You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2862 lines
82KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. * the C code (not assembly, mmx, ...) of this file can be used
  21. * under the LGPL license too
  22. */
  23. /*
  24. supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR24, BGR16, BGR15, RGB32, RGB24, Y8/Y800, YVU9/IF09, PAL8
  25. supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
  26. {BGR,RGB}{1,4,8,15,16} support dithering
  27. unscaled special converters (YV12=I420=IYUV, Y800=Y8)
  28. YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
  29. x -> x
  30. YUV9 -> YV12
  31. YUV9/YV12 -> Y800
  32. Y800 -> YUV9/YV12
  33. BGR24 -> BGR32 & RGB24 -> RGB32
  34. BGR32 -> BGR24 & RGB32 -> RGB24
  35. BGR15 -> BGR16
  36. */
  37. /*
  38. tested special converters (most are tested actually but i didnt write it down ...)
  39. YV12 -> BGR16
  40. YV12 -> YV12
  41. BGR15 -> BGR16
  42. BGR16 -> BGR16
  43. YVU9 -> YV12
  44. untested special converters
  45. YV12/I420 -> BGR15/BGR24/BGR32 (its the yuv2rgb stuff, so it should be ok)
  46. YV12/I420 -> YV12/I420
  47. YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
  48. BGR24 -> BGR32 & RGB24 -> RGB32
  49. BGR32 -> BGR24 & RGB32 -> RGB24
  50. BGR24 -> YV12
  51. */
  52. #include <inttypes.h>
  53. #include <string.h>
  54. #include <math.h>
  55. #include <stdio.h>
  56. #include <unistd.h>
  57. #include "config.h"
  58. #include <assert.h>
  59. #ifdef HAVE_SYS_MMAN_H
  60. #include <sys/mman.h>
  61. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  62. #define MAP_ANONYMOUS MAP_ANON
  63. #endif
  64. #endif
  65. #include "swscale.h"
  66. #include "swscale_internal.h"
  67. #include "x86_cpu.h"
  68. #include "bswap.h"
  69. #include "rgb2rgb.h"
  70. #ifdef USE_FASTMEMCPY
  71. #include "libvo/fastmemcpy.h"
  72. #endif
  73. #undef MOVNTQ
  74. #undef PAVGB
  75. //#undef HAVE_MMX2
  76. //#define HAVE_3DNOW
  77. //#undef HAVE_MMX
  78. //#undef ARCH_X86
  79. //#define WORDS_BIGENDIAN
  80. #define DITHER1XBPP
  81. #define FAST_BGR2YV12 // use 7 bit coeffs instead of 15bit
  82. #define RET 0xC3 //near return opcode for X86
  83. #ifdef MP_DEBUG
  84. #define ASSERT(x) assert(x);
  85. #else
  86. #define ASSERT(x) ;
  87. #endif
  88. #ifdef M_PI
  89. #define PI M_PI
  90. #else
  91. #define PI 3.14159265358979323846
  92. #endif
  93. #define isSupportedIn(x) ((x)==PIX_FMT_YUV420P || (x)==PIX_FMT_YUYV422 || (x)==PIX_FMT_UYVY422\
  94. || (x)==PIX_FMT_RGB32|| (x)==PIX_FMT_BGR24|| (x)==PIX_FMT_BGR565|| (x)==PIX_FMT_BGR555\
  95. || (x)==PIX_FMT_BGR32|| (x)==PIX_FMT_RGB24|| (x)==PIX_FMT_RGB565|| (x)==PIX_FMT_RGB555\
  96. || (x)==PIX_FMT_GRAY8 || (x)==PIX_FMT_YUV410P\
  97. || (x)==PIX_FMT_GRAY16BE || (x)==PIX_FMT_GRAY16LE\
  98. || (x)==PIX_FMT_YUV444P || (x)==PIX_FMT_YUV422P || (x)==PIX_FMT_YUV411P\
  99. || (x)==PIX_FMT_PAL8 || (x)==PIX_FMT_BGR8 || (x)==PIX_FMT_RGB8\
  100. || (x)==PIX_FMT_BGR4_BYTE || (x)==PIX_FMT_RGB4_BYTE)
  101. #define isSupportedOut(x) ((x)==PIX_FMT_YUV420P || (x)==PIX_FMT_YUYV422 || (x)==PIX_FMT_UYVY422\
  102. || (x)==PIX_FMT_YUV444P || (x)==PIX_FMT_YUV422P || (x)==PIX_FMT_YUV411P\
  103. || isRGB(x) || isBGR(x)\
  104. || (x)==PIX_FMT_NV12 || (x)==PIX_FMT_NV21\
  105. || (x)==PIX_FMT_GRAY16BE || (x)==PIX_FMT_GRAY16LE\
  106. || (x)==PIX_FMT_GRAY8 || (x)==PIX_FMT_YUV410P)
  107. #define isPacked(x) ((x)==PIX_FMT_YUYV422 || (x)==PIX_FMT_UYVY422 ||isRGB(x) || isBGR(x))
  108. #define RGB2YUV_SHIFT 16
  109. #define BY ((int)( 0.098*(1<<RGB2YUV_SHIFT)+0.5))
  110. #define BV ((int)(-0.071*(1<<RGB2YUV_SHIFT)+0.5))
  111. #define BU ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
  112. #define GY ((int)( 0.504*(1<<RGB2YUV_SHIFT)+0.5))
  113. #define GV ((int)(-0.368*(1<<RGB2YUV_SHIFT)+0.5))
  114. #define GU ((int)(-0.291*(1<<RGB2YUV_SHIFT)+0.5))
  115. #define RY ((int)( 0.257*(1<<RGB2YUV_SHIFT)+0.5))
  116. #define RV ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
  117. #define RU ((int)(-0.148*(1<<RGB2YUV_SHIFT)+0.5))
  118. extern const int32_t Inverse_Table_6_9[8][4];
  119. /*
  120. NOTES
  121. Special versions: fast Y 1:1 scaling (no interpolation in y direction)
  122. TODO
  123. more intelligent missalignment avoidance for the horizontal scaler
  124. write special vertical cubic upscale version
  125. Optimize C code (yv12 / minmax)
  126. add support for packed pixel yuv input & output
  127. add support for Y8 output
  128. optimize bgr24 & bgr32
  129. add BGR4 output support
  130. write special BGR->BGR scaler
  131. */
  132. #if defined(ARCH_X86) && defined (CONFIG_GPL)
  133. static uint64_t attribute_used __attribute__((aligned(8))) bF8= 0xF8F8F8F8F8F8F8F8LL;
  134. static uint64_t attribute_used __attribute__((aligned(8))) bFC= 0xFCFCFCFCFCFCFCFCLL;
  135. static uint64_t __attribute__((aligned(8))) w10= 0x0010001000100010LL;
  136. static uint64_t attribute_used __attribute__((aligned(8))) w02= 0x0002000200020002LL;
  137. static uint64_t attribute_used __attribute__((aligned(8))) bm00001111=0x00000000FFFFFFFFLL;
  138. static uint64_t attribute_used __attribute__((aligned(8))) bm00000111=0x0000000000FFFFFFLL;
  139. static uint64_t attribute_used __attribute__((aligned(8))) bm11111000=0xFFFFFFFFFF000000LL;
  140. static uint64_t attribute_used __attribute__((aligned(8))) bm01010101=0x00FF00FF00FF00FFLL;
  141. static volatile uint64_t attribute_used __attribute__((aligned(8))) b5Dither;
  142. static volatile uint64_t attribute_used __attribute__((aligned(8))) g5Dither;
  143. static volatile uint64_t attribute_used __attribute__((aligned(8))) g6Dither;
  144. static volatile uint64_t attribute_used __attribute__((aligned(8))) r5Dither;
  145. static uint64_t __attribute__((aligned(8))) dither4[2]={
  146. 0x0103010301030103LL,
  147. 0x0200020002000200LL,};
  148. static uint64_t __attribute__((aligned(8))) dither8[2]={
  149. 0x0602060206020602LL,
  150. 0x0004000400040004LL,};
  151. static uint64_t __attribute__((aligned(8))) b16Mask= 0x001F001F001F001FLL;
  152. static uint64_t attribute_used __attribute__((aligned(8))) g16Mask= 0x07E007E007E007E0LL;
  153. static uint64_t attribute_used __attribute__((aligned(8))) r16Mask= 0xF800F800F800F800LL;
  154. static uint64_t __attribute__((aligned(8))) b15Mask= 0x001F001F001F001FLL;
  155. static uint64_t attribute_used __attribute__((aligned(8))) g15Mask= 0x03E003E003E003E0LL;
  156. static uint64_t attribute_used __attribute__((aligned(8))) r15Mask= 0x7C007C007C007C00LL;
  157. static uint64_t attribute_used __attribute__((aligned(8))) M24A= 0x00FF0000FF0000FFLL;
  158. static uint64_t attribute_used __attribute__((aligned(8))) M24B= 0xFF0000FF0000FF00LL;
  159. static uint64_t attribute_used __attribute__((aligned(8))) M24C= 0x0000FF0000FF0000LL;
  160. #ifdef FAST_BGR2YV12
  161. static const uint64_t bgr2YCoeff attribute_used __attribute__((aligned(8))) = 0x000000210041000DULL;
  162. static const uint64_t bgr2UCoeff attribute_used __attribute__((aligned(8))) = 0x0000FFEEFFDC0038ULL;
  163. static const uint64_t bgr2VCoeff attribute_used __attribute__((aligned(8))) = 0x00000038FFD2FFF8ULL;
  164. #else
  165. static const uint64_t bgr2YCoeff attribute_used __attribute__((aligned(8))) = 0x000020E540830C8BULL;
  166. static const uint64_t bgr2UCoeff attribute_used __attribute__((aligned(8))) = 0x0000ED0FDAC23831ULL;
  167. static const uint64_t bgr2VCoeff attribute_used __attribute__((aligned(8))) = 0x00003831D0E6F6EAULL;
  168. #endif /* FAST_BGR2YV12 */
  169. static const uint64_t bgr2YOffset attribute_used __attribute__((aligned(8))) = 0x1010101010101010ULL;
  170. static const uint64_t bgr2UVOffset attribute_used __attribute__((aligned(8)))= 0x8080808080808080ULL;
  171. static const uint64_t w1111 attribute_used __attribute__((aligned(8))) = 0x0001000100010001ULL;
  172. #endif /* defined(ARCH_X86) */
  173. // clipping helper table for C implementations:
  174. static unsigned char clip_table[768];
  175. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b);
  176. extern const uint8_t dither_2x2_4[2][8];
  177. extern const uint8_t dither_2x2_8[2][8];
  178. extern const uint8_t dither_8x8_32[8][8];
  179. extern const uint8_t dither_8x8_73[8][8];
  180. extern const uint8_t dither_8x8_220[8][8];
  181. static const char * sws_context_to_name(void * ptr) {
  182. return "swscaler";
  183. }
  184. static AVClass sws_context_class = { "SWScaler", sws_context_to_name, NULL };
  185. char *sws_format_name(enum PixelFormat format)
  186. {
  187. switch (format) {
  188. case PIX_FMT_YUV420P:
  189. return "yuv420p";
  190. case PIX_FMT_YUYV422:
  191. return "yuyv422";
  192. case PIX_FMT_RGB24:
  193. return "rgb24";
  194. case PIX_FMT_BGR24:
  195. return "bgr24";
  196. case PIX_FMT_YUV422P:
  197. return "yuv422p";
  198. case PIX_FMT_YUV444P:
  199. return "yuv444p";
  200. case PIX_FMT_RGB32:
  201. return "rgb32";
  202. case PIX_FMT_YUV410P:
  203. return "yuv410p";
  204. case PIX_FMT_YUV411P:
  205. return "yuv411p";
  206. case PIX_FMT_RGB565:
  207. return "rgb565";
  208. case PIX_FMT_RGB555:
  209. return "rgb555";
  210. case PIX_FMT_GRAY16BE:
  211. return "gray16be";
  212. case PIX_FMT_GRAY16LE:
  213. return "gray16le";
  214. case PIX_FMT_GRAY8:
  215. return "gray8";
  216. case PIX_FMT_MONOWHITE:
  217. return "mono white";
  218. case PIX_FMT_MONOBLACK:
  219. return "mono black";
  220. case PIX_FMT_PAL8:
  221. return "Palette";
  222. case PIX_FMT_YUVJ420P:
  223. return "yuvj420p";
  224. case PIX_FMT_YUVJ422P:
  225. return "yuvj422p";
  226. case PIX_FMT_YUVJ444P:
  227. return "yuvj444p";
  228. case PIX_FMT_XVMC_MPEG2_MC:
  229. return "xvmc_mpeg2_mc";
  230. case PIX_FMT_XVMC_MPEG2_IDCT:
  231. return "xvmc_mpeg2_idct";
  232. case PIX_FMT_UYVY422:
  233. return "uyvy422";
  234. case PIX_FMT_UYYVYY411:
  235. return "uyyvyy411";
  236. case PIX_FMT_RGB32_1:
  237. return "rgb32x";
  238. case PIX_FMT_BGR32_1:
  239. return "bgr32x";
  240. case PIX_FMT_BGR32:
  241. return "bgr32";
  242. case PIX_FMT_BGR565:
  243. return "bgr565";
  244. case PIX_FMT_BGR555:
  245. return "bgr555";
  246. case PIX_FMT_BGR8:
  247. return "bgr8";
  248. case PIX_FMT_BGR4:
  249. return "bgr4";
  250. case PIX_FMT_BGR4_BYTE:
  251. return "bgr4 byte";
  252. case PIX_FMT_RGB8:
  253. return "rgb8";
  254. case PIX_FMT_RGB4:
  255. return "rgb4";
  256. case PIX_FMT_RGB4_BYTE:
  257. return "rgb4 byte";
  258. case PIX_FMT_NV12:
  259. return "nv12";
  260. case PIX_FMT_NV21:
  261. return "nv21";
  262. default:
  263. return "Unknown format";
  264. }
  265. }
  266. #if defined(ARCH_X86) && defined (CONFIG_GPL)
  267. void in_asm_used_var_warning_killer()
  268. {
  269. volatile int i= bF8+bFC+w10+
  270. bm00001111+bm00000111+bm11111000+b16Mask+g16Mask+r16Mask+b15Mask+g15Mask+r15Mask+
  271. M24A+M24B+M24C+w02 + b5Dither+g5Dither+r5Dither+g6Dither+dither4[0]+dither8[0]+bm01010101;
  272. if(i) i=0;
  273. }
  274. #endif
  275. static inline void yuv2yuvXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
  276. int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
  277. uint8_t *dest, uint8_t *uDest, uint8_t *vDest, int dstW, int chrDstW)
  278. {
  279. //FIXME Optimize (just quickly writen not opti..)
  280. int i;
  281. for(i=0; i<dstW; i++)
  282. {
  283. int val=1<<18;
  284. int j;
  285. for(j=0; j<lumFilterSize; j++)
  286. val += lumSrc[j][i] * lumFilter[j];
  287. dest[i]= av_clip_uint8(val>>19);
  288. }
  289. if(uDest != NULL)
  290. for(i=0; i<chrDstW; i++)
  291. {
  292. int u=1<<18;
  293. int v=1<<18;
  294. int j;
  295. for(j=0; j<chrFilterSize; j++)
  296. {
  297. u += chrSrc[j][i] * chrFilter[j];
  298. v += chrSrc[j][i + 2048] * chrFilter[j];
  299. }
  300. uDest[i]= av_clip_uint8(u>>19);
  301. vDest[i]= av_clip_uint8(v>>19);
  302. }
  303. }
  304. static inline void yuv2nv12XinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
  305. int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
  306. uint8_t *dest, uint8_t *uDest, int dstW, int chrDstW, int dstFormat)
  307. {
  308. //FIXME Optimize (just quickly writen not opti..)
  309. int i;
  310. for(i=0; i<dstW; i++)
  311. {
  312. int val=1<<18;
  313. int j;
  314. for(j=0; j<lumFilterSize; j++)
  315. val += lumSrc[j][i] * lumFilter[j];
  316. dest[i]= av_clip_uint8(val>>19);
  317. }
  318. if(uDest == NULL)
  319. return;
  320. if(dstFormat == PIX_FMT_NV12)
  321. for(i=0; i<chrDstW; i++)
  322. {
  323. int u=1<<18;
  324. int v=1<<18;
  325. int j;
  326. for(j=0; j<chrFilterSize; j++)
  327. {
  328. u += chrSrc[j][i] * chrFilter[j];
  329. v += chrSrc[j][i + 2048] * chrFilter[j];
  330. }
  331. uDest[2*i]= av_clip_uint8(u>>19);
  332. uDest[2*i+1]= av_clip_uint8(v>>19);
  333. }
  334. else
  335. for(i=0; i<chrDstW; i++)
  336. {
  337. int u=1<<18;
  338. int v=1<<18;
  339. int j;
  340. for(j=0; j<chrFilterSize; j++)
  341. {
  342. u += chrSrc[j][i] * chrFilter[j];
  343. v += chrSrc[j][i + 2048] * chrFilter[j];
  344. }
  345. uDest[2*i]= av_clip_uint8(v>>19);
  346. uDest[2*i+1]= av_clip_uint8(u>>19);
  347. }
  348. }
  349. #define YSCALE_YUV_2_PACKEDX_C(type) \
  350. for(i=0; i<(dstW>>1); i++){\
  351. int j;\
  352. int Y1=1<<18;\
  353. int Y2=1<<18;\
  354. int U=1<<18;\
  355. int V=1<<18;\
  356. type attribute_unused *r, *b, *g;\
  357. const int i2= 2*i;\
  358. \
  359. for(j=0; j<lumFilterSize; j++)\
  360. {\
  361. Y1 += lumSrc[j][i2] * lumFilter[j];\
  362. Y2 += lumSrc[j][i2+1] * lumFilter[j];\
  363. }\
  364. for(j=0; j<chrFilterSize; j++)\
  365. {\
  366. U += chrSrc[j][i] * chrFilter[j];\
  367. V += chrSrc[j][i+2048] * chrFilter[j];\
  368. }\
  369. Y1>>=19;\
  370. Y2>>=19;\
  371. U >>=19;\
  372. V >>=19;\
  373. if((Y1|Y2|U|V)&256)\
  374. {\
  375. if(Y1>255) Y1=255;\
  376. else if(Y1<0)Y1=0;\
  377. if(Y2>255) Y2=255;\
  378. else if(Y2<0)Y2=0;\
  379. if(U>255) U=255;\
  380. else if(U<0) U=0;\
  381. if(V>255) V=255;\
  382. else if(V<0) V=0;\
  383. }
  384. #define YSCALE_YUV_2_RGBX_C(type) \
  385. YSCALE_YUV_2_PACKEDX_C(type)\
  386. r = (type *)c->table_rV[V];\
  387. g = (type *)(c->table_gU[U] + c->table_gV[V]);\
  388. b = (type *)c->table_bU[U];\
  389. #define YSCALE_YUV_2_PACKED2_C \
  390. for(i=0; i<(dstW>>1); i++){\
  391. const int i2= 2*i;\
  392. int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>19;\
  393. int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19;\
  394. int U= (uvbuf0[i ]*uvalpha1+uvbuf1[i ]*uvalpha)>>19;\
  395. int V= (uvbuf0[i+2048]*uvalpha1+uvbuf1[i+2048]*uvalpha)>>19;\
  396. #define YSCALE_YUV_2_RGB2_C(type) \
  397. YSCALE_YUV_2_PACKED2_C\
  398. type *r, *b, *g;\
  399. r = (type *)c->table_rV[V];\
  400. g = (type *)(c->table_gU[U] + c->table_gV[V]);\
  401. b = (type *)c->table_bU[U];\
  402. #define YSCALE_YUV_2_PACKED1_C \
  403. for(i=0; i<(dstW>>1); i++){\
  404. const int i2= 2*i;\
  405. int Y1= buf0[i2 ]>>7;\
  406. int Y2= buf0[i2+1]>>7;\
  407. int U= (uvbuf1[i ])>>7;\
  408. int V= (uvbuf1[i+2048])>>7;\
  409. #define YSCALE_YUV_2_RGB1_C(type) \
  410. YSCALE_YUV_2_PACKED1_C\
  411. type *r, *b, *g;\
  412. r = (type *)c->table_rV[V];\
  413. g = (type *)(c->table_gU[U] + c->table_gV[V]);\
  414. b = (type *)c->table_bU[U];\
  415. #define YSCALE_YUV_2_PACKED1B_C \
  416. for(i=0; i<(dstW>>1); i++){\
  417. const int i2= 2*i;\
  418. int Y1= buf0[i2 ]>>7;\
  419. int Y2= buf0[i2+1]>>7;\
  420. int U= (uvbuf0[i ] + uvbuf1[i ])>>8;\
  421. int V= (uvbuf0[i+2048] + uvbuf1[i+2048])>>8;\
  422. #define YSCALE_YUV_2_RGB1B_C(type) \
  423. YSCALE_YUV_2_PACKED1B_C\
  424. type *r, *b, *g;\
  425. r = (type *)c->table_rV[V];\
  426. g = (type *)(c->table_gU[U] + c->table_gV[V]);\
  427. b = (type *)c->table_bU[U];\
  428. #define YSCALE_YUV_2_ANYRGB_C(func, func2)\
  429. switch(c->dstFormat)\
  430. {\
  431. case PIX_FMT_RGB32:\
  432. case PIX_FMT_BGR32:\
  433. func(uint32_t)\
  434. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
  435. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
  436. } \
  437. break;\
  438. case PIX_FMT_RGB24:\
  439. func(uint8_t)\
  440. ((uint8_t*)dest)[0]= r[Y1];\
  441. ((uint8_t*)dest)[1]= g[Y1];\
  442. ((uint8_t*)dest)[2]= b[Y1];\
  443. ((uint8_t*)dest)[3]= r[Y2];\
  444. ((uint8_t*)dest)[4]= g[Y2];\
  445. ((uint8_t*)dest)[5]= b[Y2];\
  446. dest+=6;\
  447. }\
  448. break;\
  449. case PIX_FMT_BGR24:\
  450. func(uint8_t)\
  451. ((uint8_t*)dest)[0]= b[Y1];\
  452. ((uint8_t*)dest)[1]= g[Y1];\
  453. ((uint8_t*)dest)[2]= r[Y1];\
  454. ((uint8_t*)dest)[3]= b[Y2];\
  455. ((uint8_t*)dest)[4]= g[Y2];\
  456. ((uint8_t*)dest)[5]= r[Y2];\
  457. dest+=6;\
  458. }\
  459. break;\
  460. case PIX_FMT_RGB565:\
  461. case PIX_FMT_BGR565:\
  462. {\
  463. const int dr1= dither_2x2_8[y&1 ][0];\
  464. const int dg1= dither_2x2_4[y&1 ][0];\
  465. const int db1= dither_2x2_8[(y&1)^1][0];\
  466. const int dr2= dither_2x2_8[y&1 ][1];\
  467. const int dg2= dither_2x2_4[y&1 ][1];\
  468. const int db2= dither_2x2_8[(y&1)^1][1];\
  469. func(uint16_t)\
  470. ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
  471. ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
  472. }\
  473. }\
  474. break;\
  475. case PIX_FMT_RGB555:\
  476. case PIX_FMT_BGR555:\
  477. {\
  478. const int dr1= dither_2x2_8[y&1 ][0];\
  479. const int dg1= dither_2x2_8[y&1 ][1];\
  480. const int db1= dither_2x2_8[(y&1)^1][0];\
  481. const int dr2= dither_2x2_8[y&1 ][1];\
  482. const int dg2= dither_2x2_8[y&1 ][0];\
  483. const int db2= dither_2x2_8[(y&1)^1][1];\
  484. func(uint16_t)\
  485. ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
  486. ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
  487. }\
  488. }\
  489. break;\
  490. case PIX_FMT_RGB8:\
  491. case PIX_FMT_BGR8:\
  492. {\
  493. const uint8_t * const d64= dither_8x8_73[y&7];\
  494. const uint8_t * const d32= dither_8x8_32[y&7];\
  495. func(uint8_t)\
  496. ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
  497. ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
  498. }\
  499. }\
  500. break;\
  501. case PIX_FMT_RGB4:\
  502. case PIX_FMT_BGR4:\
  503. {\
  504. const uint8_t * const d64= dither_8x8_73 [y&7];\
  505. const uint8_t * const d128=dither_8x8_220[y&7];\
  506. func(uint8_t)\
  507. ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
  508. + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
  509. }\
  510. }\
  511. break;\
  512. case PIX_FMT_RGB4_BYTE:\
  513. case PIX_FMT_BGR4_BYTE:\
  514. {\
  515. const uint8_t * const d64= dither_8x8_73 [y&7];\
  516. const uint8_t * const d128=dither_8x8_220[y&7];\
  517. func(uint8_t)\
  518. ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
  519. ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
  520. }\
  521. }\
  522. break;\
  523. case PIX_FMT_MONOBLACK:\
  524. {\
  525. const uint8_t * const d128=dither_8x8_220[y&7];\
  526. uint8_t *g= c->table_gU[128] + c->table_gV[128];\
  527. for(i=0; i<dstW-7; i+=8){\
  528. int acc;\
  529. acc = g[((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19) + d128[0]];\
  530. acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
  531. acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
  532. acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
  533. acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
  534. acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
  535. acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
  536. acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
  537. ((uint8_t*)dest)[0]= acc;\
  538. dest++;\
  539. }\
  540. \
  541. /*\
  542. ((uint8_t*)dest)-= dstW>>4;\
  543. {\
  544. int acc=0;\
  545. int left=0;\
  546. static int top[1024];\
  547. static int last_new[1024][1024];\
  548. static int last_in3[1024][1024];\
  549. static int drift[1024][1024];\
  550. int topLeft=0;\
  551. int shift=0;\
  552. int count=0;\
  553. const uint8_t * const d128=dither_8x8_220[y&7];\
  554. int error_new=0;\
  555. int error_in3=0;\
  556. int f=0;\
  557. \
  558. for(i=dstW>>1; i<dstW; i++){\
  559. int in= ((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19);\
  560. int in2 = (76309 * (in - 16) + 32768) >> 16;\
  561. int in3 = (in2 < 0) ? 0 : ((in2 > 255) ? 255 : in2);\
  562. int old= (left*7 + topLeft + top[i]*5 + top[i+1]*3)/20 + in3\
  563. + (last_new[y][i] - in3)*f/256;\
  564. int new= old> 128 ? 255 : 0;\
  565. \
  566. error_new+= FFABS(last_new[y][i] - new);\
  567. error_in3+= FFABS(last_in3[y][i] - in3);\
  568. f= error_new - error_in3*4;\
  569. if(f<0) f=0;\
  570. if(f>256) f=256;\
  571. \
  572. topLeft= top[i];\
  573. left= top[i]= old - new;\
  574. last_new[y][i]= new;\
  575. last_in3[y][i]= in3;\
  576. \
  577. acc+= acc + (new&1);\
  578. if((i&7)==6){\
  579. ((uint8_t*)dest)[0]= acc;\
  580. ((uint8_t*)dest)++;\
  581. }\
  582. }\
  583. }\
  584. */\
  585. }\
  586. break;\
  587. case PIX_FMT_YUYV422:\
  588. func2\
  589. ((uint8_t*)dest)[2*i2+0]= Y1;\
  590. ((uint8_t*)dest)[2*i2+1]= U;\
  591. ((uint8_t*)dest)[2*i2+2]= Y2;\
  592. ((uint8_t*)dest)[2*i2+3]= V;\
  593. } \
  594. break;\
  595. case PIX_FMT_UYVY422:\
  596. func2\
  597. ((uint8_t*)dest)[2*i2+0]= U;\
  598. ((uint8_t*)dest)[2*i2+1]= Y1;\
  599. ((uint8_t*)dest)[2*i2+2]= V;\
  600. ((uint8_t*)dest)[2*i2+3]= Y2;\
  601. } \
  602. break;\
  603. }\
  604. static inline void yuv2packedXinC(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
  605. int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
  606. uint8_t *dest, int dstW, int y)
  607. {
  608. int i;
  609. switch(c->dstFormat)
  610. {
  611. case PIX_FMT_BGR32:
  612. case PIX_FMT_RGB32:
  613. YSCALE_YUV_2_RGBX_C(uint32_t)
  614. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];
  615. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];
  616. }
  617. break;
  618. case PIX_FMT_RGB24:
  619. YSCALE_YUV_2_RGBX_C(uint8_t)
  620. ((uint8_t*)dest)[0]= r[Y1];
  621. ((uint8_t*)dest)[1]= g[Y1];
  622. ((uint8_t*)dest)[2]= b[Y1];
  623. ((uint8_t*)dest)[3]= r[Y2];
  624. ((uint8_t*)dest)[4]= g[Y2];
  625. ((uint8_t*)dest)[5]= b[Y2];
  626. dest+=6;
  627. }
  628. break;
  629. case PIX_FMT_BGR24:
  630. YSCALE_YUV_2_RGBX_C(uint8_t)
  631. ((uint8_t*)dest)[0]= b[Y1];
  632. ((uint8_t*)dest)[1]= g[Y1];
  633. ((uint8_t*)dest)[2]= r[Y1];
  634. ((uint8_t*)dest)[3]= b[Y2];
  635. ((uint8_t*)dest)[4]= g[Y2];
  636. ((uint8_t*)dest)[5]= r[Y2];
  637. dest+=6;
  638. }
  639. break;
  640. case PIX_FMT_RGB565:
  641. case PIX_FMT_BGR565:
  642. {
  643. const int dr1= dither_2x2_8[y&1 ][0];
  644. const int dg1= dither_2x2_4[y&1 ][0];
  645. const int db1= dither_2x2_8[(y&1)^1][0];
  646. const int dr2= dither_2x2_8[y&1 ][1];
  647. const int dg2= dither_2x2_4[y&1 ][1];
  648. const int db2= dither_2x2_8[(y&1)^1][1];
  649. YSCALE_YUV_2_RGBX_C(uint16_t)
  650. ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
  651. ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
  652. }
  653. }
  654. break;
  655. case PIX_FMT_RGB555:
  656. case PIX_FMT_BGR555:
  657. {
  658. const int dr1= dither_2x2_8[y&1 ][0];
  659. const int dg1= dither_2x2_8[y&1 ][1];
  660. const int db1= dither_2x2_8[(y&1)^1][0];
  661. const int dr2= dither_2x2_8[y&1 ][1];
  662. const int dg2= dither_2x2_8[y&1 ][0];
  663. const int db2= dither_2x2_8[(y&1)^1][1];
  664. YSCALE_YUV_2_RGBX_C(uint16_t)
  665. ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
  666. ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
  667. }
  668. }
  669. break;
  670. case PIX_FMT_RGB8:
  671. case PIX_FMT_BGR8:
  672. {
  673. const uint8_t * const d64= dither_8x8_73[y&7];
  674. const uint8_t * const d32= dither_8x8_32[y&7];
  675. YSCALE_YUV_2_RGBX_C(uint8_t)
  676. ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];
  677. ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];
  678. }
  679. }
  680. break;
  681. case PIX_FMT_RGB4:
  682. case PIX_FMT_BGR4:
  683. {
  684. const uint8_t * const d64= dither_8x8_73 [y&7];
  685. const uint8_t * const d128=dither_8x8_220[y&7];
  686. YSCALE_YUV_2_RGBX_C(uint8_t)
  687. ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]
  688. +((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);
  689. }
  690. }
  691. break;
  692. case PIX_FMT_RGB4_BYTE:
  693. case PIX_FMT_BGR4_BYTE:
  694. {
  695. const uint8_t * const d64= dither_8x8_73 [y&7];
  696. const uint8_t * const d128=dither_8x8_220[y&7];
  697. YSCALE_YUV_2_RGBX_C(uint8_t)
  698. ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];
  699. ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];
  700. }
  701. }
  702. break;
  703. case PIX_FMT_MONOBLACK:
  704. {
  705. const uint8_t * const d128=dither_8x8_220[y&7];
  706. uint8_t *g= c->table_gU[128] + c->table_gV[128];
  707. int acc=0;
  708. for(i=0; i<dstW-1; i+=2){
  709. int j;
  710. int Y1=1<<18;
  711. int Y2=1<<18;
  712. for(j=0; j<lumFilterSize; j++)
  713. {
  714. Y1 += lumSrc[j][i] * lumFilter[j];
  715. Y2 += lumSrc[j][i+1] * lumFilter[j];
  716. }
  717. Y1>>=19;
  718. Y2>>=19;
  719. if((Y1|Y2)&256)
  720. {
  721. if(Y1>255) Y1=255;
  722. else if(Y1<0)Y1=0;
  723. if(Y2>255) Y2=255;
  724. else if(Y2<0)Y2=0;
  725. }
  726. acc+= acc + g[Y1+d128[(i+0)&7]];
  727. acc+= acc + g[Y2+d128[(i+1)&7]];
  728. if((i&7)==6){
  729. ((uint8_t*)dest)[0]= acc;
  730. dest++;
  731. }
  732. }
  733. }
  734. break;
  735. case PIX_FMT_YUYV422:
  736. YSCALE_YUV_2_PACKEDX_C(void)
  737. ((uint8_t*)dest)[2*i2+0]= Y1;
  738. ((uint8_t*)dest)[2*i2+1]= U;
  739. ((uint8_t*)dest)[2*i2+2]= Y2;
  740. ((uint8_t*)dest)[2*i2+3]= V;
  741. }
  742. break;
  743. case PIX_FMT_UYVY422:
  744. YSCALE_YUV_2_PACKEDX_C(void)
  745. ((uint8_t*)dest)[2*i2+0]= U;
  746. ((uint8_t*)dest)[2*i2+1]= Y1;
  747. ((uint8_t*)dest)[2*i2+2]= V;
  748. ((uint8_t*)dest)[2*i2+3]= Y2;
  749. }
  750. break;
  751. }
  752. }
  753. //Note: we have C, X86, MMX, MMX2, 3DNOW version therse no 3DNOW+MMX2 one
  754. //Plain C versions
  755. #if !defined (HAVE_MMX) || defined (RUNTIME_CPUDETECT) || !defined(CONFIG_GPL)
  756. #define COMPILE_C
  757. #endif
  758. #ifdef ARCH_POWERPC
  759. #if (defined (HAVE_ALTIVEC) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
  760. #define COMPILE_ALTIVEC
  761. #endif //HAVE_ALTIVEC
  762. #endif //ARCH_POWERPC
  763. #if defined(ARCH_X86)
  764. #if ((defined (HAVE_MMX) && !defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
  765. #define COMPILE_MMX
  766. #endif
  767. #if (defined (HAVE_MMX2) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
  768. #define COMPILE_MMX2
  769. #endif
  770. #if ((defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
  771. #define COMPILE_3DNOW
  772. #endif
  773. #endif //ARCH_X86 || ARCH_X86_64
  774. #undef HAVE_MMX
  775. #undef HAVE_MMX2
  776. #undef HAVE_3DNOW
  777. #ifdef COMPILE_C
  778. #undef HAVE_MMX
  779. #undef HAVE_MMX2
  780. #undef HAVE_3DNOW
  781. #undef HAVE_ALTIVEC
  782. #define RENAME(a) a ## _C
  783. #include "swscale_template.c"
  784. #endif
  785. #ifdef ARCH_POWERPC
  786. #ifdef COMPILE_ALTIVEC
  787. #undef RENAME
  788. #define HAVE_ALTIVEC
  789. #define RENAME(a) a ## _altivec
  790. #include "swscale_template.c"
  791. #endif
  792. #endif //ARCH_POWERPC
  793. #if defined(ARCH_X86)
  794. //X86 versions
  795. /*
  796. #undef RENAME
  797. #undef HAVE_MMX
  798. #undef HAVE_MMX2
  799. #undef HAVE_3DNOW
  800. #define ARCH_X86
  801. #define RENAME(a) a ## _X86
  802. #include "swscale_template.c"
  803. */
  804. //MMX versions
  805. #ifdef COMPILE_MMX
  806. #undef RENAME
  807. #define HAVE_MMX
  808. #undef HAVE_MMX2
  809. #undef HAVE_3DNOW
  810. #define RENAME(a) a ## _MMX
  811. #include "swscale_template.c"
  812. #endif
  813. //MMX2 versions
  814. #ifdef COMPILE_MMX2
  815. #undef RENAME
  816. #define HAVE_MMX
  817. #define HAVE_MMX2
  818. #undef HAVE_3DNOW
  819. #define RENAME(a) a ## _MMX2
  820. #include "swscale_template.c"
  821. #endif
  822. //3DNOW versions
  823. #ifdef COMPILE_3DNOW
  824. #undef RENAME
  825. #define HAVE_MMX
  826. #undef HAVE_MMX2
  827. #define HAVE_3DNOW
  828. #define RENAME(a) a ## _3DNow
  829. #include "swscale_template.c"
  830. #endif
  831. #endif //ARCH_X86 || ARCH_X86_64
  832. // minor note: the HAVE_xyz is messed up after that line so don't use it
  833. static double getSplineCoeff(double a, double b, double c, double d, double dist)
  834. {
  835. // printf("%f %f %f %f %f\n", a,b,c,d,dist);
  836. if(dist<=1.0) return ((d*dist + c)*dist + b)*dist +a;
  837. else return getSplineCoeff( 0.0,
  838. b+ 2.0*c + 3.0*d,
  839. c + 3.0*d,
  840. -b- 3.0*c - 6.0*d,
  841. dist-1.0);
  842. }
  843. static inline int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
  844. int srcW, int dstW, int filterAlign, int one, int flags,
  845. SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
  846. {
  847. int i;
  848. int filterSize;
  849. int filter2Size;
  850. int minFilterSize;
  851. double *filter=NULL;
  852. double *filter2=NULL;
  853. #if defined(ARCH_X86)
  854. if(flags & SWS_CPU_CAPS_MMX)
  855. asm volatile("emms\n\t"::: "memory"); //FIXME this shouldnt be required but it IS (even for non mmx versions)
  856. #endif
  857. // Note the +1 is for the MMXscaler which reads over the end
  858. *filterPos = av_malloc((dstW+1)*sizeof(int16_t));
  859. if(FFABS(xInc - 0x10000) <10) // unscaled
  860. {
  861. int i;
  862. filterSize= 1;
  863. filter= av_malloc(dstW*sizeof(double)*filterSize);
  864. for(i=0; i<dstW*filterSize; i++) filter[i]=0;
  865. for(i=0; i<dstW; i++)
  866. {
  867. filter[i*filterSize]=1;
  868. (*filterPos)[i]=i;
  869. }
  870. }
  871. else if(flags&SWS_POINT) // lame looking point sampling mode
  872. {
  873. int i;
  874. int xDstInSrc;
  875. filterSize= 1;
  876. filter= av_malloc(dstW*sizeof(double)*filterSize);
  877. xDstInSrc= xInc/2 - 0x8000;
  878. for(i=0; i<dstW; i++)
  879. {
  880. int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
  881. (*filterPos)[i]= xx;
  882. filter[i]= 1.0;
  883. xDstInSrc+= xInc;
  884. }
  885. }
  886. else if((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) // bilinear upscale
  887. {
  888. int i;
  889. int xDstInSrc;
  890. if (flags&SWS_BICUBIC) filterSize= 4;
  891. else if(flags&SWS_X ) filterSize= 4;
  892. else filterSize= 2; // SWS_BILINEAR / SWS_AREA
  893. filter= av_malloc(dstW*sizeof(double)*filterSize);
  894. xDstInSrc= xInc/2 - 0x8000;
  895. for(i=0; i<dstW; i++)
  896. {
  897. int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
  898. int j;
  899. (*filterPos)[i]= xx;
  900. //Bilinear upscale / linear interpolate / Area averaging
  901. for(j=0; j<filterSize; j++)
  902. {
  903. double d= FFABS((xx<<16) - xDstInSrc)/(double)(1<<16);
  904. double coeff= 1.0 - d;
  905. if(coeff<0) coeff=0;
  906. filter[i*filterSize + j]= coeff;
  907. xx++;
  908. }
  909. xDstInSrc+= xInc;
  910. }
  911. }
  912. else
  913. {
  914. double xDstInSrc;
  915. double sizeFactor, filterSizeInSrc;
  916. const double xInc1= (double)xInc / (double)(1<<16);
  917. if (flags&SWS_BICUBIC) sizeFactor= 4.0;
  918. else if(flags&SWS_X) sizeFactor= 8.0;
  919. else if(flags&SWS_AREA) sizeFactor= 1.0; //downscale only, for upscale it is bilinear
  920. else if(flags&SWS_GAUSS) sizeFactor= 8.0; // infinite ;)
  921. else if(flags&SWS_LANCZOS) sizeFactor= param[0] != SWS_PARAM_DEFAULT ? 2.0*param[0] : 6.0;
  922. else if(flags&SWS_SINC) sizeFactor= 20.0; // infinite ;)
  923. else if(flags&SWS_SPLINE) sizeFactor= 20.0; // infinite ;)
  924. else if(flags&SWS_BILINEAR) sizeFactor= 2.0;
  925. else {
  926. sizeFactor= 0.0; //GCC warning killer
  927. ASSERT(0)
  928. }
  929. if(xInc1 <= 1.0) filterSizeInSrc= sizeFactor; // upscale
  930. else filterSizeInSrc= sizeFactor*srcW / (double)dstW;
  931. filterSize= (int)ceil(1 + filterSizeInSrc); // will be reduced later if possible
  932. if(filterSize > srcW-2) filterSize=srcW-2;
  933. filter= av_malloc(dstW*sizeof(double)*filterSize);
  934. xDstInSrc= xInc1 / 2.0 - 0.5;
  935. for(i=0; i<dstW; i++)
  936. {
  937. int xx= (int)(xDstInSrc - (filterSize-1)*0.5 + 0.5);
  938. int j;
  939. (*filterPos)[i]= xx;
  940. for(j=0; j<filterSize; j++)
  941. {
  942. double d= FFABS(xx - xDstInSrc)/filterSizeInSrc*sizeFactor;
  943. double coeff;
  944. if(flags & SWS_BICUBIC)
  945. {
  946. double B= param[0] != SWS_PARAM_DEFAULT ? param[0] : 0.0;
  947. double C= param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6;
  948. if(d<1.0)
  949. coeff = (12-9*B-6*C)*d*d*d + (-18+12*B+6*C)*d*d + 6-2*B;
  950. else if(d<2.0)
  951. coeff = (-B-6*C)*d*d*d + (6*B+30*C)*d*d + (-12*B-48*C)*d +8*B+24*C;
  952. else
  953. coeff=0.0;
  954. }
  955. /* else if(flags & SWS_X)
  956. {
  957. double p= param ? param*0.01 : 0.3;
  958. coeff = d ? sin(d*PI)/(d*PI) : 1.0;
  959. coeff*= pow(2.0, - p*d*d);
  960. }*/
  961. else if(flags & SWS_X)
  962. {
  963. double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  964. if(d<1.0)
  965. coeff = cos(d*PI);
  966. else
  967. coeff=-1.0;
  968. if(coeff<0.0) coeff= -pow(-coeff, A);
  969. else coeff= pow( coeff, A);
  970. coeff= coeff*0.5 + 0.5;
  971. }
  972. else if(flags & SWS_AREA)
  973. {
  974. double srcPixelSize= 1.0/xInc1;
  975. if(d + srcPixelSize/2 < 0.5) coeff= 1.0;
  976. else if(d - srcPixelSize/2 < 0.5) coeff= (0.5-d)/srcPixelSize + 0.5;
  977. else coeff=0.0;
  978. }
  979. else if(flags & SWS_GAUSS)
  980. {
  981. double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  982. coeff = pow(2.0, - p*d*d);
  983. }
  984. else if(flags & SWS_SINC)
  985. {
  986. coeff = d ? sin(d*PI)/(d*PI) : 1.0;
  987. }
  988. else if(flags & SWS_LANCZOS)
  989. {
  990. double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  991. coeff = d ? sin(d*PI)*sin(d*PI/p)/(d*d*PI*PI/p) : 1.0;
  992. if(d>p) coeff=0;
  993. }
  994. else if(flags & SWS_BILINEAR)
  995. {
  996. coeff= 1.0 - d;
  997. if(coeff<0) coeff=0;
  998. }
  999. else if(flags & SWS_SPLINE)
  1000. {
  1001. double p=-2.196152422706632;
  1002. coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, d);
  1003. }
  1004. else {
  1005. coeff= 0.0; //GCC warning killer
  1006. ASSERT(0)
  1007. }
  1008. filter[i*filterSize + j]= coeff;
  1009. xx++;
  1010. }
  1011. xDstInSrc+= xInc1;
  1012. }
  1013. }
  1014. /* apply src & dst Filter to filter -> filter2
  1015. av_free(filter);
  1016. */
  1017. ASSERT(filterSize>0)
  1018. filter2Size= filterSize;
  1019. if(srcFilter) filter2Size+= srcFilter->length - 1;
  1020. if(dstFilter) filter2Size+= dstFilter->length - 1;
  1021. ASSERT(filter2Size>0)
  1022. filter2= av_malloc(filter2Size*dstW*sizeof(double));
  1023. for(i=0; i<dstW; i++)
  1024. {
  1025. int j;
  1026. SwsVector scaleFilter;
  1027. SwsVector *outVec;
  1028. scaleFilter.coeff= filter + i*filterSize;
  1029. scaleFilter.length= filterSize;
  1030. if(srcFilter) outVec= sws_getConvVec(srcFilter, &scaleFilter);
  1031. else outVec= &scaleFilter;
  1032. ASSERT(outVec->length == filter2Size)
  1033. //FIXME dstFilter
  1034. for(j=0; j<outVec->length; j++)
  1035. {
  1036. filter2[i*filter2Size + j]= outVec->coeff[j];
  1037. }
  1038. (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
  1039. if(outVec != &scaleFilter) sws_freeVec(outVec);
  1040. }
  1041. av_free(filter); filter=NULL;
  1042. /* try to reduce the filter-size (step1 find size and shift left) */
  1043. // Assume its near normalized (*0.5 or *2.0 is ok but * 0.001 is not)
  1044. minFilterSize= 0;
  1045. for(i=dstW-1; i>=0; i--)
  1046. {
  1047. int min= filter2Size;
  1048. int j;
  1049. double cutOff=0.0;
  1050. /* get rid off near zero elements on the left by shifting left */
  1051. for(j=0; j<filter2Size; j++)
  1052. {
  1053. int k;
  1054. cutOff += FFABS(filter2[i*filter2Size]);
  1055. if(cutOff > SWS_MAX_REDUCE_CUTOFF) break;
  1056. /* preserve Monotonicity because the core can't handle the filter otherwise */
  1057. if(i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
  1058. // Move filter coeffs left
  1059. for(k=1; k<filter2Size; k++)
  1060. filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
  1061. filter2[i*filter2Size + k - 1]= 0.0;
  1062. (*filterPos)[i]++;
  1063. }
  1064. cutOff=0.0;
  1065. /* count near zeros on the right */
  1066. for(j=filter2Size-1; j>0; j--)
  1067. {
  1068. cutOff += FFABS(filter2[i*filter2Size + j]);
  1069. if(cutOff > SWS_MAX_REDUCE_CUTOFF) break;
  1070. min--;
  1071. }
  1072. if(min>minFilterSize) minFilterSize= min;
  1073. }
  1074. if (flags & SWS_CPU_CAPS_ALTIVEC) {
  1075. // we can handle the special case 4,
  1076. // so we don't want to go to the full 8
  1077. if (minFilterSize < 5)
  1078. filterAlign = 4;
  1079. // we really don't want to waste our time
  1080. // doing useless computation, so fall-back on
  1081. // the scalar C code for very small filter.
  1082. // vectorizing is worth it only if you have
  1083. // decent-sized vector.
  1084. if (minFilterSize < 3)
  1085. filterAlign = 1;
  1086. }
  1087. if (flags & SWS_CPU_CAPS_MMX) {
  1088. // special case for unscaled vertical filtering
  1089. if(minFilterSize == 1 && filterAlign == 2)
  1090. filterAlign= 1;
  1091. }
  1092. ASSERT(minFilterSize > 0)
  1093. filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
  1094. ASSERT(filterSize > 0)
  1095. filter= av_malloc(filterSize*dstW*sizeof(double));
  1096. if(filterSize >= MAX_FILTER_SIZE)
  1097. return -1;
  1098. *outFilterSize= filterSize;
  1099. if(flags&SWS_PRINT_INFO)
  1100. av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
  1101. /* try to reduce the filter-size (step2 reduce it) */
  1102. for(i=0; i<dstW; i++)
  1103. {
  1104. int j;
  1105. for(j=0; j<filterSize; j++)
  1106. {
  1107. if(j>=filter2Size) filter[i*filterSize + j]= 0.0;
  1108. else filter[i*filterSize + j]= filter2[i*filter2Size + j];
  1109. }
  1110. }
  1111. av_free(filter2); filter2=NULL;
  1112. //FIXME try to align filterpos if possible
  1113. //fix borders
  1114. for(i=0; i<dstW; i++)
  1115. {
  1116. int j;
  1117. if((*filterPos)[i] < 0)
  1118. {
  1119. // Move filter coeffs left to compensate for filterPos
  1120. for(j=1; j<filterSize; j++)
  1121. {
  1122. int left= FFMAX(j + (*filterPos)[i], 0);
  1123. filter[i*filterSize + left] += filter[i*filterSize + j];
  1124. filter[i*filterSize + j]=0;
  1125. }
  1126. (*filterPos)[i]= 0;
  1127. }
  1128. if((*filterPos)[i] + filterSize > srcW)
  1129. {
  1130. int shift= (*filterPos)[i] + filterSize - srcW;
  1131. // Move filter coeffs right to compensate for filterPos
  1132. for(j=filterSize-2; j>=0; j--)
  1133. {
  1134. int right= FFMIN(j + shift, filterSize-1);
  1135. filter[i*filterSize +right] += filter[i*filterSize +j];
  1136. filter[i*filterSize +j]=0;
  1137. }
  1138. (*filterPos)[i]= srcW - filterSize;
  1139. }
  1140. }
  1141. // Note the +1 is for the MMXscaler which reads over the end
  1142. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  1143. *outFilter= av_mallocz(*outFilterSize*(dstW+1)*sizeof(int16_t));
  1144. /* Normalize & Store in outFilter */
  1145. for(i=0; i<dstW; i++)
  1146. {
  1147. int j;
  1148. double error=0;
  1149. double sum=0;
  1150. double scale= one;
  1151. for(j=0; j<filterSize; j++)
  1152. {
  1153. sum+= filter[i*filterSize + j];
  1154. }
  1155. scale/= sum;
  1156. for(j=0; j<*outFilterSize; j++)
  1157. {
  1158. double v= filter[i*filterSize + j]*scale + error;
  1159. int intV= floor(v + 0.5);
  1160. (*outFilter)[i*(*outFilterSize) + j]= intV;
  1161. error = v - intV;
  1162. }
  1163. }
  1164. (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
  1165. for(i=0; i<*outFilterSize; i++)
  1166. {
  1167. int j= dstW*(*outFilterSize);
  1168. (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
  1169. }
  1170. av_free(filter);
  1171. return 0;
  1172. }
  1173. #ifdef COMPILE_MMX2
  1174. static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode, int16_t *filter, int32_t *filterPos, int numSplits)
  1175. {
  1176. uint8_t *fragmentA;
  1177. long imm8OfPShufW1A;
  1178. long imm8OfPShufW2A;
  1179. long fragmentLengthA;
  1180. uint8_t *fragmentB;
  1181. long imm8OfPShufW1B;
  1182. long imm8OfPShufW2B;
  1183. long fragmentLengthB;
  1184. int fragmentPos;
  1185. int xpos, i;
  1186. // create an optimized horizontal scaling routine
  1187. //code fragment
  1188. asm volatile(
  1189. "jmp 9f \n\t"
  1190. // Begin
  1191. "0: \n\t"
  1192. "movq (%%"REG_d", %%"REG_a"), %%mm3\n\t"
  1193. "movd (%%"REG_c", %%"REG_S"), %%mm0\n\t"
  1194. "movd 1(%%"REG_c", %%"REG_S"), %%mm1\n\t"
  1195. "punpcklbw %%mm7, %%mm1 \n\t"
  1196. "punpcklbw %%mm7, %%mm0 \n\t"
  1197. "pshufw $0xFF, %%mm1, %%mm1 \n\t"
  1198. "1: \n\t"
  1199. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  1200. "2: \n\t"
  1201. "psubw %%mm1, %%mm0 \n\t"
  1202. "movl 8(%%"REG_b", %%"REG_a"), %%esi\n\t"
  1203. "pmullw %%mm3, %%mm0 \n\t"
  1204. "psllw $7, %%mm1 \n\t"
  1205. "paddw %%mm1, %%mm0 \n\t"
  1206. "movq %%mm0, (%%"REG_D", %%"REG_a")\n\t"
  1207. "add $8, %%"REG_a" \n\t"
  1208. // End
  1209. "9: \n\t"
  1210. // "int $3\n\t"
  1211. "lea 0b, %0 \n\t"
  1212. "lea 1b, %1 \n\t"
  1213. "lea 2b, %2 \n\t"
  1214. "dec %1 \n\t"
  1215. "dec %2 \n\t"
  1216. "sub %0, %1 \n\t"
  1217. "sub %0, %2 \n\t"
  1218. "lea 9b, %3 \n\t"
  1219. "sub %0, %3 \n\t"
  1220. :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
  1221. "=r" (fragmentLengthA)
  1222. );
  1223. asm volatile(
  1224. "jmp 9f \n\t"
  1225. // Begin
  1226. "0: \n\t"
  1227. "movq (%%"REG_d", %%"REG_a"), %%mm3\n\t"
  1228. "movd (%%"REG_c", %%"REG_S"), %%mm0\n\t"
  1229. "punpcklbw %%mm7, %%mm0 \n\t"
  1230. "pshufw $0xFF, %%mm0, %%mm1 \n\t"
  1231. "1: \n\t"
  1232. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  1233. "2: \n\t"
  1234. "psubw %%mm1, %%mm0 \n\t"
  1235. "movl 8(%%"REG_b", %%"REG_a"), %%esi\n\t"
  1236. "pmullw %%mm3, %%mm0 \n\t"
  1237. "psllw $7, %%mm1 \n\t"
  1238. "paddw %%mm1, %%mm0 \n\t"
  1239. "movq %%mm0, (%%"REG_D", %%"REG_a")\n\t"
  1240. "add $8, %%"REG_a" \n\t"
  1241. // End
  1242. "9: \n\t"
  1243. // "int $3\n\t"
  1244. "lea 0b, %0 \n\t"
  1245. "lea 1b, %1 \n\t"
  1246. "lea 2b, %2 \n\t"
  1247. "dec %1 \n\t"
  1248. "dec %2 \n\t"
  1249. "sub %0, %1 \n\t"
  1250. "sub %0, %2 \n\t"
  1251. "lea 9b, %3 \n\t"
  1252. "sub %0, %3 \n\t"
  1253. :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
  1254. "=r" (fragmentLengthB)
  1255. );
  1256. xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
  1257. fragmentPos=0;
  1258. for(i=0; i<dstW/numSplits; i++)
  1259. {
  1260. int xx=xpos>>16;
  1261. if((i&3) == 0)
  1262. {
  1263. int a=0;
  1264. int b=((xpos+xInc)>>16) - xx;
  1265. int c=((xpos+xInc*2)>>16) - xx;
  1266. int d=((xpos+xInc*3)>>16) - xx;
  1267. filter[i ] = (( xpos & 0xFFFF) ^ 0xFFFF)>>9;
  1268. filter[i+1] = (((xpos+xInc ) & 0xFFFF) ^ 0xFFFF)>>9;
  1269. filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
  1270. filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
  1271. filterPos[i/2]= xx;
  1272. if(d+1<4)
  1273. {
  1274. int maxShift= 3-(d+1);
  1275. int shift=0;
  1276. memcpy(funnyCode + fragmentPos, fragmentB, fragmentLengthB);
  1277. funnyCode[fragmentPos + imm8OfPShufW1B]=
  1278. (a+1) | ((b+1)<<2) | ((c+1)<<4) | ((d+1)<<6);
  1279. funnyCode[fragmentPos + imm8OfPShufW2B]=
  1280. a | (b<<2) | (c<<4) | (d<<6);
  1281. if(i+3>=dstW) shift=maxShift; //avoid overread
  1282. else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
  1283. if(shift && i>=shift)
  1284. {
  1285. funnyCode[fragmentPos + imm8OfPShufW1B]+= 0x55*shift;
  1286. funnyCode[fragmentPos + imm8OfPShufW2B]+= 0x55*shift;
  1287. filterPos[i/2]-=shift;
  1288. }
  1289. fragmentPos+= fragmentLengthB;
  1290. }
  1291. else
  1292. {
  1293. int maxShift= 3-d;
  1294. int shift=0;
  1295. memcpy(funnyCode + fragmentPos, fragmentA, fragmentLengthA);
  1296. funnyCode[fragmentPos + imm8OfPShufW1A]=
  1297. funnyCode[fragmentPos + imm8OfPShufW2A]=
  1298. a | (b<<2) | (c<<4) | (d<<6);
  1299. if(i+4>=dstW) shift=maxShift; //avoid overread
  1300. else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //partial align
  1301. if(shift && i>=shift)
  1302. {
  1303. funnyCode[fragmentPos + imm8OfPShufW1A]+= 0x55*shift;
  1304. funnyCode[fragmentPos + imm8OfPShufW2A]+= 0x55*shift;
  1305. filterPos[i/2]-=shift;
  1306. }
  1307. fragmentPos+= fragmentLengthA;
  1308. }
  1309. funnyCode[fragmentPos]= RET;
  1310. }
  1311. xpos+=xInc;
  1312. }
  1313. filterPos[i/2]= xpos>>16; // needed to jump to the next part
  1314. }
  1315. #endif /* COMPILE_MMX2 */
  1316. static void globalInit(void){
  1317. // generating tables:
  1318. int i;
  1319. for(i=0; i<768; i++){
  1320. int c= av_clip_uint8(i-256);
  1321. clip_table[i]=c;
  1322. }
  1323. }
  1324. static SwsFunc getSwsFunc(int flags){
  1325. #if defined(RUNTIME_CPUDETECT) && defined (CONFIG_GPL)
  1326. #if defined(ARCH_X86)
  1327. // ordered per speed fasterst first
  1328. if(flags & SWS_CPU_CAPS_MMX2)
  1329. return swScale_MMX2;
  1330. else if(flags & SWS_CPU_CAPS_3DNOW)
  1331. return swScale_3DNow;
  1332. else if(flags & SWS_CPU_CAPS_MMX)
  1333. return swScale_MMX;
  1334. else
  1335. return swScale_C;
  1336. #else
  1337. #ifdef ARCH_POWERPC
  1338. if(flags & SWS_CPU_CAPS_ALTIVEC)
  1339. return swScale_altivec;
  1340. else
  1341. return swScale_C;
  1342. #endif
  1343. return swScale_C;
  1344. #endif /* defined(ARCH_X86) */
  1345. #else //RUNTIME_CPUDETECT
  1346. #ifdef HAVE_MMX2
  1347. return swScale_MMX2;
  1348. #elif defined (HAVE_3DNOW)
  1349. return swScale_3DNow;
  1350. #elif defined (HAVE_MMX)
  1351. return swScale_MMX;
  1352. #elif defined (HAVE_ALTIVEC)
  1353. return swScale_altivec;
  1354. #else
  1355. return swScale_C;
  1356. #endif
  1357. #endif //!RUNTIME_CPUDETECT
  1358. }
  1359. static int PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1360. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1361. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1362. /* Copy Y plane */
  1363. if(dstStride[0]==srcStride[0] && srcStride[0] > 0)
  1364. memcpy(dst, src[0], srcSliceH*dstStride[0]);
  1365. else
  1366. {
  1367. int i;
  1368. uint8_t *srcPtr= src[0];
  1369. uint8_t *dstPtr= dst;
  1370. for(i=0; i<srcSliceH; i++)
  1371. {
  1372. memcpy(dstPtr, srcPtr, c->srcW);
  1373. srcPtr+= srcStride[0];
  1374. dstPtr+= dstStride[0];
  1375. }
  1376. }
  1377. dst = dstParam[1] + dstStride[1]*srcSliceY/2;
  1378. if (c->dstFormat == PIX_FMT_NV12)
  1379. interleaveBytes( src[1],src[2],dst,c->srcW/2,srcSliceH/2,srcStride[1],srcStride[2],dstStride[0] );
  1380. else
  1381. interleaveBytes( src[2],src[1],dst,c->srcW/2,srcSliceH/2,srcStride[2],srcStride[1],dstStride[0] );
  1382. return srcSliceH;
  1383. }
  1384. static int PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1385. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1386. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1387. yv12toyuy2( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
  1388. return srcSliceH;
  1389. }
  1390. static int PlanarToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1391. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1392. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1393. yv12touyvy( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
  1394. return srcSliceH;
  1395. }
  1396. /* {RGB,BGR}{15,16,24,32} -> {RGB,BGR}{15,16,24,32} */
  1397. static int rgb2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1398. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1399. const int srcFormat= c->srcFormat;
  1400. const int dstFormat= c->dstFormat;
  1401. const int srcBpp= (fmt_depth(srcFormat) + 7) >> 3;
  1402. const int dstBpp= (fmt_depth(dstFormat) + 7) >> 3;
  1403. const int srcId= fmt_depth(srcFormat) >> 2; /* 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8 */
  1404. const int dstId= fmt_depth(dstFormat) >> 2;
  1405. void (*conv)(const uint8_t *src, uint8_t *dst, long src_size)=NULL;
  1406. /* BGR -> BGR */
  1407. if( (isBGR(srcFormat) && isBGR(dstFormat))
  1408. || (isRGB(srcFormat) && isRGB(dstFormat))){
  1409. switch(srcId | (dstId<<4)){
  1410. case 0x34: conv= rgb16to15; break;
  1411. case 0x36: conv= rgb24to15; break;
  1412. case 0x38: conv= rgb32to15; break;
  1413. case 0x43: conv= rgb15to16; break;
  1414. case 0x46: conv= rgb24to16; break;
  1415. case 0x48: conv= rgb32to16; break;
  1416. case 0x63: conv= rgb15to24; break;
  1417. case 0x64: conv= rgb16to24; break;
  1418. case 0x68: conv= rgb32to24; break;
  1419. case 0x83: conv= rgb15to32; break;
  1420. case 0x84: conv= rgb16to32; break;
  1421. case 0x86: conv= rgb24to32; break;
  1422. default: av_log(c, AV_LOG_ERROR, "swScaler: internal error %s -> %s converter\n",
  1423. sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
  1424. }
  1425. }else if( (isBGR(srcFormat) && isRGB(dstFormat))
  1426. || (isRGB(srcFormat) && isBGR(dstFormat))){
  1427. switch(srcId | (dstId<<4)){
  1428. case 0x33: conv= rgb15tobgr15; break;
  1429. case 0x34: conv= rgb16tobgr15; break;
  1430. case 0x36: conv= rgb24tobgr15; break;
  1431. case 0x38: conv= rgb32tobgr15; break;
  1432. case 0x43: conv= rgb15tobgr16; break;
  1433. case 0x44: conv= rgb16tobgr16; break;
  1434. case 0x46: conv= rgb24tobgr16; break;
  1435. case 0x48: conv= rgb32tobgr16; break;
  1436. case 0x63: conv= rgb15tobgr24; break;
  1437. case 0x64: conv= rgb16tobgr24; break;
  1438. case 0x66: conv= rgb24tobgr24; break;
  1439. case 0x68: conv= rgb32tobgr24; break;
  1440. case 0x83: conv= rgb15tobgr32; break;
  1441. case 0x84: conv= rgb16tobgr32; break;
  1442. case 0x86: conv= rgb24tobgr32; break;
  1443. case 0x88: conv= rgb32tobgr32; break;
  1444. default: av_log(c, AV_LOG_ERROR, "swScaler: internal error %s -> %s converter\n",
  1445. sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
  1446. }
  1447. }else{
  1448. av_log(c, AV_LOG_ERROR, "swScaler: internal error %s -> %s converter\n",
  1449. sws_format_name(srcFormat), sws_format_name(dstFormat));
  1450. }
  1451. if(dstStride[0]*srcBpp == srcStride[0]*dstBpp)
  1452. conv(src[0], dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]);
  1453. else
  1454. {
  1455. int i;
  1456. uint8_t *srcPtr= src[0];
  1457. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1458. for(i=0; i<srcSliceH; i++)
  1459. {
  1460. conv(srcPtr, dstPtr, c->srcW*srcBpp);
  1461. srcPtr+= srcStride[0];
  1462. dstPtr+= dstStride[0];
  1463. }
  1464. }
  1465. return srcSliceH;
  1466. }
  1467. static int bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1468. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1469. rgb24toyv12(
  1470. src[0],
  1471. dst[0]+ srcSliceY *dstStride[0],
  1472. dst[1]+(srcSliceY>>1)*dstStride[1],
  1473. dst[2]+(srcSliceY>>1)*dstStride[2],
  1474. c->srcW, srcSliceH,
  1475. dstStride[0], dstStride[1], srcStride[0]);
  1476. return srcSliceH;
  1477. }
  1478. static int yvu9toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1479. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1480. int i;
  1481. /* copy Y */
  1482. if(srcStride[0]==dstStride[0] && srcStride[0] > 0)
  1483. memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH);
  1484. else{
  1485. uint8_t *srcPtr= src[0];
  1486. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1487. for(i=0; i<srcSliceH; i++)
  1488. {
  1489. memcpy(dstPtr, srcPtr, c->srcW);
  1490. srcPtr+= srcStride[0];
  1491. dstPtr+= dstStride[0];
  1492. }
  1493. }
  1494. if(c->dstFormat==PIX_FMT_YUV420P){
  1495. planar2x(src[1], dst[1], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[1]);
  1496. planar2x(src[2], dst[2], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[2]);
  1497. }else{
  1498. planar2x(src[1], dst[2], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[2]);
  1499. planar2x(src[2], dst[1], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[1]);
  1500. }
  1501. return srcSliceH;
  1502. }
  1503. /* unscaled copy like stuff (assumes nearly identical formats) */
  1504. static int simpleCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1505. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1506. if(isPacked(c->srcFormat))
  1507. {
  1508. if(dstStride[0]==srcStride[0] && srcStride[0] > 0)
  1509. memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]);
  1510. else
  1511. {
  1512. int i;
  1513. uint8_t *srcPtr= src[0];
  1514. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1515. int length=0;
  1516. /* universal length finder */
  1517. while(length+c->srcW <= FFABS(dstStride[0])
  1518. && length+c->srcW <= FFABS(srcStride[0])) length+= c->srcW;
  1519. ASSERT(length!=0);
  1520. for(i=0; i<srcSliceH; i++)
  1521. {
  1522. memcpy(dstPtr, srcPtr, length);
  1523. srcPtr+= srcStride[0];
  1524. dstPtr+= dstStride[0];
  1525. }
  1526. }
  1527. }
  1528. else
  1529. { /* Planar YUV or gray */
  1530. int plane;
  1531. for(plane=0; plane<3; plane++)
  1532. {
  1533. int length= plane==0 ? c->srcW : -((-c->srcW )>>c->chrDstHSubSample);
  1534. int y= plane==0 ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample);
  1535. int height= plane==0 ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample);
  1536. if((isGray(c->srcFormat) || isGray(c->dstFormat)) && plane>0)
  1537. {
  1538. if(!isGray(c->dstFormat))
  1539. memset(dst[plane], 128, dstStride[plane]*height);
  1540. }
  1541. else
  1542. {
  1543. if(dstStride[plane]==srcStride[plane] && srcStride[plane] > 0)
  1544. memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]);
  1545. else
  1546. {
  1547. int i;
  1548. uint8_t *srcPtr= src[plane];
  1549. uint8_t *dstPtr= dst[plane] + dstStride[plane]*y;
  1550. for(i=0; i<height; i++)
  1551. {
  1552. memcpy(dstPtr, srcPtr, length);
  1553. srcPtr+= srcStride[plane];
  1554. dstPtr+= dstStride[plane];
  1555. }
  1556. }
  1557. }
  1558. }
  1559. }
  1560. return srcSliceH;
  1561. }
  1562. static int gray16togray(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1563. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1564. int length= c->srcW;
  1565. int y= srcSliceY;
  1566. int height= srcSliceH;
  1567. int i, j;
  1568. uint8_t *srcPtr= src[0];
  1569. uint8_t *dstPtr= dst[0] + dstStride[0]*y;
  1570. if(!isGray(c->dstFormat)){
  1571. int height= -((-srcSliceH)>>c->chrDstVSubSample);
  1572. memset(dst[1], 128, dstStride[1]*height);
  1573. memset(dst[2], 128, dstStride[2]*height);
  1574. }
  1575. if(c->srcFormat == PIX_FMT_GRAY16LE) srcPtr++;
  1576. for(i=0; i<height; i++)
  1577. {
  1578. for(j=0; j<length; j++) dstPtr[j] = srcPtr[j<<1];
  1579. srcPtr+= srcStride[0];
  1580. dstPtr+= dstStride[0];
  1581. }
  1582. return srcSliceH;
  1583. }
  1584. static int graytogray16(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1585. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1586. int length= c->srcW;
  1587. int y= srcSliceY;
  1588. int height= srcSliceH;
  1589. int i, j;
  1590. uint8_t *srcPtr= src[0];
  1591. uint8_t *dstPtr= dst[0] + dstStride[0]*y;
  1592. for(i=0; i<height; i++)
  1593. {
  1594. for(j=0; j<length; j++)
  1595. {
  1596. dstPtr[j<<1] = srcPtr[j];
  1597. dstPtr[(j<<1)+1] = srcPtr[j];
  1598. }
  1599. srcPtr+= srcStride[0];
  1600. dstPtr+= dstStride[0];
  1601. }
  1602. return srcSliceH;
  1603. }
  1604. static int gray16swap(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1605. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1606. int length= c->srcW;
  1607. int y= srcSliceY;
  1608. int height= srcSliceH;
  1609. int i, j;
  1610. uint16_t *srcPtr= src[0];
  1611. uint16_t *dstPtr= dst[0] + dstStride[0]*y/2;
  1612. for(i=0; i<height; i++)
  1613. {
  1614. for(j=0; j<length; j++) dstPtr[j] = bswap_16(srcPtr[j]);
  1615. srcPtr+= srcStride[0]/2;
  1616. dstPtr+= dstStride[0]/2;
  1617. }
  1618. return srcSliceH;
  1619. }
  1620. static void getSubSampleFactors(int *h, int *v, int format){
  1621. switch(format){
  1622. case PIX_FMT_UYVY422:
  1623. case PIX_FMT_YUYV422:
  1624. *h=1;
  1625. *v=0;
  1626. break;
  1627. case PIX_FMT_YUV420P:
  1628. case PIX_FMT_GRAY16BE:
  1629. case PIX_FMT_GRAY16LE:
  1630. case PIX_FMT_GRAY8: //FIXME remove after different subsamplings are fully implemented
  1631. case PIX_FMT_NV12:
  1632. case PIX_FMT_NV21:
  1633. *h=1;
  1634. *v=1;
  1635. break;
  1636. case PIX_FMT_YUV410P:
  1637. *h=2;
  1638. *v=2;
  1639. break;
  1640. case PIX_FMT_YUV444P:
  1641. *h=0;
  1642. *v=0;
  1643. break;
  1644. case PIX_FMT_YUV422P:
  1645. *h=1;
  1646. *v=0;
  1647. break;
  1648. case PIX_FMT_YUV411P:
  1649. *h=2;
  1650. *v=0;
  1651. break;
  1652. default:
  1653. *h=0;
  1654. *v=0;
  1655. break;
  1656. }
  1657. }
  1658. static uint16_t roundToInt16(int64_t f){
  1659. int r= (f + (1<<15))>>16;
  1660. if(r<-0x7FFF) return 0x8000;
  1661. else if(r> 0x7FFF) return 0x7FFF;
  1662. else return r;
  1663. }
  1664. /**
  1665. * @param inv_table the yuv2rgb coeffs, normally Inverse_Table_6_9[x]
  1666. * @param fullRange if 1 then the luma range is 0..255 if 0 its 16..235
  1667. * @return -1 if not supported
  1668. */
  1669. int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation){
  1670. int64_t crv = inv_table[0];
  1671. int64_t cbu = inv_table[1];
  1672. int64_t cgu = -inv_table[2];
  1673. int64_t cgv = -inv_table[3];
  1674. int64_t cy = 1<<16;
  1675. int64_t oy = 0;
  1676. if(isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
  1677. memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
  1678. memcpy(c->dstColorspaceTable, table, sizeof(int)*4);
  1679. c->brightness= brightness;
  1680. c->contrast = contrast;
  1681. c->saturation= saturation;
  1682. c->srcRange = srcRange;
  1683. c->dstRange = dstRange;
  1684. c->uOffset= 0x0400040004000400LL;
  1685. c->vOffset= 0x0400040004000400LL;
  1686. if(!srcRange){
  1687. cy= (cy*255) / 219;
  1688. oy= 16<<16;
  1689. }
  1690. cy = (cy *contrast )>>16;
  1691. crv= (crv*contrast * saturation)>>32;
  1692. cbu= (cbu*contrast * saturation)>>32;
  1693. cgu= (cgu*contrast * saturation)>>32;
  1694. cgv= (cgv*contrast * saturation)>>32;
  1695. oy -= 256*brightness;
  1696. c->yCoeff= roundToInt16(cy *8192) * 0x0001000100010001ULL;
  1697. c->vrCoeff= roundToInt16(crv*8192) * 0x0001000100010001ULL;
  1698. c->ubCoeff= roundToInt16(cbu*8192) * 0x0001000100010001ULL;
  1699. c->vgCoeff= roundToInt16(cgv*8192) * 0x0001000100010001ULL;
  1700. c->ugCoeff= roundToInt16(cgu*8192) * 0x0001000100010001ULL;
  1701. c->yOffset= roundToInt16(oy * 8) * 0x0001000100010001ULL;
  1702. yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
  1703. //FIXME factorize
  1704. #ifdef COMPILE_ALTIVEC
  1705. if (c->flags & SWS_CPU_CAPS_ALTIVEC)
  1706. yuv2rgb_altivec_init_tables (c, inv_table, brightness, contrast, saturation);
  1707. #endif
  1708. return 0;
  1709. }
  1710. /**
  1711. * @return -1 if not supported
  1712. */
  1713. int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation){
  1714. if(isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
  1715. *inv_table = c->srcColorspaceTable;
  1716. *table = c->dstColorspaceTable;
  1717. *srcRange = c->srcRange;
  1718. *dstRange = c->dstRange;
  1719. *brightness= c->brightness;
  1720. *contrast = c->contrast;
  1721. *saturation= c->saturation;
  1722. return 0;
  1723. }
  1724. static int handle_jpeg(int *format)
  1725. {
  1726. switch (*format) {
  1727. case PIX_FMT_YUVJ420P:
  1728. *format = PIX_FMT_YUV420P;
  1729. return 1;
  1730. case PIX_FMT_YUVJ422P:
  1731. *format = PIX_FMT_YUV422P;
  1732. return 1;
  1733. case PIX_FMT_YUVJ444P:
  1734. *format = PIX_FMT_YUV444P;
  1735. return 1;
  1736. default:
  1737. return 0;
  1738. }
  1739. }
  1740. SwsContext *sws_getContext(int srcW, int srcH, int srcFormat, int dstW, int dstH, int dstFormat, int flags,
  1741. SwsFilter *srcFilter, SwsFilter *dstFilter, double *param){
  1742. SwsContext *c;
  1743. int i;
  1744. int usesVFilter, usesHFilter;
  1745. int unscaled, needsDither;
  1746. int srcRange, dstRange;
  1747. SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
  1748. #if defined(ARCH_X86)
  1749. if(flags & SWS_CPU_CAPS_MMX)
  1750. asm volatile("emms\n\t"::: "memory");
  1751. #endif
  1752. #if !defined(RUNTIME_CPUDETECT) || !defined (CONFIG_GPL) //ensure that the flags match the compiled variant if cpudetect is off
  1753. flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC);
  1754. #ifdef HAVE_MMX2
  1755. flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2;
  1756. #elif defined (HAVE_3DNOW)
  1757. flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_3DNOW;
  1758. #elif defined (HAVE_MMX)
  1759. flags |= SWS_CPU_CAPS_MMX;
  1760. #elif defined (HAVE_ALTIVEC)
  1761. flags |= SWS_CPU_CAPS_ALTIVEC;
  1762. #endif
  1763. #endif /* RUNTIME_CPUDETECT */
  1764. if(clip_table[512] != 255) globalInit();
  1765. if(rgb15to16 == NULL) sws_rgb2rgb_init(flags);
  1766. unscaled = (srcW == dstW && srcH == dstH);
  1767. needsDither= (isBGR(dstFormat) || isRGB(dstFormat))
  1768. && (fmt_depth(dstFormat))<24
  1769. && ((fmt_depth(dstFormat))<(fmt_depth(srcFormat)) || (!(isRGB(srcFormat) || isBGR(srcFormat))));
  1770. srcRange = handle_jpeg(&srcFormat);
  1771. dstRange = handle_jpeg(&dstFormat);
  1772. if(!isSupportedIn(srcFormat))
  1773. {
  1774. av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as input format\n", sws_format_name(srcFormat));
  1775. return NULL;
  1776. }
  1777. if(!isSupportedOut(dstFormat))
  1778. {
  1779. av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as output format\n", sws_format_name(dstFormat));
  1780. return NULL;
  1781. }
  1782. /* sanity check */
  1783. if(srcW<4 || srcH<1 || dstW<8 || dstH<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
  1784. {
  1785. av_log(NULL, AV_LOG_ERROR, "swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
  1786. srcW, srcH, dstW, dstH);
  1787. return NULL;
  1788. }
  1789. if(!dstFilter) dstFilter= &dummyFilter;
  1790. if(!srcFilter) srcFilter= &dummyFilter;
  1791. c= av_mallocz(sizeof(SwsContext));
  1792. c->av_class = &sws_context_class;
  1793. c->srcW= srcW;
  1794. c->srcH= srcH;
  1795. c->dstW= dstW;
  1796. c->dstH= dstH;
  1797. c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
  1798. c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
  1799. c->flags= flags;
  1800. c->dstFormat= dstFormat;
  1801. c->srcFormat= srcFormat;
  1802. c->vRounder= 4* 0x0001000100010001ULL;
  1803. usesHFilter= usesVFilter= 0;
  1804. if(dstFilter->lumV!=NULL && dstFilter->lumV->length>1) usesVFilter=1;
  1805. if(dstFilter->lumH!=NULL && dstFilter->lumH->length>1) usesHFilter=1;
  1806. if(dstFilter->chrV!=NULL && dstFilter->chrV->length>1) usesVFilter=1;
  1807. if(dstFilter->chrH!=NULL && dstFilter->chrH->length>1) usesHFilter=1;
  1808. if(srcFilter->lumV!=NULL && srcFilter->lumV->length>1) usesVFilter=1;
  1809. if(srcFilter->lumH!=NULL && srcFilter->lumH->length>1) usesHFilter=1;
  1810. if(srcFilter->chrV!=NULL && srcFilter->chrV->length>1) usesVFilter=1;
  1811. if(srcFilter->chrH!=NULL && srcFilter->chrH->length>1) usesHFilter=1;
  1812. getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
  1813. getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
  1814. // reuse chroma for 2 pixles rgb/bgr unless user wants full chroma interpolation
  1815. if((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
  1816. // drop some chroma lines if the user wants it
  1817. c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
  1818. c->chrSrcVSubSample+= c->vChrDrop;
  1819. // drop every 2. pixel for chroma calculation unless user wants full chroma
  1820. if((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP))
  1821. c->chrSrcHSubSample=1;
  1822. if(param){
  1823. c->param[0] = param[0];
  1824. c->param[1] = param[1];
  1825. }else{
  1826. c->param[0] =
  1827. c->param[1] = SWS_PARAM_DEFAULT;
  1828. }
  1829. c->chrIntHSubSample= c->chrDstHSubSample;
  1830. c->chrIntVSubSample= c->chrSrcVSubSample;
  1831. // note the -((-x)>>y) is so that we allways round toward +inf
  1832. c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
  1833. c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
  1834. c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
  1835. c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
  1836. sws_setColorspaceDetails(c, Inverse_Table_6_9[SWS_CS_DEFAULT], srcRange, Inverse_Table_6_9[SWS_CS_DEFAULT] /* FIXME*/, dstRange, 0, 1<<16, 1<<16);
  1837. /* unscaled special Cases */
  1838. if(unscaled && !usesHFilter && !usesVFilter)
  1839. {
  1840. /* yv12_to_nv12 */
  1841. if(srcFormat == PIX_FMT_YUV420P && (dstFormat == PIX_FMT_NV12 || dstFormat == PIX_FMT_NV21))
  1842. {
  1843. c->swScale= PlanarToNV12Wrapper;
  1844. }
  1845. #ifdef CONFIG_GPL
  1846. /* yuv2bgr */
  1847. if((srcFormat==PIX_FMT_YUV420P || srcFormat==PIX_FMT_YUV422P) && (isBGR(dstFormat) || isRGB(dstFormat)))
  1848. {
  1849. c->swScale= yuv2rgb_get_func_ptr(c);
  1850. }
  1851. #endif
  1852. if( srcFormat==PIX_FMT_YUV410P && dstFormat==PIX_FMT_YUV420P )
  1853. {
  1854. c->swScale= yvu9toyv12Wrapper;
  1855. }
  1856. /* bgr24toYV12 */
  1857. if(srcFormat==PIX_FMT_BGR24 && dstFormat==PIX_FMT_YUV420P)
  1858. c->swScale= bgr24toyv12Wrapper;
  1859. /* rgb/bgr -> rgb/bgr (no dither needed forms) */
  1860. if( (isBGR(srcFormat) || isRGB(srcFormat))
  1861. && (isBGR(dstFormat) || isRGB(dstFormat))
  1862. && !needsDither)
  1863. c->swScale= rgb2rgbWrapper;
  1864. /* LQ converters if -sws 0 or -sws 4*/
  1865. if(c->flags&(SWS_FAST_BILINEAR|SWS_POINT)){
  1866. /* rgb/bgr -> rgb/bgr (dither needed forms) */
  1867. if( (isBGR(srcFormat) || isRGB(srcFormat))
  1868. && (isBGR(dstFormat) || isRGB(dstFormat))
  1869. && needsDither)
  1870. c->swScale= rgb2rgbWrapper;
  1871. /* yv12_to_yuy2 */
  1872. if(srcFormat == PIX_FMT_YUV420P &&
  1873. (dstFormat == PIX_FMT_YUYV422 || dstFormat == PIX_FMT_UYVY422))
  1874. {
  1875. if (dstFormat == PIX_FMT_YUYV422)
  1876. c->swScale= PlanarToYuy2Wrapper;
  1877. else
  1878. c->swScale= PlanarToUyvyWrapper;
  1879. }
  1880. }
  1881. #ifdef COMPILE_ALTIVEC
  1882. if ((c->flags & SWS_CPU_CAPS_ALTIVEC) &&
  1883. ((srcFormat == PIX_FMT_YUV420P &&
  1884. (dstFormat == PIX_FMT_YUYV422 || dstFormat == PIX_FMT_UYVY422)))) {
  1885. // unscaled YV12 -> packed YUV, we want speed
  1886. if (dstFormat == PIX_FMT_YUYV422)
  1887. c->swScale= yv12toyuy2_unscaled_altivec;
  1888. else
  1889. c->swScale= yv12touyvy_unscaled_altivec;
  1890. }
  1891. #endif
  1892. /* simple copy */
  1893. if( srcFormat == dstFormat
  1894. || (isPlanarYUV(srcFormat) && isGray(dstFormat))
  1895. || (isPlanarYUV(dstFormat) && isGray(srcFormat))
  1896. )
  1897. {
  1898. c->swScale= simpleCopy;
  1899. }
  1900. /* gray16{le,be} conversions */
  1901. if(isGray16(srcFormat) && (isPlanarYUV(dstFormat) || (dstFormat == PIX_FMT_GRAY8)))
  1902. {
  1903. c->swScale= gray16togray;
  1904. }
  1905. if((isPlanarYUV(srcFormat) || (srcFormat == PIX_FMT_GRAY8)) && isGray16(dstFormat))
  1906. {
  1907. c->swScale= graytogray16;
  1908. }
  1909. if(srcFormat != dstFormat && isGray16(srcFormat) && isGray16(dstFormat))
  1910. {
  1911. c->swScale= gray16swap;
  1912. }
  1913. if(c->swScale){
  1914. if(flags&SWS_PRINT_INFO)
  1915. av_log(c, AV_LOG_INFO, "SwScaler: using unscaled %s -> %s special converter\n",
  1916. sws_format_name(srcFormat), sws_format_name(dstFormat));
  1917. return c;
  1918. }
  1919. }
  1920. if(flags & SWS_CPU_CAPS_MMX2)
  1921. {
  1922. c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
  1923. if(!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
  1924. {
  1925. if(flags&SWS_PRINT_INFO)
  1926. av_log(c, AV_LOG_INFO, "SwScaler: output Width is not a multiple of 32 -> no MMX2 scaler\n");
  1927. }
  1928. if(usesHFilter) c->canMMX2BeUsed=0;
  1929. }
  1930. else
  1931. c->canMMX2BeUsed=0;
  1932. c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
  1933. c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
  1934. // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
  1935. // but only for the FAST_BILINEAR mode otherwise do correct scaling
  1936. // n-2 is the last chrominance sample available
  1937. // this is not perfect, but noone shuld notice the difference, the more correct variant
  1938. // would be like the vertical one, but that would require some special code for the
  1939. // first and last pixel
  1940. if(flags&SWS_FAST_BILINEAR)
  1941. {
  1942. if(c->canMMX2BeUsed)
  1943. {
  1944. c->lumXInc+= 20;
  1945. c->chrXInc+= 20;
  1946. }
  1947. //we don't use the x86asm scaler if mmx is available
  1948. else if(flags & SWS_CPU_CAPS_MMX)
  1949. {
  1950. c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
  1951. c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
  1952. }
  1953. }
  1954. /* precalculate horizontal scaler filter coefficients */
  1955. {
  1956. const int filterAlign=
  1957. (flags & SWS_CPU_CAPS_MMX) ? 4 :
  1958. (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
  1959. 1;
  1960. initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
  1961. srcW , dstW, filterAlign, 1<<14,
  1962. (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
  1963. srcFilter->lumH, dstFilter->lumH, c->param);
  1964. initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
  1965. c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
  1966. (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
  1967. srcFilter->chrH, dstFilter->chrH, c->param);
  1968. #define MAX_FUNNY_CODE_SIZE 10000
  1969. #if defined(COMPILE_MMX2)
  1970. // can't downscale !!!
  1971. if(c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
  1972. {
  1973. #ifdef MAP_ANONYMOUS
  1974. c->funnyYCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
  1975. c->funnyUVCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
  1976. #else
  1977. c->funnyYCode = av_malloc(MAX_FUNNY_CODE_SIZE);
  1978. c->funnyUVCode = av_malloc(MAX_FUNNY_CODE_SIZE);
  1979. #endif
  1980. c->lumMmx2Filter = av_malloc((dstW /8+8)*sizeof(int16_t));
  1981. c->chrMmx2Filter = av_malloc((c->chrDstW /4+8)*sizeof(int16_t));
  1982. c->lumMmx2FilterPos= av_malloc((dstW /2/8+8)*sizeof(int32_t));
  1983. c->chrMmx2FilterPos= av_malloc((c->chrDstW/2/4+8)*sizeof(int32_t));
  1984. initMMX2HScaler( dstW, c->lumXInc, c->funnyYCode , c->lumMmx2Filter, c->lumMmx2FilterPos, 8);
  1985. initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4);
  1986. }
  1987. #endif /* defined(COMPILE_MMX2) */
  1988. } // Init Horizontal stuff
  1989. /* precalculate vertical scaler filter coefficients */
  1990. {
  1991. const int filterAlign=
  1992. (flags & SWS_CPU_CAPS_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
  1993. (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
  1994. 1;
  1995. initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
  1996. srcH , dstH, filterAlign, (1<<12)-4,
  1997. (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
  1998. srcFilter->lumV, dstFilter->lumV, c->param);
  1999. initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
  2000. c->chrSrcH, c->chrDstH, filterAlign, (1<<12)-4,
  2001. (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
  2002. srcFilter->chrV, dstFilter->chrV, c->param);
  2003. #ifdef HAVE_ALTIVEC
  2004. c->vYCoeffsBank = av_malloc(sizeof (vector signed short)*c->vLumFilterSize*c->dstH);
  2005. c->vCCoeffsBank = av_malloc(sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH);
  2006. for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
  2007. int j;
  2008. short *p = (short *)&c->vYCoeffsBank[i];
  2009. for (j=0;j<8;j++)
  2010. p[j] = c->vLumFilter[i];
  2011. }
  2012. for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
  2013. int j;
  2014. short *p = (short *)&c->vCCoeffsBank[i];
  2015. for (j=0;j<8;j++)
  2016. p[j] = c->vChrFilter[i];
  2017. }
  2018. #endif
  2019. }
  2020. // Calculate Buffer Sizes so that they won't run out while handling these damn slices
  2021. c->vLumBufSize= c->vLumFilterSize;
  2022. c->vChrBufSize= c->vChrFilterSize;
  2023. for(i=0; i<dstH; i++)
  2024. {
  2025. int chrI= i*c->chrDstH / dstH;
  2026. int nextSlice= FFMAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1,
  2027. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
  2028. nextSlice>>= c->chrSrcVSubSample;
  2029. nextSlice<<= c->chrSrcVSubSample;
  2030. if(c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice)
  2031. c->vLumBufSize= nextSlice - c->vLumFilterPos[i ];
  2032. if(c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
  2033. c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
  2034. }
  2035. // allocate pixbufs (we use dynamic allocation because otherwise we would need to
  2036. c->lumPixBuf= av_malloc(c->vLumBufSize*2*sizeof(int16_t*));
  2037. c->chrPixBuf= av_malloc(c->vChrBufSize*2*sizeof(int16_t*));
  2038. //Note we need at least one pixel more at the end because of the mmx code (just in case someone wanna replace the 4000/8000)
  2039. /* align at 16 bytes for AltiVec */
  2040. for(i=0; i<c->vLumBufSize; i++)
  2041. c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= av_mallocz(4000);
  2042. for(i=0; i<c->vChrBufSize; i++)
  2043. c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= av_malloc(8000);
  2044. //try to avoid drawing green stuff between the right end and the stride end
  2045. for(i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, 8000);
  2046. ASSERT(c->chrDstH <= dstH)
  2047. if(flags&SWS_PRINT_INFO)
  2048. {
  2049. #ifdef DITHER1XBPP
  2050. char *dither= " dithered";
  2051. #else
  2052. char *dither= "";
  2053. #endif
  2054. if(flags&SWS_FAST_BILINEAR)
  2055. av_log(c, AV_LOG_INFO, "SwScaler: FAST_BILINEAR scaler, ");
  2056. else if(flags&SWS_BILINEAR)
  2057. av_log(c, AV_LOG_INFO, "SwScaler: BILINEAR scaler, ");
  2058. else if(flags&SWS_BICUBIC)
  2059. av_log(c, AV_LOG_INFO, "SwScaler: BICUBIC scaler, ");
  2060. else if(flags&SWS_X)
  2061. av_log(c, AV_LOG_INFO, "SwScaler: Experimental scaler, ");
  2062. else if(flags&SWS_POINT)
  2063. av_log(c, AV_LOG_INFO, "SwScaler: Nearest Neighbor / POINT scaler, ");
  2064. else if(flags&SWS_AREA)
  2065. av_log(c, AV_LOG_INFO, "SwScaler: Area Averageing scaler, ");
  2066. else if(flags&SWS_BICUBLIN)
  2067. av_log(c, AV_LOG_INFO, "SwScaler: luma BICUBIC / chroma BILINEAR scaler, ");
  2068. else if(flags&SWS_GAUSS)
  2069. av_log(c, AV_LOG_INFO, "SwScaler: Gaussian scaler, ");
  2070. else if(flags&SWS_SINC)
  2071. av_log(c, AV_LOG_INFO, "SwScaler: Sinc scaler, ");
  2072. else if(flags&SWS_LANCZOS)
  2073. av_log(c, AV_LOG_INFO, "SwScaler: Lanczos scaler, ");
  2074. else if(flags&SWS_SPLINE)
  2075. av_log(c, AV_LOG_INFO, "SwScaler: Bicubic spline scaler, ");
  2076. else
  2077. av_log(c, AV_LOG_INFO, "SwScaler: ehh flags invalid?! ");
  2078. if(dstFormat==PIX_FMT_BGR555 || dstFormat==PIX_FMT_BGR565)
  2079. av_log(c, AV_LOG_INFO, "from %s to%s %s ",
  2080. sws_format_name(srcFormat), dither, sws_format_name(dstFormat));
  2081. else
  2082. av_log(c, AV_LOG_INFO, "from %s to %s ",
  2083. sws_format_name(srcFormat), sws_format_name(dstFormat));
  2084. if(flags & SWS_CPU_CAPS_MMX2)
  2085. av_log(c, AV_LOG_INFO, "using MMX2\n");
  2086. else if(flags & SWS_CPU_CAPS_3DNOW)
  2087. av_log(c, AV_LOG_INFO, "using 3DNOW\n");
  2088. else if(flags & SWS_CPU_CAPS_MMX)
  2089. av_log(c, AV_LOG_INFO, "using MMX\n");
  2090. else if(flags & SWS_CPU_CAPS_ALTIVEC)
  2091. av_log(c, AV_LOG_INFO, "using AltiVec\n");
  2092. else
  2093. av_log(c, AV_LOG_INFO, "using C\n");
  2094. }
  2095. if(flags & SWS_PRINT_INFO)
  2096. {
  2097. if(flags & SWS_CPU_CAPS_MMX)
  2098. {
  2099. if(c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
  2100. av_log(c, AV_LOG_VERBOSE, "SwScaler: using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
  2101. else
  2102. {
  2103. if(c->hLumFilterSize==4)
  2104. av_log(c, AV_LOG_VERBOSE, "SwScaler: using 4-tap MMX scaler for horizontal luminance scaling\n");
  2105. else if(c->hLumFilterSize==8)
  2106. av_log(c, AV_LOG_VERBOSE, "SwScaler: using 8-tap MMX scaler for horizontal luminance scaling\n");
  2107. else
  2108. av_log(c, AV_LOG_VERBOSE, "SwScaler: using n-tap MMX scaler for horizontal luminance scaling\n");
  2109. if(c->hChrFilterSize==4)
  2110. av_log(c, AV_LOG_VERBOSE, "SwScaler: using 4-tap MMX scaler for horizontal chrominance scaling\n");
  2111. else if(c->hChrFilterSize==8)
  2112. av_log(c, AV_LOG_VERBOSE, "SwScaler: using 8-tap MMX scaler for horizontal chrominance scaling\n");
  2113. else
  2114. av_log(c, AV_LOG_VERBOSE, "SwScaler: using n-tap MMX scaler for horizontal chrominance scaling\n");
  2115. }
  2116. }
  2117. else
  2118. {
  2119. #if defined(ARCH_X86)
  2120. av_log(c, AV_LOG_VERBOSE, "SwScaler: using X86-Asm scaler for horizontal scaling\n");
  2121. #else
  2122. if(flags & SWS_FAST_BILINEAR)
  2123. av_log(c, AV_LOG_VERBOSE, "SwScaler: using FAST_BILINEAR C scaler for horizontal scaling\n");
  2124. else
  2125. av_log(c, AV_LOG_VERBOSE, "SwScaler: using C scaler for horizontal scaling\n");
  2126. #endif
  2127. }
  2128. if(isPlanarYUV(dstFormat))
  2129. {
  2130. if(c->vLumFilterSize==1)
  2131. av_log(c, AV_LOG_VERBOSE, "SwScaler: using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2132. else
  2133. av_log(c, AV_LOG_VERBOSE, "SwScaler: using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2134. }
  2135. else
  2136. {
  2137. if(c->vLumFilterSize==1 && c->vChrFilterSize==2)
  2138. av_log(c, AV_LOG_VERBOSE, "SwScaler: using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
  2139. "SwScaler: 2-tap scaler for vertical chrominance scaling (BGR)\n",(flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2140. else if(c->vLumFilterSize==2 && c->vChrFilterSize==2)
  2141. av_log(c, AV_LOG_VERBOSE, "SwScaler: using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2142. else
  2143. av_log(c, AV_LOG_VERBOSE, "SwScaler: using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2144. }
  2145. if(dstFormat==PIX_FMT_BGR24)
  2146. av_log(c, AV_LOG_VERBOSE, "SwScaler: using %s YV12->BGR24 Converter\n",
  2147. (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
  2148. else if(dstFormat==PIX_FMT_RGB32)
  2149. av_log(c, AV_LOG_VERBOSE, "SwScaler: using %s YV12->BGR32 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2150. else if(dstFormat==PIX_FMT_BGR565)
  2151. av_log(c, AV_LOG_VERBOSE, "SwScaler: using %s YV12->BGR16 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2152. else if(dstFormat==PIX_FMT_BGR555)
  2153. av_log(c, AV_LOG_VERBOSE, "SwScaler: using %s YV12->BGR15 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2154. av_log(c, AV_LOG_VERBOSE, "SwScaler: %dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  2155. }
  2156. if(flags & SWS_PRINT_INFO)
  2157. {
  2158. av_log(c, AV_LOG_DEBUG, "SwScaler:Lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  2159. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  2160. av_log(c, AV_LOG_DEBUG, "SwScaler:Chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  2161. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
  2162. }
  2163. c->swScale= getSwsFunc(flags);
  2164. return c;
  2165. }
  2166. /**
  2167. * swscale warper, so we don't need to export the SwsContext.
  2168. * assumes planar YUV to be in YUV order instead of YVU
  2169. */
  2170. int sws_scale(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  2171. int srcSliceH, uint8_t* dst[], int dstStride[]){
  2172. if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
  2173. av_log(c, AV_LOG_ERROR, "swScaler: slices start in the middle!\n");
  2174. return 0;
  2175. }
  2176. if (c->sliceDir == 0) {
  2177. if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;
  2178. }
  2179. // copy strides, so they can safely be modified
  2180. if (c->sliceDir == 1) {
  2181. // slices go from top to bottom
  2182. int srcStride2[3]= {srcStride[0], srcStride[1], srcStride[2]};
  2183. int dstStride2[3]= {dstStride[0], dstStride[1], dstStride[2]};
  2184. return c->swScale(c, src, srcStride2, srcSliceY, srcSliceH, dst, dstStride2);
  2185. } else {
  2186. // slices go from bottom to top => we flip the image internally
  2187. uint8_t* src2[3]= {src[0] + (srcSliceH-1)*srcStride[0],
  2188. src[1] + ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[1],
  2189. src[2] + ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[2]
  2190. };
  2191. uint8_t* dst2[3]= {dst[0] + (c->dstH-1)*dstStride[0],
  2192. dst[1] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[1],
  2193. dst[2] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[2]};
  2194. int srcStride2[3]= {-srcStride[0], -srcStride[1], -srcStride[2]};
  2195. int dstStride2[3]= {-dstStride[0], -dstStride[1], -dstStride[2]};
  2196. return c->swScale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH, srcSliceH, dst2, dstStride2);
  2197. }
  2198. }
  2199. /**
  2200. * swscale warper, so we don't need to export the SwsContext
  2201. */
  2202. int sws_scale_ordered(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  2203. int srcSliceH, uint8_t* dst[], int dstStride[]){
  2204. return sws_scale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride);
  2205. }
  2206. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  2207. float lumaSharpen, float chromaSharpen,
  2208. float chromaHShift, float chromaVShift,
  2209. int verbose)
  2210. {
  2211. SwsFilter *filter= av_malloc(sizeof(SwsFilter));
  2212. if(lumaGBlur!=0.0){
  2213. filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
  2214. filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
  2215. }else{
  2216. filter->lumH= sws_getIdentityVec();
  2217. filter->lumV= sws_getIdentityVec();
  2218. }
  2219. if(chromaGBlur!=0.0){
  2220. filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
  2221. filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
  2222. }else{
  2223. filter->chrH= sws_getIdentityVec();
  2224. filter->chrV= sws_getIdentityVec();
  2225. }
  2226. if(chromaSharpen!=0.0){
  2227. SwsVector *id= sws_getIdentityVec();
  2228. sws_scaleVec(filter->chrH, -chromaSharpen);
  2229. sws_scaleVec(filter->chrV, -chromaSharpen);
  2230. sws_addVec(filter->chrH, id);
  2231. sws_addVec(filter->chrV, id);
  2232. sws_freeVec(id);
  2233. }
  2234. if(lumaSharpen!=0.0){
  2235. SwsVector *id= sws_getIdentityVec();
  2236. sws_scaleVec(filter->lumH, -lumaSharpen);
  2237. sws_scaleVec(filter->lumV, -lumaSharpen);
  2238. sws_addVec(filter->lumH, id);
  2239. sws_addVec(filter->lumV, id);
  2240. sws_freeVec(id);
  2241. }
  2242. if(chromaHShift != 0.0)
  2243. sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
  2244. if(chromaVShift != 0.0)
  2245. sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
  2246. sws_normalizeVec(filter->chrH, 1.0);
  2247. sws_normalizeVec(filter->chrV, 1.0);
  2248. sws_normalizeVec(filter->lumH, 1.0);
  2249. sws_normalizeVec(filter->lumV, 1.0);
  2250. if(verbose) sws_printVec(filter->chrH);
  2251. if(verbose) sws_printVec(filter->lumH);
  2252. return filter;
  2253. }
  2254. /**
  2255. * returns a normalized gaussian curve used to filter stuff
  2256. * quality=3 is high quality, lowwer is lowwer quality
  2257. */
  2258. SwsVector *sws_getGaussianVec(double variance, double quality){
  2259. const int length= (int)(variance*quality + 0.5) | 1;
  2260. int i;
  2261. double *coeff= av_malloc(length*sizeof(double));
  2262. double middle= (length-1)*0.5;
  2263. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2264. vec->coeff= coeff;
  2265. vec->length= length;
  2266. for(i=0; i<length; i++)
  2267. {
  2268. double dist= i-middle;
  2269. coeff[i]= exp( -dist*dist/(2*variance*variance) ) / sqrt(2*variance*PI);
  2270. }
  2271. sws_normalizeVec(vec, 1.0);
  2272. return vec;
  2273. }
  2274. SwsVector *sws_getConstVec(double c, int length){
  2275. int i;
  2276. double *coeff= av_malloc(length*sizeof(double));
  2277. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2278. vec->coeff= coeff;
  2279. vec->length= length;
  2280. for(i=0; i<length; i++)
  2281. coeff[i]= c;
  2282. return vec;
  2283. }
  2284. SwsVector *sws_getIdentityVec(void){
  2285. return sws_getConstVec(1.0, 1);
  2286. }
  2287. double sws_dcVec(SwsVector *a){
  2288. int i;
  2289. double sum=0;
  2290. for(i=0; i<a->length; i++)
  2291. sum+= a->coeff[i];
  2292. return sum;
  2293. }
  2294. void sws_scaleVec(SwsVector *a, double scalar){
  2295. int i;
  2296. for(i=0; i<a->length; i++)
  2297. a->coeff[i]*= scalar;
  2298. }
  2299. void sws_normalizeVec(SwsVector *a, double height){
  2300. sws_scaleVec(a, height/sws_dcVec(a));
  2301. }
  2302. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b){
  2303. int length= a->length + b->length - 1;
  2304. double *coeff= av_malloc(length*sizeof(double));
  2305. int i, j;
  2306. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2307. vec->coeff= coeff;
  2308. vec->length= length;
  2309. for(i=0; i<length; i++) coeff[i]= 0.0;
  2310. for(i=0; i<a->length; i++)
  2311. {
  2312. for(j=0; j<b->length; j++)
  2313. {
  2314. coeff[i+j]+= a->coeff[i]*b->coeff[j];
  2315. }
  2316. }
  2317. return vec;
  2318. }
  2319. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b){
  2320. int length= FFMAX(a->length, b->length);
  2321. double *coeff= av_malloc(length*sizeof(double));
  2322. int i;
  2323. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2324. vec->coeff= coeff;
  2325. vec->length= length;
  2326. for(i=0; i<length; i++) coeff[i]= 0.0;
  2327. for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
  2328. for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
  2329. return vec;
  2330. }
  2331. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b){
  2332. int length= FFMAX(a->length, b->length);
  2333. double *coeff= av_malloc(length*sizeof(double));
  2334. int i;
  2335. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2336. vec->coeff= coeff;
  2337. vec->length= length;
  2338. for(i=0; i<length; i++) coeff[i]= 0.0;
  2339. for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
  2340. for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
  2341. return vec;
  2342. }
  2343. /* shift left / or right if "shift" is negative */
  2344. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift){
  2345. int length= a->length + FFABS(shift)*2;
  2346. double *coeff= av_malloc(length*sizeof(double));
  2347. int i;
  2348. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2349. vec->coeff= coeff;
  2350. vec->length= length;
  2351. for(i=0; i<length; i++) coeff[i]= 0.0;
  2352. for(i=0; i<a->length; i++)
  2353. {
  2354. coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
  2355. }
  2356. return vec;
  2357. }
  2358. void sws_shiftVec(SwsVector *a, int shift){
  2359. SwsVector *shifted= sws_getShiftedVec(a, shift);
  2360. av_free(a->coeff);
  2361. a->coeff= shifted->coeff;
  2362. a->length= shifted->length;
  2363. av_free(shifted);
  2364. }
  2365. void sws_addVec(SwsVector *a, SwsVector *b){
  2366. SwsVector *sum= sws_sumVec(a, b);
  2367. av_free(a->coeff);
  2368. a->coeff= sum->coeff;
  2369. a->length= sum->length;
  2370. av_free(sum);
  2371. }
  2372. void sws_subVec(SwsVector *a, SwsVector *b){
  2373. SwsVector *diff= sws_diffVec(a, b);
  2374. av_free(a->coeff);
  2375. a->coeff= diff->coeff;
  2376. a->length= diff->length;
  2377. av_free(diff);
  2378. }
  2379. void sws_convVec(SwsVector *a, SwsVector *b){
  2380. SwsVector *conv= sws_getConvVec(a, b);
  2381. av_free(a->coeff);
  2382. a->coeff= conv->coeff;
  2383. a->length= conv->length;
  2384. av_free(conv);
  2385. }
  2386. SwsVector *sws_cloneVec(SwsVector *a){
  2387. double *coeff= av_malloc(a->length*sizeof(double));
  2388. int i;
  2389. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2390. vec->coeff= coeff;
  2391. vec->length= a->length;
  2392. for(i=0; i<a->length; i++) coeff[i]= a->coeff[i];
  2393. return vec;
  2394. }
  2395. void sws_printVec(SwsVector *a){
  2396. int i;
  2397. double max=0;
  2398. double min=0;
  2399. double range;
  2400. for(i=0; i<a->length; i++)
  2401. if(a->coeff[i]>max) max= a->coeff[i];
  2402. for(i=0; i<a->length; i++)
  2403. if(a->coeff[i]<min) min= a->coeff[i];
  2404. range= max - min;
  2405. for(i=0; i<a->length; i++)
  2406. {
  2407. int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
  2408. av_log(NULL, AV_LOG_DEBUG, "%1.3f ", a->coeff[i]);
  2409. for(;x>0; x--) av_log(NULL, AV_LOG_DEBUG, " ");
  2410. av_log(NULL, AV_LOG_DEBUG, "|\n");
  2411. }
  2412. }
  2413. void sws_freeVec(SwsVector *a){
  2414. if(!a) return;
  2415. av_free(a->coeff);
  2416. a->coeff=NULL;
  2417. a->length=0;
  2418. av_free(a);
  2419. }
  2420. void sws_freeFilter(SwsFilter *filter){
  2421. if(!filter) return;
  2422. if(filter->lumH) sws_freeVec(filter->lumH);
  2423. if(filter->lumV) sws_freeVec(filter->lumV);
  2424. if(filter->chrH) sws_freeVec(filter->chrH);
  2425. if(filter->chrV) sws_freeVec(filter->chrV);
  2426. av_free(filter);
  2427. }
  2428. void sws_freeContext(SwsContext *c){
  2429. int i;
  2430. if(!c) return;
  2431. if(c->lumPixBuf)
  2432. {
  2433. for(i=0; i<c->vLumBufSize; i++)
  2434. {
  2435. av_free(c->lumPixBuf[i]);
  2436. c->lumPixBuf[i]=NULL;
  2437. }
  2438. av_free(c->lumPixBuf);
  2439. c->lumPixBuf=NULL;
  2440. }
  2441. if(c->chrPixBuf)
  2442. {
  2443. for(i=0; i<c->vChrBufSize; i++)
  2444. {
  2445. av_free(c->chrPixBuf[i]);
  2446. c->chrPixBuf[i]=NULL;
  2447. }
  2448. av_free(c->chrPixBuf);
  2449. c->chrPixBuf=NULL;
  2450. }
  2451. av_free(c->vLumFilter);
  2452. c->vLumFilter = NULL;
  2453. av_free(c->vChrFilter);
  2454. c->vChrFilter = NULL;
  2455. av_free(c->hLumFilter);
  2456. c->hLumFilter = NULL;
  2457. av_free(c->hChrFilter);
  2458. c->hChrFilter = NULL;
  2459. #ifdef HAVE_ALTIVEC
  2460. av_free(c->vYCoeffsBank);
  2461. c->vYCoeffsBank = NULL;
  2462. av_free(c->vCCoeffsBank);
  2463. c->vCCoeffsBank = NULL;
  2464. #endif
  2465. av_free(c->vLumFilterPos);
  2466. c->vLumFilterPos = NULL;
  2467. av_free(c->vChrFilterPos);
  2468. c->vChrFilterPos = NULL;
  2469. av_free(c->hLumFilterPos);
  2470. c->hLumFilterPos = NULL;
  2471. av_free(c->hChrFilterPos);
  2472. c->hChrFilterPos = NULL;
  2473. #if defined(ARCH_X86) && defined(CONFIG_GPL)
  2474. #ifdef MAP_ANONYMOUS
  2475. if(c->funnyYCode) munmap(c->funnyYCode, MAX_FUNNY_CODE_SIZE);
  2476. if(c->funnyUVCode) munmap(c->funnyUVCode, MAX_FUNNY_CODE_SIZE);
  2477. #else
  2478. av_free(c->funnyYCode);
  2479. av_free(c->funnyUVCode);
  2480. #endif
  2481. c->funnyYCode=NULL;
  2482. c->funnyUVCode=NULL;
  2483. #endif /* defined(ARCH_X86) */
  2484. av_free(c->lumMmx2Filter);
  2485. c->lumMmx2Filter=NULL;
  2486. av_free(c->chrMmx2Filter);
  2487. c->chrMmx2Filter=NULL;
  2488. av_free(c->lumMmx2FilterPos);
  2489. c->lumMmx2FilterPos=NULL;
  2490. av_free(c->chrMmx2FilterPos);
  2491. c->chrMmx2FilterPos=NULL;
  2492. av_free(c->yuvTable);
  2493. c->yuvTable=NULL;
  2494. av_free(c);
  2495. }
  2496. /**
  2497. * Checks if context is valid or reallocs a new one instead.
  2498. * If context is NULL, just calls sws_getContext() to get a new one.
  2499. * Otherwise, checks if the parameters are the same already saved in context.
  2500. * If that is the case, returns the current context.
  2501. * Otherwise, frees context and gets a new one.
  2502. *
  2503. * Be warned that srcFilter, dstFilter are not checked, they are
  2504. * asumed to remain valid.
  2505. */
  2506. struct SwsContext *sws_getCachedContext(struct SwsContext *context,
  2507. int srcW, int srcH, int srcFormat,
  2508. int dstW, int dstH, int dstFormat, int flags,
  2509. SwsFilter *srcFilter, SwsFilter *dstFilter, double *param)
  2510. {
  2511. if (context != NULL) {
  2512. if ((context->srcW != srcW) || (context->srcH != srcH) ||
  2513. (context->srcFormat != srcFormat) ||
  2514. (context->dstW != dstW) || (context->dstH != dstH) ||
  2515. (context->dstFormat != dstFormat) || (context->flags != flags) ||
  2516. (context->param != param))
  2517. {
  2518. sws_freeContext(context);
  2519. context = NULL;
  2520. }
  2521. }
  2522. if (context == NULL) {
  2523. return sws_getContext(srcW, srcH, srcFormat,
  2524. dstW, dstH, dstFormat, flags,
  2525. srcFilter, dstFilter, param);
  2526. }
  2527. return context;
  2528. }