You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4581 lines
154KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006-2007 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. */
  23. /**
  24. * @file vc1.c
  25. * VC-1 and WMV3 decoder
  26. *
  27. */
  28. #include "common.h"
  29. #include "dsputil.h"
  30. #include "avcodec.h"
  31. #include "mpegvideo.h"
  32. #include "vc1data.h"
  33. #include "vc1acdata.h"
  34. #undef NDEBUG
  35. #include <assert.h>
  36. extern const uint32_t ff_table0_dc_lum[120][2], ff_table1_dc_lum[120][2];
  37. extern const uint32_t ff_table0_dc_chroma[120][2], ff_table1_dc_chroma[120][2];
  38. extern VLC ff_msmp4_dc_luma_vlc[2], ff_msmp4_dc_chroma_vlc[2];
  39. #define MB_INTRA_VLC_BITS 9
  40. extern VLC ff_msmp4_mb_i_vlc;
  41. extern const uint16_t ff_msmp4_mb_i_table[64][2];
  42. #define DC_VLC_BITS 9
  43. #define AC_VLC_BITS 9
  44. static const uint16_t table_mb_intra[64][2];
  45. /** Markers used if VC-1 AP frame data */
  46. //@{
  47. enum VC1Code{
  48. VC1_CODE_RES0 = 0x00000100,
  49. VC1_CODE_ENDOFSEQ = 0x0000010A,
  50. VC1_CODE_SLICE,
  51. VC1_CODE_FIELD,
  52. VC1_CODE_FRAME,
  53. VC1_CODE_ENTRYPOINT,
  54. VC1_CODE_SEQHDR,
  55. };
  56. //@}
  57. /** Available Profiles */
  58. //@{
  59. enum Profile {
  60. PROFILE_SIMPLE,
  61. PROFILE_MAIN,
  62. PROFILE_COMPLEX, ///< TODO: WMV9 specific
  63. PROFILE_ADVANCED
  64. };
  65. //@}
  66. /** Sequence quantizer mode */
  67. //@{
  68. enum QuantMode {
  69. QUANT_FRAME_IMPLICIT, ///< Implicitly specified at frame level
  70. QUANT_FRAME_EXPLICIT, ///< Explicitly specified at frame level
  71. QUANT_NON_UNIFORM, ///< Non-uniform quant used for all frames
  72. QUANT_UNIFORM ///< Uniform quant used for all frames
  73. };
  74. //@}
  75. /** Where quant can be changed */
  76. //@{
  77. enum DQProfile {
  78. DQPROFILE_FOUR_EDGES,
  79. DQPROFILE_DOUBLE_EDGES,
  80. DQPROFILE_SINGLE_EDGE,
  81. DQPROFILE_ALL_MBS
  82. };
  83. //@}
  84. /** @name Where quant can be changed
  85. */
  86. //@{
  87. enum DQSingleEdge {
  88. DQSINGLE_BEDGE_LEFT,
  89. DQSINGLE_BEDGE_TOP,
  90. DQSINGLE_BEDGE_RIGHT,
  91. DQSINGLE_BEDGE_BOTTOM
  92. };
  93. //@}
  94. /** Which pair of edges is quantized with ALTPQUANT */
  95. //@{
  96. enum DQDoubleEdge {
  97. DQDOUBLE_BEDGE_TOPLEFT,
  98. DQDOUBLE_BEDGE_TOPRIGHT,
  99. DQDOUBLE_BEDGE_BOTTOMRIGHT,
  100. DQDOUBLE_BEDGE_BOTTOMLEFT
  101. };
  102. //@}
  103. /** MV modes for P frames */
  104. //@{
  105. enum MVModes {
  106. MV_PMODE_1MV_HPEL_BILIN,
  107. MV_PMODE_1MV,
  108. MV_PMODE_1MV_HPEL,
  109. MV_PMODE_MIXED_MV,
  110. MV_PMODE_INTENSITY_COMP
  111. };
  112. //@}
  113. /** @name MV types for B frames */
  114. //@{
  115. enum BMVTypes {
  116. BMV_TYPE_BACKWARD,
  117. BMV_TYPE_FORWARD,
  118. BMV_TYPE_INTERPOLATED
  119. };
  120. //@}
  121. /** @name Block types for P/B frames */
  122. //@{
  123. enum TransformTypes {
  124. TT_8X8,
  125. TT_8X4_BOTTOM,
  126. TT_8X4_TOP,
  127. TT_8X4, //Both halves
  128. TT_4X8_RIGHT,
  129. TT_4X8_LEFT,
  130. TT_4X8, //Both halves
  131. TT_4X4
  132. };
  133. //@}
  134. /** Table for conversion between TTBLK and TTMB */
  135. static const int ttblk_to_tt[3][8] = {
  136. { TT_8X4, TT_4X8, TT_8X8, TT_4X4, TT_8X4_TOP, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT },
  137. { TT_8X8, TT_4X8_RIGHT, TT_4X8_LEFT, TT_4X4, TT_8X4, TT_4X8, TT_8X4_BOTTOM, TT_8X4_TOP },
  138. { TT_8X8, TT_4X8, TT_4X4, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT, TT_8X4, TT_8X4_TOP }
  139. };
  140. static const int ttfrm_to_tt[4] = { TT_8X8, TT_8X4, TT_4X8, TT_4X4 };
  141. /** MV P mode - the 5th element is only used for mode 1 */
  142. static const uint8_t mv_pmode_table[2][5] = {
  143. { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_MIXED_MV },
  144. { MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_1MV_HPEL_BILIN }
  145. };
  146. static const uint8_t mv_pmode_table2[2][4] = {
  147. { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_MIXED_MV },
  148. { MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_1MV_HPEL_BILIN }
  149. };
  150. /** One more frame type */
  151. #define BI_TYPE 7
  152. static const int fps_nr[5] = { 24, 25, 30, 50, 60 },
  153. fps_dr[2] = { 1000, 1001 };
  154. static const uint8_t pquant_table[3][32] = {
  155. { /* Implicit quantizer */
  156. 0, 1, 2, 3, 4, 5, 6, 7, 8, 6, 7, 8, 9, 10, 11, 12,
  157. 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 31
  158. },
  159. { /* Explicit quantizer, pquantizer uniform */
  160. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
  161. 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31
  162. },
  163. { /* Explicit quantizer, pquantizer non-uniform */
  164. 0, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
  165. 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31
  166. }
  167. };
  168. /** @name VC-1 VLC tables and defines
  169. * @todo TODO move this into the context
  170. */
  171. //@{
  172. #define VC1_BFRACTION_VLC_BITS 7
  173. static VLC vc1_bfraction_vlc;
  174. #define VC1_IMODE_VLC_BITS 4
  175. static VLC vc1_imode_vlc;
  176. #define VC1_NORM2_VLC_BITS 3
  177. static VLC vc1_norm2_vlc;
  178. #define VC1_NORM6_VLC_BITS 9
  179. static VLC vc1_norm6_vlc;
  180. /* Could be optimized, one table only needs 8 bits */
  181. #define VC1_TTMB_VLC_BITS 9 //12
  182. static VLC vc1_ttmb_vlc[3];
  183. #define VC1_MV_DIFF_VLC_BITS 9 //15
  184. static VLC vc1_mv_diff_vlc[4];
  185. #define VC1_CBPCY_P_VLC_BITS 9 //14
  186. static VLC vc1_cbpcy_p_vlc[4];
  187. #define VC1_4MV_BLOCK_PATTERN_VLC_BITS 6
  188. static VLC vc1_4mv_block_pattern_vlc[4];
  189. #define VC1_TTBLK_VLC_BITS 5
  190. static VLC vc1_ttblk_vlc[3];
  191. #define VC1_SUBBLKPAT_VLC_BITS 6
  192. static VLC vc1_subblkpat_vlc[3];
  193. static VLC vc1_ac_coeff_table[8];
  194. //@}
  195. enum CodingSet {
  196. CS_HIGH_MOT_INTRA = 0,
  197. CS_HIGH_MOT_INTER,
  198. CS_LOW_MOT_INTRA,
  199. CS_LOW_MOT_INTER,
  200. CS_MID_RATE_INTRA,
  201. CS_MID_RATE_INTER,
  202. CS_HIGH_RATE_INTRA,
  203. CS_HIGH_RATE_INTER
  204. };
  205. /** @name Overlap conditions for Advanced Profile */
  206. //@{
  207. enum COTypes {
  208. CONDOVER_NONE = 0,
  209. CONDOVER_ALL,
  210. CONDOVER_SELECT
  211. };
  212. //@}
  213. /** The VC1 Context
  214. * @fixme Change size wherever another size is more efficient
  215. * Many members are only used for Advanced Profile
  216. */
  217. typedef struct VC1Context{
  218. MpegEncContext s;
  219. int bits;
  220. /** Simple/Main Profile sequence header */
  221. //@{
  222. int res_sm; ///< reserved, 2b
  223. int res_x8; ///< reserved
  224. int multires; ///< frame-level RESPIC syntax element present
  225. int res_fasttx; ///< reserved, always 1
  226. int res_transtab; ///< reserved, always 0
  227. int rangered; ///< RANGEREDFRM (range reduction) syntax element present
  228. ///< at frame level
  229. int res_rtm_flag; ///< reserved, set to 1
  230. int reserved; ///< reserved
  231. //@}
  232. /** Advanced Profile */
  233. //@{
  234. int level; ///< 3bits, for Advanced/Simple Profile, provided by TS layer
  235. int chromaformat; ///< 2bits, 2=4:2:0, only defined
  236. int postprocflag; ///< Per-frame processing suggestion flag present
  237. int broadcast; ///< TFF/RFF present
  238. int interlace; ///< Progressive/interlaced (RPTFTM syntax element)
  239. int tfcntrflag; ///< TFCNTR present
  240. int panscanflag; ///< NUMPANSCANWIN, TOPLEFT{X,Y}, BOTRIGHT{X,Y} present
  241. int extended_dmv; ///< Additional extended dmv range at P/B frame-level
  242. int color_prim; ///< 8bits, chroma coordinates of the color primaries
  243. int transfer_char; ///< 8bits, Opto-electronic transfer characteristics
  244. int matrix_coef; ///< 8bits, Color primaries->YCbCr transform matrix
  245. int hrd_param_flag; ///< Presence of Hypothetical Reference
  246. ///< Decoder parameters
  247. int psf; ///< Progressive Segmented Frame
  248. //@}
  249. /** Sequence header data for all Profiles
  250. * TODO: choose between ints, uint8_ts and monobit flags
  251. */
  252. //@{
  253. int profile; ///< 2bits, Profile
  254. int frmrtq_postproc; ///< 3bits,
  255. int bitrtq_postproc; ///< 5bits, quantized framerate-based postprocessing strength
  256. int fastuvmc; ///< Rounding of qpel vector to hpel ? (not in Simple)
  257. int extended_mv; ///< Ext MV in P/B (not in Simple)
  258. int dquant; ///< How qscale varies with MBs, 2bits (not in Simple)
  259. int vstransform; ///< variable-size [48]x[48] transform type + info
  260. int overlap; ///< overlapped transforms in use
  261. int quantizer_mode; ///< 2bits, quantizer mode used for sequence, see QUANT_*
  262. int finterpflag; ///< INTERPFRM present
  263. //@}
  264. /** Frame decoding info for all profiles */
  265. //@{
  266. uint8_t mv_mode; ///< MV coding monde
  267. uint8_t mv_mode2; ///< Secondary MV coding mode (B frames)
  268. int k_x; ///< Number of bits for MVs (depends on MV range)
  269. int k_y; ///< Number of bits for MVs (depends on MV range)
  270. int range_x, range_y; ///< MV range
  271. uint8_t pq, altpq; ///< Current/alternate frame quantizer scale
  272. /** pquant parameters */
  273. //@{
  274. uint8_t dquantfrm;
  275. uint8_t dqprofile;
  276. uint8_t dqsbedge;
  277. uint8_t dqbilevel;
  278. //@}
  279. /** AC coding set indexes
  280. * @see 8.1.1.10, p(1)10
  281. */
  282. //@{
  283. int c_ac_table_index; ///< Chroma index from ACFRM element
  284. int y_ac_table_index; ///< Luma index from AC2FRM element
  285. //@}
  286. int ttfrm; ///< Transform type info present at frame level
  287. uint8_t ttmbf; ///< Transform type flag
  288. uint8_t ttblk4x4; ///< Value of ttblk which indicates a 4x4 transform
  289. int codingset; ///< index of current table set from 11.8 to use for luma block decoding
  290. int codingset2; ///< index of current table set from 11.8 to use for chroma block decoding
  291. int pqindex; ///< raw pqindex used in coding set selection
  292. int a_avail, c_avail;
  293. uint8_t *mb_type_base, *mb_type[3];
  294. /** Luma compensation parameters */
  295. //@{
  296. uint8_t lumscale;
  297. uint8_t lumshift;
  298. //@}
  299. int16_t bfraction; ///< Relative position % anchors=> how to scale MVs
  300. uint8_t halfpq; ///< Uniform quant over image and qp+.5
  301. uint8_t respic; ///< Frame-level flag for resized images
  302. int buffer_fullness; ///< HRD info
  303. /** Ranges:
  304. * -# 0 -> [-64n 63.f] x [-32, 31.f]
  305. * -# 1 -> [-128, 127.f] x [-64, 63.f]
  306. * -# 2 -> [-512, 511.f] x [-128, 127.f]
  307. * -# 3 -> [-1024, 1023.f] x [-256, 255.f]
  308. */
  309. uint8_t mvrange;
  310. uint8_t pquantizer; ///< Uniform (over sequence) quantizer in use
  311. VLC *cbpcy_vlc; ///< CBPCY VLC table
  312. int tt_index; ///< Index for Transform Type tables
  313. uint8_t* mv_type_mb_plane; ///< bitplane for mv_type == (4MV)
  314. uint8_t* direct_mb_plane; ///< bitplane for "direct" MBs
  315. int mv_type_is_raw; ///< mv type mb plane is not coded
  316. int dmb_is_raw; ///< direct mb plane is raw
  317. int skip_is_raw; ///< skip mb plane is not coded
  318. uint8_t luty[256], lutuv[256]; // lookup tables used for intensity compensation
  319. int use_ic; ///< use intensity compensation in B-frames
  320. int rnd; ///< rounding control
  321. /** Frame decoding info for S/M profiles only */
  322. //@{
  323. uint8_t rangeredfrm; ///< out_sample = CLIP((in_sample-128)*2+128)
  324. uint8_t interpfrm;
  325. //@}
  326. /** Frame decoding info for Advanced profile */
  327. //@{
  328. uint8_t fcm; ///< 0->Progressive, 2->Frame-Interlace, 3->Field-Interlace
  329. uint8_t numpanscanwin;
  330. uint8_t tfcntr;
  331. uint8_t rptfrm, tff, rff;
  332. uint16_t topleftx;
  333. uint16_t toplefty;
  334. uint16_t bottomrightx;
  335. uint16_t bottomrighty;
  336. uint8_t uvsamp;
  337. uint8_t postproc;
  338. int hrd_num_leaky_buckets;
  339. uint8_t bit_rate_exponent;
  340. uint8_t buffer_size_exponent;
  341. uint8_t* acpred_plane; ///< AC prediction flags bitplane
  342. int acpred_is_raw;
  343. uint8_t* over_flags_plane; ///< Overflags bitplane
  344. int overflg_is_raw;
  345. uint8_t condover;
  346. uint16_t *hrd_rate, *hrd_buffer;
  347. uint8_t *hrd_fullness;
  348. uint8_t range_mapy_flag;
  349. uint8_t range_mapuv_flag;
  350. uint8_t range_mapy;
  351. uint8_t range_mapuv;
  352. //@}
  353. int p_frame_skipped;
  354. int bi_type;
  355. } VC1Context;
  356. /**
  357. * Get unary code of limited length
  358. * @fixme FIXME Slow and ugly
  359. * @param gb GetBitContext
  360. * @param[in] stop The bitstop value (unary code of 1's or 0's)
  361. * @param[in] len Maximum length
  362. * @return Unary length/index
  363. */
  364. static int get_prefix(GetBitContext *gb, int stop, int len)
  365. {
  366. #if 1
  367. int i;
  368. for(i = 0; i < len && get_bits1(gb) != stop; i++);
  369. return i;
  370. /* int i = 0, tmp = !stop;
  371. while (i != len && tmp != stop)
  372. {
  373. tmp = get_bits(gb, 1);
  374. i++;
  375. }
  376. if (i == len && tmp != stop) return len+1;
  377. return i;*/
  378. #else
  379. unsigned int buf;
  380. int log;
  381. OPEN_READER(re, gb);
  382. UPDATE_CACHE(re, gb);
  383. buf=GET_CACHE(re, gb); //Still not sure
  384. if (stop) buf = ~buf;
  385. log= av_log2(-buf); //FIXME: -?
  386. if (log < limit){
  387. LAST_SKIP_BITS(re, gb, log+1);
  388. CLOSE_READER(re, gb);
  389. return log;
  390. }
  391. LAST_SKIP_BITS(re, gb, limit);
  392. CLOSE_READER(re, gb);
  393. return limit;
  394. #endif
  395. }
  396. static inline int decode210(GetBitContext *gb){
  397. int n;
  398. n = get_bits1(gb);
  399. if (n == 1)
  400. return 0;
  401. else
  402. return 2 - get_bits1(gb);
  403. }
  404. /**
  405. * Init VC-1 specific tables and VC1Context members
  406. * @param v The VC1Context to initialize
  407. * @return Status
  408. */
  409. static int vc1_init_common(VC1Context *v)
  410. {
  411. static int done = 0;
  412. int i = 0;
  413. v->hrd_rate = v->hrd_buffer = NULL;
  414. /* VLC tables */
  415. if(!done)
  416. {
  417. done = 1;
  418. init_vlc(&vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  419. vc1_bfraction_bits, 1, 1,
  420. vc1_bfraction_codes, 1, 1, 1);
  421. init_vlc(&vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  422. vc1_norm2_bits, 1, 1,
  423. vc1_norm2_codes, 1, 1, 1);
  424. init_vlc(&vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  425. vc1_norm6_bits, 1, 1,
  426. vc1_norm6_codes, 2, 2, 1);
  427. init_vlc(&vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  428. vc1_imode_bits, 1, 1,
  429. vc1_imode_codes, 1, 1, 1);
  430. for (i=0; i<3; i++)
  431. {
  432. init_vlc(&vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  433. vc1_ttmb_bits[i], 1, 1,
  434. vc1_ttmb_codes[i], 2, 2, 1);
  435. init_vlc(&vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  436. vc1_ttblk_bits[i], 1, 1,
  437. vc1_ttblk_codes[i], 1, 1, 1);
  438. init_vlc(&vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  439. vc1_subblkpat_bits[i], 1, 1,
  440. vc1_subblkpat_codes[i], 1, 1, 1);
  441. }
  442. for(i=0; i<4; i++)
  443. {
  444. init_vlc(&vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  445. vc1_4mv_block_pattern_bits[i], 1, 1,
  446. vc1_4mv_block_pattern_codes[i], 1, 1, 1);
  447. init_vlc(&vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  448. vc1_cbpcy_p_bits[i], 1, 1,
  449. vc1_cbpcy_p_codes[i], 2, 2, 1);
  450. init_vlc(&vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  451. vc1_mv_diff_bits[i], 1, 1,
  452. vc1_mv_diff_codes[i], 2, 2, 1);
  453. }
  454. for(i=0; i<8; i++)
  455. init_vlc(&vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  456. &vc1_ac_tables[i][0][1], 8, 4,
  457. &vc1_ac_tables[i][0][0], 8, 4, 1);
  458. init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
  459. &ff_msmp4_mb_i_table[0][1], 4, 2,
  460. &ff_msmp4_mb_i_table[0][0], 4, 2, 1);
  461. }
  462. /* Other defaults */
  463. v->pq = -1;
  464. v->mvrange = 0; /* 7.1.1.18, p80 */
  465. return 0;
  466. }
  467. /***********************************************************************/
  468. /**
  469. * @defgroup bitplane VC9 Bitplane decoding
  470. * @see 8.7, p56
  471. * @{
  472. */
  473. /** @addtogroup bitplane
  474. * Imode types
  475. * @{
  476. */
  477. enum Imode {
  478. IMODE_RAW,
  479. IMODE_NORM2,
  480. IMODE_DIFF2,
  481. IMODE_NORM6,
  482. IMODE_DIFF6,
  483. IMODE_ROWSKIP,
  484. IMODE_COLSKIP
  485. };
  486. /** @} */ //imode defines
  487. /** Decode rows by checking if they are skipped
  488. * @param plane Buffer to store decoded bits
  489. * @param[in] width Width of this buffer
  490. * @param[in] height Height of this buffer
  491. * @param[in] stride of this buffer
  492. */
  493. static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  494. int x, y;
  495. for (y=0; y<height; y++){
  496. if (!get_bits(gb, 1)) //rowskip
  497. memset(plane, 0, width);
  498. else
  499. for (x=0; x<width; x++)
  500. plane[x] = get_bits(gb, 1);
  501. plane += stride;
  502. }
  503. }
  504. /** Decode columns by checking if they are skipped
  505. * @param plane Buffer to store decoded bits
  506. * @param[in] width Width of this buffer
  507. * @param[in] height Height of this buffer
  508. * @param[in] stride of this buffer
  509. * @fixme FIXME: Optimize
  510. */
  511. static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  512. int x, y;
  513. for (x=0; x<width; x++){
  514. if (!get_bits(gb, 1)) //colskip
  515. for (y=0; y<height; y++)
  516. plane[y*stride] = 0;
  517. else
  518. for (y=0; y<height; y++)
  519. plane[y*stride] = get_bits(gb, 1);
  520. plane ++;
  521. }
  522. }
  523. /** Decode a bitplane's bits
  524. * @param bp Bitplane where to store the decode bits
  525. * @param v VC-1 context for bit reading and logging
  526. * @return Status
  527. * @fixme FIXME: Optimize
  528. */
  529. static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
  530. {
  531. GetBitContext *gb = &v->s.gb;
  532. int imode, x, y, code, offset;
  533. uint8_t invert, *planep = data;
  534. int width, height, stride;
  535. width = v->s.mb_width;
  536. height = v->s.mb_height;
  537. stride = v->s.mb_stride;
  538. invert = get_bits(gb, 1);
  539. imode = get_vlc2(gb, vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
  540. *raw_flag = 0;
  541. switch (imode)
  542. {
  543. case IMODE_RAW:
  544. //Data is actually read in the MB layer (same for all tests == "raw")
  545. *raw_flag = 1; //invert ignored
  546. return invert;
  547. case IMODE_DIFF2:
  548. case IMODE_NORM2:
  549. if ((height * width) & 1)
  550. {
  551. *planep++ = get_bits(gb, 1);
  552. offset = 1;
  553. }
  554. else offset = 0;
  555. // decode bitplane as one long line
  556. for (y = offset; y < height * width; y += 2) {
  557. code = get_vlc2(gb, vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
  558. *planep++ = code & 1;
  559. offset++;
  560. if(offset == width) {
  561. offset = 0;
  562. planep += stride - width;
  563. }
  564. *planep++ = code >> 1;
  565. offset++;
  566. if(offset == width) {
  567. offset = 0;
  568. planep += stride - width;
  569. }
  570. }
  571. break;
  572. case IMODE_DIFF6:
  573. case IMODE_NORM6:
  574. if(!(height % 3) && (width % 3)) { // use 2x3 decoding
  575. for(y = 0; y < height; y+= 3) {
  576. for(x = width & 1; x < width; x += 2) {
  577. code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  578. if(code < 0){
  579. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  580. return -1;
  581. }
  582. planep[x + 0] = (code >> 0) & 1;
  583. planep[x + 1] = (code >> 1) & 1;
  584. planep[x + 0 + stride] = (code >> 2) & 1;
  585. planep[x + 1 + stride] = (code >> 3) & 1;
  586. planep[x + 0 + stride * 2] = (code >> 4) & 1;
  587. planep[x + 1 + stride * 2] = (code >> 5) & 1;
  588. }
  589. planep += stride * 3;
  590. }
  591. if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
  592. } else { // 3x2
  593. planep += (height & 1) * stride;
  594. for(y = height & 1; y < height; y += 2) {
  595. for(x = width % 3; x < width; x += 3) {
  596. code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  597. if(code < 0){
  598. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  599. return -1;
  600. }
  601. planep[x + 0] = (code >> 0) & 1;
  602. planep[x + 1] = (code >> 1) & 1;
  603. planep[x + 2] = (code >> 2) & 1;
  604. planep[x + 0 + stride] = (code >> 3) & 1;
  605. planep[x + 1 + stride] = (code >> 4) & 1;
  606. planep[x + 2 + stride] = (code >> 5) & 1;
  607. }
  608. planep += stride * 2;
  609. }
  610. x = width % 3;
  611. if(x) decode_colskip(data , x, height , stride, &v->s.gb);
  612. if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
  613. }
  614. break;
  615. case IMODE_ROWSKIP:
  616. decode_rowskip(data, width, height, stride, &v->s.gb);
  617. break;
  618. case IMODE_COLSKIP:
  619. decode_colskip(data, width, height, stride, &v->s.gb);
  620. break;
  621. default: break;
  622. }
  623. /* Applying diff operator */
  624. if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
  625. {
  626. planep = data;
  627. planep[0] ^= invert;
  628. for (x=1; x<width; x++)
  629. planep[x] ^= planep[x-1];
  630. for (y=1; y<height; y++)
  631. {
  632. planep += stride;
  633. planep[0] ^= planep[-stride];
  634. for (x=1; x<width; x++)
  635. {
  636. if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
  637. else planep[x] ^= planep[x-1];
  638. }
  639. }
  640. }
  641. else if (invert)
  642. {
  643. planep = data;
  644. for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
  645. }
  646. return (imode<<1) + invert;
  647. }
  648. /** @} */ //Bitplane group
  649. /***********************************************************************/
  650. /** VOP Dquant decoding
  651. * @param v VC-1 Context
  652. */
  653. static int vop_dquant_decoding(VC1Context *v)
  654. {
  655. GetBitContext *gb = &v->s.gb;
  656. int pqdiff;
  657. //variable size
  658. if (v->dquant == 2)
  659. {
  660. pqdiff = get_bits(gb, 3);
  661. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  662. else v->altpq = v->pq + pqdiff + 1;
  663. }
  664. else
  665. {
  666. v->dquantfrm = get_bits(gb, 1);
  667. if ( v->dquantfrm )
  668. {
  669. v->dqprofile = get_bits(gb, 2);
  670. switch (v->dqprofile)
  671. {
  672. case DQPROFILE_SINGLE_EDGE:
  673. case DQPROFILE_DOUBLE_EDGES:
  674. v->dqsbedge = get_bits(gb, 2);
  675. break;
  676. case DQPROFILE_ALL_MBS:
  677. v->dqbilevel = get_bits(gb, 1);
  678. default: break; //Forbidden ?
  679. }
  680. if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
  681. {
  682. pqdiff = get_bits(gb, 3);
  683. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  684. else v->altpq = v->pq + pqdiff + 1;
  685. }
  686. }
  687. }
  688. return 0;
  689. }
  690. /** Put block onto picture
  691. */
  692. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  693. {
  694. uint8_t *Y;
  695. int ys, us, vs;
  696. DSPContext *dsp = &v->s.dsp;
  697. if(v->rangeredfrm) {
  698. int i, j, k;
  699. for(k = 0; k < 6; k++)
  700. for(j = 0; j < 8; j++)
  701. for(i = 0; i < 8; i++)
  702. block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
  703. }
  704. ys = v->s.current_picture.linesize[0];
  705. us = v->s.current_picture.linesize[1];
  706. vs = v->s.current_picture.linesize[2];
  707. Y = v->s.dest[0];
  708. dsp->put_pixels_clamped(block[0], Y, ys);
  709. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  710. Y += ys * 8;
  711. dsp->put_pixels_clamped(block[2], Y, ys);
  712. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  713. if(!(v->s.flags & CODEC_FLAG_GRAY)) {
  714. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  715. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  716. }
  717. }
  718. /** Do motion compensation over 1 macroblock
  719. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  720. */
  721. static void vc1_mc_1mv(VC1Context *v, int dir)
  722. {
  723. MpegEncContext *s = &v->s;
  724. DSPContext *dsp = &v->s.dsp;
  725. uint8_t *srcY, *srcU, *srcV;
  726. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  727. if(!v->s.last_picture.data[0])return;
  728. mx = s->mv[dir][0][0];
  729. my = s->mv[dir][0][1];
  730. // store motion vectors for further use in B frames
  731. if(s->pict_type == P_TYPE) {
  732. s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
  733. s->current_picture.motion_val[1][s->block_index[0]][1] = my;
  734. }
  735. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  736. uvmy = (my + ((my & 3) == 3)) >> 1;
  737. if(v->fastuvmc) {
  738. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  739. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  740. }
  741. if(!dir) {
  742. srcY = s->last_picture.data[0];
  743. srcU = s->last_picture.data[1];
  744. srcV = s->last_picture.data[2];
  745. } else {
  746. srcY = s->next_picture.data[0];
  747. srcU = s->next_picture.data[1];
  748. srcV = s->next_picture.data[2];
  749. }
  750. src_x = s->mb_x * 16 + (mx >> 2);
  751. src_y = s->mb_y * 16 + (my >> 2);
  752. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  753. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  754. src_x = av_clip( src_x, -16, s->mb_width * 16);
  755. src_y = av_clip( src_y, -16, s->mb_height * 16);
  756. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  757. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  758. srcY += src_y * s->linesize + src_x;
  759. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  760. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  761. /* for grayscale we should not try to read from unknown area */
  762. if(s->flags & CODEC_FLAG_GRAY) {
  763. srcU = s->edge_emu_buffer + 18 * s->linesize;
  764. srcV = s->edge_emu_buffer + 18 * s->linesize;
  765. }
  766. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  767. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  768. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  769. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  770. srcY -= s->mspel * (1 + s->linesize);
  771. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  772. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  773. srcY = s->edge_emu_buffer;
  774. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  775. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  776. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  777. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  778. srcU = uvbuf;
  779. srcV = uvbuf + 16;
  780. /* if we deal with range reduction we need to scale source blocks */
  781. if(v->rangeredfrm) {
  782. int i, j;
  783. uint8_t *src, *src2;
  784. src = srcY;
  785. for(j = 0; j < 17 + s->mspel*2; j++) {
  786. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  787. src += s->linesize;
  788. }
  789. src = srcU; src2 = srcV;
  790. for(j = 0; j < 9; j++) {
  791. for(i = 0; i < 9; i++) {
  792. src[i] = ((src[i] - 128) >> 1) + 128;
  793. src2[i] = ((src2[i] - 128) >> 1) + 128;
  794. }
  795. src += s->uvlinesize;
  796. src2 += s->uvlinesize;
  797. }
  798. }
  799. /* if we deal with intensity compensation we need to scale source blocks */
  800. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  801. int i, j;
  802. uint8_t *src, *src2;
  803. src = srcY;
  804. for(j = 0; j < 17 + s->mspel*2; j++) {
  805. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  806. src += s->linesize;
  807. }
  808. src = srcU; src2 = srcV;
  809. for(j = 0; j < 9; j++) {
  810. for(i = 0; i < 9; i++) {
  811. src[i] = v->lutuv[src[i]];
  812. src2[i] = v->lutuv[src2[i]];
  813. }
  814. src += s->uvlinesize;
  815. src2 += s->uvlinesize;
  816. }
  817. }
  818. srcY += s->mspel * (1 + s->linesize);
  819. }
  820. if(s->mspel) {
  821. dxy = ((my & 3) << 2) | (mx & 3);
  822. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  823. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  824. srcY += s->linesize * 8;
  825. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  826. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  827. } else { // hpel mc - always used for luma
  828. dxy = (my & 2) | ((mx & 2) >> 1);
  829. if(!v->rnd)
  830. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  831. else
  832. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  833. }
  834. if(s->flags & CODEC_FLAG_GRAY) return;
  835. /* Chroma MC always uses qpel bilinear */
  836. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  837. uvmx = (uvmx&3)<<1;
  838. uvmy = (uvmy&3)<<1;
  839. if(!v->rnd){
  840. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  841. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  842. }else{
  843. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  844. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  845. }
  846. }
  847. /** Do motion compensation for 4-MV macroblock - luminance block
  848. */
  849. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  850. {
  851. MpegEncContext *s = &v->s;
  852. DSPContext *dsp = &v->s.dsp;
  853. uint8_t *srcY;
  854. int dxy, mx, my, src_x, src_y;
  855. int off;
  856. if(!v->s.last_picture.data[0])return;
  857. mx = s->mv[0][n][0];
  858. my = s->mv[0][n][1];
  859. srcY = s->last_picture.data[0];
  860. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  861. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  862. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  863. src_x = av_clip( src_x, -16, s->mb_width * 16);
  864. src_y = av_clip( src_y, -16, s->mb_height * 16);
  865. srcY += src_y * s->linesize + src_x;
  866. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  867. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
  868. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
  869. srcY -= s->mspel * (1 + s->linesize);
  870. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
  871. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  872. srcY = s->edge_emu_buffer;
  873. /* if we deal with range reduction we need to scale source blocks */
  874. if(v->rangeredfrm) {
  875. int i, j;
  876. uint8_t *src;
  877. src = srcY;
  878. for(j = 0; j < 9 + s->mspel*2; j++) {
  879. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  880. src += s->linesize;
  881. }
  882. }
  883. /* if we deal with intensity compensation we need to scale source blocks */
  884. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  885. int i, j;
  886. uint8_t *src;
  887. src = srcY;
  888. for(j = 0; j < 9 + s->mspel*2; j++) {
  889. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  890. src += s->linesize;
  891. }
  892. }
  893. srcY += s->mspel * (1 + s->linesize);
  894. }
  895. if(s->mspel) {
  896. dxy = ((my & 3) << 2) | (mx & 3);
  897. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
  898. } else { // hpel mc - always used for luma
  899. dxy = (my & 2) | ((mx & 2) >> 1);
  900. if(!v->rnd)
  901. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  902. else
  903. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  904. }
  905. }
  906. static inline int median4(int a, int b, int c, int d)
  907. {
  908. if(a < b) {
  909. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  910. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  911. } else {
  912. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  913. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  914. }
  915. }
  916. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  917. */
  918. static void vc1_mc_4mv_chroma(VC1Context *v)
  919. {
  920. MpegEncContext *s = &v->s;
  921. DSPContext *dsp = &v->s.dsp;
  922. uint8_t *srcU, *srcV;
  923. int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
  924. int i, idx, tx = 0, ty = 0;
  925. int mvx[4], mvy[4], intra[4];
  926. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  927. if(!v->s.last_picture.data[0])return;
  928. if(s->flags & CODEC_FLAG_GRAY) return;
  929. for(i = 0; i < 4; i++) {
  930. mvx[i] = s->mv[0][i][0];
  931. mvy[i] = s->mv[0][i][1];
  932. intra[i] = v->mb_type[0][s->block_index[i]];
  933. }
  934. /* calculate chroma MV vector from four luma MVs */
  935. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  936. if(!idx) { // all blocks are inter
  937. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  938. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  939. } else if(count[idx] == 1) { // 3 inter blocks
  940. switch(idx) {
  941. case 0x1:
  942. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  943. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  944. break;
  945. case 0x2:
  946. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  947. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  948. break;
  949. case 0x4:
  950. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  951. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  952. break;
  953. case 0x8:
  954. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  955. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  956. break;
  957. }
  958. } else if(count[idx] == 2) {
  959. int t1 = 0, t2 = 0;
  960. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  961. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  962. tx = (mvx[t1] + mvx[t2]) / 2;
  963. ty = (mvy[t1] + mvy[t2]) / 2;
  964. } else
  965. return; //no need to do MC for inter blocks
  966. s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
  967. s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
  968. uvmx = (tx + ((tx&3) == 3)) >> 1;
  969. uvmy = (ty + ((ty&3) == 3)) >> 1;
  970. if(v->fastuvmc) {
  971. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  972. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  973. }
  974. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  975. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  976. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  977. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  978. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  979. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  980. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  981. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  982. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  983. ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  984. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  985. ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  986. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  987. srcU = s->edge_emu_buffer;
  988. srcV = s->edge_emu_buffer + 16;
  989. /* if we deal with range reduction we need to scale source blocks */
  990. if(v->rangeredfrm) {
  991. int i, j;
  992. uint8_t *src, *src2;
  993. src = srcU; src2 = srcV;
  994. for(j = 0; j < 9; j++) {
  995. for(i = 0; i < 9; i++) {
  996. src[i] = ((src[i] - 128) >> 1) + 128;
  997. src2[i] = ((src2[i] - 128) >> 1) + 128;
  998. }
  999. src += s->uvlinesize;
  1000. src2 += s->uvlinesize;
  1001. }
  1002. }
  1003. /* if we deal with intensity compensation we need to scale source blocks */
  1004. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1005. int i, j;
  1006. uint8_t *src, *src2;
  1007. src = srcU; src2 = srcV;
  1008. for(j = 0; j < 9; j++) {
  1009. for(i = 0; i < 9; i++) {
  1010. src[i] = v->lutuv[src[i]];
  1011. src2[i] = v->lutuv[src2[i]];
  1012. }
  1013. src += s->uvlinesize;
  1014. src2 += s->uvlinesize;
  1015. }
  1016. }
  1017. }
  1018. /* Chroma MC always uses qpel bilinear */
  1019. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  1020. uvmx = (uvmx&3)<<1;
  1021. uvmy = (uvmy&3)<<1;
  1022. if(!v->rnd){
  1023. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1024. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1025. }else{
  1026. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1027. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1028. }
  1029. }
  1030. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb);
  1031. /**
  1032. * Decode Simple/Main Profiles sequence header
  1033. * @see Figure 7-8, p16-17
  1034. * @param avctx Codec context
  1035. * @param gb GetBit context initialized from Codec context extra_data
  1036. * @return Status
  1037. */
  1038. static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
  1039. {
  1040. VC1Context *v = avctx->priv_data;
  1041. av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32));
  1042. v->profile = get_bits(gb, 2);
  1043. if (v->profile == PROFILE_COMPLEX)
  1044. {
  1045. av_log(avctx, AV_LOG_ERROR, "WMV3 Complex Profile is not fully supported\n");
  1046. }
  1047. if (v->profile == PROFILE_ADVANCED)
  1048. {
  1049. return decode_sequence_header_adv(v, gb);
  1050. }
  1051. else
  1052. {
  1053. v->res_sm = get_bits(gb, 2); //reserved
  1054. if (v->res_sm)
  1055. {
  1056. av_log(avctx, AV_LOG_ERROR,
  1057. "Reserved RES_SM=%i is forbidden\n", v->res_sm);
  1058. return -1;
  1059. }
  1060. }
  1061. // (fps-2)/4 (->30)
  1062. v->frmrtq_postproc = get_bits(gb, 3); //common
  1063. // (bitrate-32kbps)/64kbps
  1064. v->bitrtq_postproc = get_bits(gb, 5); //common
  1065. v->s.loop_filter = get_bits(gb, 1); //common
  1066. if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
  1067. {
  1068. av_log(avctx, AV_LOG_ERROR,
  1069. "LOOPFILTER shell not be enabled in simple profile\n");
  1070. }
  1071. v->res_x8 = get_bits(gb, 1); //reserved
  1072. if (v->res_x8)
  1073. {
  1074. av_log(avctx, AV_LOG_ERROR,
  1075. "1 for reserved RES_X8 is forbidden\n");
  1076. //return -1;
  1077. }
  1078. v->multires = get_bits(gb, 1);
  1079. v->res_fasttx = get_bits(gb, 1);
  1080. if (!v->res_fasttx)
  1081. {
  1082. av_log(avctx, AV_LOG_ERROR,
  1083. "0 for reserved RES_FASTTX is forbidden\n");
  1084. //return -1;
  1085. }
  1086. v->fastuvmc = get_bits(gb, 1); //common
  1087. if (!v->profile && !v->fastuvmc)
  1088. {
  1089. av_log(avctx, AV_LOG_ERROR,
  1090. "FASTUVMC unavailable in Simple Profile\n");
  1091. return -1;
  1092. }
  1093. v->extended_mv = get_bits(gb, 1); //common
  1094. if (!v->profile && v->extended_mv)
  1095. {
  1096. av_log(avctx, AV_LOG_ERROR,
  1097. "Extended MVs unavailable in Simple Profile\n");
  1098. return -1;
  1099. }
  1100. v->dquant = get_bits(gb, 2); //common
  1101. v->vstransform = get_bits(gb, 1); //common
  1102. v->res_transtab = get_bits(gb, 1);
  1103. if (v->res_transtab)
  1104. {
  1105. av_log(avctx, AV_LOG_ERROR,
  1106. "1 for reserved RES_TRANSTAB is forbidden\n");
  1107. return -1;
  1108. }
  1109. v->overlap = get_bits(gb, 1); //common
  1110. v->s.resync_marker = get_bits(gb, 1);
  1111. v->rangered = get_bits(gb, 1);
  1112. if (v->rangered && v->profile == PROFILE_SIMPLE)
  1113. {
  1114. av_log(avctx, AV_LOG_INFO,
  1115. "RANGERED should be set to 0 in simple profile\n");
  1116. }
  1117. v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
  1118. v->quantizer_mode = get_bits(gb, 2); //common
  1119. v->finterpflag = get_bits(gb, 1); //common
  1120. v->res_rtm_flag = get_bits(gb, 1); //reserved
  1121. if (!v->res_rtm_flag)
  1122. {
  1123. // av_log(avctx, AV_LOG_ERROR,
  1124. // "0 for reserved RES_RTM_FLAG is forbidden\n");
  1125. av_log(avctx, AV_LOG_ERROR,
  1126. "Old WMV3 version detected, only I-frames will be decoded\n");
  1127. //return -1;
  1128. }
  1129. av_log(avctx, AV_LOG_DEBUG,
  1130. "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  1131. "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
  1132. "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
  1133. "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
  1134. v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
  1135. v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
  1136. v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
  1137. v->dquant, v->quantizer_mode, avctx->max_b_frames
  1138. );
  1139. return 0;
  1140. }
  1141. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb)
  1142. {
  1143. v->res_rtm_flag = 1;
  1144. v->level = get_bits(gb, 3);
  1145. if(v->level >= 5)
  1146. {
  1147. av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
  1148. }
  1149. v->chromaformat = get_bits(gb, 2);
  1150. if (v->chromaformat != 1)
  1151. {
  1152. av_log(v->s.avctx, AV_LOG_ERROR,
  1153. "Only 4:2:0 chroma format supported\n");
  1154. return -1;
  1155. }
  1156. // (fps-2)/4 (->30)
  1157. v->frmrtq_postproc = get_bits(gb, 3); //common
  1158. // (bitrate-32kbps)/64kbps
  1159. v->bitrtq_postproc = get_bits(gb, 5); //common
  1160. v->postprocflag = get_bits(gb, 1); //common
  1161. v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1;
  1162. v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1;
  1163. v->s.avctx->width = v->s.avctx->coded_width;
  1164. v->s.avctx->height = v->s.avctx->coded_height;
  1165. v->broadcast = get_bits1(gb);
  1166. v->interlace = get_bits1(gb);
  1167. v->tfcntrflag = get_bits1(gb);
  1168. v->finterpflag = get_bits1(gb);
  1169. get_bits1(gb); // reserved
  1170. av_log(v->s.avctx, AV_LOG_DEBUG,
  1171. "Advanced Profile level %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  1172. "LoopFilter=%i, ChromaFormat=%i, Pulldown=%i, Interlace: %i\n"
  1173. "TFCTRflag=%i, FINTERPflag=%i\n",
  1174. v->level, v->frmrtq_postproc, v->bitrtq_postproc,
  1175. v->s.loop_filter, v->chromaformat, v->broadcast, v->interlace,
  1176. v->tfcntrflag, v->finterpflag
  1177. );
  1178. v->psf = get_bits1(gb);
  1179. if(v->psf) { //PsF, 6.1.13
  1180. av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n");
  1181. return -1;
  1182. }
  1183. v->s.max_b_frames = v->s.avctx->max_b_frames = 7;
  1184. if(get_bits1(gb)) { //Display Info - decoding is not affected by it
  1185. int w, h, ar = 0;
  1186. av_log(v->s.avctx, AV_LOG_DEBUG, "Display extended info:\n");
  1187. v->s.avctx->width = v->s.width = w = get_bits(gb, 14) + 1;
  1188. v->s.avctx->height = v->s.height = h = get_bits(gb, 14) + 1;
  1189. av_log(v->s.avctx, AV_LOG_DEBUG, "Display dimensions: %ix%i\n", w, h);
  1190. if(get_bits1(gb))
  1191. ar = get_bits(gb, 4);
  1192. if(ar && ar < 14){
  1193. v->s.avctx->sample_aspect_ratio = vc1_pixel_aspect[ar];
  1194. }else if(ar == 15){
  1195. w = get_bits(gb, 8);
  1196. h = get_bits(gb, 8);
  1197. v->s.avctx->sample_aspect_ratio = (AVRational){w, h};
  1198. }
  1199. if(get_bits1(gb)){ //framerate stuff
  1200. if(get_bits1(gb)) {
  1201. v->s.avctx->time_base.num = 32;
  1202. v->s.avctx->time_base.den = get_bits(gb, 16) + 1;
  1203. } else {
  1204. int nr, dr;
  1205. nr = get_bits(gb, 8);
  1206. dr = get_bits(gb, 4);
  1207. if(nr && nr < 8 && dr && dr < 3){
  1208. v->s.avctx->time_base.num = fps_dr[dr - 1];
  1209. v->s.avctx->time_base.den = fps_nr[nr - 1] * 1000;
  1210. }
  1211. }
  1212. }
  1213. if(get_bits1(gb)){
  1214. v->color_prim = get_bits(gb, 8);
  1215. v->transfer_char = get_bits(gb, 8);
  1216. v->matrix_coef = get_bits(gb, 8);
  1217. }
  1218. }
  1219. v->hrd_param_flag = get_bits1(gb);
  1220. if(v->hrd_param_flag) {
  1221. int i;
  1222. v->hrd_num_leaky_buckets = get_bits(gb, 5);
  1223. get_bits(gb, 4); //bitrate exponent
  1224. get_bits(gb, 4); //buffer size exponent
  1225. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  1226. get_bits(gb, 16); //hrd_rate[n]
  1227. get_bits(gb, 16); //hrd_buffer[n]
  1228. }
  1229. }
  1230. return 0;
  1231. }
  1232. static int decode_entry_point(AVCodecContext *avctx, GetBitContext *gb)
  1233. {
  1234. VC1Context *v = avctx->priv_data;
  1235. int i, blink, clentry, refdist;
  1236. av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32));
  1237. blink = get_bits1(gb); // broken link
  1238. clentry = get_bits1(gb); // closed entry
  1239. v->panscanflag = get_bits1(gb);
  1240. refdist = get_bits1(gb); // refdist flag
  1241. v->s.loop_filter = get_bits1(gb);
  1242. v->fastuvmc = get_bits1(gb);
  1243. v->extended_mv = get_bits1(gb);
  1244. v->dquant = get_bits(gb, 2);
  1245. v->vstransform = get_bits1(gb);
  1246. v->overlap = get_bits1(gb);
  1247. v->quantizer_mode = get_bits(gb, 2);
  1248. if(v->hrd_param_flag){
  1249. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  1250. get_bits(gb, 8); //hrd_full[n]
  1251. }
  1252. }
  1253. if(get_bits1(gb)){
  1254. avctx->coded_width = (get_bits(gb, 12)+1)<<1;
  1255. avctx->coded_height = (get_bits(gb, 12)+1)<<1;
  1256. }
  1257. if(v->extended_mv)
  1258. v->extended_dmv = get_bits1(gb);
  1259. if(get_bits1(gb)) {
  1260. av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n");
  1261. skip_bits(gb, 3); // Y range, ignored for now
  1262. }
  1263. if(get_bits1(gb)) {
  1264. av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n");
  1265. skip_bits(gb, 3); // UV range, ignored for now
  1266. }
  1267. av_log(avctx, AV_LOG_DEBUG, "Entry point info:\n"
  1268. "BrokenLink=%i, ClosedEntry=%i, PanscanFlag=%i\n"
  1269. "RefDist=%i, Postproc=%i, FastUVMC=%i, ExtMV=%i\n"
  1270. "DQuant=%i, VSTransform=%i, Overlap=%i, Qmode=%i\n",
  1271. blink, clentry, v->panscanflag, refdist, v->s.loop_filter,
  1272. v->fastuvmc, v->extended_mv, v->dquant, v->vstransform, v->overlap, v->quantizer_mode);
  1273. return 0;
  1274. }
  1275. static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
  1276. {
  1277. int pqindex, lowquant, status;
  1278. if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
  1279. skip_bits(gb, 2); //framecnt unused
  1280. v->rangeredfrm = 0;
  1281. if (v->rangered) v->rangeredfrm = get_bits(gb, 1);
  1282. v->s.pict_type = get_bits(gb, 1);
  1283. if (v->s.avctx->max_b_frames) {
  1284. if (!v->s.pict_type) {
  1285. if (get_bits(gb, 1)) v->s.pict_type = I_TYPE;
  1286. else v->s.pict_type = B_TYPE;
  1287. } else v->s.pict_type = P_TYPE;
  1288. } else v->s.pict_type = v->s.pict_type ? P_TYPE : I_TYPE;
  1289. v->bi_type = 0;
  1290. if(v->s.pict_type == B_TYPE) {
  1291. v->bfraction = get_vlc2(gb, vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1292. v->bfraction = vc1_bfraction_lut[v->bfraction];
  1293. if(v->bfraction == 0) {
  1294. v->s.pict_type = BI_TYPE;
  1295. }
  1296. }
  1297. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1298. get_bits(gb, 7); // skip buffer fullness
  1299. /* calculate RND */
  1300. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1301. v->rnd = 1;
  1302. if(v->s.pict_type == P_TYPE)
  1303. v->rnd ^= 1;
  1304. /* Quantizer stuff */
  1305. pqindex = get_bits(gb, 5);
  1306. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1307. v->pq = pquant_table[0][pqindex];
  1308. else
  1309. v->pq = pquant_table[1][pqindex];
  1310. v->pquantizer = 1;
  1311. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1312. v->pquantizer = pqindex < 9;
  1313. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1314. v->pquantizer = 0;
  1315. v->pqindex = pqindex;
  1316. if (pqindex < 9) v->halfpq = get_bits(gb, 1);
  1317. else v->halfpq = 0;
  1318. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1319. v->pquantizer = get_bits(gb, 1);
  1320. v->dquantfrm = 0;
  1321. if (v->extended_mv == 1) v->mvrange = get_prefix(gb, 0, 3);
  1322. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1323. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1324. v->range_x = 1 << (v->k_x - 1);
  1325. v->range_y = 1 << (v->k_y - 1);
  1326. if (v->profile == PROFILE_ADVANCED)
  1327. {
  1328. if (v->postprocflag) v->postproc = get_bits(gb, 1);
  1329. }
  1330. else
  1331. if (v->multires && v->s.pict_type != B_TYPE) v->respic = get_bits(gb, 2);
  1332. if(v->res_x8 && (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)){
  1333. if(get_bits1(gb))return -1;
  1334. }
  1335. //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
  1336. // (v->s.pict_type == P_TYPE) ? 'P' : ((v->s.pict_type == I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
  1337. if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
  1338. switch(v->s.pict_type) {
  1339. case P_TYPE:
  1340. if (v->pq < 5) v->tt_index = 0;
  1341. else if(v->pq < 13) v->tt_index = 1;
  1342. else v->tt_index = 2;
  1343. lowquant = (v->pq > 12) ? 0 : 1;
  1344. v->mv_mode = mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
  1345. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1346. {
  1347. int scale, shift, i;
  1348. v->mv_mode2 = mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
  1349. v->lumscale = get_bits(gb, 6);
  1350. v->lumshift = get_bits(gb, 6);
  1351. v->use_ic = 1;
  1352. /* fill lookup tables for intensity compensation */
  1353. if(!v->lumscale) {
  1354. scale = -64;
  1355. shift = (255 - v->lumshift * 2) << 6;
  1356. if(v->lumshift > 31)
  1357. shift += 128 << 6;
  1358. } else {
  1359. scale = v->lumscale + 32;
  1360. if(v->lumshift > 31)
  1361. shift = (v->lumshift - 64) << 6;
  1362. else
  1363. shift = v->lumshift << 6;
  1364. }
  1365. for(i = 0; i < 256; i++) {
  1366. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1367. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1368. }
  1369. }
  1370. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1371. v->s.quarter_sample = 0;
  1372. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1373. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1374. v->s.quarter_sample = 0;
  1375. else
  1376. v->s.quarter_sample = 1;
  1377. } else
  1378. v->s.quarter_sample = 1;
  1379. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1380. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1381. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1382. || v->mv_mode == MV_PMODE_MIXED_MV)
  1383. {
  1384. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1385. if (status < 0) return -1;
  1386. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1387. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1388. } else {
  1389. v->mv_type_is_raw = 0;
  1390. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1391. }
  1392. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1393. if (status < 0) return -1;
  1394. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1395. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1396. /* Hopefully this is correct for P frames */
  1397. v->s.mv_table_index = get_bits(gb, 2); //but using vc1_ tables
  1398. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1399. if (v->dquant)
  1400. {
  1401. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1402. vop_dquant_decoding(v);
  1403. }
  1404. v->ttfrm = 0; //FIXME Is that so ?
  1405. if (v->vstransform)
  1406. {
  1407. v->ttmbf = get_bits(gb, 1);
  1408. if (v->ttmbf)
  1409. {
  1410. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1411. }
  1412. } else {
  1413. v->ttmbf = 1;
  1414. v->ttfrm = TT_8X8;
  1415. }
  1416. break;
  1417. case B_TYPE:
  1418. if (v->pq < 5) v->tt_index = 0;
  1419. else if(v->pq < 13) v->tt_index = 1;
  1420. else v->tt_index = 2;
  1421. lowquant = (v->pq > 12) ? 0 : 1;
  1422. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1423. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1424. v->s.mspel = v->s.quarter_sample;
  1425. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1426. if (status < 0) return -1;
  1427. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1428. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1429. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1430. if (status < 0) return -1;
  1431. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1432. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1433. v->s.mv_table_index = get_bits(gb, 2);
  1434. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1435. if (v->dquant)
  1436. {
  1437. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1438. vop_dquant_decoding(v);
  1439. }
  1440. v->ttfrm = 0;
  1441. if (v->vstransform)
  1442. {
  1443. v->ttmbf = get_bits(gb, 1);
  1444. if (v->ttmbf)
  1445. {
  1446. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1447. }
  1448. } else {
  1449. v->ttmbf = 1;
  1450. v->ttfrm = TT_8X8;
  1451. }
  1452. break;
  1453. }
  1454. /* AC Syntax */
  1455. v->c_ac_table_index = decode012(gb);
  1456. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1457. {
  1458. v->y_ac_table_index = decode012(gb);
  1459. }
  1460. /* DC Syntax */
  1461. v->s.dc_table_index = get_bits(gb, 1);
  1462. if(v->s.pict_type == BI_TYPE) {
  1463. v->s.pict_type = B_TYPE;
  1464. v->bi_type = 1;
  1465. }
  1466. return 0;
  1467. }
  1468. static int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb)
  1469. {
  1470. int pqindex, lowquant;
  1471. int status;
  1472. v->p_frame_skipped = 0;
  1473. if(v->interlace){
  1474. v->fcm = decode012(gb);
  1475. if(v->fcm) return -1; // interlaced frames/fields are not implemented
  1476. }
  1477. switch(get_prefix(gb, 0, 4)) {
  1478. case 0:
  1479. v->s.pict_type = P_TYPE;
  1480. break;
  1481. case 1:
  1482. v->s.pict_type = B_TYPE;
  1483. break;
  1484. case 2:
  1485. v->s.pict_type = I_TYPE;
  1486. break;
  1487. case 3:
  1488. v->s.pict_type = BI_TYPE;
  1489. break;
  1490. case 4:
  1491. v->s.pict_type = P_TYPE; // skipped pic
  1492. v->p_frame_skipped = 1;
  1493. return 0;
  1494. }
  1495. if(v->tfcntrflag)
  1496. get_bits(gb, 8);
  1497. if(v->broadcast) {
  1498. if(!v->interlace || v->psf) {
  1499. v->rptfrm = get_bits(gb, 2);
  1500. } else {
  1501. v->tff = get_bits1(gb);
  1502. v->rptfrm = get_bits1(gb);
  1503. }
  1504. }
  1505. if(v->panscanflag) {
  1506. //...
  1507. }
  1508. v->rnd = get_bits1(gb);
  1509. if(v->interlace)
  1510. v->uvsamp = get_bits1(gb);
  1511. if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
  1512. if(v->s.pict_type == B_TYPE) {
  1513. v->bfraction = get_vlc2(gb, vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1514. v->bfraction = vc1_bfraction_lut[v->bfraction];
  1515. if(v->bfraction == 0) {
  1516. v->s.pict_type = BI_TYPE; /* XXX: should not happen here */
  1517. }
  1518. }
  1519. pqindex = get_bits(gb, 5);
  1520. v->pqindex = pqindex;
  1521. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1522. v->pq = pquant_table[0][pqindex];
  1523. else
  1524. v->pq = pquant_table[1][pqindex];
  1525. v->pquantizer = 1;
  1526. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1527. v->pquantizer = pqindex < 9;
  1528. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1529. v->pquantizer = 0;
  1530. v->pqindex = pqindex;
  1531. if (pqindex < 9) v->halfpq = get_bits(gb, 1);
  1532. else v->halfpq = 0;
  1533. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1534. v->pquantizer = get_bits(gb, 1);
  1535. if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
  1536. switch(v->s.pict_type) {
  1537. case I_TYPE:
  1538. case BI_TYPE:
  1539. status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v);
  1540. if (status < 0) return -1;
  1541. av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: "
  1542. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1543. v->condover = CONDOVER_NONE;
  1544. if(v->overlap && v->pq <= 8) {
  1545. v->condover = decode012(gb);
  1546. if(v->condover == CONDOVER_SELECT) {
  1547. status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v);
  1548. if (status < 0) return -1;
  1549. av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: "
  1550. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1551. }
  1552. }
  1553. break;
  1554. case P_TYPE:
  1555. if(v->postprocflag)
  1556. v->postproc = get_bits1(gb);
  1557. if (v->extended_mv) v->mvrange = get_prefix(gb, 0, 3);
  1558. else v->mvrange = 0;
  1559. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1560. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1561. v->range_x = 1 << (v->k_x - 1);
  1562. v->range_y = 1 << (v->k_y - 1);
  1563. if (v->pq < 5) v->tt_index = 0;
  1564. else if(v->pq < 13) v->tt_index = 1;
  1565. else v->tt_index = 2;
  1566. lowquant = (v->pq > 12) ? 0 : 1;
  1567. v->mv_mode = mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
  1568. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1569. {
  1570. int scale, shift, i;
  1571. v->mv_mode2 = mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
  1572. v->lumscale = get_bits(gb, 6);
  1573. v->lumshift = get_bits(gb, 6);
  1574. /* fill lookup tables for intensity compensation */
  1575. if(!v->lumscale) {
  1576. scale = -64;
  1577. shift = (255 - v->lumshift * 2) << 6;
  1578. if(v->lumshift > 31)
  1579. shift += 128 << 6;
  1580. } else {
  1581. scale = v->lumscale + 32;
  1582. if(v->lumshift > 31)
  1583. shift = (v->lumshift - 64) << 6;
  1584. else
  1585. shift = v->lumshift << 6;
  1586. }
  1587. for(i = 0; i < 256; i++) {
  1588. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1589. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1590. }
  1591. v->use_ic = 1;
  1592. }
  1593. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1594. v->s.quarter_sample = 0;
  1595. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1596. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1597. v->s.quarter_sample = 0;
  1598. else
  1599. v->s.quarter_sample = 1;
  1600. } else
  1601. v->s.quarter_sample = 1;
  1602. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1603. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1604. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1605. || v->mv_mode == MV_PMODE_MIXED_MV)
  1606. {
  1607. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1608. if (status < 0) return -1;
  1609. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1610. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1611. } else {
  1612. v->mv_type_is_raw = 0;
  1613. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1614. }
  1615. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1616. if (status < 0) return -1;
  1617. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1618. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1619. /* Hopefully this is correct for P frames */
  1620. v->s.mv_table_index = get_bits(gb, 2); //but using vc1_ tables
  1621. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1622. if (v->dquant)
  1623. {
  1624. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1625. vop_dquant_decoding(v);
  1626. }
  1627. v->ttfrm = 0; //FIXME Is that so ?
  1628. if (v->vstransform)
  1629. {
  1630. v->ttmbf = get_bits(gb, 1);
  1631. if (v->ttmbf)
  1632. {
  1633. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1634. }
  1635. } else {
  1636. v->ttmbf = 1;
  1637. v->ttfrm = TT_8X8;
  1638. }
  1639. break;
  1640. case B_TYPE:
  1641. if(v->postprocflag)
  1642. v->postproc = get_bits1(gb);
  1643. if (v->extended_mv) v->mvrange = get_prefix(gb, 0, 3);
  1644. else v->mvrange = 0;
  1645. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1646. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1647. v->range_x = 1 << (v->k_x - 1);
  1648. v->range_y = 1 << (v->k_y - 1);
  1649. if (v->pq < 5) v->tt_index = 0;
  1650. else if(v->pq < 13) v->tt_index = 1;
  1651. else v->tt_index = 2;
  1652. lowquant = (v->pq > 12) ? 0 : 1;
  1653. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1654. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1655. v->s.mspel = v->s.quarter_sample;
  1656. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1657. if (status < 0) return -1;
  1658. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1659. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1660. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1661. if (status < 0) return -1;
  1662. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1663. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1664. v->s.mv_table_index = get_bits(gb, 2);
  1665. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1666. if (v->dquant)
  1667. {
  1668. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1669. vop_dquant_decoding(v);
  1670. }
  1671. v->ttfrm = 0;
  1672. if (v->vstransform)
  1673. {
  1674. v->ttmbf = get_bits(gb, 1);
  1675. if (v->ttmbf)
  1676. {
  1677. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1678. }
  1679. } else {
  1680. v->ttmbf = 1;
  1681. v->ttfrm = TT_8X8;
  1682. }
  1683. break;
  1684. }
  1685. /* AC Syntax */
  1686. v->c_ac_table_index = decode012(gb);
  1687. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1688. {
  1689. v->y_ac_table_index = decode012(gb);
  1690. }
  1691. /* DC Syntax */
  1692. v->s.dc_table_index = get_bits(gb, 1);
  1693. if ((v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE) && v->dquant) {
  1694. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1695. vop_dquant_decoding(v);
  1696. }
  1697. v->bi_type = 0;
  1698. if(v->s.pict_type == BI_TYPE) {
  1699. v->s.pict_type = B_TYPE;
  1700. v->bi_type = 1;
  1701. }
  1702. return 0;
  1703. }
  1704. /***********************************************************************/
  1705. /**
  1706. * @defgroup block VC-1 Block-level functions
  1707. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1708. * @{
  1709. */
  1710. /**
  1711. * @def GET_MQUANT
  1712. * @brief Get macroblock-level quantizer scale
  1713. */
  1714. #define GET_MQUANT() \
  1715. if (v->dquantfrm) \
  1716. { \
  1717. int edges = 0; \
  1718. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  1719. { \
  1720. if (v->dqbilevel) \
  1721. { \
  1722. mquant = (get_bits(gb, 1)) ? v->altpq : v->pq; \
  1723. } \
  1724. else \
  1725. { \
  1726. mqdiff = get_bits(gb, 3); \
  1727. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  1728. else mquant = get_bits(gb, 5); \
  1729. } \
  1730. } \
  1731. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  1732. edges = 1 << v->dqsbedge; \
  1733. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  1734. edges = (3 << v->dqsbedge) % 15; \
  1735. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  1736. edges = 15; \
  1737. if((edges&1) && !s->mb_x) \
  1738. mquant = v->altpq; \
  1739. if((edges&2) && s->first_slice_line) \
  1740. mquant = v->altpq; \
  1741. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  1742. mquant = v->altpq; \
  1743. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  1744. mquant = v->altpq; \
  1745. }
  1746. /**
  1747. * @def GET_MVDATA(_dmv_x, _dmv_y)
  1748. * @brief Get MV differentials
  1749. * @see MVDATA decoding from 8.3.5.2, p(1)20
  1750. * @param _dmv_x Horizontal differential for decoded MV
  1751. * @param _dmv_y Vertical differential for decoded MV
  1752. */
  1753. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1754. index = 1 + get_vlc2(gb, vc1_mv_diff_vlc[s->mv_table_index].table,\
  1755. VC1_MV_DIFF_VLC_BITS, 2); \
  1756. if (index > 36) \
  1757. { \
  1758. mb_has_coeffs = 1; \
  1759. index -= 37; \
  1760. } \
  1761. else mb_has_coeffs = 0; \
  1762. s->mb_intra = 0; \
  1763. if (!index) { _dmv_x = _dmv_y = 0; } \
  1764. else if (index == 35) \
  1765. { \
  1766. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1767. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1768. } \
  1769. else if (index == 36) \
  1770. { \
  1771. _dmv_x = 0; \
  1772. _dmv_y = 0; \
  1773. s->mb_intra = 1; \
  1774. } \
  1775. else \
  1776. { \
  1777. index1 = index%6; \
  1778. if (!s->quarter_sample && index1 == 5) val = 1; \
  1779. else val = 0; \
  1780. if(size_table[index1] - val > 0) \
  1781. val = get_bits(gb, size_table[index1] - val); \
  1782. else val = 0; \
  1783. sign = 0 - (val&1); \
  1784. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1785. \
  1786. index1 = index/6; \
  1787. if (!s->quarter_sample && index1 == 5) val = 1; \
  1788. else val = 0; \
  1789. if(size_table[index1] - val > 0) \
  1790. val = get_bits(gb, size_table[index1] - val); \
  1791. else val = 0; \
  1792. sign = 0 - (val&1); \
  1793. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1794. }
  1795. /** Predict and set motion vector
  1796. */
  1797. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  1798. {
  1799. int xy, wrap, off = 0;
  1800. int16_t *A, *B, *C;
  1801. int px, py;
  1802. int sum;
  1803. /* scale MV difference to be quad-pel */
  1804. dmv_x <<= 1 - s->quarter_sample;
  1805. dmv_y <<= 1 - s->quarter_sample;
  1806. wrap = s->b8_stride;
  1807. xy = s->block_index[n];
  1808. if(s->mb_intra){
  1809. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  1810. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  1811. if(mv1) { /* duplicate motion data for 1-MV block */
  1812. s->current_picture.motion_val[0][xy + 1][0] = 0;
  1813. s->current_picture.motion_val[0][xy + 1][1] = 0;
  1814. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  1815. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  1816. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  1817. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  1818. }
  1819. return;
  1820. }
  1821. C = s->current_picture.motion_val[0][xy - 1];
  1822. A = s->current_picture.motion_val[0][xy - wrap];
  1823. if(mv1)
  1824. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1825. else {
  1826. //in 4-MV mode different blocks have different B predictor position
  1827. switch(n){
  1828. case 0:
  1829. off = (s->mb_x > 0) ? -1 : 1;
  1830. break;
  1831. case 1:
  1832. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1833. break;
  1834. case 2:
  1835. off = 1;
  1836. break;
  1837. case 3:
  1838. off = -1;
  1839. }
  1840. }
  1841. B = s->current_picture.motion_val[0][xy - wrap + off];
  1842. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  1843. if(s->mb_width == 1) {
  1844. px = A[0];
  1845. py = A[1];
  1846. } else {
  1847. px = mid_pred(A[0], B[0], C[0]);
  1848. py = mid_pred(A[1], B[1], C[1]);
  1849. }
  1850. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  1851. px = C[0];
  1852. py = C[1];
  1853. } else {
  1854. px = py = 0;
  1855. }
  1856. /* Pullback MV as specified in 8.3.5.3.4 */
  1857. {
  1858. int qx, qy, X, Y;
  1859. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  1860. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  1861. X = (s->mb_width << 6) - 4;
  1862. Y = (s->mb_height << 6) - 4;
  1863. if(mv1) {
  1864. if(qx + px < -60) px = -60 - qx;
  1865. if(qy + py < -60) py = -60 - qy;
  1866. } else {
  1867. if(qx + px < -28) px = -28 - qx;
  1868. if(qy + py < -28) py = -28 - qy;
  1869. }
  1870. if(qx + px > X) px = X - qx;
  1871. if(qy + py > Y) py = Y - qy;
  1872. }
  1873. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1874. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  1875. if(is_intra[xy - wrap])
  1876. sum = FFABS(px) + FFABS(py);
  1877. else
  1878. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1879. if(sum > 32) {
  1880. if(get_bits1(&s->gb)) {
  1881. px = A[0];
  1882. py = A[1];
  1883. } else {
  1884. px = C[0];
  1885. py = C[1];
  1886. }
  1887. } else {
  1888. if(is_intra[xy - 1])
  1889. sum = FFABS(px) + FFABS(py);
  1890. else
  1891. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1892. if(sum > 32) {
  1893. if(get_bits1(&s->gb)) {
  1894. px = A[0];
  1895. py = A[1];
  1896. } else {
  1897. px = C[0];
  1898. py = C[1];
  1899. }
  1900. }
  1901. }
  1902. }
  1903. /* store MV using signed modulus of MV range defined in 4.11 */
  1904. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1905. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1906. if(mv1) { /* duplicate motion data for 1-MV block */
  1907. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  1908. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  1909. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  1910. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  1911. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  1912. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  1913. }
  1914. }
  1915. /** Motion compensation for direct or interpolated blocks in B-frames
  1916. */
  1917. static void vc1_interp_mc(VC1Context *v)
  1918. {
  1919. MpegEncContext *s = &v->s;
  1920. DSPContext *dsp = &v->s.dsp;
  1921. uint8_t *srcY, *srcU, *srcV;
  1922. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  1923. if(!v->s.next_picture.data[0])return;
  1924. mx = s->mv[1][0][0];
  1925. my = s->mv[1][0][1];
  1926. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  1927. uvmy = (my + ((my & 3) == 3)) >> 1;
  1928. if(v->fastuvmc) {
  1929. uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
  1930. uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
  1931. }
  1932. srcY = s->next_picture.data[0];
  1933. srcU = s->next_picture.data[1];
  1934. srcV = s->next_picture.data[2];
  1935. src_x = s->mb_x * 16 + (mx >> 2);
  1936. src_y = s->mb_y * 16 + (my >> 2);
  1937. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  1938. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  1939. src_x = av_clip( src_x, -16, s->mb_width * 16);
  1940. src_y = av_clip( src_y, -16, s->mb_height * 16);
  1941. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  1942. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  1943. srcY += src_y * s->linesize + src_x;
  1944. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  1945. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  1946. /* for grayscale we should not try to read from unknown area */
  1947. if(s->flags & CODEC_FLAG_GRAY) {
  1948. srcU = s->edge_emu_buffer + 18 * s->linesize;
  1949. srcV = s->edge_emu_buffer + 18 * s->linesize;
  1950. }
  1951. if(v->rangeredfrm
  1952. || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  1953. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  1954. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  1955. srcY -= s->mspel * (1 + s->linesize);
  1956. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  1957. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  1958. srcY = s->edge_emu_buffer;
  1959. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  1960. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1961. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  1962. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1963. srcU = uvbuf;
  1964. srcV = uvbuf + 16;
  1965. /* if we deal with range reduction we need to scale source blocks */
  1966. if(v->rangeredfrm) {
  1967. int i, j;
  1968. uint8_t *src, *src2;
  1969. src = srcY;
  1970. for(j = 0; j < 17 + s->mspel*2; j++) {
  1971. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  1972. src += s->linesize;
  1973. }
  1974. src = srcU; src2 = srcV;
  1975. for(j = 0; j < 9; j++) {
  1976. for(i = 0; i < 9; i++) {
  1977. src[i] = ((src[i] - 128) >> 1) + 128;
  1978. src2[i] = ((src2[i] - 128) >> 1) + 128;
  1979. }
  1980. src += s->uvlinesize;
  1981. src2 += s->uvlinesize;
  1982. }
  1983. }
  1984. srcY += s->mspel * (1 + s->linesize);
  1985. }
  1986. mx >>= 1;
  1987. my >>= 1;
  1988. dxy = ((my & 1) << 1) | (mx & 1);
  1989. dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  1990. if(s->flags & CODEC_FLAG_GRAY) return;
  1991. /* Chroma MC always uses qpel blilinear */
  1992. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  1993. uvmx = (uvmx&3)<<1;
  1994. uvmy = (uvmy&3)<<1;
  1995. dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1996. dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1997. }
  1998. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  1999. {
  2000. int n = bfrac;
  2001. #if B_FRACTION_DEN==256
  2002. if(inv)
  2003. n -= 256;
  2004. if(!qs)
  2005. return 2 * ((value * n + 255) >> 9);
  2006. return (value * n + 128) >> 8;
  2007. #else
  2008. if(inv)
  2009. n -= B_FRACTION_DEN;
  2010. if(!qs)
  2011. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  2012. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  2013. #endif
  2014. }
  2015. /** Reconstruct motion vector for B-frame and do motion compensation
  2016. */
  2017. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  2018. {
  2019. if(v->use_ic) {
  2020. v->mv_mode2 = v->mv_mode;
  2021. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  2022. }
  2023. if(direct) {
  2024. vc1_mc_1mv(v, 0);
  2025. vc1_interp_mc(v);
  2026. if(v->use_ic) v->mv_mode = v->mv_mode2;
  2027. return;
  2028. }
  2029. if(mode == BMV_TYPE_INTERPOLATED) {
  2030. vc1_mc_1mv(v, 0);
  2031. vc1_interp_mc(v);
  2032. if(v->use_ic) v->mv_mode = v->mv_mode2;
  2033. return;
  2034. }
  2035. if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
  2036. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  2037. if(v->use_ic) v->mv_mode = v->mv_mode2;
  2038. }
  2039. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
  2040. {
  2041. MpegEncContext *s = &v->s;
  2042. int xy, wrap, off = 0;
  2043. int16_t *A, *B, *C;
  2044. int px, py;
  2045. int sum;
  2046. int r_x, r_y;
  2047. const uint8_t *is_intra = v->mb_type[0];
  2048. r_x = v->range_x;
  2049. r_y = v->range_y;
  2050. /* scale MV difference to be quad-pel */
  2051. dmv_x[0] <<= 1 - s->quarter_sample;
  2052. dmv_y[0] <<= 1 - s->quarter_sample;
  2053. dmv_x[1] <<= 1 - s->quarter_sample;
  2054. dmv_y[1] <<= 1 - s->quarter_sample;
  2055. wrap = s->b8_stride;
  2056. xy = s->block_index[0];
  2057. if(s->mb_intra) {
  2058. s->current_picture.motion_val[0][xy][0] =
  2059. s->current_picture.motion_val[0][xy][1] =
  2060. s->current_picture.motion_val[1][xy][0] =
  2061. s->current_picture.motion_val[1][xy][1] = 0;
  2062. return;
  2063. }
  2064. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  2065. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  2066. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  2067. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  2068. if(direct) {
  2069. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  2070. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  2071. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  2072. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  2073. return;
  2074. }
  2075. if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  2076. C = s->current_picture.motion_val[0][xy - 2];
  2077. A = s->current_picture.motion_val[0][xy - wrap*2];
  2078. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  2079. B = s->current_picture.motion_val[0][xy - wrap*2 + off];
  2080. if(!s->first_slice_line) { // predictor A is not out of bounds
  2081. if(s->mb_width == 1) {
  2082. px = A[0];
  2083. py = A[1];
  2084. } else {
  2085. px = mid_pred(A[0], B[0], C[0]);
  2086. py = mid_pred(A[1], B[1], C[1]);
  2087. }
  2088. } else if(s->mb_x) { // predictor C is not out of bounds
  2089. px = C[0];
  2090. py = C[1];
  2091. } else {
  2092. px = py = 0;
  2093. }
  2094. /* Pullback MV as specified in 8.3.5.3.4 */
  2095. {
  2096. int qx, qy, X, Y;
  2097. if(v->profile < PROFILE_ADVANCED) {
  2098. qx = (s->mb_x << 5);
  2099. qy = (s->mb_y << 5);
  2100. X = (s->mb_width << 5) - 4;
  2101. Y = (s->mb_height << 5) - 4;
  2102. if(qx + px < -28) px = -28 - qx;
  2103. if(qy + py < -28) py = -28 - qy;
  2104. if(qx + px > X) px = X - qx;
  2105. if(qy + py > Y) py = Y - qy;
  2106. } else {
  2107. qx = (s->mb_x << 6);
  2108. qy = (s->mb_y << 6);
  2109. X = (s->mb_width << 6) - 4;
  2110. Y = (s->mb_height << 6) - 4;
  2111. if(qx + px < -60) px = -60 - qx;
  2112. if(qy + py < -60) py = -60 - qy;
  2113. if(qx + px > X) px = X - qx;
  2114. if(qy + py > Y) py = Y - qy;
  2115. }
  2116. }
  2117. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  2118. if(0 && !s->first_slice_line && s->mb_x) {
  2119. if(is_intra[xy - wrap])
  2120. sum = FFABS(px) + FFABS(py);
  2121. else
  2122. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  2123. if(sum > 32) {
  2124. if(get_bits1(&s->gb)) {
  2125. px = A[0];
  2126. py = A[1];
  2127. } else {
  2128. px = C[0];
  2129. py = C[1];
  2130. }
  2131. } else {
  2132. if(is_intra[xy - 2])
  2133. sum = FFABS(px) + FFABS(py);
  2134. else
  2135. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  2136. if(sum > 32) {
  2137. if(get_bits1(&s->gb)) {
  2138. px = A[0];
  2139. py = A[1];
  2140. } else {
  2141. px = C[0];
  2142. py = C[1];
  2143. }
  2144. }
  2145. }
  2146. }
  2147. /* store MV using signed modulus of MV range defined in 4.11 */
  2148. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  2149. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  2150. }
  2151. if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  2152. C = s->current_picture.motion_val[1][xy - 2];
  2153. A = s->current_picture.motion_val[1][xy - wrap*2];
  2154. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  2155. B = s->current_picture.motion_val[1][xy - wrap*2 + off];
  2156. if(!s->first_slice_line) { // predictor A is not out of bounds
  2157. if(s->mb_width == 1) {
  2158. px = A[0];
  2159. py = A[1];
  2160. } else {
  2161. px = mid_pred(A[0], B[0], C[0]);
  2162. py = mid_pred(A[1], B[1], C[1]);
  2163. }
  2164. } else if(s->mb_x) { // predictor C is not out of bounds
  2165. px = C[0];
  2166. py = C[1];
  2167. } else {
  2168. px = py = 0;
  2169. }
  2170. /* Pullback MV as specified in 8.3.5.3.4 */
  2171. {
  2172. int qx, qy, X, Y;
  2173. if(v->profile < PROFILE_ADVANCED) {
  2174. qx = (s->mb_x << 5);
  2175. qy = (s->mb_y << 5);
  2176. X = (s->mb_width << 5) - 4;
  2177. Y = (s->mb_height << 5) - 4;
  2178. if(qx + px < -28) px = -28 - qx;
  2179. if(qy + py < -28) py = -28 - qy;
  2180. if(qx + px > X) px = X - qx;
  2181. if(qy + py > Y) py = Y - qy;
  2182. } else {
  2183. qx = (s->mb_x << 6);
  2184. qy = (s->mb_y << 6);
  2185. X = (s->mb_width << 6) - 4;
  2186. Y = (s->mb_height << 6) - 4;
  2187. if(qx + px < -60) px = -60 - qx;
  2188. if(qy + py < -60) py = -60 - qy;
  2189. if(qx + px > X) px = X - qx;
  2190. if(qy + py > Y) py = Y - qy;
  2191. }
  2192. }
  2193. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  2194. if(0 && !s->first_slice_line && s->mb_x) {
  2195. if(is_intra[xy - wrap])
  2196. sum = FFABS(px) + FFABS(py);
  2197. else
  2198. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  2199. if(sum > 32) {
  2200. if(get_bits1(&s->gb)) {
  2201. px = A[0];
  2202. py = A[1];
  2203. } else {
  2204. px = C[0];
  2205. py = C[1];
  2206. }
  2207. } else {
  2208. if(is_intra[xy - 2])
  2209. sum = FFABS(px) + FFABS(py);
  2210. else
  2211. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  2212. if(sum > 32) {
  2213. if(get_bits1(&s->gb)) {
  2214. px = A[0];
  2215. py = A[1];
  2216. } else {
  2217. px = C[0];
  2218. py = C[1];
  2219. }
  2220. }
  2221. }
  2222. }
  2223. /* store MV using signed modulus of MV range defined in 4.11 */
  2224. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  2225. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  2226. }
  2227. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  2228. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  2229. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  2230. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  2231. }
  2232. /** Get predicted DC value for I-frames only
  2233. * prediction dir: left=0, top=1
  2234. * @param s MpegEncContext
  2235. * @param[in] n block index in the current MB
  2236. * @param dc_val_ptr Pointer to DC predictor
  2237. * @param dir_ptr Prediction direction for use in AC prediction
  2238. */
  2239. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2240. int16_t **dc_val_ptr, int *dir_ptr)
  2241. {
  2242. int a, b, c, wrap, pred, scale;
  2243. int16_t *dc_val;
  2244. static const uint16_t dcpred[32] = {
  2245. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  2246. 114, 102, 93, 85, 79, 73, 68, 64,
  2247. 60, 57, 54, 51, 49, 47, 45, 43,
  2248. 41, 39, 38, 37, 35, 34, 33
  2249. };
  2250. /* find prediction - wmv3_dc_scale always used here in fact */
  2251. if (n < 4) scale = s->y_dc_scale;
  2252. else scale = s->c_dc_scale;
  2253. wrap = s->block_wrap[n];
  2254. dc_val= s->dc_val[0] + s->block_index[n];
  2255. /* B A
  2256. * C X
  2257. */
  2258. c = dc_val[ - 1];
  2259. b = dc_val[ - 1 - wrap];
  2260. a = dc_val[ - wrap];
  2261. if (pq < 9 || !overlap)
  2262. {
  2263. /* Set outer values */
  2264. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  2265. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  2266. }
  2267. else
  2268. {
  2269. /* Set outer values */
  2270. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  2271. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  2272. }
  2273. if (abs(a - b) <= abs(b - c)) {
  2274. pred = c;
  2275. *dir_ptr = 1;//left
  2276. } else {
  2277. pred = a;
  2278. *dir_ptr = 0;//top
  2279. }
  2280. /* update predictor */
  2281. *dc_val_ptr = &dc_val[0];
  2282. return pred;
  2283. }
  2284. /** Get predicted DC value
  2285. * prediction dir: left=0, top=1
  2286. * @param s MpegEncContext
  2287. * @param[in] n block index in the current MB
  2288. * @param dc_val_ptr Pointer to DC predictor
  2289. * @param dir_ptr Prediction direction for use in AC prediction
  2290. */
  2291. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2292. int a_avail, int c_avail,
  2293. int16_t **dc_val_ptr, int *dir_ptr)
  2294. {
  2295. int a, b, c, wrap, pred, scale;
  2296. int16_t *dc_val;
  2297. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2298. int q1, q2 = 0;
  2299. /* find prediction - wmv3_dc_scale always used here in fact */
  2300. if (n < 4) scale = s->y_dc_scale;
  2301. else scale = s->c_dc_scale;
  2302. wrap = s->block_wrap[n];
  2303. dc_val= s->dc_val[0] + s->block_index[n];
  2304. /* B A
  2305. * C X
  2306. */
  2307. c = dc_val[ - 1];
  2308. b = dc_val[ - 1 - wrap];
  2309. a = dc_val[ - wrap];
  2310. /* scale predictors if needed */
  2311. q1 = s->current_picture.qscale_table[mb_pos];
  2312. if(c_avail && (n!= 1 && n!=3)) {
  2313. q2 = s->current_picture.qscale_table[mb_pos - 1];
  2314. if(q2 && q2 != q1)
  2315. c = (c * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2316. }
  2317. if(a_avail && (n!= 2 && n!=3)) {
  2318. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2319. if(q2 && q2 != q1)
  2320. a = (a * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2321. }
  2322. if(a_avail && c_avail && (n!=3)) {
  2323. int off = mb_pos;
  2324. if(n != 1) off--;
  2325. if(n != 2) off -= s->mb_stride;
  2326. q2 = s->current_picture.qscale_table[off];
  2327. if(q2 && q2 != q1)
  2328. b = (b * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2329. }
  2330. if(a_avail && c_avail) {
  2331. if(abs(a - b) <= abs(b - c)) {
  2332. pred = c;
  2333. *dir_ptr = 1;//left
  2334. } else {
  2335. pred = a;
  2336. *dir_ptr = 0;//top
  2337. }
  2338. } else if(a_avail) {
  2339. pred = a;
  2340. *dir_ptr = 0;//top
  2341. } else if(c_avail) {
  2342. pred = c;
  2343. *dir_ptr = 1;//left
  2344. } else {
  2345. pred = 0;
  2346. *dir_ptr = 1;//left
  2347. }
  2348. /* update predictor */
  2349. *dc_val_ptr = &dc_val[0];
  2350. return pred;
  2351. }
  2352. /**
  2353. * @defgroup std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  2354. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  2355. * @{
  2356. */
  2357. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  2358. {
  2359. int xy, wrap, pred, a, b, c;
  2360. xy = s->block_index[n];
  2361. wrap = s->b8_stride;
  2362. /* B C
  2363. * A X
  2364. */
  2365. a = s->coded_block[xy - 1 ];
  2366. b = s->coded_block[xy - 1 - wrap];
  2367. c = s->coded_block[xy - wrap];
  2368. if (b == c) {
  2369. pred = a;
  2370. } else {
  2371. pred = c;
  2372. }
  2373. /* store value */
  2374. *coded_block_ptr = &s->coded_block[xy];
  2375. return pred;
  2376. }
  2377. /**
  2378. * Decode one AC coefficient
  2379. * @param v The VC1 context
  2380. * @param last Last coefficient
  2381. * @param skip How much zero coefficients to skip
  2382. * @param value Decoded AC coefficient value
  2383. * @see 8.1.3.4
  2384. */
  2385. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  2386. {
  2387. GetBitContext *gb = &v->s.gb;
  2388. int index, escape, run = 0, level = 0, lst = 0;
  2389. index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2390. if (index != vc1_ac_sizes[codingset] - 1) {
  2391. run = vc1_index_decode_table[codingset][index][0];
  2392. level = vc1_index_decode_table[codingset][index][1];
  2393. lst = index >= vc1_last_decode_table[codingset];
  2394. if(get_bits(gb, 1))
  2395. level = -level;
  2396. } else {
  2397. escape = decode210(gb);
  2398. if (escape != 2) {
  2399. index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2400. run = vc1_index_decode_table[codingset][index][0];
  2401. level = vc1_index_decode_table[codingset][index][1];
  2402. lst = index >= vc1_last_decode_table[codingset];
  2403. if(escape == 0) {
  2404. if(lst)
  2405. level += vc1_last_delta_level_table[codingset][run];
  2406. else
  2407. level += vc1_delta_level_table[codingset][run];
  2408. } else {
  2409. if(lst)
  2410. run += vc1_last_delta_run_table[codingset][level] + 1;
  2411. else
  2412. run += vc1_delta_run_table[codingset][level] + 1;
  2413. }
  2414. if(get_bits(gb, 1))
  2415. level = -level;
  2416. } else {
  2417. int sign;
  2418. lst = get_bits(gb, 1);
  2419. if(v->s.esc3_level_length == 0) {
  2420. if(v->pq < 8 || v->dquantfrm) { // table 59
  2421. v->s.esc3_level_length = get_bits(gb, 3);
  2422. if(!v->s.esc3_level_length)
  2423. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  2424. } else { //table 60
  2425. v->s.esc3_level_length = get_prefix(gb, 1, 6) + 2;
  2426. }
  2427. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  2428. }
  2429. run = get_bits(gb, v->s.esc3_run_length);
  2430. sign = get_bits(gb, 1);
  2431. level = get_bits(gb, v->s.esc3_level_length);
  2432. if(sign)
  2433. level = -level;
  2434. }
  2435. }
  2436. *last = lst;
  2437. *skip = run;
  2438. *value = level;
  2439. }
  2440. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2441. * @param v VC1Context
  2442. * @param block block to decode
  2443. * @param coded are AC coeffs present or not
  2444. * @param codingset set of VLC to decode data
  2445. */
  2446. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  2447. {
  2448. GetBitContext *gb = &v->s.gb;
  2449. MpegEncContext *s = &v->s;
  2450. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2451. int run_diff, i;
  2452. int16_t *dc_val;
  2453. int16_t *ac_val, *ac_val2;
  2454. int dcdiff;
  2455. /* Get DC differential */
  2456. if (n < 4) {
  2457. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2458. } else {
  2459. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2460. }
  2461. if (dcdiff < 0){
  2462. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2463. return -1;
  2464. }
  2465. if (dcdiff)
  2466. {
  2467. if (dcdiff == 119 /* ESC index value */)
  2468. {
  2469. /* TODO: Optimize */
  2470. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  2471. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  2472. else dcdiff = get_bits(gb, 8);
  2473. }
  2474. else
  2475. {
  2476. if (v->pq == 1)
  2477. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2478. else if (v->pq == 2)
  2479. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2480. }
  2481. if (get_bits(gb, 1))
  2482. dcdiff = -dcdiff;
  2483. }
  2484. /* Prediction */
  2485. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  2486. *dc_val = dcdiff;
  2487. /* Store the quantized DC coeff, used for prediction */
  2488. if (n < 4) {
  2489. block[0] = dcdiff * s->y_dc_scale;
  2490. } else {
  2491. block[0] = dcdiff * s->c_dc_scale;
  2492. }
  2493. /* Skip ? */
  2494. run_diff = 0;
  2495. i = 0;
  2496. if (!coded) {
  2497. goto not_coded;
  2498. }
  2499. //AC Decoding
  2500. i = 1;
  2501. {
  2502. int last = 0, skip, value;
  2503. const int8_t *zz_table;
  2504. int scale;
  2505. int k;
  2506. scale = v->pq * 2 + v->halfpq;
  2507. if(v->s.ac_pred) {
  2508. if(!dc_pred_dir)
  2509. zz_table = vc1_horizontal_zz;
  2510. else
  2511. zz_table = vc1_vertical_zz;
  2512. } else
  2513. zz_table = vc1_normal_zz;
  2514. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2515. ac_val2 = ac_val;
  2516. if(dc_pred_dir) //left
  2517. ac_val -= 16;
  2518. else //top
  2519. ac_val -= 16 * s->block_wrap[n];
  2520. while (!last) {
  2521. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2522. i += skip;
  2523. if(i > 63)
  2524. break;
  2525. block[zz_table[i++]] = value;
  2526. }
  2527. /* apply AC prediction if needed */
  2528. if(s->ac_pred) {
  2529. if(dc_pred_dir) { //left
  2530. for(k = 1; k < 8; k++)
  2531. block[k << 3] += ac_val[k];
  2532. } else { //top
  2533. for(k = 1; k < 8; k++)
  2534. block[k] += ac_val[k + 8];
  2535. }
  2536. }
  2537. /* save AC coeffs for further prediction */
  2538. for(k = 1; k < 8; k++) {
  2539. ac_val2[k] = block[k << 3];
  2540. ac_val2[k + 8] = block[k];
  2541. }
  2542. /* scale AC coeffs */
  2543. for(k = 1; k < 64; k++)
  2544. if(block[k]) {
  2545. block[k] *= scale;
  2546. if(!v->pquantizer)
  2547. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2548. }
  2549. if(s->ac_pred) i = 63;
  2550. }
  2551. not_coded:
  2552. if(!coded) {
  2553. int k, scale;
  2554. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2555. ac_val2 = ac_val;
  2556. scale = v->pq * 2 + v->halfpq;
  2557. memset(ac_val2, 0, 16 * 2);
  2558. if(dc_pred_dir) {//left
  2559. ac_val -= 16;
  2560. if(s->ac_pred)
  2561. memcpy(ac_val2, ac_val, 8 * 2);
  2562. } else {//top
  2563. ac_val -= 16 * s->block_wrap[n];
  2564. if(s->ac_pred)
  2565. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2566. }
  2567. /* apply AC prediction if needed */
  2568. if(s->ac_pred) {
  2569. if(dc_pred_dir) { //left
  2570. for(k = 1; k < 8; k++) {
  2571. block[k << 3] = ac_val[k] * scale;
  2572. if(!v->pquantizer && block[k << 3])
  2573. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  2574. }
  2575. } else { //top
  2576. for(k = 1; k < 8; k++) {
  2577. block[k] = ac_val[k + 8] * scale;
  2578. if(!v->pquantizer && block[k])
  2579. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2580. }
  2581. }
  2582. i = 63;
  2583. }
  2584. }
  2585. s->block_last_index[n] = i;
  2586. return 0;
  2587. }
  2588. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2589. * @param v VC1Context
  2590. * @param block block to decode
  2591. * @param coded are AC coeffs present or not
  2592. * @param codingset set of VLC to decode data
  2593. */
  2594. static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
  2595. {
  2596. GetBitContext *gb = &v->s.gb;
  2597. MpegEncContext *s = &v->s;
  2598. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2599. int run_diff, i;
  2600. int16_t *dc_val;
  2601. int16_t *ac_val, *ac_val2;
  2602. int dcdiff;
  2603. int a_avail = v->a_avail, c_avail = v->c_avail;
  2604. int use_pred = s->ac_pred;
  2605. int scale;
  2606. int q1, q2 = 0;
  2607. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2608. /* Get DC differential */
  2609. if (n < 4) {
  2610. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2611. } else {
  2612. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2613. }
  2614. if (dcdiff < 0){
  2615. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2616. return -1;
  2617. }
  2618. if (dcdiff)
  2619. {
  2620. if (dcdiff == 119 /* ESC index value */)
  2621. {
  2622. /* TODO: Optimize */
  2623. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2624. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2625. else dcdiff = get_bits(gb, 8);
  2626. }
  2627. else
  2628. {
  2629. if (mquant == 1)
  2630. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2631. else if (mquant == 2)
  2632. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2633. }
  2634. if (get_bits(gb, 1))
  2635. dcdiff = -dcdiff;
  2636. }
  2637. /* Prediction */
  2638. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  2639. *dc_val = dcdiff;
  2640. /* Store the quantized DC coeff, used for prediction */
  2641. if (n < 4) {
  2642. block[0] = dcdiff * s->y_dc_scale;
  2643. } else {
  2644. block[0] = dcdiff * s->c_dc_scale;
  2645. }
  2646. /* Skip ? */
  2647. run_diff = 0;
  2648. i = 0;
  2649. //AC Decoding
  2650. i = 1;
  2651. /* check if AC is needed at all and adjust direction if needed */
  2652. if(!a_avail) dc_pred_dir = 1;
  2653. if(!c_avail) dc_pred_dir = 0;
  2654. if(!a_avail && !c_avail) use_pred = 0;
  2655. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2656. ac_val2 = ac_val;
  2657. scale = mquant * 2 + v->halfpq;
  2658. if(dc_pred_dir) //left
  2659. ac_val -= 16;
  2660. else //top
  2661. ac_val -= 16 * s->block_wrap[n];
  2662. q1 = s->current_picture.qscale_table[mb_pos];
  2663. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2664. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2665. if(n && n<4) q2 = q1;
  2666. if(coded) {
  2667. int last = 0, skip, value;
  2668. const int8_t *zz_table;
  2669. int k;
  2670. if(v->s.ac_pred) {
  2671. if(!dc_pred_dir)
  2672. zz_table = vc1_horizontal_zz;
  2673. else
  2674. zz_table = vc1_vertical_zz;
  2675. } else
  2676. zz_table = vc1_normal_zz;
  2677. while (!last) {
  2678. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2679. i += skip;
  2680. if(i > 63)
  2681. break;
  2682. block[zz_table[i++]] = value;
  2683. }
  2684. /* apply AC prediction if needed */
  2685. if(use_pred) {
  2686. /* scale predictors if needed*/
  2687. if(q2 && q1!=q2) {
  2688. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2689. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2690. if(dc_pred_dir) { //left
  2691. for(k = 1; k < 8; k++)
  2692. block[k << 3] += (ac_val[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2693. } else { //top
  2694. for(k = 1; k < 8; k++)
  2695. block[k] += (ac_val[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2696. }
  2697. } else {
  2698. if(dc_pred_dir) { //left
  2699. for(k = 1; k < 8; k++)
  2700. block[k << 3] += ac_val[k];
  2701. } else { //top
  2702. for(k = 1; k < 8; k++)
  2703. block[k] += ac_val[k + 8];
  2704. }
  2705. }
  2706. }
  2707. /* save AC coeffs for further prediction */
  2708. for(k = 1; k < 8; k++) {
  2709. ac_val2[k] = block[k << 3];
  2710. ac_val2[k + 8] = block[k];
  2711. }
  2712. /* scale AC coeffs */
  2713. for(k = 1; k < 64; k++)
  2714. if(block[k]) {
  2715. block[k] *= scale;
  2716. if(!v->pquantizer)
  2717. block[k] += (block[k] < 0) ? -mquant : mquant;
  2718. }
  2719. if(use_pred) i = 63;
  2720. } else { // no AC coeffs
  2721. int k;
  2722. memset(ac_val2, 0, 16 * 2);
  2723. if(dc_pred_dir) {//left
  2724. if(use_pred) {
  2725. memcpy(ac_val2, ac_val, 8 * 2);
  2726. if(q2 && q1!=q2) {
  2727. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2728. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2729. for(k = 1; k < 8; k++)
  2730. ac_val2[k] = (ac_val2[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2731. }
  2732. }
  2733. } else {//top
  2734. if(use_pred) {
  2735. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2736. if(q2 && q1!=q2) {
  2737. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2738. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2739. for(k = 1; k < 8; k++)
  2740. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2741. }
  2742. }
  2743. }
  2744. /* apply AC prediction if needed */
  2745. if(use_pred) {
  2746. if(dc_pred_dir) { //left
  2747. for(k = 1; k < 8; k++) {
  2748. block[k << 3] = ac_val2[k] * scale;
  2749. if(!v->pquantizer && block[k << 3])
  2750. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2751. }
  2752. } else { //top
  2753. for(k = 1; k < 8; k++) {
  2754. block[k] = ac_val2[k + 8] * scale;
  2755. if(!v->pquantizer && block[k])
  2756. block[k] += (block[k] < 0) ? -mquant : mquant;
  2757. }
  2758. }
  2759. i = 63;
  2760. }
  2761. }
  2762. s->block_last_index[n] = i;
  2763. return 0;
  2764. }
  2765. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  2766. * @param v VC1Context
  2767. * @param block block to decode
  2768. * @param coded are AC coeffs present or not
  2769. * @param mquant block quantizer
  2770. * @param codingset set of VLC to decode data
  2771. */
  2772. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  2773. {
  2774. GetBitContext *gb = &v->s.gb;
  2775. MpegEncContext *s = &v->s;
  2776. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2777. int run_diff, i;
  2778. int16_t *dc_val;
  2779. int16_t *ac_val, *ac_val2;
  2780. int dcdiff;
  2781. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2782. int a_avail = v->a_avail, c_avail = v->c_avail;
  2783. int use_pred = s->ac_pred;
  2784. int scale;
  2785. int q1, q2 = 0;
  2786. /* XXX: Guard against dumb values of mquant */
  2787. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  2788. /* Set DC scale - y and c use the same */
  2789. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2790. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2791. /* Get DC differential */
  2792. if (n < 4) {
  2793. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2794. } else {
  2795. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2796. }
  2797. if (dcdiff < 0){
  2798. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2799. return -1;
  2800. }
  2801. if (dcdiff)
  2802. {
  2803. if (dcdiff == 119 /* ESC index value */)
  2804. {
  2805. /* TODO: Optimize */
  2806. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2807. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2808. else dcdiff = get_bits(gb, 8);
  2809. }
  2810. else
  2811. {
  2812. if (mquant == 1)
  2813. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2814. else if (mquant == 2)
  2815. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2816. }
  2817. if (get_bits(gb, 1))
  2818. dcdiff = -dcdiff;
  2819. }
  2820. /* Prediction */
  2821. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  2822. *dc_val = dcdiff;
  2823. /* Store the quantized DC coeff, used for prediction */
  2824. if (n < 4) {
  2825. block[0] = dcdiff * s->y_dc_scale;
  2826. } else {
  2827. block[0] = dcdiff * s->c_dc_scale;
  2828. }
  2829. /* Skip ? */
  2830. run_diff = 0;
  2831. i = 0;
  2832. //AC Decoding
  2833. i = 1;
  2834. /* check if AC is needed at all and adjust direction if needed */
  2835. if(!a_avail) dc_pred_dir = 1;
  2836. if(!c_avail) dc_pred_dir = 0;
  2837. if(!a_avail && !c_avail) use_pred = 0;
  2838. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2839. ac_val2 = ac_val;
  2840. scale = mquant * 2 + v->halfpq;
  2841. if(dc_pred_dir) //left
  2842. ac_val -= 16;
  2843. else //top
  2844. ac_val -= 16 * s->block_wrap[n];
  2845. q1 = s->current_picture.qscale_table[mb_pos];
  2846. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2847. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2848. if(n && n<4) q2 = q1;
  2849. if(coded) {
  2850. int last = 0, skip, value;
  2851. const int8_t *zz_table;
  2852. int k;
  2853. zz_table = vc1_simple_progressive_8x8_zz;
  2854. while (!last) {
  2855. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2856. i += skip;
  2857. if(i > 63)
  2858. break;
  2859. block[zz_table[i++]] = value;
  2860. }
  2861. /* apply AC prediction if needed */
  2862. if(use_pred) {
  2863. /* scale predictors if needed*/
  2864. if(q2 && q1!=q2) {
  2865. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2866. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2867. if(dc_pred_dir) { //left
  2868. for(k = 1; k < 8; k++)
  2869. block[k << 3] += (ac_val[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2870. } else { //top
  2871. for(k = 1; k < 8; k++)
  2872. block[k] += (ac_val[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2873. }
  2874. } else {
  2875. if(dc_pred_dir) { //left
  2876. for(k = 1; k < 8; k++)
  2877. block[k << 3] += ac_val[k];
  2878. } else { //top
  2879. for(k = 1; k < 8; k++)
  2880. block[k] += ac_val[k + 8];
  2881. }
  2882. }
  2883. }
  2884. /* save AC coeffs for further prediction */
  2885. for(k = 1; k < 8; k++) {
  2886. ac_val2[k] = block[k << 3];
  2887. ac_val2[k + 8] = block[k];
  2888. }
  2889. /* scale AC coeffs */
  2890. for(k = 1; k < 64; k++)
  2891. if(block[k]) {
  2892. block[k] *= scale;
  2893. if(!v->pquantizer)
  2894. block[k] += (block[k] < 0) ? -mquant : mquant;
  2895. }
  2896. if(use_pred) i = 63;
  2897. } else { // no AC coeffs
  2898. int k;
  2899. memset(ac_val2, 0, 16 * 2);
  2900. if(dc_pred_dir) {//left
  2901. if(use_pred) {
  2902. memcpy(ac_val2, ac_val, 8 * 2);
  2903. if(q2 && q1!=q2) {
  2904. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2905. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2906. for(k = 1; k < 8; k++)
  2907. ac_val2[k] = (ac_val2[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2908. }
  2909. }
  2910. } else {//top
  2911. if(use_pred) {
  2912. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2913. if(q2 && q1!=q2) {
  2914. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2915. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2916. for(k = 1; k < 8; k++)
  2917. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2918. }
  2919. }
  2920. }
  2921. /* apply AC prediction if needed */
  2922. if(use_pred) {
  2923. if(dc_pred_dir) { //left
  2924. for(k = 1; k < 8; k++) {
  2925. block[k << 3] = ac_val2[k] * scale;
  2926. if(!v->pquantizer && block[k << 3])
  2927. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2928. }
  2929. } else { //top
  2930. for(k = 1; k < 8; k++) {
  2931. block[k] = ac_val2[k + 8] * scale;
  2932. if(!v->pquantizer && block[k])
  2933. block[k] += (block[k] < 0) ? -mquant : mquant;
  2934. }
  2935. }
  2936. i = 63;
  2937. }
  2938. }
  2939. s->block_last_index[n] = i;
  2940. return 0;
  2941. }
  2942. /** Decode P block
  2943. */
  2944. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block)
  2945. {
  2946. MpegEncContext *s = &v->s;
  2947. GetBitContext *gb = &s->gb;
  2948. int i, j;
  2949. int subblkpat = 0;
  2950. int scale, off, idx, last, skip, value;
  2951. int ttblk = ttmb & 7;
  2952. if(ttmb == -1) {
  2953. ttblk = ttblk_to_tt[v->tt_index][get_vlc2(gb, vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  2954. }
  2955. if(ttblk == TT_4X4) {
  2956. subblkpat = ~(get_vlc2(gb, vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  2957. }
  2958. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  2959. subblkpat = decode012(gb);
  2960. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  2961. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  2962. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  2963. }
  2964. scale = 2 * mquant + v->halfpq;
  2965. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  2966. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  2967. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  2968. ttblk = TT_8X4;
  2969. }
  2970. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  2971. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  2972. ttblk = TT_4X8;
  2973. }
  2974. switch(ttblk) {
  2975. case TT_8X8:
  2976. i = 0;
  2977. last = 0;
  2978. while (!last) {
  2979. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2980. i += skip;
  2981. if(i > 63)
  2982. break;
  2983. idx = vc1_simple_progressive_8x8_zz[i++];
  2984. block[idx] = value * scale;
  2985. if(!v->pquantizer)
  2986. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2987. }
  2988. s->dsp.vc1_inv_trans_8x8(block);
  2989. break;
  2990. case TT_4X4:
  2991. for(j = 0; j < 4; j++) {
  2992. last = subblkpat & (1 << (3 - j));
  2993. i = 0;
  2994. off = (j & 1) * 4 + (j & 2) * 16;
  2995. while (!last) {
  2996. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2997. i += skip;
  2998. if(i > 15)
  2999. break;
  3000. idx = vc1_simple_progressive_4x4_zz[i++];
  3001. block[idx + off] = value * scale;
  3002. if(!v->pquantizer)
  3003. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  3004. }
  3005. if(!(subblkpat & (1 << (3 - j))))
  3006. s->dsp.vc1_inv_trans_4x4(block, j);
  3007. }
  3008. break;
  3009. case TT_8X4:
  3010. for(j = 0; j < 2; j++) {
  3011. last = subblkpat & (1 << (1 - j));
  3012. i = 0;
  3013. off = j * 32;
  3014. while (!last) {
  3015. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  3016. i += skip;
  3017. if(i > 31)
  3018. break;
  3019. if(v->profile < PROFILE_ADVANCED)
  3020. idx = vc1_simple_progressive_8x4_zz[i++];
  3021. else
  3022. idx = vc1_adv_progressive_8x4_zz[i++];
  3023. block[idx + off] = value * scale;
  3024. if(!v->pquantizer)
  3025. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  3026. }
  3027. if(!(subblkpat & (1 << (1 - j))))
  3028. s->dsp.vc1_inv_trans_8x4(block, j);
  3029. }
  3030. break;
  3031. case TT_4X8:
  3032. for(j = 0; j < 2; j++) {
  3033. last = subblkpat & (1 << (1 - j));
  3034. i = 0;
  3035. off = j * 4;
  3036. while (!last) {
  3037. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  3038. i += skip;
  3039. if(i > 31)
  3040. break;
  3041. if(v->profile < PROFILE_ADVANCED)
  3042. idx = vc1_simple_progressive_4x8_zz[i++];
  3043. else
  3044. idx = vc1_adv_progressive_4x8_zz[i++];
  3045. block[idx + off] = value * scale;
  3046. if(!v->pquantizer)
  3047. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  3048. }
  3049. if(!(subblkpat & (1 << (1 - j))))
  3050. s->dsp.vc1_inv_trans_4x8(block, j);
  3051. }
  3052. break;
  3053. }
  3054. return 0;
  3055. }
  3056. /** Decode one P-frame MB (in Simple/Main profile)
  3057. */
  3058. static int vc1_decode_p_mb(VC1Context *v)
  3059. {
  3060. MpegEncContext *s = &v->s;
  3061. GetBitContext *gb = &s->gb;
  3062. int i, j;
  3063. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3064. int cbp; /* cbp decoding stuff */
  3065. int mqdiff, mquant; /* MB quantization */
  3066. int ttmb = v->ttfrm; /* MB Transform type */
  3067. int status;
  3068. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  3069. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  3070. int mb_has_coeffs = 1; /* last_flag */
  3071. int dmv_x, dmv_y; /* Differential MV components */
  3072. int index, index1; /* LUT indices */
  3073. int val, sign; /* temp values */
  3074. int first_block = 1;
  3075. int dst_idx, off;
  3076. int skipped, fourmv;
  3077. mquant = v->pq; /* Loosy initialization */
  3078. if (v->mv_type_is_raw)
  3079. fourmv = get_bits1(gb);
  3080. else
  3081. fourmv = v->mv_type_mb_plane[mb_pos];
  3082. if (v->skip_is_raw)
  3083. skipped = get_bits1(gb);
  3084. else
  3085. skipped = v->s.mbskip_table[mb_pos];
  3086. s->dsp.clear_blocks(s->block[0]);
  3087. if (!fourmv) /* 1MV mode */
  3088. {
  3089. if (!skipped)
  3090. {
  3091. GET_MVDATA(dmv_x, dmv_y);
  3092. if (s->mb_intra) {
  3093. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3094. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3095. }
  3096. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  3097. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  3098. /* FIXME Set DC val for inter block ? */
  3099. if (s->mb_intra && !mb_has_coeffs)
  3100. {
  3101. GET_MQUANT();
  3102. s->ac_pred = get_bits(gb, 1);
  3103. cbp = 0;
  3104. }
  3105. else if (mb_has_coeffs)
  3106. {
  3107. if (s->mb_intra) s->ac_pred = get_bits(gb, 1);
  3108. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3109. GET_MQUANT();
  3110. }
  3111. else
  3112. {
  3113. mquant = v->pq;
  3114. cbp = 0;
  3115. }
  3116. s->current_picture.qscale_table[mb_pos] = mquant;
  3117. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3118. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table,
  3119. VC1_TTMB_VLC_BITS, 2);
  3120. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  3121. dst_idx = 0;
  3122. for (i=0; i<6; i++)
  3123. {
  3124. s->dc_val[0][s->block_index[i]] = 0;
  3125. dst_idx += i >> 2;
  3126. val = ((cbp >> (5 - i)) & 1);
  3127. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3128. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3129. if(s->mb_intra) {
  3130. /* check if prediction blocks A and C are available */
  3131. v->a_avail = v->c_avail = 0;
  3132. if(i == 2 || i == 3 || !s->first_slice_line)
  3133. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3134. if(i == 1 || i == 3 || s->mb_x)
  3135. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3136. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3137. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3138. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3139. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3140. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  3141. if(!v->res_fasttx && v->res_x8) for(j = 0; j < 64; j++) s->block[i][j] += 16;
  3142. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3143. if(v->pq >= 9 && v->overlap) {
  3144. if(v->c_avail)
  3145. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3146. if(v->a_avail)
  3147. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3148. }
  3149. } else if(val) {
  3150. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3151. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3152. first_block = 0;
  3153. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3154. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3155. }
  3156. }
  3157. }
  3158. else //Skipped
  3159. {
  3160. s->mb_intra = 0;
  3161. for(i = 0; i < 6; i++) {
  3162. v->mb_type[0][s->block_index[i]] = 0;
  3163. s->dc_val[0][s->block_index[i]] = 0;
  3164. }
  3165. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  3166. s->current_picture.qscale_table[mb_pos] = 0;
  3167. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  3168. vc1_mc_1mv(v, 0);
  3169. return 0;
  3170. }
  3171. } //1MV mode
  3172. else //4MV mode
  3173. {
  3174. if (!skipped /* unskipped MB */)
  3175. {
  3176. int intra_count = 0, coded_inter = 0;
  3177. int is_intra[6], is_coded[6];
  3178. /* Get CBPCY */
  3179. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3180. for (i=0; i<6; i++)
  3181. {
  3182. val = ((cbp >> (5 - i)) & 1);
  3183. s->dc_val[0][s->block_index[i]] = 0;
  3184. s->mb_intra = 0;
  3185. if(i < 4) {
  3186. dmv_x = dmv_y = 0;
  3187. s->mb_intra = 0;
  3188. mb_has_coeffs = 0;
  3189. if(val) {
  3190. GET_MVDATA(dmv_x, dmv_y);
  3191. }
  3192. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  3193. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  3194. intra_count += s->mb_intra;
  3195. is_intra[i] = s->mb_intra;
  3196. is_coded[i] = mb_has_coeffs;
  3197. }
  3198. if(i&4){
  3199. is_intra[i] = (intra_count >= 3);
  3200. is_coded[i] = val;
  3201. }
  3202. if(i == 4) vc1_mc_4mv_chroma(v);
  3203. v->mb_type[0][s->block_index[i]] = is_intra[i];
  3204. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  3205. }
  3206. // if there are no coded blocks then don't do anything more
  3207. if(!intra_count && !coded_inter) return 0;
  3208. dst_idx = 0;
  3209. GET_MQUANT();
  3210. s->current_picture.qscale_table[mb_pos] = mquant;
  3211. /* test if block is intra and has pred */
  3212. {
  3213. int intrapred = 0;
  3214. for(i=0; i<6; i++)
  3215. if(is_intra[i]) {
  3216. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  3217. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  3218. intrapred = 1;
  3219. break;
  3220. }
  3221. }
  3222. if(intrapred)s->ac_pred = get_bits(gb, 1);
  3223. else s->ac_pred = 0;
  3224. }
  3225. if (!v->ttmbf && coded_inter)
  3226. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3227. for (i=0; i<6; i++)
  3228. {
  3229. dst_idx += i >> 2;
  3230. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3231. s->mb_intra = is_intra[i];
  3232. if (is_intra[i]) {
  3233. /* check if prediction blocks A and C are available */
  3234. v->a_avail = v->c_avail = 0;
  3235. if(i == 2 || i == 3 || !s->first_slice_line)
  3236. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3237. if(i == 1 || i == 3 || s->mb_x)
  3238. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3239. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  3240. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3241. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3242. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3243. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  3244. if(!v->res_fasttx && v->res_x8) for(j = 0; j < 64; j++) s->block[i][j] += 16;
  3245. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3246. if(v->pq >= 9 && v->overlap) {
  3247. if(v->c_avail)
  3248. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3249. if(v->a_avail)
  3250. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3251. }
  3252. } else if(is_coded[i]) {
  3253. status = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3254. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3255. first_block = 0;
  3256. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3257. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3258. }
  3259. }
  3260. return status;
  3261. }
  3262. else //Skipped MB
  3263. {
  3264. s->mb_intra = 0;
  3265. s->current_picture.qscale_table[mb_pos] = 0;
  3266. for (i=0; i<6; i++) {
  3267. v->mb_type[0][s->block_index[i]] = 0;
  3268. s->dc_val[0][s->block_index[i]] = 0;
  3269. }
  3270. for (i=0; i<4; i++)
  3271. {
  3272. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  3273. vc1_mc_4mv_luma(v, i);
  3274. }
  3275. vc1_mc_4mv_chroma(v);
  3276. s->current_picture.qscale_table[mb_pos] = 0;
  3277. return 0;
  3278. }
  3279. }
  3280. /* Should never happen */
  3281. return -1;
  3282. }
  3283. /** Decode one B-frame MB (in Main profile)
  3284. */
  3285. static void vc1_decode_b_mb(VC1Context *v)
  3286. {
  3287. MpegEncContext *s = &v->s;
  3288. GetBitContext *gb = &s->gb;
  3289. int i, j;
  3290. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3291. int cbp = 0; /* cbp decoding stuff */
  3292. int mqdiff, mquant; /* MB quantization */
  3293. int ttmb = v->ttfrm; /* MB Transform type */
  3294. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  3295. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  3296. int mb_has_coeffs = 0; /* last_flag */
  3297. int index, index1; /* LUT indices */
  3298. int val, sign; /* temp values */
  3299. int first_block = 1;
  3300. int dst_idx, off;
  3301. int skipped, direct;
  3302. int dmv_x[2], dmv_y[2];
  3303. int bmvtype = BMV_TYPE_BACKWARD;
  3304. mquant = v->pq; /* Loosy initialization */
  3305. s->mb_intra = 0;
  3306. if (v->dmb_is_raw)
  3307. direct = get_bits1(gb);
  3308. else
  3309. direct = v->direct_mb_plane[mb_pos];
  3310. if (v->skip_is_raw)
  3311. skipped = get_bits1(gb);
  3312. else
  3313. skipped = v->s.mbskip_table[mb_pos];
  3314. s->dsp.clear_blocks(s->block[0]);
  3315. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  3316. for(i = 0; i < 6; i++) {
  3317. v->mb_type[0][s->block_index[i]] = 0;
  3318. s->dc_val[0][s->block_index[i]] = 0;
  3319. }
  3320. s->current_picture.qscale_table[mb_pos] = 0;
  3321. if (!direct) {
  3322. if (!skipped) {
  3323. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3324. dmv_x[1] = dmv_x[0];
  3325. dmv_y[1] = dmv_y[0];
  3326. }
  3327. if(skipped || !s->mb_intra) {
  3328. bmvtype = decode012(gb);
  3329. switch(bmvtype) {
  3330. case 0:
  3331. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  3332. break;
  3333. case 1:
  3334. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  3335. break;
  3336. case 2:
  3337. bmvtype = BMV_TYPE_INTERPOLATED;
  3338. dmv_x[0] = dmv_y[0] = 0;
  3339. }
  3340. }
  3341. }
  3342. for(i = 0; i < 6; i++)
  3343. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3344. if (skipped) {
  3345. if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
  3346. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3347. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3348. return;
  3349. }
  3350. if (direct) {
  3351. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3352. GET_MQUANT();
  3353. s->mb_intra = 0;
  3354. mb_has_coeffs = 0;
  3355. s->current_picture.qscale_table[mb_pos] = mquant;
  3356. if(!v->ttmbf)
  3357. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3358. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  3359. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3360. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3361. } else {
  3362. if(!mb_has_coeffs && !s->mb_intra) {
  3363. /* no coded blocks - effectively skipped */
  3364. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3365. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3366. return;
  3367. }
  3368. if(s->mb_intra && !mb_has_coeffs) {
  3369. GET_MQUANT();
  3370. s->current_picture.qscale_table[mb_pos] = mquant;
  3371. s->ac_pred = get_bits1(gb);
  3372. cbp = 0;
  3373. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3374. } else {
  3375. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  3376. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3377. if(!mb_has_coeffs) {
  3378. /* interpolated skipped block */
  3379. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3380. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3381. return;
  3382. }
  3383. }
  3384. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3385. if(!s->mb_intra) {
  3386. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3387. }
  3388. if(s->mb_intra)
  3389. s->ac_pred = get_bits1(gb);
  3390. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3391. GET_MQUANT();
  3392. s->current_picture.qscale_table[mb_pos] = mquant;
  3393. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3394. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3395. }
  3396. }
  3397. dst_idx = 0;
  3398. for (i=0; i<6; i++)
  3399. {
  3400. s->dc_val[0][s->block_index[i]] = 0;
  3401. dst_idx += i >> 2;
  3402. val = ((cbp >> (5 - i)) & 1);
  3403. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3404. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3405. if(s->mb_intra) {
  3406. /* check if prediction blocks A and C are available */
  3407. v->a_avail = v->c_avail = 0;
  3408. if(i == 2 || i == 3 || !s->first_slice_line)
  3409. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3410. if(i == 1 || i == 3 || s->mb_x)
  3411. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3412. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3413. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3414. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3415. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3416. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  3417. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3418. } else if(val) {
  3419. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3420. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3421. first_block = 0;
  3422. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3423. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3424. }
  3425. }
  3426. }
  3427. /** Decode blocks of I-frame
  3428. */
  3429. static void vc1_decode_i_blocks(VC1Context *v)
  3430. {
  3431. int k, j;
  3432. MpegEncContext *s = &v->s;
  3433. int cbp, val;
  3434. uint8_t *coded_val;
  3435. int mb_pos;
  3436. /* select codingmode used for VLC tables selection */
  3437. switch(v->y_ac_table_index){
  3438. case 0:
  3439. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3440. break;
  3441. case 1:
  3442. v->codingset = CS_HIGH_MOT_INTRA;
  3443. break;
  3444. case 2:
  3445. v->codingset = CS_MID_RATE_INTRA;
  3446. break;
  3447. }
  3448. switch(v->c_ac_table_index){
  3449. case 0:
  3450. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3451. break;
  3452. case 1:
  3453. v->codingset2 = CS_HIGH_MOT_INTER;
  3454. break;
  3455. case 2:
  3456. v->codingset2 = CS_MID_RATE_INTER;
  3457. break;
  3458. }
  3459. /* Set DC scale - y and c use the same */
  3460. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  3461. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  3462. //do frame decode
  3463. s->mb_x = s->mb_y = 0;
  3464. s->mb_intra = 1;
  3465. s->first_slice_line = 1;
  3466. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3467. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3468. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3469. ff_init_block_index(s);
  3470. ff_update_block_index(s);
  3471. s->dsp.clear_blocks(s->block[0]);
  3472. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  3473. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3474. s->current_picture.qscale_table[mb_pos] = v->pq;
  3475. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3476. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3477. // do actual MB decoding and displaying
  3478. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3479. v->s.ac_pred = get_bits(&v->s.gb, 1);
  3480. for(k = 0; k < 6; k++) {
  3481. val = ((cbp >> (5 - k)) & 1);
  3482. if (k < 4) {
  3483. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3484. val = val ^ pred;
  3485. *coded_val = val;
  3486. }
  3487. cbp |= val << (5 - k);
  3488. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  3489. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3490. if(v->pq >= 9 && v->overlap) {
  3491. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3492. }
  3493. }
  3494. vc1_put_block(v, s->block);
  3495. if(v->pq >= 9 && v->overlap) {
  3496. if(s->mb_x) {
  3497. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3498. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3499. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3500. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3501. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3502. }
  3503. }
  3504. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3505. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3506. if(!s->first_slice_line) {
  3507. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3508. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3509. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3510. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3511. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3512. }
  3513. }
  3514. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3515. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3516. }
  3517. if(get_bits_count(&s->gb) > v->bits) {
  3518. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3519. return;
  3520. }
  3521. }
  3522. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3523. s->first_slice_line = 0;
  3524. }
  3525. }
  3526. /** Decode blocks of I-frame for advanced profile
  3527. */
  3528. static void vc1_decode_i_blocks_adv(VC1Context *v)
  3529. {
  3530. int k, j;
  3531. MpegEncContext *s = &v->s;
  3532. int cbp, val;
  3533. uint8_t *coded_val;
  3534. int mb_pos;
  3535. int mquant = v->pq;
  3536. int mqdiff;
  3537. int overlap;
  3538. GetBitContext *gb = &s->gb;
  3539. /* select codingmode used for VLC tables selection */
  3540. switch(v->y_ac_table_index){
  3541. case 0:
  3542. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3543. break;
  3544. case 1:
  3545. v->codingset = CS_HIGH_MOT_INTRA;
  3546. break;
  3547. case 2:
  3548. v->codingset = CS_MID_RATE_INTRA;
  3549. break;
  3550. }
  3551. switch(v->c_ac_table_index){
  3552. case 0:
  3553. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3554. break;
  3555. case 1:
  3556. v->codingset2 = CS_HIGH_MOT_INTER;
  3557. break;
  3558. case 2:
  3559. v->codingset2 = CS_MID_RATE_INTER;
  3560. break;
  3561. }
  3562. //do frame decode
  3563. s->mb_x = s->mb_y = 0;
  3564. s->mb_intra = 1;
  3565. s->first_slice_line = 1;
  3566. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3567. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3568. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3569. ff_init_block_index(s);
  3570. ff_update_block_index(s);
  3571. s->dsp.clear_blocks(s->block[0]);
  3572. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3573. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3574. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3575. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3576. // do actual MB decoding and displaying
  3577. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3578. if(v->acpred_is_raw)
  3579. v->s.ac_pred = get_bits(&v->s.gb, 1);
  3580. else
  3581. v->s.ac_pred = v->acpred_plane[mb_pos];
  3582. if(v->condover == CONDOVER_SELECT) {
  3583. if(v->overflg_is_raw)
  3584. overlap = get_bits(&v->s.gb, 1);
  3585. else
  3586. overlap = v->over_flags_plane[mb_pos];
  3587. } else
  3588. overlap = (v->condover == CONDOVER_ALL);
  3589. GET_MQUANT();
  3590. s->current_picture.qscale_table[mb_pos] = mquant;
  3591. /* Set DC scale - y and c use the same */
  3592. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3593. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3594. for(k = 0; k < 6; k++) {
  3595. val = ((cbp >> (5 - k)) & 1);
  3596. if (k < 4) {
  3597. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3598. val = val ^ pred;
  3599. *coded_val = val;
  3600. }
  3601. cbp |= val << (5 - k);
  3602. v->a_avail = !s->first_slice_line || (k==2 || k==3);
  3603. v->c_avail = !!s->mb_x || (k==1 || k==3);
  3604. vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
  3605. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3606. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3607. }
  3608. vc1_put_block(v, s->block);
  3609. if(overlap) {
  3610. if(s->mb_x) {
  3611. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3612. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3613. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3614. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3615. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3616. }
  3617. }
  3618. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3619. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3620. if(!s->first_slice_line) {
  3621. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3622. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3623. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3624. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3625. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3626. }
  3627. }
  3628. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3629. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3630. }
  3631. if(get_bits_count(&s->gb) > v->bits) {
  3632. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3633. return;
  3634. }
  3635. }
  3636. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3637. s->first_slice_line = 0;
  3638. }
  3639. }
  3640. static void vc1_decode_p_blocks(VC1Context *v)
  3641. {
  3642. MpegEncContext *s = &v->s;
  3643. /* select codingmode used for VLC tables selection */
  3644. switch(v->c_ac_table_index){
  3645. case 0:
  3646. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3647. break;
  3648. case 1:
  3649. v->codingset = CS_HIGH_MOT_INTRA;
  3650. break;
  3651. case 2:
  3652. v->codingset = CS_MID_RATE_INTRA;
  3653. break;
  3654. }
  3655. switch(v->c_ac_table_index){
  3656. case 0:
  3657. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3658. break;
  3659. case 1:
  3660. v->codingset2 = CS_HIGH_MOT_INTER;
  3661. break;
  3662. case 2:
  3663. v->codingset2 = CS_MID_RATE_INTER;
  3664. break;
  3665. }
  3666. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3667. s->first_slice_line = 1;
  3668. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3669. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3670. ff_init_block_index(s);
  3671. ff_update_block_index(s);
  3672. s->dsp.clear_blocks(s->block[0]);
  3673. vc1_decode_p_mb(v);
  3674. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3675. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3676. return;
  3677. }
  3678. }
  3679. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3680. s->first_slice_line = 0;
  3681. }
  3682. }
  3683. static void vc1_decode_b_blocks(VC1Context *v)
  3684. {
  3685. MpegEncContext *s = &v->s;
  3686. /* select codingmode used for VLC tables selection */
  3687. switch(v->c_ac_table_index){
  3688. case 0:
  3689. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3690. break;
  3691. case 1:
  3692. v->codingset = CS_HIGH_MOT_INTRA;
  3693. break;
  3694. case 2:
  3695. v->codingset = CS_MID_RATE_INTRA;
  3696. break;
  3697. }
  3698. switch(v->c_ac_table_index){
  3699. case 0:
  3700. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3701. break;
  3702. case 1:
  3703. v->codingset2 = CS_HIGH_MOT_INTER;
  3704. break;
  3705. case 2:
  3706. v->codingset2 = CS_MID_RATE_INTER;
  3707. break;
  3708. }
  3709. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3710. s->first_slice_line = 1;
  3711. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3712. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3713. ff_init_block_index(s);
  3714. ff_update_block_index(s);
  3715. s->dsp.clear_blocks(s->block[0]);
  3716. vc1_decode_b_mb(v);
  3717. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3718. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3719. return;
  3720. }
  3721. }
  3722. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3723. s->first_slice_line = 0;
  3724. }
  3725. }
  3726. static void vc1_decode_skip_blocks(VC1Context *v)
  3727. {
  3728. MpegEncContext *s = &v->s;
  3729. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3730. s->first_slice_line = 1;
  3731. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3732. s->mb_x = 0;
  3733. ff_init_block_index(s);
  3734. ff_update_block_index(s);
  3735. memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  3736. memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3737. memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3738. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3739. s->first_slice_line = 0;
  3740. }
  3741. s->pict_type = P_TYPE;
  3742. }
  3743. static void vc1_decode_blocks(VC1Context *v)
  3744. {
  3745. v->s.esc3_level_length = 0;
  3746. switch(v->s.pict_type) {
  3747. case I_TYPE:
  3748. if(v->profile == PROFILE_ADVANCED)
  3749. vc1_decode_i_blocks_adv(v);
  3750. else
  3751. vc1_decode_i_blocks(v);
  3752. break;
  3753. case P_TYPE:
  3754. if(v->p_frame_skipped)
  3755. vc1_decode_skip_blocks(v);
  3756. else
  3757. vc1_decode_p_blocks(v);
  3758. break;
  3759. case B_TYPE:
  3760. if(v->bi_type){
  3761. if(v->profile == PROFILE_ADVANCED)
  3762. vc1_decode_i_blocks_adv(v);
  3763. else
  3764. vc1_decode_i_blocks(v);
  3765. }else
  3766. vc1_decode_b_blocks(v);
  3767. break;
  3768. }
  3769. }
  3770. #define IS_MARKER(x) (((x) & ~0xFF) == VC1_CODE_RES0)
  3771. /** Find VC-1 marker in buffer
  3772. * @return position where next marker starts or end of buffer if no marker found
  3773. */
  3774. static av_always_inline uint8_t* find_next_marker(uint8_t *src, uint8_t *end)
  3775. {
  3776. uint32_t mrk = 0xFFFFFFFF;
  3777. if(end-src < 4) return end;
  3778. while(src < end){
  3779. mrk = (mrk << 8) | *src++;
  3780. if(IS_MARKER(mrk))
  3781. return src-4;
  3782. }
  3783. return end;
  3784. }
  3785. static av_always_inline int vc1_unescape_buffer(uint8_t *src, int size, uint8_t *dst)
  3786. {
  3787. int dsize = 0, i;
  3788. if(size < 4){
  3789. for(dsize = 0; dsize < size; dsize++) *dst++ = *src++;
  3790. return size;
  3791. }
  3792. for(i = 0; i < size; i++, src++) {
  3793. if(src[0] == 3 && i >= 2 && !src[-1] && !src[-2] && i < size-1 && src[1] < 4) {
  3794. dst[dsize++] = src[1];
  3795. src++;
  3796. i++;
  3797. } else
  3798. dst[dsize++] = *src;
  3799. }
  3800. return dsize;
  3801. }
  3802. /** Initialize a VC1/WMV3 decoder
  3803. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3804. * @todo TODO: Decypher remaining bits in extra_data
  3805. */
  3806. static int vc1_decode_init(AVCodecContext *avctx)
  3807. {
  3808. VC1Context *v = avctx->priv_data;
  3809. MpegEncContext *s = &v->s;
  3810. GetBitContext gb;
  3811. if (!avctx->extradata_size || !avctx->extradata) return -1;
  3812. if (!(avctx->flags & CODEC_FLAG_GRAY))
  3813. avctx->pix_fmt = PIX_FMT_YUV420P;
  3814. else
  3815. avctx->pix_fmt = PIX_FMT_GRAY8;
  3816. v->s.avctx = avctx;
  3817. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  3818. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  3819. if(ff_h263_decode_init(avctx) < 0)
  3820. return -1;
  3821. if (vc1_init_common(v) < 0) return -1;
  3822. avctx->coded_width = avctx->width;
  3823. avctx->coded_height = avctx->height;
  3824. if (avctx->codec_id == CODEC_ID_WMV3)
  3825. {
  3826. int count = 0;
  3827. // looks like WMV3 has a sequence header stored in the extradata
  3828. // advanced sequence header may be before the first frame
  3829. // the last byte of the extradata is a version number, 1 for the
  3830. // samples we can decode
  3831. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  3832. if (decode_sequence_header(avctx, &gb) < 0)
  3833. return -1;
  3834. count = avctx->extradata_size*8 - get_bits_count(&gb);
  3835. if (count>0)
  3836. {
  3837. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  3838. count, get_bits(&gb, count));
  3839. }
  3840. else if (count < 0)
  3841. {
  3842. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  3843. }
  3844. } else { // VC1/WVC1
  3845. uint8_t *start = avctx->extradata, *end = avctx->extradata + avctx->extradata_size;
  3846. uint8_t *next; int size, buf2_size;
  3847. uint8_t *buf2 = NULL;
  3848. int seq_inited = 0, ep_inited = 0;
  3849. if(avctx->extradata_size < 16) {
  3850. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
  3851. return -1;
  3852. }
  3853. buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3854. if(start[0]) start++; // in WVC1 extradata first byte is its size
  3855. next = start;
  3856. for(; next < end; start = next){
  3857. next = find_next_marker(start + 4, end);
  3858. size = next - start - 4;
  3859. if(size <= 0) continue;
  3860. buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
  3861. init_get_bits(&gb, buf2, buf2_size * 8);
  3862. switch(AV_RB32(start)){
  3863. case VC1_CODE_SEQHDR:
  3864. if(decode_sequence_header(avctx, &gb) < 0){
  3865. av_free(buf2);
  3866. return -1;
  3867. }
  3868. seq_inited = 1;
  3869. break;
  3870. case VC1_CODE_ENTRYPOINT:
  3871. if(decode_entry_point(avctx, &gb) < 0){
  3872. av_free(buf2);
  3873. return -1;
  3874. }
  3875. ep_inited = 1;
  3876. break;
  3877. }
  3878. }
  3879. av_free(buf2);
  3880. if(!seq_inited || !ep_inited){
  3881. av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
  3882. return -1;
  3883. }
  3884. }
  3885. avctx->has_b_frames= !!(avctx->max_b_frames);
  3886. s->low_delay = !avctx->has_b_frames;
  3887. s->mb_width = (avctx->coded_width+15)>>4;
  3888. s->mb_height = (avctx->coded_height+15)>>4;
  3889. /* Allocate mb bitplanes */
  3890. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3891. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3892. v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
  3893. v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
  3894. /* allocate block type info in that way so it could be used with s->block_index[] */
  3895. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  3896. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  3897. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  3898. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  3899. /* Init coded blocks info */
  3900. if (v->profile == PROFILE_ADVANCED)
  3901. {
  3902. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  3903. // return -1;
  3904. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  3905. // return -1;
  3906. }
  3907. return 0;
  3908. }
  3909. /** Decode a VC1/WMV3 frame
  3910. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3911. */
  3912. static int vc1_decode_frame(AVCodecContext *avctx,
  3913. void *data, int *data_size,
  3914. uint8_t *buf, int buf_size)
  3915. {
  3916. VC1Context *v = avctx->priv_data;
  3917. MpegEncContext *s = &v->s;
  3918. AVFrame *pict = data;
  3919. uint8_t *buf2 = NULL;
  3920. /* no supplementary picture */
  3921. if (buf_size == 0) {
  3922. /* special case for last picture */
  3923. if (s->low_delay==0 && s->next_picture_ptr) {
  3924. *pict= *(AVFrame*)s->next_picture_ptr;
  3925. s->next_picture_ptr= NULL;
  3926. *data_size = sizeof(AVFrame);
  3927. }
  3928. return 0;
  3929. }
  3930. //we need to set current_picture_ptr before reading the header, otherwise we cant store anyting im there
  3931. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  3932. int i= ff_find_unused_picture(s, 0);
  3933. s->current_picture_ptr= &s->picture[i];
  3934. }
  3935. //for advanced profile we may need to parse and unescape data
  3936. if (avctx->codec_id == CODEC_ID_VC1) {
  3937. int buf_size2 = 0;
  3938. buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3939. if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
  3940. uint8_t *dst = buf2, *start, *end, *next;
  3941. int size;
  3942. next = buf;
  3943. for(start = buf, end = buf + buf_size; next < end; start = next){
  3944. next = find_next_marker(start + 4, end);
  3945. size = next - start - 4;
  3946. if(size <= 0) continue;
  3947. switch(AV_RB32(start)){
  3948. case VC1_CODE_FRAME:
  3949. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3950. break;
  3951. case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
  3952. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3953. init_get_bits(&s->gb, buf2, buf_size2*8);
  3954. decode_entry_point(avctx, &s->gb);
  3955. break;
  3956. case VC1_CODE_SLICE:
  3957. av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n");
  3958. av_free(buf2);
  3959. return -1;
  3960. }
  3961. }
  3962. }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
  3963. uint8_t *divider;
  3964. divider = find_next_marker(buf, buf + buf_size);
  3965. if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
  3966. av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
  3967. return -1;
  3968. }
  3969. buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
  3970. // TODO
  3971. av_free(buf2);return -1;
  3972. }else{
  3973. buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
  3974. }
  3975. init_get_bits(&s->gb, buf2, buf_size2*8);
  3976. } else
  3977. init_get_bits(&s->gb, buf, buf_size*8);
  3978. // do parse frame header
  3979. if(v->profile < PROFILE_ADVANCED) {
  3980. if(vc1_parse_frame_header(v, &s->gb) == -1) {
  3981. av_free(buf2);
  3982. return -1;
  3983. }
  3984. } else {
  3985. if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
  3986. av_free(buf2);
  3987. return -1;
  3988. }
  3989. }
  3990. if(s->pict_type != I_TYPE && !v->res_rtm_flag){
  3991. av_free(buf2);
  3992. return -1;
  3993. }
  3994. // for hurry_up==5
  3995. s->current_picture.pict_type= s->pict_type;
  3996. s->current_picture.key_frame= s->pict_type == I_TYPE;
  3997. /* skip B-frames if we don't have reference frames */
  3998. if(s->last_picture_ptr==NULL && (s->pict_type==B_TYPE || s->dropable)){
  3999. av_free(buf2);
  4000. return -1;//buf_size;
  4001. }
  4002. /* skip b frames if we are in a hurry */
  4003. if(avctx->hurry_up && s->pict_type==B_TYPE) return -1;//buf_size;
  4004. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==B_TYPE)
  4005. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=I_TYPE)
  4006. || avctx->skip_frame >= AVDISCARD_ALL) {
  4007. av_free(buf2);
  4008. return buf_size;
  4009. }
  4010. /* skip everything if we are in a hurry>=5 */
  4011. if(avctx->hurry_up>=5) {
  4012. av_free(buf2);
  4013. return -1;//buf_size;
  4014. }
  4015. if(s->next_p_frame_damaged){
  4016. if(s->pict_type==B_TYPE)
  4017. return buf_size;
  4018. else
  4019. s->next_p_frame_damaged=0;
  4020. }
  4021. if(MPV_frame_start(s, avctx) < 0) {
  4022. av_free(buf2);
  4023. return -1;
  4024. }
  4025. ff_er_frame_start(s);
  4026. v->bits = buf_size * 8;
  4027. vc1_decode_blocks(v);
  4028. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  4029. // if(get_bits_count(&s->gb) > buf_size * 8)
  4030. // return -1;
  4031. ff_er_frame_end(s);
  4032. MPV_frame_end(s);
  4033. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  4034. assert(s->current_picture.pict_type == s->pict_type);
  4035. if (s->pict_type == B_TYPE || s->low_delay) {
  4036. *pict= *(AVFrame*)s->current_picture_ptr;
  4037. } else if (s->last_picture_ptr != NULL) {
  4038. *pict= *(AVFrame*)s->last_picture_ptr;
  4039. }
  4040. if(s->last_picture_ptr || s->low_delay){
  4041. *data_size = sizeof(AVFrame);
  4042. ff_print_debug_info(s, pict);
  4043. }
  4044. /* Return the Picture timestamp as the frame number */
  4045. /* we substract 1 because it is added on utils.c */
  4046. avctx->frame_number = s->picture_number - 1;
  4047. av_free(buf2);
  4048. return buf_size;
  4049. }
  4050. /** Close a VC1/WMV3 decoder
  4051. * @warning Initial try at using MpegEncContext stuff
  4052. */
  4053. static int vc1_decode_end(AVCodecContext *avctx)
  4054. {
  4055. VC1Context *v = avctx->priv_data;
  4056. av_freep(&v->hrd_rate);
  4057. av_freep(&v->hrd_buffer);
  4058. MPV_common_end(&v->s);
  4059. av_freep(&v->mv_type_mb_plane);
  4060. av_freep(&v->direct_mb_plane);
  4061. av_freep(&v->acpred_plane);
  4062. av_freep(&v->over_flags_plane);
  4063. av_freep(&v->mb_type_base);
  4064. return 0;
  4065. }
  4066. AVCodec vc1_decoder = {
  4067. "vc1",
  4068. CODEC_TYPE_VIDEO,
  4069. CODEC_ID_VC1,
  4070. sizeof(VC1Context),
  4071. vc1_decode_init,
  4072. NULL,
  4073. vc1_decode_end,
  4074. vc1_decode_frame,
  4075. CODEC_CAP_DELAY,
  4076. NULL
  4077. };
  4078. AVCodec wmv3_decoder = {
  4079. "wmv3",
  4080. CODEC_TYPE_VIDEO,
  4081. CODEC_ID_WMV3,
  4082. sizeof(VC1Context),
  4083. vc1_decode_init,
  4084. NULL,
  4085. vc1_decode_end,
  4086. vc1_decode_frame,
  4087. CODEC_CAP_DELAY,
  4088. NULL
  4089. };
  4090. #ifdef CONFIG_VC1_PARSER
  4091. /**
  4092. * finds the end of the current frame in the bitstream.
  4093. * @return the position of the first byte of the next frame, or -1
  4094. */
  4095. static int vc1_find_frame_end(ParseContext *pc, const uint8_t *buf,
  4096. int buf_size) {
  4097. int pic_found, i;
  4098. uint32_t state;
  4099. pic_found= pc->frame_start_found;
  4100. state= pc->state;
  4101. i=0;
  4102. if(!pic_found){
  4103. for(i=0; i<buf_size; i++){
  4104. state= (state<<8) | buf[i];
  4105. if(state == VC1_CODE_FRAME || state == VC1_CODE_FIELD){
  4106. i++;
  4107. pic_found=1;
  4108. break;
  4109. }
  4110. }
  4111. }
  4112. if(pic_found){
  4113. /* EOF considered as end of frame */
  4114. if (buf_size == 0)
  4115. return 0;
  4116. for(; i<buf_size; i++){
  4117. state= (state<<8) | buf[i];
  4118. if(IS_MARKER(state) && state != VC1_CODE_FIELD && state != VC1_CODE_SLICE){
  4119. pc->frame_start_found=0;
  4120. pc->state=-1;
  4121. return i-3;
  4122. }
  4123. }
  4124. }
  4125. pc->frame_start_found= pic_found;
  4126. pc->state= state;
  4127. return END_NOT_FOUND;
  4128. }
  4129. static int vc1_parse(AVCodecParserContext *s,
  4130. AVCodecContext *avctx,
  4131. uint8_t **poutbuf, int *poutbuf_size,
  4132. const uint8_t *buf, int buf_size)
  4133. {
  4134. ParseContext *pc = s->priv_data;
  4135. int next;
  4136. if(s->flags & PARSER_FLAG_COMPLETE_FRAMES){
  4137. next= buf_size;
  4138. }else{
  4139. next= vc1_find_frame_end(pc, buf, buf_size);
  4140. if (ff_combine_frame(pc, next, (uint8_t **)&buf, &buf_size) < 0) {
  4141. *poutbuf = NULL;
  4142. *poutbuf_size = 0;
  4143. return buf_size;
  4144. }
  4145. }
  4146. *poutbuf = (uint8_t *)buf;
  4147. *poutbuf_size = buf_size;
  4148. return next;
  4149. }
  4150. int vc1_split(AVCodecContext *avctx,
  4151. const uint8_t *buf, int buf_size)
  4152. {
  4153. int i;
  4154. uint32_t state= -1;
  4155. for(i=0; i<buf_size; i++){
  4156. state= (state<<8) | buf[i];
  4157. if(IS_MARKER(state) && state != VC1_CODE_SEQHDR && state != VC1_CODE_ENTRYPOINT)
  4158. return i-3;
  4159. }
  4160. return 0;
  4161. }
  4162. AVCodecParser vc1_parser = {
  4163. { CODEC_ID_VC1 },
  4164. sizeof(ParseContext1),
  4165. NULL,
  4166. vc1_parse,
  4167. ff_parse1_close,
  4168. vc1_split,
  4169. };
  4170. #endif /* CONFIG_VC1_PARSER */