You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

847 lines
21KB

  1. /*
  2. * yuv2rgb.c, Software YUV to RGB coverter
  3. *
  4. * Copyright (C) 1999, Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
  5. * All Rights Reserved.
  6. *
  7. * Functions broken out from display_x11.c and several new modes
  8. * added by HÃ¥kan Hjort <d95hjort@dtek.chalmers.se>
  9. *
  10. * 15 & 16 bpp support by Franck Sicard <Franck.Sicard@solsoft.fr>
  11. *
  12. * This file is part of mpeg2dec, a free MPEG-2 video decoder
  13. *
  14. * mpeg2dec is free software; you can redistribute it and/or modify
  15. * it under the terms of the GNU General Public License as published by
  16. * the Free Software Foundation; either version 2, or (at your option)
  17. * any later version.
  18. *
  19. * mpeg2dec is distributed in the hope that it will be useful,
  20. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  22. * GNU General Public License for more details.
  23. *
  24. * You should have received a copy of the GNU General Public License
  25. * along with mpeg2dec; if not, write to the Free Software
  26. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  27. *
  28. * MMX/MMX2 Template stuff from Michael Niedermayer (michaelni@gmx.at) (needed for fast movntq support)
  29. * 1,4,8bpp support by Michael Niedermayer (michaelni@gmx.at)
  30. * context / deglobalize stuff by Michael Niedermayer
  31. */
  32. #include <stdio.h>
  33. #include <stdlib.h>
  34. #include <inttypes.h>
  35. #include <assert.h>
  36. #include "config.h"
  37. #include "rgb2rgb.h"
  38. #include "swscale.h"
  39. #include "swscale_internal.h"
  40. #ifdef HAVE_MLIB
  41. #include "yuv2rgb_mlib.c"
  42. #endif
  43. #define DITHER1XBPP // only for mmx
  44. const uint8_t __attribute__((aligned(8))) dither_2x2_4[2][8]={
  45. { 1, 3, 1, 3, 1, 3, 1, 3, },
  46. { 2, 0, 2, 0, 2, 0, 2, 0, },
  47. };
  48. const uint8_t __attribute__((aligned(8))) dither_2x2_8[2][8]={
  49. { 6, 2, 6, 2, 6, 2, 6, 2, },
  50. { 0, 4, 0, 4, 0, 4, 0, 4, },
  51. };
  52. const uint8_t __attribute__((aligned(8))) dither_8x8_32[8][8]={
  53. { 17, 9, 23, 15, 16, 8, 22, 14, },
  54. { 5, 29, 3, 27, 4, 28, 2, 26, },
  55. { 21, 13, 19, 11, 20, 12, 18, 10, },
  56. { 0, 24, 6, 30, 1, 25, 7, 31, },
  57. { 16, 8, 22, 14, 17, 9, 23, 15, },
  58. { 4, 28, 2, 26, 5, 29, 3, 27, },
  59. { 20, 12, 18, 10, 21, 13, 19, 11, },
  60. { 1, 25, 7, 31, 0, 24, 6, 30, },
  61. };
  62. #if 0
  63. const uint8_t __attribute__((aligned(8))) dither_8x8_64[8][8]={
  64. { 0, 48, 12, 60, 3, 51, 15, 63, },
  65. { 32, 16, 44, 28, 35, 19, 47, 31, },
  66. { 8, 56, 4, 52, 11, 59, 7, 55, },
  67. { 40, 24, 36, 20, 43, 27, 39, 23, },
  68. { 2, 50, 14, 62, 1, 49, 13, 61, },
  69. { 34, 18, 46, 30, 33, 17, 45, 29, },
  70. { 10, 58, 6, 54, 9, 57, 5, 53, },
  71. { 42, 26, 38, 22, 41, 25, 37, 21, },
  72. };
  73. #endif
  74. const uint8_t __attribute__((aligned(8))) dither_8x8_73[8][8]={
  75. { 0, 55, 14, 68, 3, 58, 17, 72, },
  76. { 37, 18, 50, 32, 40, 22, 54, 35, },
  77. { 9, 64, 5, 59, 13, 67, 8, 63, },
  78. { 46, 27, 41, 23, 49, 31, 44, 26, },
  79. { 2, 57, 16, 71, 1, 56, 15, 70, },
  80. { 39, 21, 52, 34, 38, 19, 51, 33, },
  81. { 11, 66, 7, 62, 10, 65, 6, 60, },
  82. { 48, 30, 43, 25, 47, 29, 42, 24, },
  83. };
  84. #if 0
  85. const uint8_t __attribute__((aligned(8))) dither_8x8_128[8][8]={
  86. { 68, 36, 92, 60, 66, 34, 90, 58, },
  87. { 20, 116, 12, 108, 18, 114, 10, 106, },
  88. { 84, 52, 76, 44, 82, 50, 74, 42, },
  89. { 0, 96, 24, 120, 6, 102, 30, 126, },
  90. { 64, 32, 88, 56, 70, 38, 94, 62, },
  91. { 16, 112, 8, 104, 22, 118, 14, 110, },
  92. { 80, 48, 72, 40, 86, 54, 78, 46, },
  93. { 4, 100, 28, 124, 2, 98, 26, 122, },
  94. };
  95. #endif
  96. #if 1
  97. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  98. {117, 62, 158, 103, 113, 58, 155, 100, },
  99. { 34, 199, 21, 186, 31, 196, 17, 182, },
  100. {144, 89, 131, 76, 141, 86, 127, 72, },
  101. { 0, 165, 41, 206, 10, 175, 52, 217, },
  102. {110, 55, 151, 96, 120, 65, 162, 107, },
  103. { 28, 193, 14, 179, 38, 203, 24, 189, },
  104. {138, 83, 124, 69, 148, 93, 134, 79, },
  105. { 7, 172, 48, 213, 3, 168, 45, 210, },
  106. };
  107. #elif 1
  108. // tries to correct a gamma of 1.5
  109. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  110. { 0, 143, 18, 200, 2, 156, 25, 215, },
  111. { 78, 28, 125, 64, 89, 36, 138, 74, },
  112. { 10, 180, 3, 161, 16, 195, 8, 175, },
  113. {109, 51, 93, 38, 121, 60, 105, 47, },
  114. { 1, 152, 23, 210, 0, 147, 20, 205, },
  115. { 85, 33, 134, 71, 81, 30, 130, 67, },
  116. { 14, 190, 6, 171, 12, 185, 5, 166, },
  117. {117, 57, 101, 44, 113, 54, 97, 41, },
  118. };
  119. #elif 1
  120. // tries to correct a gamma of 2.0
  121. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  122. { 0, 124, 8, 193, 0, 140, 12, 213, },
  123. { 55, 14, 104, 42, 66, 19, 119, 52, },
  124. { 3, 168, 1, 145, 6, 187, 3, 162, },
  125. { 86, 31, 70, 21, 99, 39, 82, 28, },
  126. { 0, 134, 11, 206, 0, 129, 9, 200, },
  127. { 62, 17, 114, 48, 58, 16, 109, 45, },
  128. { 5, 181, 2, 157, 4, 175, 1, 151, },
  129. { 95, 36, 78, 26, 90, 34, 74, 24, },
  130. };
  131. #else
  132. // tries to correct a gamma of 2.5
  133. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  134. { 0, 107, 3, 187, 0, 125, 6, 212, },
  135. { 39, 7, 86, 28, 49, 11, 102, 36, },
  136. { 1, 158, 0, 131, 3, 180, 1, 151, },
  137. { 68, 19, 52, 12, 81, 25, 64, 17, },
  138. { 0, 119, 5, 203, 0, 113, 4, 195, },
  139. { 45, 9, 96, 33, 42, 8, 91, 30, },
  140. { 2, 172, 1, 144, 2, 165, 0, 137, },
  141. { 77, 23, 60, 15, 72, 21, 56, 14, },
  142. };
  143. #endif
  144. #ifdef HAVE_MMX
  145. /* hope these constant values are cache line aligned */
  146. static uint64_t attribute_used __attribute__((aligned(8))) mmx_00ffw = 0x00ff00ff00ff00ffULL;
  147. static uint64_t attribute_used __attribute__((aligned(8))) mmx_redmask = 0xf8f8f8f8f8f8f8f8ULL;
  148. static uint64_t attribute_used __attribute__((aligned(8))) mmx_grnmask = 0xfcfcfcfcfcfcfcfcULL;
  149. static uint64_t attribute_used __attribute__((aligned(8))) M24A= 0x00FF0000FF0000FFULL;
  150. static uint64_t attribute_used __attribute__((aligned(8))) M24B= 0xFF0000FF0000FF00ULL;
  151. static uint64_t attribute_used __attribute__((aligned(8))) M24C= 0x0000FF0000FF0000ULL;
  152. // the volatile is required because gcc otherwise optimizes some writes away not knowing that these
  153. // are read in the asm block
  154. static volatile uint64_t attribute_used __attribute__((aligned(8))) b5Dither;
  155. static volatile uint64_t attribute_used __attribute__((aligned(8))) g5Dither;
  156. static volatile uint64_t attribute_used __attribute__((aligned(8))) g6Dither;
  157. static volatile uint64_t attribute_used __attribute__((aligned(8))) r5Dither;
  158. static uint64_t __attribute__((aligned(8))) dither4[2]={
  159. 0x0103010301030103LL,
  160. 0x0200020002000200LL,};
  161. static uint64_t __attribute__((aligned(8))) dither8[2]={
  162. 0x0602060206020602LL,
  163. 0x0004000400040004LL,};
  164. #undef HAVE_MMX
  165. //MMX versions
  166. #undef RENAME
  167. #define HAVE_MMX
  168. #undef HAVE_MMX2
  169. #undef HAVE_3DNOW
  170. #define RENAME(a) a ## _MMX
  171. #include "yuv2rgb_template.c"
  172. //MMX2 versions
  173. #undef RENAME
  174. #define HAVE_MMX
  175. #define HAVE_MMX2
  176. #undef HAVE_3DNOW
  177. #define RENAME(a) a ## _MMX2
  178. #include "yuv2rgb_template.c"
  179. #endif /* defined(ARCH_X86) */
  180. const int32_t Inverse_Table_6_9[8][4] = {
  181. {117504, 138453, 13954, 34903}, /* no sequence_display_extension */
  182. {117504, 138453, 13954, 34903}, /* ITU-R Rec. 709 (1990) */
  183. {104597, 132201, 25675, 53279}, /* unspecified */
  184. {104597, 132201, 25675, 53279}, /* reserved */
  185. {104448, 132798, 24759, 53109}, /* FCC */
  186. {104597, 132201, 25675, 53279}, /* ITU-R Rec. 624-4 System B, G */
  187. {104597, 132201, 25675, 53279}, /* SMPTE 170M */
  188. {117579, 136230, 16907, 35559} /* SMPTE 240M (1987) */
  189. };
  190. #define RGB(i) \
  191. U = pu[i]; \
  192. V = pv[i]; \
  193. r = (void *)c->table_rV[V]; \
  194. g = (void *)(c->table_gU[U] + c->table_gV[V]); \
  195. b = (void *)c->table_bU[U];
  196. #define DST1(i) \
  197. Y = py_1[2*i]; \
  198. dst_1[2*i] = r[Y] + g[Y] + b[Y]; \
  199. Y = py_1[2*i+1]; \
  200. dst_1[2*i+1] = r[Y] + g[Y] + b[Y];
  201. #define DST2(i) \
  202. Y = py_2[2*i]; \
  203. dst_2[2*i] = r[Y] + g[Y] + b[Y]; \
  204. Y = py_2[2*i+1]; \
  205. dst_2[2*i+1] = r[Y] + g[Y] + b[Y];
  206. #define DST1RGB(i) \
  207. Y = py_1[2*i]; \
  208. dst_1[6*i] = r[Y]; dst_1[6*i+1] = g[Y]; dst_1[6*i+2] = b[Y]; \
  209. Y = py_1[2*i+1]; \
  210. dst_1[6*i+3] = r[Y]; dst_1[6*i+4] = g[Y]; dst_1[6*i+5] = b[Y];
  211. #define DST2RGB(i) \
  212. Y = py_2[2*i]; \
  213. dst_2[6*i] = r[Y]; dst_2[6*i+1] = g[Y]; dst_2[6*i+2] = b[Y]; \
  214. Y = py_2[2*i+1]; \
  215. dst_2[6*i+3] = r[Y]; dst_2[6*i+4] = g[Y]; dst_2[6*i+5] = b[Y];
  216. #define DST1BGR(i) \
  217. Y = py_1[2*i]; \
  218. dst_1[6*i] = b[Y]; dst_1[6*i+1] = g[Y]; dst_1[6*i+2] = r[Y]; \
  219. Y = py_1[2*i+1]; \
  220. dst_1[6*i+3] = b[Y]; dst_1[6*i+4] = g[Y]; dst_1[6*i+5] = r[Y];
  221. #define DST2BGR(i) \
  222. Y = py_2[2*i]; \
  223. dst_2[6*i] = b[Y]; dst_2[6*i+1] = g[Y]; dst_2[6*i+2] = r[Y]; \
  224. Y = py_2[2*i+1]; \
  225. dst_2[6*i+3] = b[Y]; dst_2[6*i+4] = g[Y]; dst_2[6*i+5] = r[Y];
  226. #define PROLOG(func_name, dst_type) \
  227. static int func_name(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, \
  228. int srcSliceH, uint8_t* dst[], int dstStride[]){\
  229. int y;\
  230. \
  231. if(c->srcFormat == PIX_FMT_YUV422P){\
  232. srcStride[1] *= 2;\
  233. srcStride[2] *= 2;\
  234. }\
  235. for(y=0; y<srcSliceH; y+=2){\
  236. dst_type *dst_1= (dst_type*)(dst[0] + (y+srcSliceY )*dstStride[0]);\
  237. dst_type *dst_2= (dst_type*)(dst[0] + (y+srcSliceY+1)*dstStride[0]);\
  238. dst_type attribute_unused *r, *b;\
  239. dst_type *g;\
  240. uint8_t *py_1= src[0] + y*srcStride[0];\
  241. uint8_t *py_2= py_1 + srcStride[0];\
  242. uint8_t *pu= src[1] + (y>>1)*srcStride[1];\
  243. uint8_t *pv= src[2] + (y>>1)*srcStride[2];\
  244. unsigned int h_size= c->dstW>>3;\
  245. while (h_size--) {\
  246. int attribute_unused U, V;\
  247. int Y;\
  248. #define EPILOG(dst_delta)\
  249. pu += 4;\
  250. pv += 4;\
  251. py_1 += 8;\
  252. py_2 += 8;\
  253. dst_1 += dst_delta;\
  254. dst_2 += dst_delta;\
  255. }\
  256. }\
  257. return srcSliceH;\
  258. }
  259. PROLOG(yuv2rgb_c_32, uint32_t)
  260. RGB(0);
  261. DST1(0);
  262. DST2(0);
  263. RGB(1);
  264. DST2(1);
  265. DST1(1);
  266. RGB(2);
  267. DST1(2);
  268. DST2(2);
  269. RGB(3);
  270. DST2(3);
  271. DST1(3);
  272. EPILOG(8)
  273. PROLOG(yuv2rgb_c_24_rgb, uint8_t)
  274. RGB(0);
  275. DST1RGB(0);
  276. DST2RGB(0);
  277. RGB(1);
  278. DST2RGB(1);
  279. DST1RGB(1);
  280. RGB(2);
  281. DST1RGB(2);
  282. DST2RGB(2);
  283. RGB(3);
  284. DST2RGB(3);
  285. DST1RGB(3);
  286. EPILOG(24)
  287. // only trivial mods from yuv2rgb_c_24_rgb
  288. PROLOG(yuv2rgb_c_24_bgr, uint8_t)
  289. RGB(0);
  290. DST1BGR(0);
  291. DST2BGR(0);
  292. RGB(1);
  293. DST2BGR(1);
  294. DST1BGR(1);
  295. RGB(2);
  296. DST1BGR(2);
  297. DST2BGR(2);
  298. RGB(3);
  299. DST2BGR(3);
  300. DST1BGR(3);
  301. EPILOG(24)
  302. // This is exactly the same code as yuv2rgb_c_32 except for the types of
  303. // r, g, b, dst_1, dst_2
  304. PROLOG(yuv2rgb_c_16, uint16_t)
  305. RGB(0);
  306. DST1(0);
  307. DST2(0);
  308. RGB(1);
  309. DST2(1);
  310. DST1(1);
  311. RGB(2);
  312. DST1(2);
  313. DST2(2);
  314. RGB(3);
  315. DST2(3);
  316. DST1(3);
  317. EPILOG(8)
  318. // This is exactly the same code as yuv2rgb_c_32 except for the types of
  319. // r, g, b, dst_1, dst_2
  320. PROLOG(yuv2rgb_c_8, uint8_t)
  321. RGB(0);
  322. DST1(0);
  323. DST2(0);
  324. RGB(1);
  325. DST2(1);
  326. DST1(1);
  327. RGB(2);
  328. DST1(2);
  329. DST2(2);
  330. RGB(3);
  331. DST2(3);
  332. DST1(3);
  333. EPILOG(8)
  334. // r, g, b, dst_1, dst_2
  335. PROLOG(yuv2rgb_c_8_ordered_dither, uint8_t)
  336. const uint8_t *d32= dither_8x8_32[y&7];
  337. const uint8_t *d64= dither_8x8_73[y&7];
  338. #define DST1bpp8(i,o) \
  339. Y = py_1[2*i]; \
  340. dst_1[2*i] = r[Y+d32[0+o]] + g[Y+d32[0+o]] + b[Y+d64[0+o]]; \
  341. Y = py_1[2*i+1]; \
  342. dst_1[2*i+1] = r[Y+d32[1+o]] + g[Y+d32[1+o]] + b[Y+d64[1+o]];
  343. #define DST2bpp8(i,o) \
  344. Y = py_2[2*i]; \
  345. dst_2[2*i] = r[Y+d32[8+o]] + g[Y+d32[8+o]] + b[Y+d64[8+o]]; \
  346. Y = py_2[2*i+1]; \
  347. dst_2[2*i+1] = r[Y+d32[9+o]] + g[Y+d32[9+o]] + b[Y+d64[9+o]];
  348. RGB(0);
  349. DST1bpp8(0,0);
  350. DST2bpp8(0,0);
  351. RGB(1);
  352. DST2bpp8(1,2);
  353. DST1bpp8(1,2);
  354. RGB(2);
  355. DST1bpp8(2,4);
  356. DST2bpp8(2,4);
  357. RGB(3);
  358. DST2bpp8(3,6);
  359. DST1bpp8(3,6);
  360. EPILOG(8)
  361. // This is exactly the same code as yuv2rgb_c_32 except for the types of
  362. // r, g, b, dst_1, dst_2
  363. PROLOG(yuv2rgb_c_4, uint8_t)
  364. int acc;
  365. #define DST1_4(i) \
  366. Y = py_1[2*i]; \
  367. acc = r[Y] + g[Y] + b[Y]; \
  368. Y = py_1[2*i+1]; \
  369. acc |= (r[Y] + g[Y] + b[Y])<<4;\
  370. dst_1[i] = acc;
  371. #define DST2_4(i) \
  372. Y = py_2[2*i]; \
  373. acc = r[Y] + g[Y] + b[Y]; \
  374. Y = py_2[2*i+1]; \
  375. acc |= (r[Y] + g[Y] + b[Y])<<4;\
  376. dst_2[i] = acc;
  377. RGB(0);
  378. DST1_4(0);
  379. DST2_4(0);
  380. RGB(1);
  381. DST2_4(1);
  382. DST1_4(1);
  383. RGB(2);
  384. DST1_4(2);
  385. DST2_4(2);
  386. RGB(3);
  387. DST2_4(3);
  388. DST1_4(3);
  389. EPILOG(4)
  390. PROLOG(yuv2rgb_c_4_ordered_dither, uint8_t)
  391. const uint8_t *d64= dither_8x8_73[y&7];
  392. const uint8_t *d128=dither_8x8_220[y&7];
  393. int acc;
  394. #define DST1bpp4(i,o) \
  395. Y = py_1[2*i]; \
  396. acc = r[Y+d128[0+o]] + g[Y+d64[0+o]] + b[Y+d128[0+o]]; \
  397. Y = py_1[2*i+1]; \
  398. acc |= (r[Y+d128[1+o]] + g[Y+d64[1+o]] + b[Y+d128[1+o]])<<4;\
  399. dst_1[i]= acc;
  400. #define DST2bpp4(i,o) \
  401. Y = py_2[2*i]; \
  402. acc = r[Y+d128[8+o]] + g[Y+d64[8+o]] + b[Y+d128[8+o]]; \
  403. Y = py_2[2*i+1]; \
  404. acc |= (r[Y+d128[9+o]] + g[Y+d64[9+o]] + b[Y+d128[9+o]])<<4;\
  405. dst_2[i]= acc;
  406. RGB(0);
  407. DST1bpp4(0,0);
  408. DST2bpp4(0,0);
  409. RGB(1);
  410. DST2bpp4(1,2);
  411. DST1bpp4(1,2);
  412. RGB(2);
  413. DST1bpp4(2,4);
  414. DST2bpp4(2,4);
  415. RGB(3);
  416. DST2bpp4(3,6);
  417. DST1bpp4(3,6);
  418. EPILOG(4)
  419. // This is exactly the same code as yuv2rgb_c_32 except for the types of
  420. // r, g, b, dst_1, dst_2
  421. PROLOG(yuv2rgb_c_4b, uint8_t)
  422. RGB(0);
  423. DST1(0);
  424. DST2(0);
  425. RGB(1);
  426. DST2(1);
  427. DST1(1);
  428. RGB(2);
  429. DST1(2);
  430. DST2(2);
  431. RGB(3);
  432. DST2(3);
  433. DST1(3);
  434. EPILOG(8)
  435. PROLOG(yuv2rgb_c_4b_ordered_dither, uint8_t)
  436. const uint8_t *d64= dither_8x8_73[y&7];
  437. const uint8_t *d128=dither_8x8_220[y&7];
  438. #define DST1bpp4b(i,o) \
  439. Y = py_1[2*i]; \
  440. dst_1[2*i] = r[Y+d128[0+o]] + g[Y+d64[0+o]] + b[Y+d128[0+o]]; \
  441. Y = py_1[2*i+1]; \
  442. dst_1[2*i+1] = r[Y+d128[1+o]] + g[Y+d64[1+o]] + b[Y+d128[1+o]];
  443. #define DST2bpp4b(i,o) \
  444. Y = py_2[2*i]; \
  445. dst_2[2*i] = r[Y+d128[8+o]] + g[Y+d64[8+o]] + b[Y+d128[8+o]]; \
  446. Y = py_2[2*i+1]; \
  447. dst_2[2*i+1] = r[Y+d128[9+o]] + g[Y+d64[9+o]] + b[Y+d128[9+o]];
  448. RGB(0);
  449. DST1bpp4b(0,0);
  450. DST2bpp4b(0,0);
  451. RGB(1);
  452. DST2bpp4b(1,2);
  453. DST1bpp4b(1,2);
  454. RGB(2);
  455. DST1bpp4b(2,4);
  456. DST2bpp4b(2,4);
  457. RGB(3);
  458. DST2bpp4b(3,6);
  459. DST1bpp4b(3,6);
  460. EPILOG(8)
  461. PROLOG(yuv2rgb_c_1_ordered_dither, uint8_t)
  462. const uint8_t *d128=dither_8x8_220[y&7];
  463. char out_1=0, out_2=0;
  464. g= c->table_gU[128] + c->table_gV[128];
  465. #define DST1bpp1(i,o) \
  466. Y = py_1[2*i]; \
  467. out_1+= out_1 + g[Y+d128[0+o]]; \
  468. Y = py_1[2*i+1]; \
  469. out_1+= out_1 + g[Y+d128[1+o]];
  470. #define DST2bpp1(i,o) \
  471. Y = py_2[2*i]; \
  472. out_2+= out_2 + g[Y+d128[8+o]]; \
  473. Y = py_2[2*i+1]; \
  474. out_2+= out_2 + g[Y+d128[9+o]];
  475. DST1bpp1(0,0);
  476. DST2bpp1(0,0);
  477. DST2bpp1(1,2);
  478. DST1bpp1(1,2);
  479. DST1bpp1(2,4);
  480. DST2bpp1(2,4);
  481. DST2bpp1(3,6);
  482. DST1bpp1(3,6);
  483. dst_1[0]= out_1;
  484. dst_2[0]= out_2;
  485. EPILOG(1)
  486. SwsFunc yuv2rgb_get_func_ptr (SwsContext *c)
  487. {
  488. #if defined(HAVE_MMX2) || defined(HAVE_MMX)
  489. if(c->flags & SWS_CPU_CAPS_MMX2){
  490. switch(c->dstFormat){
  491. case PIX_FMT_RGB32: return yuv420_rgb32_MMX2;
  492. case PIX_FMT_BGR24: return yuv420_rgb24_MMX2;
  493. case PIX_FMT_BGR565: return yuv420_rgb16_MMX2;
  494. case PIX_FMT_BGR555: return yuv420_rgb15_MMX2;
  495. }
  496. }
  497. if(c->flags & SWS_CPU_CAPS_MMX){
  498. switch(c->dstFormat){
  499. case PIX_FMT_RGB32: return yuv420_rgb32_MMX;
  500. case PIX_FMT_BGR24: return yuv420_rgb24_MMX;
  501. case PIX_FMT_BGR565: return yuv420_rgb16_MMX;
  502. case PIX_FMT_BGR555: return yuv420_rgb15_MMX;
  503. }
  504. }
  505. #endif
  506. #ifdef HAVE_MLIB
  507. {
  508. SwsFunc t= yuv2rgb_init_mlib(c);
  509. if(t) return t;
  510. }
  511. #endif
  512. #ifdef HAVE_ALTIVEC
  513. if (c->flags & SWS_CPU_CAPS_ALTIVEC)
  514. {
  515. SwsFunc t = yuv2rgb_init_altivec(c);
  516. if(t) return t;
  517. }
  518. #endif
  519. av_log(c, AV_LOG_WARNING, "No accelerated colorspace conversion found\n");
  520. switch(c->dstFormat){
  521. case PIX_FMT_BGR32:
  522. case PIX_FMT_RGB32: return yuv2rgb_c_32;
  523. case PIX_FMT_RGB24: return yuv2rgb_c_24_rgb;
  524. case PIX_FMT_BGR24: return yuv2rgb_c_24_bgr;
  525. case PIX_FMT_RGB565:
  526. case PIX_FMT_BGR565:
  527. case PIX_FMT_RGB555:
  528. case PIX_FMT_BGR555: return yuv2rgb_c_16;
  529. case PIX_FMT_RGB8:
  530. case PIX_FMT_BGR8: return yuv2rgb_c_8_ordered_dither;
  531. case PIX_FMT_RGB4:
  532. case PIX_FMT_BGR4: return yuv2rgb_c_4_ordered_dither;
  533. case PIX_FMT_RGB4_BYTE:
  534. case PIX_FMT_BGR4_BYTE: return yuv2rgb_c_4b_ordered_dither;
  535. case PIX_FMT_MONOBLACK: return yuv2rgb_c_1_ordered_dither;
  536. default:
  537. assert(0);
  538. }
  539. return NULL;
  540. }
  541. static int div_round (int dividend, int divisor)
  542. {
  543. if (dividend > 0)
  544. return (dividend + (divisor>>1)) / divisor;
  545. else
  546. return -((-dividend + (divisor>>1)) / divisor);
  547. }
  548. int yuv2rgb_c_init_tables (SwsContext *c, const int inv_table[4], int fullRange, int brightness, int contrast, int saturation)
  549. {
  550. const int isRgb = isBGR(c->dstFormat);
  551. const int bpp = fmt_depth(c->dstFormat);
  552. int i;
  553. uint8_t table_Y[1024];
  554. uint32_t *table_32 = 0;
  555. uint16_t *table_16 = 0;
  556. uint8_t *table_8 = 0;
  557. uint8_t *table_332 = 0;
  558. uint8_t *table_121 = 0;
  559. uint8_t *table_1 = 0;
  560. int entry_size = 0;
  561. void *table_r = 0, *table_g = 0, *table_b = 0;
  562. void *table_start;
  563. int64_t crv = inv_table[0];
  564. int64_t cbu = inv_table[1];
  565. int64_t cgu = -inv_table[2];
  566. int64_t cgv = -inv_table[3];
  567. int64_t cy = 1<<16;
  568. int64_t oy = 0;
  569. //printf("%lld %lld %lld %lld %lld\n", cy, crv, cbu, cgu, cgv);
  570. if(!fullRange){
  571. cy= (cy*255) / 219;
  572. oy= 16<<16;
  573. }
  574. cy = (cy *contrast )>>16;
  575. crv= (crv*contrast * saturation)>>32;
  576. cbu= (cbu*contrast * saturation)>>32;
  577. cgu= (cgu*contrast * saturation)>>32;
  578. cgv= (cgv*contrast * saturation)>>32;
  579. //printf("%lld %lld %lld %lld %lld\n", cy, crv, cbu, cgu, cgv);
  580. oy -= 256*brightness;
  581. for (i = 0; i < 1024; i++) {
  582. int j;
  583. j= (cy*(((i - 384)<<16) - oy) + (1<<31))>>32;
  584. j = (j < 0) ? 0 : ((j > 255) ? 255 : j);
  585. table_Y[i] = j;
  586. }
  587. switch (bpp) {
  588. case 32:
  589. table_start= table_32 = av_malloc ((197 + 2*682 + 256 + 132) * sizeof (uint32_t));
  590. entry_size = sizeof (uint32_t);
  591. table_r = table_32 + 197;
  592. table_b = table_32 + 197 + 685;
  593. table_g = table_32 + 197 + 2*682;
  594. for (i = -197; i < 256+197; i++)
  595. ((uint32_t *)table_r)[i] = table_Y[i+384] << (isRgb ? 16 : 0);
  596. for (i = -132; i < 256+132; i++)
  597. ((uint32_t *)table_g)[i] = table_Y[i+384] << 8;
  598. for (i = -232; i < 256+232; i++)
  599. ((uint32_t *)table_b)[i] = table_Y[i+384] << (isRgb ? 0 : 16);
  600. break;
  601. case 24:
  602. table_start= table_8 = av_malloc ((256 + 2*232) * sizeof (uint8_t));
  603. entry_size = sizeof (uint8_t);
  604. table_r = table_g = table_b = table_8 + 232;
  605. for (i = -232; i < 256+232; i++)
  606. ((uint8_t * )table_b)[i] = table_Y[i+384];
  607. break;
  608. case 15:
  609. case 16:
  610. table_start= table_16 = av_malloc ((197 + 2*682 + 256 + 132) * sizeof (uint16_t));
  611. entry_size = sizeof (uint16_t);
  612. table_r = table_16 + 197;
  613. table_b = table_16 + 197 + 685;
  614. table_g = table_16 + 197 + 2*682;
  615. for (i = -197; i < 256+197; i++) {
  616. int j = table_Y[i+384] >> 3;
  617. if (isRgb)
  618. j <<= ((bpp==16) ? 11 : 10);
  619. ((uint16_t *)table_r)[i] = j;
  620. }
  621. for (i = -132; i < 256+132; i++) {
  622. int j = table_Y[i+384] >> ((bpp==16) ? 2 : 3);
  623. ((uint16_t *)table_g)[i] = j << 5;
  624. }
  625. for (i = -232; i < 256+232; i++) {
  626. int j = table_Y[i+384] >> 3;
  627. if (!isRgb)
  628. j <<= ((bpp==16) ? 11 : 10);
  629. ((uint16_t *)table_b)[i] = j;
  630. }
  631. break;
  632. case 8:
  633. table_start= table_332 = av_malloc ((197 + 2*682 + 256 + 132) * sizeof (uint8_t));
  634. entry_size = sizeof (uint8_t);
  635. table_r = table_332 + 197;
  636. table_b = table_332 + 197 + 685;
  637. table_g = table_332 + 197 + 2*682;
  638. for (i = -197; i < 256+197; i++) {
  639. int j = (table_Y[i+384 - 16] + 18)/36;
  640. if (isRgb)
  641. j <<= 5;
  642. ((uint8_t *)table_r)[i] = j;
  643. }
  644. for (i = -132; i < 256+132; i++) {
  645. int j = (table_Y[i+384 - 16] + 18)/36;
  646. if (!isRgb)
  647. j <<= 1;
  648. ((uint8_t *)table_g)[i] = j << 2;
  649. }
  650. for (i = -232; i < 256+232; i++) {
  651. int j = (table_Y[i+384 - 37] + 43)/85;
  652. if (!isRgb)
  653. j <<= 6;
  654. ((uint8_t *)table_b)[i] = j;
  655. }
  656. break;
  657. case 4:
  658. case 4|128:
  659. table_start= table_121 = av_malloc ((197 + 2*682 + 256 + 132) * sizeof (uint8_t));
  660. entry_size = sizeof (uint8_t);
  661. table_r = table_121 + 197;
  662. table_b = table_121 + 197 + 685;
  663. table_g = table_121 + 197 + 2*682;
  664. for (i = -197; i < 256+197; i++) {
  665. int j = table_Y[i+384 - 110] >> 7;
  666. if (isRgb)
  667. j <<= 3;
  668. ((uint8_t *)table_r)[i] = j;
  669. }
  670. for (i = -132; i < 256+132; i++) {
  671. int j = (table_Y[i+384 - 37]+ 43)/85;
  672. ((uint8_t *)table_g)[i] = j << 1;
  673. }
  674. for (i = -232; i < 256+232; i++) {
  675. int j =table_Y[i+384 - 110] >> 7;
  676. if (!isRgb)
  677. j <<= 3;
  678. ((uint8_t *)table_b)[i] = j;
  679. }
  680. break;
  681. case 1:
  682. table_start= table_1 = av_malloc (256*2 * sizeof (uint8_t));
  683. entry_size = sizeof (uint8_t);
  684. table_g = table_1;
  685. table_r = table_b = NULL;
  686. for (i = 0; i < 256+256; i++) {
  687. int j = table_Y[i + 384 - 110]>>7;
  688. ((uint8_t *)table_g)[i] = j;
  689. }
  690. break;
  691. default:
  692. table_start= NULL;
  693. av_log(c, AV_LOG_ERROR, "%ibpp not supported by yuv2rgb\n", bpp);
  694. //free mem?
  695. return -1;
  696. }
  697. for (i = 0; i < 256; i++) {
  698. c->table_rV[i] = (uint8_t *)table_r + entry_size * div_round (crv * (i-128), 76309);
  699. c->table_gU[i] = (uint8_t *)table_g + entry_size * div_round (cgu * (i-128), 76309);
  700. c->table_gV[i] = entry_size * div_round (cgv * (i-128), 76309);
  701. c->table_bU[i] = (uint8_t *)table_b + entry_size * div_round (cbu * (i-128), 76309);
  702. }
  703. av_free(c->yuvTable);
  704. c->yuvTable= table_start;
  705. return 0;
  706. }