i++) {
  747. int bsize = tctx->mtab->size / tctx->mtab->fmode[i].sub;
  748. if ((ret = ff_mdct_init(&tctx->mdct_ctx[i], av_log2(bsize) + 1, 1,
  749. -sqrt(norm / bsize) / (1 << 15))))
  750. return ret;
  751. }
  752. FF_ALLOC_OR_GOTO(tctx->avctx, tctx->tmp_buf,
  753. mtab->size * sizeof(*tctx->tmp_buf), alloc_fail);
  754. FF_ALLOC_OR_GOTO(tctx->avctx, tctx->spectrum,
  755. 2 * mtab->size * channels * sizeof(*tctx->spectrum),
  756. alloc_fail);
  757. FF_ALLOC_OR_GOTO(tctx->avctx, tctx->curr_frame,
  758. 2 * mtab->size * channels * sizeof(*tctx->curr_frame),
  759. alloc_fail);
  760. FF_ALLOC_OR_GOTO(tctx->avctx, tctx->prev_frame,
  761. 2 * mtab->size * channels * sizeof(*tctx->prev_frame),
  762. alloc_fail);
  763. for (i = 0; i < 3; i++) {
  764. int m = 4 * mtab->size / mtab->fmode[i].sub;
  765. double freq = 2 * M_PI / m;
  766. FF_ALLOC_OR_GOTO(tctx->avctx, tctx->cos_tabs[i],
  767. (m / 4) * sizeof(*tctx->cos_tabs[i]), alloc_fail);
  768. for (j = 0; j <= m / 8; j++)
  769. tctx->cos_tabs[i][j] = cos((2 * j + 1) * freq);
  770. for (j = 1; j < m / 8; j++)
  771. tctx->cos_tabs[i][m / 4 - j] = tctx->cos_tabs[i][j];
  772. }
  773. ff_init_ff_sine_windows(av_log2(size_m));
  774. ff_init_ff_sine_windows(av_log2(size_s / 2));
  775. ff_init_ff_sine_windows(av_log2(mtab->size));
  776. return 0;
  777. alloc_fail:
  778. return AVERROR(ENOMEM);
  779. }
  780. /**
  781. * Interpret the data as if it were a num_blocks x line_len[0] matrix and for
  782. * each line do a cyclic permutation, i.e.
  783. * abcdefghijklm -> defghijklmabc
  784. * where the amount to be shifted is evaluated depending on the column.
  785. */
  786. static void permutate_in_line(int16_t *tab, int num_vect, int num_blocks,
  787. int block_size,
  788. const uint8_t line_len[2], int length_div,
  789. enum FrameType ftype)
  790. {
  791. int i, j;
  792. for (i = 0; i < line_len[0]; i++) {
  793. int shift;
  794. if (num_blocks == 1 ||
  795. (ftype == FT_LONG && num_vect % num_blocks) ||
  796. (ftype != FT_LONG && num_vect & 1) ||
  797. i == line_len[1]) {
  798. shift = 0;
  799. } else if (ftype == FT_LONG) {
  800. shift = i;
  801. } else
  802. shift = i * i;
  803. for (j = 0; j < num_vect && (j + num_vect * i < block_size * num_blocks); j++)
  804. tab[i * num_vect + j] = i * num_vect + (j + shift) % num_vect;
  805. }
  806. }
  807. /**
  808. * Interpret the input data as in the following table:
  809. *
  810. * @verbatim
  811. *
  812. * abcdefgh
  813. * ijklmnop
  814. * qrstuvw
  815. * x123456
  816. *
  817. * @endverbatim
  818. *
  819. * and transpose it, giving the output
  820. * aiqxbjr1cks2dlt3emu4fvn5gow6hp
  821. */
  822. static void transpose_perm(int16_t *out, int16_t *in, int num_vect,
  823. const uint8_t line_len[2], int length_div)
  824. {
  825. int i, j;
  826. int cont = 0;
  827. for (i = 0; i < num_vect; i++)
  828. for (j = 0; j < line_len[i >= length_div]; j++)
  829. out[cont++] = in[j * num_vect + i];
  830. }
  831. static void linear_perm(int16_t *out, int16_t *in, int n_blocks, int size)
  832. {
  833. int block_size = size / n_blocks;
  834. int i;
  835. for (i = 0; i < size; i++)
  836. out[i] = block_size * (in[i] % n_blocks) + in[i] / n_blocks;
  837. }
  838. static av_cold void construct_perm_table(TwinContext *tctx,
  839. enum FrameType ftype)
  840. {
  841. int block_size, size;
  842. const ModeTab *mtab = tctx->mtab;
  843. int16_t *tmp_perm = (int16_t *)tctx->tmp_buf;
  844. if (ftype == FT_PPC) {
  845. size = tctx->avctx->channels;
  846. block_size = mtab->ppc_shape_len;
  847. } else {
  848. size = tctx->avctx->channels * mtab->fmode[ftype].sub;
  849. block_size = mtab->size / mtab->fmode[ftype].sub;
  850. }
  851. permutate_in_line(tmp_perm, tctx->n_div[ftype], size,
  852. block_size, tctx->length[ftype],
  853. tctx->length_change[ftype], ftype);
  854. transpose_perm(tctx->permut[ftype], tmp_perm, tctx->n_div[ftype],
  855. tctx->length[ftype], tctx->length_change[ftype]);
  856. linear_perm(tctx->permut[ftype], tctx->permut[ftype], size,
  857. size * block_size);
  858. }
  859. static av_cold void init_bitstream_params(TwinContext *tctx)
  860. {
  861. const ModeTab *mtab = tctx->mtab;
  862. int n_ch = tctx->avctx->channels;
  863. int total_fr_bits = tctx->avctx->bit_rate * mtab->size /
  864. tctx->avctx->sample_rate;
  865. int lsp_bits_per_block = n_ch * (mtab->lsp_bit0 + mtab->lsp_bit1 +
  866. mtab->lsp_split * mtab->lsp_bit2);
  867. int ppc_bits = n_ch * (mtab->pgain_bit + mtab->ppc_shape_bit +
  868. mtab->ppc_period_bit);
  869. int bsize_no_main_cb[3], bse_bits[3], i;
  870. enum FrameType frametype;
  871. for (i = 0; i < 3; i++)
  872. // +1 for history usage switch
  873. bse_bits[i] = n_ch *
  874. (mtab->fmode[i].bark_n_coef *
  875. mtab->fmode[i].bark_n_bit + 1);
  876. bsize_no_main_cb[2] = bse_bits[2] + lsp_bits_per_block + ppc_bits +
  877. WINDOW_TYPE_BITS + n_ch * GAIN_BITS;
  878. for (i = 0; i < 2; i++)
  879. bsize_no_main_cb[i] =
  880. lsp_bits_per_block + n_ch * GAIN_BITS + WINDOW_TYPE_BITS +
  881. mtab->fmode[i].sub * (bse_bits[i] + n_ch * SUB_GAIN_BITS);
  882. // The remaining bits are all used for the main spectrum coefficients
  883. for (i = 0; i < 4; i++) {
  884. int bit_size, vect_size;
  885. int rounded_up, rounded_down, num_rounded_down, num_rounded_up;
  886. if (i == 3) {
  887. bit_size = n_ch * mtab->ppc_shape_bit;
  888. vect_size = n_ch * mtab->ppc_shape_len;
  889. } else {
  890. bit_size = total_fr_bits - bsize_no_main_cb[i];
  891. vect_size = n_ch * mtab->size;
  892. }
  893. tctx->n_div[i] = (bit_size + 13) / 14;
  894. rounded_up = (bit_size + tctx->n_div[i] - 1) /
  895. tctx->n_div[i];
  896. rounded_down = (bit_size) / tctx->n_div[i];
  897. num_rounded_down = rounded_up * tctx->n_div[i] - bit_size;
  898. num_rounded_up = tctx->n_div[i] - num_rounded_down;
  899. tctx->bits_main_spec[0][i][0] = (rounded_up + 1) / 2;
  900. tctx->bits_main_spec[1][i][0] = rounded_up / 2;
  901. tctx->bits_main_spec[0][i][1] = (rounded_down + 1) / 2;
  902. tctx->bits_main_spec[1][i][1] = rounded_down / 2;
  903. tctx->bits_main_spec_change[i] = num_rounded_up;
  904. rounded_up = (vect_size + tctx->n_div[i] - 1) /
  905. tctx->n_div[i];
  906. rounded_down = (vect_size) / tctx->n_div[i];
  907. num_rounded_down = rounded_up * tctx->n_div[i] - vect_size;
  908. num_rounded_up = tctx->n_div[i] - num_rounded_down;
  909. tctx->length[i][0] = rounded_up;
  910. tctx->length[i][1] = rounded_down;
  911. tctx->length_change[i] = num_rounded_up;
  912. }
  913. for (frametype = FT_SHORT; frametype <= FT_PPC; frametype++)
  914. construct_perm_table(tctx, frametype);
  915. }
  916. static av_cold int twin_decode_close(AVCodecContext *avctx)
  917. {
  918. TwinContext *tctx = avctx->priv_data;
  919. int i;
  920. for (i = 0; i < 3; i++) {
  921. ff_mdct_end(&tctx->mdct_ctx[i]);
  922. av_free(tctx->cos_tabs[i]);
  923. }
  924. av_free(tctx->curr_frame);
  925. av_free(tctx->spectrum);
  926. av_free(tctx->prev_frame);
  927. av_free(tctx->tmp_buf);
  928. return 0;
  929. }
  930. static av_cold int twin_decode_init(AVCodecContext *avctx)
  931. {
  932. int ret, isampf, ibps;
  933. TwinContext *tctx = avctx->priv_data;
  934. tctx->avctx = avctx;
  935. avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
  936. if (!avctx->extradata || avctx->extradata_size < 12) {
  937. av_log(avctx, AV_LOG_ERROR, "Missing or incomplete extradata\n");
  938. return AVERROR_INVALIDDATA;
  939. }
  940. avctx->channels = AV_RB32(avctx->extradata) + 1;
  941. avctx->bit_rate = AV_RB32(avctx->extradata + 4) * 1000;
  942. isampf = AV_RB32(avctx->extradata + 8);
  943. if (isampf < 8 || isampf > 44) {
  944. av_log(avctx, AV_LOG_ERROR, "Unsupported sample rate\n");
  945. return AVERROR_INVALIDDATA;
  946. }
  947. switch (isampf) {
  948. case 44:
  949. avctx->sample_rate = 44100;
  950. break;
  951. case 22:
  952. avctx->sample_rate = 22050;
  953. break;
  954. case 11:
  955. avctx->sample_rate = 11025;
  956. break;
  957. default:
  958. avctx->sample_rate = isampf * 1000;
  959. break;
  960. }
  961. if (avctx->channels <= 0 || avctx->channels > CHANNELS_MAX) {
  962. av_log(avctx, AV_LOG_ERROR, "Unsupported number of channels: %i\n",
  963. avctx->channels);
  964. return -1;
  965. }
  966. avctx->channel_layout = avctx->channels == 1 ? AV_CH_LAYOUT_MONO
  967. : AV_CH_LAYOUT_STEREO;
  968. ibps = avctx->bit_rate / (1000 * avctx->channels);
  969. switch ((isampf << 8) + ibps) {
  970. case (8 << 8) + 8:
  971. tctx->mtab = &mode_08_08;
  972. break;
  973. case (11 << 8) + 8:
  974. tctx->mtab = &mode_11_08;
  975. break;
  976. case (11 << 8) + 10:
  977. tctx->mtab = &mode_11_10;
  978. break;
  979. case (16 << 8) + 16:
  980. tctx->mtab = &mode_16_16;
  981. break;
  982. case (22 << 8) + 20:
  983. tctx->mtab = &mode_22_20;
  984. break;
  985. case (22 << 8) + 24:
  986. tctx->mtab = &mode_22_24;
  987. break;
  988. case (22 << 8) + 32:
  989. tctx->mtab = &mode_22_32;
  990. break;
  991. case (44 << 8) + 40:
  992. tctx->mtab = &mode_44_40;
  993. break;
  994. case (44 << 8) + 48:
  995. tctx->mtab = &mode_44_48;
  996. break;
  997. default:
  998. av_log(avctx, AV_LOG_ERROR,
  999. "This version does not support %d kHz - %d kbit/s/ch mode.\n",
  1000. isampf, isampf);
  1001. return -1;
  1002. }
  1003. avpriv_float_dsp_init(&tctx->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
  1004. if ((ret = init_mdct_win(tctx))) {
  1005. av_log(avctx, AV_LOG_ERROR, "Error initializing MDCT\n");
  1006. twin_decode_close(avctx);
  1007. return ret;
  1008. }
  1009. init_bitstream_params(tctx);
  1010. memset_float(tctx->bark_hist[0][0], 0.1, FF_ARRAY_ELEMS(tctx->bark_hist));
  1011. return 0;
  1012. }
  1013. AVCodec ff_twinvq_decoder = {
  1014. .name = "twinvq",
  1015. .type = AVMEDIA_TYPE_AUDIO,
  1016. .id = AV_CODEC_ID_TWINVQ,
  1017. .priv_data_size = sizeof(TwinContext),
  1018. .init = twin_decode_init,
  1019. .close = twin_decode_close,
  1020. .decode = twin_decode_frame,
  1021. .capabilities = CODEC_CAP_DR1,
  1022. .long_name = NULL_IF_CONFIG_SMALL("VQF TwinVQ"),
  1023. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
  1024. AV_SAMPLE_FMT_NONE },
  1025. };