You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

800 lines
31KB

  1. /*
  2. * Copyright (c) 2012 Clément Bœsch
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License along
  17. * with FFmpeg; if not, write to the Free Software Foundation, Inc.,
  18. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  19. */
  20. /**
  21. * @file
  22. * EBU R.128 implementation
  23. * @see http://tech.ebu.ch/loudness
  24. * @see https://www.youtube.com/watch?v=iuEtQqC-Sqo "EBU R128 Introduction - Florian Camerer"
  25. * @todo True Peak
  26. * @todo implement start/stop/reset through filter command injection
  27. * @todo support other frequencies to avoid resampling
  28. */
  29. #include <math.h>
  30. #include "libavutil/avassert.h"
  31. #include "libavutil/avstring.h"
  32. #include "libavutil/channel_layout.h"
  33. #include "libavutil/dict.h"
  34. #include "libavutil/xga_font_data.h"
  35. #include "libavutil/opt.h"
  36. #include "libavutil/timestamp.h"
  37. #include "audio.h"
  38. #include "avfilter.h"
  39. #include "formats.h"
  40. #include "internal.h"
  41. #define MAX_CHANNELS 63
  42. /* pre-filter coefficients */
  43. #define PRE_B0 1.53512485958697
  44. #define PRE_B1 -2.69169618940638
  45. #define PRE_B2 1.19839281085285
  46. #define PRE_A1 -1.69065929318241
  47. #define PRE_A2 0.73248077421585
  48. /* RLB-filter coefficients */
  49. #define RLB_B0 1.0
  50. #define RLB_B1 -2.0
  51. #define RLB_B2 1.0
  52. #define RLB_A1 -1.99004745483398
  53. #define RLB_A2 0.99007225036621
  54. #define ABS_THRES -70 ///< silence gate: we discard anything below this absolute (LUFS) threshold
  55. #define ABS_UP_THRES 10 ///< upper loud limit to consider (ABS_THRES being the minimum)
  56. #define HIST_GRAIN 100 ///< defines histogram precision
  57. #define HIST_SIZE ((ABS_UP_THRES - ABS_THRES) * HIST_GRAIN + 1)
  58. /**
  59. * A histogram is an array of HIST_SIZE hist_entry storing all the energies
  60. * recorded (with an accuracy of 1/HIST_GRAIN) of the loudnesses from ABS_THRES
  61. * (at 0) to ABS_UP_THRES (at HIST_SIZE-1).
  62. * This fixed-size system avoids the need of a list of energies growing
  63. * infinitely over the time and is thus more scalable.
  64. */
  65. struct hist_entry {
  66. int count; ///< how many times the corresponding value occurred
  67. double energy; ///< E = 10^((L + 0.691) / 10)
  68. double loudness; ///< L = -0.691 + 10 * log10(E)
  69. };
  70. struct integrator {
  71. double *cache[MAX_CHANNELS]; ///< window of filtered samples (N ms)
  72. int cache_pos; ///< focus on the last added bin in the cache array
  73. double sum[MAX_CHANNELS]; ///< sum of the last N ms filtered samples (cache content)
  74. int filled; ///< 1 if the cache is completely filled, 0 otherwise
  75. double rel_threshold; ///< relative threshold
  76. double sum_kept_powers; ///< sum of the powers (weighted sums) above absolute threshold
  77. int nb_kept_powers; ///< number of sum above absolute threshold
  78. struct hist_entry *histogram; ///< histogram of the powers, used to compute LRA and I
  79. };
  80. struct rect { int x, y, w, h; };
  81. typedef struct {
  82. const AVClass *class; ///< AVClass context for log and options purpose
  83. /* video */
  84. int do_video; ///< 1 if video output enabled, 0 otherwise
  85. int w, h; ///< size of the video output
  86. struct rect text; ///< rectangle for the LU legend on the left
  87. struct rect graph; ///< rectangle for the main graph in the center
  88. struct rect gauge; ///< rectangle for the gauge on the right
  89. AVFrame *outpicref; ///< output picture reference, updated regularly
  90. int meter; ///< select a EBU mode between +9 and +18
  91. int scale_range; ///< the range of LU values according to the meter
  92. int y_zero_lu; ///< the y value (pixel position) for 0 LU
  93. int *y_line_ref; ///< y reference values for drawing the LU lines in the graph and the gauge
  94. /* audio */
  95. int nb_channels; ///< number of channels in the input
  96. double *ch_weighting; ///< channel weighting mapping
  97. int sample_count; ///< sample count used for refresh frequency, reset at refresh
  98. /* Filter caches.
  99. * The mult by 3 in the following is for X[i], X[i-1] and X[i-2] */
  100. double x[MAX_CHANNELS * 3]; ///< 3 input samples cache for each channel
  101. double y[MAX_CHANNELS * 3]; ///< 3 pre-filter samples cache for each channel
  102. double z[MAX_CHANNELS * 3]; ///< 3 RLB-filter samples cache for each channel
  103. #define I400_BINS (48000 * 4 / 10)
  104. #define I3000_BINS (48000 * 3)
  105. struct integrator i400; ///< 400ms integrator, used for Momentary loudness (M), and Integrated loudness (I)
  106. struct integrator i3000; ///< 3s integrator, used for Short term loudness (S), and Loudness Range (LRA)
  107. /* I and LRA specific */
  108. double integrated_loudness; ///< integrated loudness in LUFS (I)
  109. double loudness_range; ///< loudness range in LU (LRA)
  110. double lra_low, lra_high; ///< low and high LRA values
  111. /* misc */
  112. int loglevel; ///< log level for frame logging
  113. int metadata; ///< whether or not to inject loudness results in frames
  114. } EBUR128Context;
  115. #define OFFSET(x) offsetof(EBUR128Context, x)
  116. #define A AV_OPT_FLAG_AUDIO_PARAM
  117. #define V AV_OPT_FLAG_VIDEO_PARAM
  118. #define F AV_OPT_FLAG_FILTERING_PARAM
  119. static const AVOption ebur128_options[] = {
  120. { "video", "set video output", OFFSET(do_video), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, V|F },
  121. { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "640x480"}, 0, 0, V|F },
  122. { "meter", "set scale meter (+9 to +18)", OFFSET(meter), AV_OPT_TYPE_INT, {.i64 = 9}, 9, 18, V|F },
  123. { "framelog", "force frame logging level", OFFSET(loglevel), AV_OPT_TYPE_INT, {.i64 = -1}, INT_MIN, INT_MAX, A|V|F, "level" },
  124. { "info", "information logging level", 0, AV_OPT_TYPE_CONST, {.i64 = AV_LOG_INFO}, INT_MIN, INT_MAX, A|V|F, "level" },
  125. { "verbose", "verbose logging level", 0, AV_OPT_TYPE_CONST, {.i64 = AV_LOG_VERBOSE}, INT_MIN, INT_MAX, A|V|F, "level" },
  126. { "metadata", "inject metadata in the filtergraph", OFFSET(metadata), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, A|V|F },
  127. { NULL }
  128. };
  129. AVFILTER_DEFINE_CLASS(ebur128);
  130. static const uint8_t graph_colors[] = {
  131. 0xdd, 0x66, 0x66, // value above 0LU non reached
  132. 0x66, 0x66, 0xdd, // value below 0LU non reached
  133. 0x96, 0x33, 0x33, // value above 0LU reached
  134. 0x33, 0x33, 0x96, // value below 0LU reached
  135. 0xdd, 0x96, 0x96, // value above 0LU line non reached
  136. 0x96, 0x96, 0xdd, // value below 0LU line non reached
  137. 0xdd, 0x33, 0x33, // value above 0LU line reached
  138. 0x33, 0x33, 0xdd, // value below 0LU line reached
  139. };
  140. static const uint8_t *get_graph_color(const EBUR128Context *ebur128, int v, int y)
  141. {
  142. const int below0 = y > ebur128->y_zero_lu;
  143. const int reached = y >= v;
  144. const int line = ebur128->y_line_ref[y] || y == ebur128->y_zero_lu;
  145. const int colorid = 4*line + 2*reached + below0;
  146. return graph_colors + 3*colorid;
  147. }
  148. static inline int lu_to_y(const EBUR128Context *ebur128, double v)
  149. {
  150. v += 2 * ebur128->meter; // make it in range [0;...]
  151. v = av_clipf(v, 0, ebur128->scale_range); // make sure it's in the graph scale
  152. v = ebur128->scale_range - v; // invert value (y=0 is on top)
  153. return v * ebur128->graph.h / ebur128->scale_range; // rescale from scale range to px height
  154. }
  155. #define FONT8 0
  156. #define FONT16 1
  157. static const uint8_t font_colors[] = {
  158. 0xdd, 0xdd, 0x00,
  159. 0x00, 0x96, 0x96,
  160. };
  161. static void drawtext(AVFrame *pic, int x, int y, int ftid, const uint8_t *color, const char *fmt, ...)
  162. {
  163. int i;
  164. char buf[128] = {0};
  165. const uint8_t *font;
  166. int font_height;
  167. va_list vl;
  168. if (ftid == FONT16) font = avpriv_vga16_font, font_height = 16;
  169. else if (ftid == FONT8) font = avpriv_cga_font, font_height = 8;
  170. else return;
  171. va_start(vl, fmt);
  172. vsnprintf(buf, sizeof(buf), fmt, vl);
  173. va_end(vl);
  174. for (i = 0; buf[i]; i++) {
  175. int char_y, mask;
  176. uint8_t *p = pic->data[0] + y*pic->linesize[0] + (x + i*8)*3;
  177. for (char_y = 0; char_y < font_height; char_y++) {
  178. for (mask = 0x80; mask; mask >>= 1) {
  179. if (font[buf[i] * font_height + char_y] & mask)
  180. memcpy(p, color, 3);
  181. else
  182. memcpy(p, "\x00\x00\x00", 3);
  183. p += 3;
  184. }
  185. p += pic->linesize[0] - 8*3;
  186. }
  187. }
  188. }
  189. static void drawline(AVFrame *pic, int x, int y, int len, int step)
  190. {
  191. int i;
  192. uint8_t *p = pic->data[0] + y*pic->linesize[0] + x*3;
  193. for (i = 0; i < len; i++) {
  194. memcpy(p, "\x00\xff\x00", 3);
  195. p += step;
  196. }
  197. }
  198. static int config_video_output(AVFilterLink *outlink)
  199. {
  200. int i, x, y;
  201. uint8_t *p;
  202. AVFilterContext *ctx = outlink->src;
  203. EBUR128Context *ebur128 = ctx->priv;
  204. AVFrame *outpicref;
  205. /* check if there is enough space to represent everything decently */
  206. if (ebur128->w < 640 || ebur128->h < 480) {
  207. av_log(ctx, AV_LOG_ERROR, "Video size %dx%d is too small, "
  208. "minimum size is 640x480\n", ebur128->w, ebur128->h);
  209. return AVERROR(EINVAL);
  210. }
  211. outlink->w = ebur128->w;
  212. outlink->h = ebur128->h;
  213. #define PAD 8
  214. /* configure text area position and size */
  215. ebur128->text.x = PAD;
  216. ebur128->text.y = 40;
  217. ebur128->text.w = 3 * 8; // 3 characters
  218. ebur128->text.h = ebur128->h - PAD - ebur128->text.y;
  219. /* configure gauge position and size */
  220. ebur128->gauge.w = 20;
  221. ebur128->gauge.h = ebur128->text.h;
  222. ebur128->gauge.x = ebur128->w - PAD - ebur128->gauge.w;
  223. ebur128->gauge.y = ebur128->text.y;
  224. /* configure graph position and size */
  225. ebur128->graph.x = ebur128->text.x + ebur128->text.w + PAD;
  226. ebur128->graph.y = ebur128->gauge.y;
  227. ebur128->graph.w = ebur128->gauge.x - ebur128->graph.x - PAD;
  228. ebur128->graph.h = ebur128->gauge.h;
  229. /* graph and gauge share the LU-to-pixel code */
  230. av_assert0(ebur128->graph.h == ebur128->gauge.h);
  231. /* prepare the initial picref buffer */
  232. av_frame_free(&ebur128->outpicref);
  233. ebur128->outpicref = outpicref =
  234. ff_get_video_buffer(outlink, outlink->w, outlink->h);
  235. if (!outpicref)
  236. return AVERROR(ENOMEM);
  237. outlink->sample_aspect_ratio = (AVRational){1,1};
  238. /* init y references values (to draw LU lines) */
  239. ebur128->y_line_ref = av_calloc(ebur128->graph.h + 1, sizeof(*ebur128->y_line_ref));
  240. if (!ebur128->y_line_ref)
  241. return AVERROR(ENOMEM);
  242. /* black background */
  243. memset(outpicref->data[0], 0, ebur128->h * outpicref->linesize[0]);
  244. /* draw LU legends */
  245. drawtext(outpicref, PAD, PAD+16, FONT8, font_colors+3, " LU");
  246. for (i = ebur128->meter; i >= -ebur128->meter * 2; i--) {
  247. y = lu_to_y(ebur128, i);
  248. x = PAD + (i < 10 && i > -10) * 8;
  249. ebur128->y_line_ref[y] = i;
  250. y -= 4; // -4 to center vertically
  251. drawtext(outpicref, x, y + ebur128->graph.y, FONT8, font_colors+3,
  252. "%c%d", i < 0 ? '-' : i > 0 ? '+' : ' ', FFABS(i));
  253. }
  254. /* draw graph */
  255. ebur128->y_zero_lu = lu_to_y(ebur128, 0);
  256. p = outpicref->data[0] + ebur128->graph.y * outpicref->linesize[0]
  257. + ebur128->graph.x * 3;
  258. for (y = 0; y < ebur128->graph.h; y++) {
  259. const uint8_t *c = get_graph_color(ebur128, INT_MAX, y);
  260. for (x = 0; x < ebur128->graph.w; x++)
  261. memcpy(p + x*3, c, 3);
  262. p += outpicref->linesize[0];
  263. }
  264. /* draw fancy rectangles around the graph and the gauge */
  265. #define DRAW_RECT(r) do { \
  266. drawline(outpicref, r.x, r.y - 1, r.w, 3); \
  267. drawline(outpicref, r.x, r.y + r.h, r.w, 3); \
  268. drawline(outpicref, r.x - 1, r.y, r.h, outpicref->linesize[0]); \
  269. drawline(outpicref, r.x + r.w, r.y, r.h, outpicref->linesize[0]); \
  270. } while (0)
  271. DRAW_RECT(ebur128->graph);
  272. DRAW_RECT(ebur128->gauge);
  273. outlink->flags |= FF_LINK_FLAG_REQUEST_LOOP;
  274. return 0;
  275. }
  276. static int config_audio_input(AVFilterLink *inlink)
  277. {
  278. AVFilterContext *ctx = inlink->dst;
  279. EBUR128Context *ebur128 = ctx->priv;
  280. /* force 100ms framing in case of metadata injection: the frames must have
  281. * a granularity of the window overlap to be accurately exploited */
  282. if (ebur128->metadata)
  283. inlink->min_samples =
  284. inlink->max_samples =
  285. inlink->partial_buf_size = inlink->sample_rate / 10;
  286. return 0;
  287. }
  288. static int config_audio_output(AVFilterLink *outlink)
  289. {
  290. int i;
  291. int idx_bitposn = 0;
  292. AVFilterContext *ctx = outlink->src;
  293. EBUR128Context *ebur128 = ctx->priv;
  294. const int nb_channels = av_get_channel_layout_nb_channels(outlink->channel_layout);
  295. #define BACK_MASK (AV_CH_BACK_LEFT |AV_CH_BACK_CENTER |AV_CH_BACK_RIGHT| \
  296. AV_CH_TOP_BACK_LEFT|AV_CH_TOP_BACK_CENTER|AV_CH_TOP_BACK_RIGHT| \
  297. AV_CH_SIDE_LEFT |AV_CH_SIDE_RIGHT| \
  298. AV_CH_SURROUND_DIRECT_LEFT |AV_CH_SURROUND_DIRECT_RIGHT)
  299. ebur128->nb_channels = nb_channels;
  300. ebur128->ch_weighting = av_calloc(nb_channels, sizeof(*ebur128->ch_weighting));
  301. if (!ebur128->ch_weighting)
  302. return AVERROR(ENOMEM);
  303. for (i = 0; i < nb_channels; i++) {
  304. /* find the next bit that is set starting from the right */
  305. while ((outlink->channel_layout & 1ULL<<idx_bitposn) == 0 && idx_bitposn < 63)
  306. idx_bitposn++;
  307. /* channel weighting */
  308. if ((1ULL<<idx_bitposn & AV_CH_LOW_FREQUENCY) ||
  309. (1ULL<<idx_bitposn & AV_CH_LOW_FREQUENCY_2)) {
  310. ebur128->ch_weighting[i] = 0;
  311. } else if (1ULL<<idx_bitposn & BACK_MASK) {
  312. ebur128->ch_weighting[i] = 1.41;
  313. } else {
  314. ebur128->ch_weighting[i] = 1.0;
  315. }
  316. idx_bitposn++;
  317. if (!ebur128->ch_weighting[i])
  318. continue;
  319. /* bins buffer for the two integration window (400ms and 3s) */
  320. ebur128->i400.cache[i] = av_calloc(I400_BINS, sizeof(*ebur128->i400.cache[0]));
  321. ebur128->i3000.cache[i] = av_calloc(I3000_BINS, sizeof(*ebur128->i3000.cache[0]));
  322. if (!ebur128->i400.cache[i] || !ebur128->i3000.cache[i])
  323. return AVERROR(ENOMEM);
  324. }
  325. outlink->flags |= FF_LINK_FLAG_REQUEST_LOOP;
  326. return 0;
  327. }
  328. #define ENERGY(loudness) (pow(10, ((loudness) + 0.691) / 10.))
  329. #define LOUDNESS(energy) (-0.691 + 10 * log10(energy))
  330. static struct hist_entry *get_histogram(void)
  331. {
  332. int i;
  333. struct hist_entry *h = av_calloc(HIST_SIZE, sizeof(*h));
  334. if (!h)
  335. return NULL;
  336. for (i = 0; i < HIST_SIZE; i++) {
  337. h[i].loudness = i / (double)HIST_GRAIN + ABS_THRES;
  338. h[i].energy = ENERGY(h[i].loudness);
  339. }
  340. return h;
  341. }
  342. static av_cold int init(AVFilterContext *ctx)
  343. {
  344. EBUR128Context *ebur128 = ctx->priv;
  345. AVFilterPad pad;
  346. if (ebur128->loglevel != AV_LOG_INFO &&
  347. ebur128->loglevel != AV_LOG_VERBOSE) {
  348. if (ebur128->do_video || ebur128->metadata)
  349. ebur128->loglevel = AV_LOG_VERBOSE;
  350. else
  351. ebur128->loglevel = AV_LOG_INFO;
  352. }
  353. // if meter is +9 scale, scale range is from -18 LU to +9 LU (or 3*9)
  354. // if meter is +18 scale, scale range is from -36 LU to +18 LU (or 3*18)
  355. ebur128->scale_range = 3 * ebur128->meter;
  356. ebur128->i400.histogram = get_histogram();
  357. ebur128->i3000.histogram = get_histogram();
  358. if (!ebur128->i400.histogram || !ebur128->i3000.histogram)
  359. return AVERROR(ENOMEM);
  360. ebur128->integrated_loudness = ABS_THRES;
  361. ebur128->loudness_range = 0;
  362. /* insert output pads */
  363. if (ebur128->do_video) {
  364. pad = (AVFilterPad){
  365. .name = av_strdup("out0"),
  366. .type = AVMEDIA_TYPE_VIDEO,
  367. .config_props = config_video_output,
  368. };
  369. if (!pad.name)
  370. return AVERROR(ENOMEM);
  371. ff_insert_outpad(ctx, 0, &pad);
  372. }
  373. pad = (AVFilterPad){
  374. .name = av_asprintf("out%d", ebur128->do_video),
  375. .type = AVMEDIA_TYPE_AUDIO,
  376. .config_props = config_audio_output,
  377. };
  378. if (!pad.name)
  379. return AVERROR(ENOMEM);
  380. ff_insert_outpad(ctx, ebur128->do_video, &pad);
  381. /* summary */
  382. av_log(ctx, AV_LOG_VERBOSE, "EBU +%d scale\n", ebur128->meter);
  383. return 0;
  384. }
  385. #define HIST_POS(power) (int)(((power) - ABS_THRES) * HIST_GRAIN)
  386. /* loudness and power should be set such as loudness = -0.691 +
  387. * 10*log10(power), we just avoid doing that calculus two times */
  388. static int gate_update(struct integrator *integ, double power,
  389. double loudness, int gate_thres)
  390. {
  391. int ipower;
  392. double relative_threshold;
  393. int gate_hist_pos;
  394. /* update powers histograms by incrementing current power count */
  395. ipower = av_clip(HIST_POS(loudness), 0, HIST_SIZE - 1);
  396. integ->histogram[ipower].count++;
  397. /* compute relative threshold and get its position in the histogram */
  398. integ->sum_kept_powers += power;
  399. integ->nb_kept_powers++;
  400. relative_threshold = integ->sum_kept_powers / integ->nb_kept_powers;
  401. if (!relative_threshold)
  402. relative_threshold = 1e-12;
  403. integ->rel_threshold = LOUDNESS(relative_threshold) + gate_thres;
  404. gate_hist_pos = av_clip(HIST_POS(integ->rel_threshold), 0, HIST_SIZE - 1);
  405. return gate_hist_pos;
  406. }
  407. static int filter_frame(AVFilterLink *inlink, AVFrame *insamples)
  408. {
  409. int i, ch, idx_insample;
  410. AVFilterContext *ctx = inlink->dst;
  411. EBUR128Context *ebur128 = ctx->priv;
  412. const int nb_channels = ebur128->nb_channels;
  413. const int nb_samples = insamples->nb_samples;
  414. const double *samples = (double *)insamples->data[0];
  415. AVFrame *pic = ebur128->outpicref;
  416. for (idx_insample = 0; idx_insample < nb_samples; idx_insample++) {
  417. const int bin_id_400 = ebur128->i400.cache_pos;
  418. const int bin_id_3000 = ebur128->i3000.cache_pos;
  419. #define MOVE_TO_NEXT_CACHED_ENTRY(time) do { \
  420. ebur128->i##time.cache_pos++; \
  421. if (ebur128->i##time.cache_pos == I##time##_BINS) { \
  422. ebur128->i##time.filled = 1; \
  423. ebur128->i##time.cache_pos = 0; \
  424. } \
  425. } while (0)
  426. MOVE_TO_NEXT_CACHED_ENTRY(400);
  427. MOVE_TO_NEXT_CACHED_ENTRY(3000);
  428. for (ch = 0; ch < nb_channels; ch++) {
  429. double bin;
  430. ebur128->x[ch * 3] = *samples++; // set X[i]
  431. if (!ebur128->ch_weighting[ch])
  432. continue;
  433. /* Y[i] = X[i]*b0 + X[i-1]*b1 + X[i-2]*b2 - Y[i-1]*a1 - Y[i-2]*a2 */
  434. #define FILTER(Y, X, name) do { \
  435. double *dst = ebur128->Y + ch*3; \
  436. double *src = ebur128->X + ch*3; \
  437. dst[2] = dst[1]; \
  438. dst[1] = dst[0]; \
  439. dst[0] = src[0]*name##_B0 + src[1]*name##_B1 + src[2]*name##_B2 \
  440. - dst[1]*name##_A1 - dst[2]*name##_A2; \
  441. } while (0)
  442. // TODO: merge both filters in one?
  443. FILTER(y, x, PRE); // apply pre-filter
  444. ebur128->x[ch * 3 + 2] = ebur128->x[ch * 3 + 1];
  445. ebur128->x[ch * 3 + 1] = ebur128->x[ch * 3 ];
  446. FILTER(z, y, RLB); // apply RLB-filter
  447. bin = ebur128->z[ch * 3] * ebur128->z[ch * 3];
  448. /* add the new value, and limit the sum to the cache size (400ms or 3s)
  449. * by removing the oldest one */
  450. ebur128->i400.sum [ch] = ebur128->i400.sum [ch] + bin - ebur128->i400.cache [ch][bin_id_400];
  451. ebur128->i3000.sum[ch] = ebur128->i3000.sum[ch] + bin - ebur128->i3000.cache[ch][bin_id_3000];
  452. /* override old cache entry with the new value */
  453. ebur128->i400.cache [ch][bin_id_400 ] = bin;
  454. ebur128->i3000.cache[ch][bin_id_3000] = bin;
  455. }
  456. /* For integrated loudness, gating blocks are 400ms long with 75%
  457. * overlap (see BS.1770-2 p5), so a re-computation is needed each 100ms
  458. * (4800 samples at 48kHz). */
  459. if (++ebur128->sample_count == 4800) {
  460. double loudness_400, loudness_3000;
  461. double power_400 = 1e-12, power_3000 = 1e-12;
  462. AVFilterLink *outlink = ctx->outputs[0];
  463. const int64_t pts = insamples->pts +
  464. av_rescale_q(idx_insample, (AVRational){ 1, inlink->sample_rate },
  465. outlink->time_base);
  466. ebur128->sample_count = 0;
  467. #define COMPUTE_LOUDNESS(m, time) do { \
  468. if (ebur128->i##time.filled) { \
  469. /* weighting sum of the last <time> ms */ \
  470. for (ch = 0; ch < nb_channels; ch++) \
  471. power_##time += ebur128->ch_weighting[ch] * ebur128->i##time.sum[ch]; \
  472. power_##time /= I##time##_BINS; \
  473. } \
  474. loudness_##time = LOUDNESS(power_##time); \
  475. } while (0)
  476. COMPUTE_LOUDNESS(M, 400);
  477. COMPUTE_LOUDNESS(S, 3000);
  478. /* Integrated loudness */
  479. #define I_GATE_THRES -10 // initially defined to -8 LU in the first EBU standard
  480. if (loudness_400 >= ABS_THRES) {
  481. double integrated_sum = 0;
  482. int nb_integrated = 0;
  483. int gate_hist_pos = gate_update(&ebur128->i400, power_400,
  484. loudness_400, I_GATE_THRES);
  485. /* compute integrated loudness by summing the histogram values
  486. * above the relative threshold */
  487. for (i = gate_hist_pos; i < HIST_SIZE; i++) {
  488. const int nb_v = ebur128->i400.histogram[i].count;
  489. nb_integrated += nb_v;
  490. integrated_sum += nb_v * ebur128->i400.histogram[i].energy;
  491. }
  492. if (nb_integrated)
  493. ebur128->integrated_loudness = LOUDNESS(integrated_sum / nb_integrated);
  494. }
  495. /* LRA */
  496. #define LRA_GATE_THRES -20
  497. #define LRA_LOWER_PRC 10
  498. #define LRA_HIGHER_PRC 95
  499. /* XXX: example code in EBU 3342 is ">=" but formula in BS.1770
  500. * specs is ">" */
  501. if (loudness_3000 >= ABS_THRES) {
  502. int nb_powers = 0;
  503. int gate_hist_pos = gate_update(&ebur128->i3000, power_3000,
  504. loudness_3000, LRA_GATE_THRES);
  505. for (i = gate_hist_pos; i < HIST_SIZE; i++)
  506. nb_powers += ebur128->i3000.histogram[i].count;
  507. if (nb_powers) {
  508. int n, nb_pow;
  509. /* get lower loudness to consider */
  510. n = 0;
  511. nb_pow = LRA_LOWER_PRC * nb_powers / 100. + 0.5;
  512. for (i = gate_hist_pos; i < HIST_SIZE; i++) {
  513. n += ebur128->i3000.histogram[i].count;
  514. if (n >= nb_pow) {
  515. ebur128->lra_low = ebur128->i3000.histogram[i].loudness;
  516. break;
  517. }
  518. }
  519. /* get higher loudness to consider */
  520. n = nb_powers;
  521. nb_pow = LRA_HIGHER_PRC * nb_powers / 100. + 0.5;
  522. for (i = HIST_SIZE - 1; i >= 0; i--) {
  523. n -= ebur128->i3000.histogram[i].count;
  524. if (n < nb_pow) {
  525. ebur128->lra_high = ebur128->i3000.histogram[i].loudness;
  526. break;
  527. }
  528. }
  529. // XXX: show low & high on the graph?
  530. ebur128->loudness_range = ebur128->lra_high - ebur128->lra_low;
  531. }
  532. }
  533. #define LOG_FMT "M:%6.1f S:%6.1f I:%6.1f LUFS LRA:%6.1f LU"
  534. /* push one video frame */
  535. if (ebur128->do_video) {
  536. int x, y, ret;
  537. uint8_t *p;
  538. const int y_loudness_lu_graph = lu_to_y(ebur128, loudness_3000 + 23);
  539. const int y_loudness_lu_gauge = lu_to_y(ebur128, loudness_400 + 23);
  540. /* draw the graph using the short-term loudness */
  541. p = pic->data[0] + ebur128->graph.y*pic->linesize[0] + ebur128->graph.x*3;
  542. for (y = 0; y < ebur128->graph.h; y++) {
  543. const uint8_t *c = get_graph_color(ebur128, y_loudness_lu_graph, y);
  544. memmove(p, p + 3, (ebur128->graph.w - 1) * 3);
  545. memcpy(p + (ebur128->graph.w - 1) * 3, c, 3);
  546. p += pic->linesize[0];
  547. }
  548. /* draw the gauge using the momentary loudness */
  549. p = pic->data[0] + ebur128->gauge.y*pic->linesize[0] + ebur128->gauge.x*3;
  550. for (y = 0; y < ebur128->gauge.h; y++) {
  551. const uint8_t *c = get_graph_color(ebur128, y_loudness_lu_gauge, y);
  552. for (x = 0; x < ebur128->gauge.w; x++)
  553. memcpy(p + x*3, c, 3);
  554. p += pic->linesize[0];
  555. }
  556. /* draw textual info */
  557. drawtext(pic, PAD, PAD - PAD/2, FONT16, font_colors,
  558. LOG_FMT " ", // padding to erase trailing characters
  559. loudness_400, loudness_3000,
  560. ebur128->integrated_loudness, ebur128->loudness_range);
  561. /* set pts and push frame */
  562. pic->pts = pts;
  563. ret = ff_filter_frame(outlink, av_frame_clone(pic));
  564. if (ret < 0)
  565. return ret;
  566. }
  567. if (ebur128->metadata) { /* happens only once per filter_frame call */
  568. char metabuf[128];
  569. #define SET_META(name, var) do { \
  570. snprintf(metabuf, sizeof(metabuf), "%.3f", var); \
  571. av_dict_set(&insamples->metadata, "lavfi.r128." name, metabuf, 0); \
  572. } while (0)
  573. SET_META("M", loudness_400);
  574. SET_META("S", loudness_3000);
  575. SET_META("I", ebur128->integrated_loudness);
  576. SET_META("LRA", ebur128->loudness_range);
  577. SET_META("LRA.low", ebur128->lra_low);
  578. SET_META("LRA.high", ebur128->lra_high);
  579. }
  580. av_log(ctx, ebur128->loglevel, "t: %-10s " LOG_FMT "\n",
  581. av_ts2timestr(pts, &outlink->time_base),
  582. loudness_400, loudness_3000,
  583. ebur128->integrated_loudness, ebur128->loudness_range);
  584. }
  585. }
  586. return ff_filter_frame(ctx->outputs[ebur128->do_video], insamples);
  587. }
  588. static int query_formats(AVFilterContext *ctx)
  589. {
  590. EBUR128Context *ebur128 = ctx->priv;
  591. AVFilterFormats *formats;
  592. AVFilterChannelLayouts *layouts;
  593. AVFilterLink *inlink = ctx->inputs[0];
  594. AVFilterLink *outlink = ctx->outputs[0];
  595. static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_NONE };
  596. static const int input_srate[] = {48000, -1}; // ITU-R BS.1770 provides coeff only for 48kHz
  597. static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_RGB24, AV_PIX_FMT_NONE };
  598. /* set optional output video format */
  599. if (ebur128->do_video) {
  600. formats = ff_make_format_list(pix_fmts);
  601. if (!formats)
  602. return AVERROR(ENOMEM);
  603. ff_formats_ref(formats, &outlink->in_formats);
  604. outlink = ctx->outputs[1];
  605. }
  606. /* set input and output audio formats
  607. * Note: ff_set_common_* functions are not used because they affect all the
  608. * links, and thus break the video format negotiation */
  609. formats = ff_make_format_list(sample_fmts);
  610. if (!formats)
  611. return AVERROR(ENOMEM);
  612. ff_formats_ref(formats, &inlink->out_formats);
  613. ff_formats_ref(formats, &outlink->in_formats);
  614. layouts = ff_all_channel_layouts();
  615. if (!layouts)
  616. return AVERROR(ENOMEM);
  617. ff_channel_layouts_ref(layouts, &inlink->out_channel_layouts);
  618. ff_channel_layouts_ref(layouts, &outlink->in_channel_layouts);
  619. formats = ff_make_format_list(input_srate);
  620. if (!formats)
  621. return AVERROR(ENOMEM);
  622. ff_formats_ref(formats, &inlink->out_samplerates);
  623. ff_formats_ref(formats, &outlink->in_samplerates);
  624. return 0;
  625. }
  626. static av_cold void uninit(AVFilterContext *ctx)
  627. {
  628. int i;
  629. EBUR128Context *ebur128 = ctx->priv;
  630. av_log(ctx, AV_LOG_INFO, "Summary:\n\n"
  631. " Integrated loudness:\n"
  632. " I: %5.1f LUFS\n"
  633. " Threshold: %5.1f LUFS\n\n"
  634. " Loudness range:\n"
  635. " LRA: %5.1f LU\n"
  636. " Threshold: %5.1f LUFS\n"
  637. " LRA low: %5.1f LUFS\n"
  638. " LRA high: %5.1f LUFS\n",
  639. ebur128->integrated_loudness, ebur128->i400.rel_threshold,
  640. ebur128->loudness_range, ebur128->i3000.rel_threshold,
  641. ebur128->lra_low, ebur128->lra_high);
  642. av_freep(&ebur128->y_line_ref);
  643. av_freep(&ebur128->ch_weighting);
  644. av_freep(&ebur128->i400.histogram);
  645. av_freep(&ebur128->i3000.histogram);
  646. for (i = 0; i < ebur128->nb_channels; i++) {
  647. av_freep(&ebur128->i400.cache[i]);
  648. av_freep(&ebur128->i3000.cache[i]);
  649. }
  650. for (i = 0; i < ctx->nb_outputs; i++)
  651. av_freep(&ctx->output_pads[i].name);
  652. av_frame_free(&ebur128->outpicref);
  653. }
  654. static const AVFilterPad ebur128_inputs[] = {
  655. {
  656. .name = "default",
  657. .type = AVMEDIA_TYPE_AUDIO,
  658. .filter_frame = filter_frame,
  659. .config_props = config_audio_input,
  660. },
  661. { NULL }
  662. };
  663. AVFilter ff_af_ebur128 = {
  664. .name = "ebur128",
  665. .description = NULL_IF_CONFIG_SMALL("EBU R128 scanner."),
  666. .priv_size = sizeof(EBUR128Context),
  667. .init = init,
  668. .uninit = uninit,
  669. .query_formats = query_formats,
  670. .inputs = ebur128_inputs,
  671. .outputs = NULL,
  672. .priv_class = &ebur128_class,
  673. .flags = AVFILTER_FLAG_DYNAMIC_OUTPUTS,
  674. };