You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1432 lines
43KB

  1. /*
  2. *
  3. * Copyright (C) 2002 the xine project
  4. * Copyright (C) 2002 the ffmpeg project
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. * (SVQ1 Decoder)
  23. * Ported to mplayer by Arpi <arpi@thot.banki.hu>
  24. * Ported to libavcodec by Nick Kurshev <nickols_k@mail.ru>
  25. *
  26. * SVQ1 Encoder (c) 2004 Mike Melanson <melanson@pcisys.net>
  27. */
  28. /**
  29. * @file svq1.c
  30. * Sorenson Vector Quantizer #1 (SVQ1) video codec.
  31. * For more information of the SVQ1 algorithm, visit:
  32. * http://www.pcisys.net/~melanson/codecs/
  33. */
  34. //#define DEBUG_SVQ1
  35. #include <stdio.h>
  36. #include <stdlib.h>
  37. #include <string.h>
  38. #include <unistd.h>
  39. #include <limits.h>
  40. #include "common.h"
  41. #include "avcodec.h"
  42. #include "dsputil.h"
  43. #include "mpegvideo.h"
  44. #include "bswap.h"
  45. #undef NDEBUG
  46. #include <assert.h>
  47. extern const uint8_t mvtab[33][2];
  48. static VLC svq1_block_type;
  49. static VLC svq1_motion_component;
  50. static VLC svq1_intra_multistage[6];
  51. static VLC svq1_inter_multistage[6];
  52. static VLC svq1_intra_mean;
  53. static VLC svq1_inter_mean;
  54. #define SVQ1_BLOCK_SKIP 0
  55. #define SVQ1_BLOCK_INTER 1
  56. #define SVQ1_BLOCK_INTER_4V 2
  57. #define SVQ1_BLOCK_INTRA 3
  58. typedef struct SVQ1Context {
  59. MpegEncContext m; // needed for motion estimation, should not be used for anything else, the idea is to make the motion estimation eventually independent of MpegEncContext, so this will be removed then (FIXME/XXX)
  60. AVCodecContext *avctx;
  61. DSPContext dsp;
  62. AVFrame picture;
  63. AVFrame current_picture;
  64. AVFrame last_picture;
  65. PutBitContext pb;
  66. GetBitContext gb;
  67. PutBitContext reorder_pb[6]; //why ooh why this sick breadth first order, everything is slower and more complex
  68. int frame_width;
  69. int frame_height;
  70. /* Y plane block dimensions */
  71. int y_block_width;
  72. int y_block_height;
  73. /* U & V plane (C planes) block dimensions */
  74. int c_block_width;
  75. int c_block_height;
  76. uint16_t *mb_type;
  77. uint32_t *dummy;
  78. int16_t (*motion_val8[3])[2];
  79. int16_t (*motion_val16[3])[2];
  80. int64_t rd_total;
  81. } SVQ1Context;
  82. /* motion vector (prediction) */
  83. typedef struct svq1_pmv_s {
  84. int x;
  85. int y;
  86. } svq1_pmv_t;
  87. #include "svq1_cb.h"
  88. #include "svq1_vlc.h"
  89. static const uint16_t checksum_table[256] = {
  90. 0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50A5, 0x60C6, 0x70E7,
  91. 0x8108, 0x9129, 0xA14A, 0xB16B, 0xC18C, 0xD1AD, 0xE1CE, 0xF1EF,
  92. 0x1231, 0x0210, 0x3273, 0x2252, 0x52B5, 0x4294, 0x72F7, 0x62D6,
  93. 0x9339, 0x8318, 0xB37B, 0xA35A, 0xD3BD, 0xC39C, 0xF3FF, 0xE3DE,
  94. 0x2462, 0x3443, 0x0420, 0x1401, 0x64E6, 0x74C7, 0x44A4, 0x5485,
  95. 0xA56A, 0xB54B, 0x8528, 0x9509, 0xE5EE, 0xF5CF, 0xC5AC, 0xD58D,
  96. 0x3653, 0x2672, 0x1611, 0x0630, 0x76D7, 0x66F6, 0x5695, 0x46B4,
  97. 0xB75B, 0xA77A, 0x9719, 0x8738, 0xF7DF, 0xE7FE, 0xD79D, 0xC7BC,
  98. 0x48C4, 0x58E5, 0x6886, 0x78A7, 0x0840, 0x1861, 0x2802, 0x3823,
  99. 0xC9CC, 0xD9ED, 0xE98E, 0xF9AF, 0x8948, 0x9969, 0xA90A, 0xB92B,
  100. 0x5AF5, 0x4AD4, 0x7AB7, 0x6A96, 0x1A71, 0x0A50, 0x3A33, 0x2A12,
  101. 0xDBFD, 0xCBDC, 0xFBBF, 0xEB9E, 0x9B79, 0x8B58, 0xBB3B, 0xAB1A,
  102. 0x6CA6, 0x7C87, 0x4CE4, 0x5CC5, 0x2C22, 0x3C03, 0x0C60, 0x1C41,
  103. 0xEDAE, 0xFD8F, 0xCDEC, 0xDDCD, 0xAD2A, 0xBD0B, 0x8D68, 0x9D49,
  104. 0x7E97, 0x6EB6, 0x5ED5, 0x4EF4, 0x3E13, 0x2E32, 0x1E51, 0x0E70,
  105. 0xFF9F, 0xEFBE, 0xDFDD, 0xCFFC, 0xBF1B, 0xAF3A, 0x9F59, 0x8F78,
  106. 0x9188, 0x81A9, 0xB1CA, 0xA1EB, 0xD10C, 0xC12D, 0xF14E, 0xE16F,
  107. 0x1080, 0x00A1, 0x30C2, 0x20E3, 0x5004, 0x4025, 0x7046, 0x6067,
  108. 0x83B9, 0x9398, 0xA3FB, 0xB3DA, 0xC33D, 0xD31C, 0xE37F, 0xF35E,
  109. 0x02B1, 0x1290, 0x22F3, 0x32D2, 0x4235, 0x5214, 0x6277, 0x7256,
  110. 0xB5EA, 0xA5CB, 0x95A8, 0x8589, 0xF56E, 0xE54F, 0xD52C, 0xC50D,
  111. 0x34E2, 0x24C3, 0x14A0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
  112. 0xA7DB, 0xB7FA, 0x8799, 0x97B8, 0xE75F, 0xF77E, 0xC71D, 0xD73C,
  113. 0x26D3, 0x36F2, 0x0691, 0x16B0, 0x6657, 0x7676, 0x4615, 0x5634,
  114. 0xD94C, 0xC96D, 0xF90E, 0xE92F, 0x99C8, 0x89E9, 0xB98A, 0xA9AB,
  115. 0x5844, 0x4865, 0x7806, 0x6827, 0x18C0, 0x08E1, 0x3882, 0x28A3,
  116. 0xCB7D, 0xDB5C, 0xEB3F, 0xFB1E, 0x8BF9, 0x9BD8, 0xABBB, 0xBB9A,
  117. 0x4A75, 0x5A54, 0x6A37, 0x7A16, 0x0AF1, 0x1AD0, 0x2AB3, 0x3A92,
  118. 0xFD2E, 0xED0F, 0xDD6C, 0xCD4D, 0xBDAA, 0xAD8B, 0x9DE8, 0x8DC9,
  119. 0x7C26, 0x6C07, 0x5C64, 0x4C45, 0x3CA2, 0x2C83, 0x1CE0, 0x0CC1,
  120. 0xEF1F, 0xFF3E, 0xCF5D, 0xDF7C, 0xAF9B, 0xBFBA, 0x8FD9, 0x9FF8,
  121. 0x6E17, 0x7E36, 0x4E55, 0x5E74, 0x2E93, 0x3EB2, 0x0ED1, 0x1EF0
  122. };
  123. static const uint8_t string_table[256] = {
  124. 0x00, 0xD5, 0x7F, 0xAA, 0xFE, 0x2B, 0x81, 0x54,
  125. 0x29, 0xFC, 0x56, 0x83, 0xD7, 0x02, 0xA8, 0x7D,
  126. 0x52, 0x87, 0x2D, 0xF8, 0xAC, 0x79, 0xD3, 0x06,
  127. 0x7B, 0xAE, 0x04, 0xD1, 0x85, 0x50, 0xFA, 0x2F,
  128. 0xA4, 0x71, 0xDB, 0x0E, 0x5A, 0x8F, 0x25, 0xF0,
  129. 0x8D, 0x58, 0xF2, 0x27, 0x73, 0xA6, 0x0C, 0xD9,
  130. 0xF6, 0x23, 0x89, 0x5C, 0x08, 0xDD, 0x77, 0xA2,
  131. 0xDF, 0x0A, 0xA0, 0x75, 0x21, 0xF4, 0x5E, 0x8B,
  132. 0x9D, 0x48, 0xE2, 0x37, 0x63, 0xB6, 0x1C, 0xC9,
  133. 0xB4, 0x61, 0xCB, 0x1E, 0x4A, 0x9F, 0x35, 0xE0,
  134. 0xCF, 0x1A, 0xB0, 0x65, 0x31, 0xE4, 0x4E, 0x9B,
  135. 0xE6, 0x33, 0x99, 0x4C, 0x18, 0xCD, 0x67, 0xB2,
  136. 0x39, 0xEC, 0x46, 0x93, 0xC7, 0x12, 0xB8, 0x6D,
  137. 0x10, 0xC5, 0x6F, 0xBA, 0xEE, 0x3B, 0x91, 0x44,
  138. 0x6B, 0xBE, 0x14, 0xC1, 0x95, 0x40, 0xEA, 0x3F,
  139. 0x42, 0x97, 0x3D, 0xE8, 0xBC, 0x69, 0xC3, 0x16,
  140. 0xEF, 0x3A, 0x90, 0x45, 0x11, 0xC4, 0x6E, 0xBB,
  141. 0xC6, 0x13, 0xB9, 0x6C, 0x38, 0xED, 0x47, 0x92,
  142. 0xBD, 0x68, 0xC2, 0x17, 0x43, 0x96, 0x3C, 0xE9,
  143. 0x94, 0x41, 0xEB, 0x3E, 0x6A, 0xBF, 0x15, 0xC0,
  144. 0x4B, 0x9E, 0x34, 0xE1, 0xB5, 0x60, 0xCA, 0x1F,
  145. 0x62, 0xB7, 0x1D, 0xC8, 0x9C, 0x49, 0xE3, 0x36,
  146. 0x19, 0xCC, 0x66, 0xB3, 0xE7, 0x32, 0x98, 0x4D,
  147. 0x30, 0xE5, 0x4F, 0x9A, 0xCE, 0x1B, 0xB1, 0x64,
  148. 0x72, 0xA7, 0x0D, 0xD8, 0x8C, 0x59, 0xF3, 0x26,
  149. 0x5B, 0x8E, 0x24, 0xF1, 0xA5, 0x70, 0xDA, 0x0F,
  150. 0x20, 0xF5, 0x5F, 0x8A, 0xDE, 0x0B, 0xA1, 0x74,
  151. 0x09, 0xDC, 0x76, 0xA3, 0xF7, 0x22, 0x88, 0x5D,
  152. 0xD6, 0x03, 0xA9, 0x7C, 0x28, 0xFD, 0x57, 0x82,
  153. 0xFF, 0x2A, 0x80, 0x55, 0x01, 0xD4, 0x7E, 0xAB,
  154. 0x84, 0x51, 0xFB, 0x2E, 0x7A, 0xAF, 0x05, 0xD0,
  155. 0xAD, 0x78, 0xD2, 0x07, 0x53, 0x86, 0x2C, 0xF9
  156. };
  157. #define SVQ1_PROCESS_VECTOR()\
  158. for (; level > 0; i++) {\
  159. /* process next depth */\
  160. if (i == m) {\
  161. m = n;\
  162. if (--level == 0)\
  163. break;\
  164. }\
  165. /* divide block if next bit set */\
  166. if (get_bits (bitbuf, 1) == 0)\
  167. break;\
  168. /* add child nodes */\
  169. list[n++] = list[i];\
  170. list[n++] = list[i] + (((level & 1) ? pitch : 1) << ((level / 2) + 1));\
  171. }
  172. #define SVQ1_ADD_CODEBOOK()\
  173. /* add codebook entries to vector */\
  174. for (j=0; j < stages; j++) {\
  175. n3 = codebook[entries[j]] ^ 0x80808080;\
  176. n1 += ((n3 & 0xFF00FF00) >> 8);\
  177. n2 += (n3 & 0x00FF00FF);\
  178. }\
  179. \
  180. /* clip to [0..255] */\
  181. if (n1 & 0xFF00FF00) {\
  182. n3 = ((( n1 >> 15) & 0x00010001) | 0x01000100) - 0x00010001;\
  183. n1 += 0x7F007F00;\
  184. n1 |= (((~n1 >> 15) & 0x00010001) | 0x01000100) - 0x00010001;\
  185. n1 &= (n3 & 0x00FF00FF);\
  186. }\
  187. \
  188. if (n2 & 0xFF00FF00) {\
  189. n3 = ((( n2 >> 15) & 0x00010001) | 0x01000100) - 0x00010001;\
  190. n2 += 0x7F007F00;\
  191. n2 |= (((~n2 >> 15) & 0x00010001) | 0x01000100) - 0x00010001;\
  192. n2 &= (n3 & 0x00FF00FF);\
  193. }
  194. #define SVQ1_DO_CODEBOOK_INTRA()\
  195. for (y=0; y < height; y++) {\
  196. for (x=0; x < (width / 4); x++, codebook++) {\
  197. n1 = n4;\
  198. n2 = n4;\
  199. SVQ1_ADD_CODEBOOK()\
  200. /* store result */\
  201. dst[x] = (n1 << 8) | n2;\
  202. }\
  203. dst += (pitch / 4);\
  204. }
  205. #define SVQ1_DO_CODEBOOK_NONINTRA()\
  206. for (y=0; y < height; y++) {\
  207. for (x=0; x < (width / 4); x++, codebook++) {\
  208. n3 = dst[x];\
  209. /* add mean value to vector */\
  210. n1 = ((n3 & 0xFF00FF00) >> 8) + n4;\
  211. n2 = (n3 & 0x00FF00FF) + n4;\
  212. SVQ1_ADD_CODEBOOK()\
  213. /* store result */\
  214. dst[x] = (n1 << 8) | n2;\
  215. }\
  216. dst += (pitch / 4);\
  217. }
  218. #define SVQ1_CALC_CODEBOOK_ENTRIES(cbook)\
  219. codebook = (const uint32_t *) cbook[level];\
  220. bit_cache = get_bits (bitbuf, 4*stages);\
  221. /* calculate codebook entries for this vector */\
  222. for (j=0; j < stages; j++) {\
  223. entries[j] = (((bit_cache >> (4*(stages - j - 1))) & 0xF) + 16*j) << (level + 1);\
  224. }\
  225. mean -= (stages * 128);\
  226. n4 = ((mean + (mean >> 31)) << 16) | (mean & 0xFFFF);
  227. static int svq1_decode_block_intra (GetBitContext *bitbuf, uint8_t *pixels, int pitch ) {
  228. uint32_t bit_cache;
  229. uint8_t *list[63];
  230. uint32_t *dst;
  231. const uint32_t *codebook;
  232. int entries[6];
  233. int i, j, m, n;
  234. int mean, stages;
  235. unsigned x, y, width, height, level;
  236. uint32_t n1, n2, n3, n4;
  237. /* initialize list for breadth first processing of vectors */
  238. list[0] = pixels;
  239. /* recursively process vector */
  240. for (i=0, m=1, n=1, level=5; i < n; i++) {
  241. SVQ1_PROCESS_VECTOR();
  242. /* destination address and vector size */
  243. dst = (uint32_t *) list[i];
  244. width = 1 << ((4 + level) /2);
  245. height = 1 << ((3 + level) /2);
  246. /* get number of stages (-1 skips vector, 0 for mean only) */
  247. stages = get_vlc2(bitbuf, svq1_intra_multistage[level].table, 3, 3) - 1;
  248. if (stages == -1) {
  249. for (y=0; y < height; y++) {
  250. memset (&dst[y*(pitch / 4)], 0, width);
  251. }
  252. continue; /* skip vector */
  253. }
  254. if ((stages > 0) && (level >= 4)) {
  255. #ifdef DEBUG_SVQ1
  256. av_log(s->avctx, AV_LOG_INFO, "Error (svq1_decode_block_intra): invalid vector: stages=%i level=%i\n",stages,level);
  257. #endif
  258. return -1; /* invalid vector */
  259. }
  260. mean = get_vlc2(bitbuf, svq1_intra_mean.table, 8, 3);
  261. if (stages == 0) {
  262. for (y=0; y < height; y++) {
  263. memset (&dst[y*(pitch / 4)], mean, width);
  264. }
  265. } else {
  266. SVQ1_CALC_CODEBOOK_ENTRIES(svq1_intra_codebooks);
  267. SVQ1_DO_CODEBOOK_INTRA()
  268. }
  269. }
  270. return 0;
  271. }
  272. static int svq1_decode_block_non_intra (GetBitContext *bitbuf, uint8_t *pixels, int pitch ) {
  273. uint32_t bit_cache;
  274. uint8_t *list[63];
  275. uint32_t *dst;
  276. const uint32_t *codebook;
  277. int entries[6];
  278. int i, j, m, n;
  279. int mean, stages;
  280. int x, y, width, height, level;
  281. uint32_t n1, n2, n3, n4;
  282. /* initialize list for breadth first processing of vectors */
  283. list[0] = pixels;
  284. /* recursively process vector */
  285. for (i=0, m=1, n=1, level=5; i < n; i++) {
  286. SVQ1_PROCESS_VECTOR();
  287. /* destination address and vector size */
  288. dst = (uint32_t *) list[i];
  289. width = 1 << ((4 + level) /2);
  290. height = 1 << ((3 + level) /2);
  291. /* get number of stages (-1 skips vector, 0 for mean only) */
  292. stages = get_vlc2(bitbuf, svq1_inter_multistage[level].table, 3, 2) - 1;
  293. if (stages == -1) continue; /* skip vector */
  294. if ((stages > 0) && (level >= 4)) {
  295. #ifdef DEBUG_SVQ1
  296. av_log(s->avctx, AV_LOG_INFO, "Error (svq1_decode_block_non_intra): invalid vector: stages=%i level=%i\n",stages,level);
  297. #endif
  298. return -1; /* invalid vector */
  299. }
  300. mean = get_vlc2(bitbuf, svq1_inter_mean.table, 9, 3) - 256;
  301. SVQ1_CALC_CODEBOOK_ENTRIES(svq1_inter_codebooks);
  302. SVQ1_DO_CODEBOOK_NONINTRA()
  303. }
  304. return 0;
  305. }
  306. static int svq1_decode_motion_vector (GetBitContext *bitbuf, svq1_pmv_t *mv, svq1_pmv_t **pmv) {
  307. int diff;
  308. int i;
  309. for (i=0; i < 2; i++) {
  310. /* get motion code */
  311. diff = get_vlc2(bitbuf, svq1_motion_component.table, 7, 2);
  312. if(diff<0)
  313. return -1;
  314. else if(diff){
  315. if(get_bits1(bitbuf)) diff= -diff;
  316. }
  317. /* add median of motion vector predictors and clip result */
  318. if (i == 1)
  319. mv->y = ((diff + mid_pred(pmv[0]->y, pmv[1]->y, pmv[2]->y)) << 26) >> 26;
  320. else
  321. mv->x = ((diff + mid_pred(pmv[0]->x, pmv[1]->x, pmv[2]->x)) << 26) >> 26;
  322. }
  323. return 0;
  324. }
  325. static void svq1_skip_block (uint8_t *current, uint8_t *previous, int pitch, int x, int y) {
  326. uint8_t *src;
  327. uint8_t *dst;
  328. int i;
  329. src = &previous[x + y*pitch];
  330. dst = current;
  331. for (i=0; i < 16; i++) {
  332. memcpy (dst, src, 16);
  333. src += pitch;
  334. dst += pitch;
  335. }
  336. }
  337. static int svq1_motion_inter_block (MpegEncContext *s, GetBitContext *bitbuf,
  338. uint8_t *current, uint8_t *previous, int pitch,
  339. svq1_pmv_t *motion, int x, int y) {
  340. uint8_t *src;
  341. uint8_t *dst;
  342. svq1_pmv_t mv;
  343. svq1_pmv_t *pmv[3];
  344. int result;
  345. /* predict and decode motion vector */
  346. pmv[0] = &motion[0];
  347. if (y == 0) {
  348. pmv[1] =
  349. pmv[2] = pmv[0];
  350. }
  351. else {
  352. pmv[1] = &motion[(x / 8) + 2];
  353. pmv[2] = &motion[(x / 8) + 4];
  354. }
  355. result = svq1_decode_motion_vector (bitbuf, &mv, pmv);
  356. if (result != 0)
  357. return result;
  358. motion[0].x =
  359. motion[(x / 8) + 2].x =
  360. motion[(x / 8) + 3].x = mv.x;
  361. motion[0].y =
  362. motion[(x / 8) + 2].y =
  363. motion[(x / 8) + 3].y = mv.y;
  364. if(y + (mv.y >> 1)<0)
  365. mv.y= 0;
  366. if(x + (mv.x >> 1)<0)
  367. mv.x= 0;
  368. #if 0
  369. int w= (s->width+15)&~15;
  370. int h= (s->height+15)&~15;
  371. if(x + (mv.x >> 1)<0 || y + (mv.y >> 1)<0 || x + (mv.x >> 1) + 16 > w || y + (mv.y >> 1) + 16> h)
  372. av_log(s->avctx, AV_LOG_INFO, "%d %d %d %d\n", x, y, x + (mv.x >> 1), y + (mv.y >> 1));
  373. #endif
  374. src = &previous[(x + (mv.x >> 1)) + (y + (mv.y >> 1))*pitch];
  375. dst = current;
  376. s->dsp.put_pixels_tab[0][((mv.y & 1) << 1) | (mv.x & 1)](dst,src,pitch,16);
  377. return 0;
  378. }
  379. static int svq1_motion_inter_4v_block (MpegEncContext *s, GetBitContext *bitbuf,
  380. uint8_t *current, uint8_t *previous, int pitch,
  381. svq1_pmv_t *motion,int x, int y) {
  382. uint8_t *src;
  383. uint8_t *dst;
  384. svq1_pmv_t mv;
  385. svq1_pmv_t *pmv[4];
  386. int i, result;
  387. /* predict and decode motion vector (0) */
  388. pmv[0] = &motion[0];
  389. if (y == 0) {
  390. pmv[1] =
  391. pmv[2] = pmv[0];
  392. }
  393. else {
  394. pmv[1] = &motion[(x / 8) + 2];
  395. pmv[2] = &motion[(x / 8) + 4];
  396. }
  397. result = svq1_decode_motion_vector (bitbuf, &mv, pmv);
  398. if (result != 0)
  399. return result;
  400. /* predict and decode motion vector (1) */
  401. pmv[0] = &mv;
  402. if (y == 0) {
  403. pmv[1] =
  404. pmv[2] = pmv[0];
  405. }
  406. else {
  407. pmv[1] = &motion[(x / 8) + 3];
  408. }
  409. result = svq1_decode_motion_vector (bitbuf, &motion[0], pmv);
  410. if (result != 0)
  411. return result;
  412. /* predict and decode motion vector (2) */
  413. pmv[1] = &motion[0];
  414. pmv[2] = &motion[(x / 8) + 1];
  415. result = svq1_decode_motion_vector (bitbuf, &motion[(x / 8) + 2], pmv);
  416. if (result != 0)
  417. return result;
  418. /* predict and decode motion vector (3) */
  419. pmv[2] = &motion[(x / 8) + 2];
  420. pmv[3] = &motion[(x / 8) + 3];
  421. result = svq1_decode_motion_vector (bitbuf, pmv[3], pmv);
  422. if (result != 0)
  423. return result;
  424. /* form predictions */
  425. for (i=0; i < 4; i++) {
  426. int mvx= pmv[i]->x + (i&1)*16;
  427. int mvy= pmv[i]->y + (i>>1)*16;
  428. ///XXX /FIXME cliping or padding?
  429. if(y + (mvy >> 1)<0)
  430. mvy= 0;
  431. if(x + (mvx >> 1)<0)
  432. mvx= 0;
  433. #if 0
  434. int w= (s->width+15)&~15;
  435. int h= (s->height+15)&~15;
  436. if(x + (mvx >> 1)<0 || y + (mvy >> 1)<0 || x + (mvx >> 1) + 8 > w || y + (mvy >> 1) + 8> h)
  437. av_log(s->avctx, AV_LOG_INFO, "%d %d %d %d\n", x, y, x + (mvx >> 1), y + (mvy >> 1));
  438. #endif
  439. src = &previous[(x + (mvx >> 1)) + (y + (mvy >> 1))*pitch];
  440. dst = current;
  441. s->dsp.put_pixels_tab[1][((mvy & 1) << 1) | (mvx & 1)](dst,src,pitch,8);
  442. /* select next block */
  443. if (i & 1) {
  444. current += 8*(pitch - 1);
  445. } else {
  446. current += 8;
  447. }
  448. }
  449. return 0;
  450. }
  451. static int svq1_decode_delta_block (MpegEncContext *s, GetBitContext *bitbuf,
  452. uint8_t *current, uint8_t *previous, int pitch,
  453. svq1_pmv_t *motion, int x, int y) {
  454. uint32_t block_type;
  455. int result = 0;
  456. /* get block type */
  457. block_type = get_vlc2(bitbuf, svq1_block_type.table, 2, 2);
  458. /* reset motion vectors */
  459. if (block_type == SVQ1_BLOCK_SKIP || block_type == SVQ1_BLOCK_INTRA) {
  460. motion[0].x =
  461. motion[0].y =
  462. motion[(x / 8) + 2].x =
  463. motion[(x / 8) + 2].y =
  464. motion[(x / 8) + 3].x =
  465. motion[(x / 8) + 3].y = 0;
  466. }
  467. switch (block_type) {
  468. case SVQ1_BLOCK_SKIP:
  469. svq1_skip_block (current, previous, pitch, x, y);
  470. break;
  471. case SVQ1_BLOCK_INTER:
  472. result = svq1_motion_inter_block (s, bitbuf, current, previous, pitch, motion, x, y);
  473. if (result != 0)
  474. {
  475. #ifdef DEBUG_SVQ1
  476. av_log(s->avctx, AV_LOG_INFO, "Error in svq1_motion_inter_block %i\n",result);
  477. #endif
  478. break;
  479. }
  480. result = svq1_decode_block_non_intra (bitbuf, current, pitch);
  481. break;
  482. case SVQ1_BLOCK_INTER_4V:
  483. result = svq1_motion_inter_4v_block (s, bitbuf, current, previous, pitch, motion, x, y);
  484. if (result != 0)
  485. {
  486. #ifdef DEBUG_SVQ1
  487. av_log(s->avctx, AV_LOG_INFO, "Error in svq1_motion_inter_4v_block %i\n",result);
  488. #endif
  489. break;
  490. }
  491. result = svq1_decode_block_non_intra (bitbuf, current, pitch);
  492. break;
  493. case SVQ1_BLOCK_INTRA:
  494. result = svq1_decode_block_intra (bitbuf, current, pitch);
  495. break;
  496. }
  497. return result;
  498. }
  499. /* standard video sizes */
  500. static struct { int width; int height; } svq1_frame_size_table[8] = {
  501. { 160, 120 }, { 128, 96 }, { 176, 144 }, { 352, 288 },
  502. { 704, 576 }, { 240, 180 }, { 320, 240 }, { -1, -1 }
  503. };
  504. static uint16_t svq1_packet_checksum (uint8_t *data, int length, int value) {
  505. int i;
  506. for (i=0; i < length; i++) {
  507. value = checksum_table[data[i] ^ (value >> 8)] ^ ((value & 0xFF) << 8);
  508. }
  509. return value;
  510. }
  511. #if 0 /* unused, remove? */
  512. static uint16_t svq1_component_checksum (uint16_t *pixels, int pitch,
  513. int width, int height, int value) {
  514. int x, y;
  515. for (y=0; y < height; y++) {
  516. for (x=0; x < width; x++) {
  517. value = checksum_table[pixels[x] ^ (value >> 8)] ^ ((value & 0xFF) << 8);
  518. }
  519. pixels += pitch;
  520. }
  521. return value;
  522. }
  523. #endif
  524. #ifdef CONFIG_DECODERS
  525. static void svq1_parse_string (GetBitContext *bitbuf, uint8_t *out) {
  526. uint8_t seed;
  527. int i;
  528. out[0] = get_bits (bitbuf, 8);
  529. seed = string_table[out[0]];
  530. for (i=1; i <= out[0]; i++) {
  531. out[i] = get_bits (bitbuf, 8) ^ seed;
  532. seed = string_table[out[i] ^ seed];
  533. }
  534. }
  535. static int svq1_decode_frame_header (GetBitContext *bitbuf,MpegEncContext *s) {
  536. int frame_size_code;
  537. int temporal_reference;
  538. temporal_reference = get_bits (bitbuf, 8);
  539. /* frame type */
  540. s->pict_type= get_bits (bitbuf, 2)+1;
  541. if(s->pict_type==4)
  542. return -1;
  543. if (s->pict_type == I_TYPE) {
  544. /* unknown fields */
  545. if (s->f_code == 0x50 || s->f_code == 0x60) {
  546. int csum = get_bits (bitbuf, 16);
  547. csum = svq1_packet_checksum ((uint8_t *)bitbuf->buffer, bitbuf->size_in_bits>>3, csum);
  548. // av_log(s->avctx, AV_LOG_INFO, "%s checksum (%02x) for packet data\n",
  549. // (csum == 0) ? "correct" : "incorrect", csum);
  550. }
  551. if ((s->f_code ^ 0x10) >= 0x50) {
  552. uint8_t msg[256];
  553. svq1_parse_string (bitbuf, msg);
  554. av_log(s->avctx, AV_LOG_INFO, "embedded message: \"%s\"\n", (char *) msg);
  555. }
  556. skip_bits (bitbuf, 2);
  557. skip_bits (bitbuf, 2);
  558. skip_bits1 (bitbuf);
  559. /* load frame size */
  560. frame_size_code = get_bits (bitbuf, 3);
  561. if (frame_size_code == 7) {
  562. /* load width, height (12 bits each) */
  563. s->width = get_bits (bitbuf, 12);
  564. s->height = get_bits (bitbuf, 12);
  565. if (!s->width || !s->height)
  566. return -1;
  567. } else {
  568. /* get width, height from table */
  569. s->width = svq1_frame_size_table[frame_size_code].width;
  570. s->height = svq1_frame_size_table[frame_size_code].height;
  571. }
  572. }
  573. /* unknown fields */
  574. if (get_bits (bitbuf, 1) == 1) {
  575. skip_bits1 (bitbuf); /* use packet checksum if (1) */
  576. skip_bits1 (bitbuf); /* component checksums after image data if (1) */
  577. if (get_bits (bitbuf, 2) != 0)
  578. return -1;
  579. }
  580. if (get_bits (bitbuf, 1) == 1) {
  581. skip_bits1 (bitbuf);
  582. skip_bits (bitbuf, 4);
  583. skip_bits1 (bitbuf);
  584. skip_bits (bitbuf, 2);
  585. while (get_bits (bitbuf, 1) == 1) {
  586. skip_bits (bitbuf, 8);
  587. }
  588. }
  589. return 0;
  590. }
  591. static int svq1_decode_frame(AVCodecContext *avctx,
  592. void *data, int *data_size,
  593. uint8_t *buf, int buf_size)
  594. {
  595. MpegEncContext *s=avctx->priv_data;
  596. uint8_t *current, *previous;
  597. int result, i, x, y, width, height;
  598. AVFrame *pict = data;
  599. /* initialize bit buffer */
  600. init_get_bits(&s->gb,buf,buf_size*8);
  601. /* decode frame header */
  602. s->f_code = get_bits (&s->gb, 22);
  603. if ((s->f_code & ~0x70) || !(s->f_code & 0x60))
  604. return -1;
  605. /* swap some header bytes (why?) */
  606. if (s->f_code != 0x20) {
  607. uint32_t *src = (uint32_t *) (buf + 4);
  608. for (i=0; i < 4; i++) {
  609. src[i] = ((src[i] << 16) | (src[i] >> 16)) ^ src[7 - i];
  610. }
  611. }
  612. result = svq1_decode_frame_header (&s->gb, s);
  613. if (result != 0)
  614. {
  615. #ifdef DEBUG_SVQ1
  616. av_log(s->avctx, AV_LOG_INFO, "Error in svq1_decode_frame_header %i\n",result);
  617. #endif
  618. return result;
  619. }
  620. //FIXME this avoids some confusion for "B frames" without 2 references
  621. //this should be removed after libavcodec can handle more flexible picture types & ordering
  622. if(s->pict_type==B_TYPE && s->last_picture_ptr==NULL) return buf_size;
  623. if(avctx->hurry_up && s->pict_type==B_TYPE) return buf_size;
  624. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==B_TYPE)
  625. ||(avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=I_TYPE)
  626. || avctx->skip_frame >= AVDISCARD_ALL)
  627. return buf_size;
  628. if(MPV_frame_start(s, avctx) < 0)
  629. return -1;
  630. /* decode y, u and v components */
  631. for (i=0; i < 3; i++) {
  632. int linesize;
  633. if (i == 0) {
  634. width = (s->width+15)&~15;
  635. height = (s->height+15)&~15;
  636. linesize= s->linesize;
  637. } else {
  638. if(s->flags&CODEC_FLAG_GRAY) break;
  639. width = (s->width/4+15)&~15;
  640. height = (s->height/4+15)&~15;
  641. linesize= s->uvlinesize;
  642. }
  643. current = s->current_picture.data[i];
  644. if(s->pict_type==B_TYPE){
  645. previous = s->next_picture.data[i];
  646. }else{
  647. previous = s->last_picture.data[i];
  648. }
  649. if (s->pict_type == I_TYPE) {
  650. /* keyframe */
  651. for (y=0; y < height; y+=16) {
  652. for (x=0; x < width; x+=16) {
  653. result = svq1_decode_block_intra (&s->gb, &current[x], linesize);
  654. if (result != 0)
  655. {
  656. //#ifdef DEBUG_SVQ1
  657. av_log(s->avctx, AV_LOG_INFO, "Error in svq1_decode_block %i (keyframe)\n",result);
  658. //#endif
  659. return result;
  660. }
  661. }
  662. current += 16*linesize;
  663. }
  664. } else {
  665. svq1_pmv_t pmv[width/8+3];
  666. /* delta frame */
  667. memset (pmv, 0, ((width / 8) + 3) * sizeof(svq1_pmv_t));
  668. for (y=0; y < height; y+=16) {
  669. for (x=0; x < width; x+=16) {
  670. result = svq1_decode_delta_block (s, &s->gb, &current[x], previous,
  671. linesize, pmv, x, y);
  672. if (result != 0)
  673. {
  674. #ifdef DEBUG_SVQ1
  675. av_log(s->avctx, AV_LOG_INFO, "Error in svq1_decode_delta_block %i\n",result);
  676. #endif
  677. return result;
  678. }
  679. }
  680. pmv[0].x =
  681. pmv[0].y = 0;
  682. current += 16*linesize;
  683. }
  684. }
  685. }
  686. *pict = *(AVFrame*)&s->current_picture;
  687. MPV_frame_end(s);
  688. *data_size=sizeof(AVFrame);
  689. return buf_size;
  690. }
  691. static int svq1_decode_init(AVCodecContext *avctx)
  692. {
  693. MpegEncContext *s = avctx->priv_data;
  694. int i;
  695. MPV_decode_defaults(s);
  696. s->avctx = avctx;
  697. s->width = (avctx->width+3)&~3;
  698. s->height = (avctx->height+3)&~3;
  699. s->codec_id= avctx->codec->id;
  700. avctx->pix_fmt = PIX_FMT_YUV410P;
  701. avctx->has_b_frames= 1; // not true, but DP frames and these behave like unidirectional b frames
  702. s->flags= avctx->flags;
  703. if (MPV_common_init(s) < 0) return -1;
  704. init_vlc(&svq1_block_type, 2, 4,
  705. &svq1_block_type_vlc[0][1], 2, 1,
  706. &svq1_block_type_vlc[0][0], 2, 1, 1);
  707. init_vlc(&svq1_motion_component, 7, 33,
  708. &mvtab[0][1], 2, 1,
  709. &mvtab[0][0], 2, 1, 1);
  710. for (i = 0; i < 6; i++) {
  711. init_vlc(&svq1_intra_multistage[i], 3, 8,
  712. &svq1_intra_multistage_vlc[i][0][1], 2, 1,
  713. &svq1_intra_multistage_vlc[i][0][0], 2, 1, 1);
  714. init_vlc(&svq1_inter_multistage[i], 3, 8,
  715. &svq1_inter_multistage_vlc[i][0][1], 2, 1,
  716. &svq1_inter_multistage_vlc[i][0][0], 2, 1, 1);
  717. }
  718. init_vlc(&svq1_intra_mean, 8, 256,
  719. &svq1_intra_mean_vlc[0][1], 4, 2,
  720. &svq1_intra_mean_vlc[0][0], 4, 2, 1);
  721. init_vlc(&svq1_inter_mean, 9, 512,
  722. &svq1_inter_mean_vlc[0][1], 4, 2,
  723. &svq1_inter_mean_vlc[0][0], 4, 2, 1);
  724. return 0;
  725. }
  726. static int svq1_decode_end(AVCodecContext *avctx)
  727. {
  728. MpegEncContext *s = avctx->priv_data;
  729. MPV_common_end(s);
  730. return 0;
  731. }
  732. #endif /* CONFIG_DECODERS */
  733. #ifdef CONFIG_ENCODERS
  734. static void svq1_write_header(SVQ1Context *s, int frame_type)
  735. {
  736. int i;
  737. /* frame code */
  738. put_bits(&s->pb, 22, 0x20);
  739. /* temporal reference (sure hope this is a "don't care") */
  740. put_bits(&s->pb, 8, 0x00);
  741. /* frame type */
  742. put_bits(&s->pb, 2, frame_type - 1);
  743. if (frame_type == I_TYPE) {
  744. /* no checksum since frame code is 0x20 */
  745. /* no embedded string either */
  746. /* output 5 unknown bits (2 + 2 + 1) */
  747. put_bits(&s->pb, 5, 2); /* 2 needed by quicktime decoder */
  748. for (i = 0; i < 7; i++)
  749. {
  750. if ((svq1_frame_size_table[i].width == s->frame_width) &&
  751. (svq1_frame_size_table[i].height == s->frame_height))
  752. {
  753. put_bits(&s->pb, 3, i);
  754. break;
  755. }
  756. }
  757. if (i == 7)
  758. {
  759. put_bits(&s->pb, 3, 7);
  760. put_bits(&s->pb, 12, s->frame_width);
  761. put_bits(&s->pb, 12, s->frame_height);
  762. }
  763. }
  764. /* no checksum or extra data (next 2 bits get 0) */
  765. put_bits(&s->pb, 2, 0);
  766. }
  767. #define QUALITY_THRESHOLD 100
  768. #define THRESHOLD_MULTIPLIER 0.6
  769. #if defined(HAVE_ALTIVEC)
  770. #undef vector
  771. #endif
  772. static int encode_block(SVQ1Context *s, uint8_t *src, uint8_t *ref, uint8_t *decoded, int stride, int level, int threshold, int lambda, int intra){
  773. int count, y, x, i, j, split, best_mean, best_score, best_count;
  774. int best_vector[6];
  775. int block_sum[7]= {0, 0, 0, 0, 0, 0};
  776. int w= 2<<((level+2)>>1);
  777. int h= 2<<((level+1)>>1);
  778. int size=w*h;
  779. int16_t block[7][256];
  780. const int8_t *codebook_sum, *codebook;
  781. const uint16_t (*mean_vlc)[2];
  782. const uint8_t (*multistage_vlc)[2];
  783. best_score=0;
  784. //FIXME optimize, this doenst need to be done multiple times
  785. if(intra){
  786. codebook_sum= svq1_intra_codebook_sum[level];
  787. codebook= svq1_intra_codebooks[level];
  788. mean_vlc= svq1_intra_mean_vlc;
  789. multistage_vlc= svq1_intra_multistage_vlc[level];
  790. for(y=0; y<h; y++){
  791. for(x=0; x<w; x++){
  792. int v= src[x + y*stride];
  793. block[0][x + w*y]= v;
  794. best_score += v*v;
  795. block_sum[0] += v;
  796. }
  797. }
  798. }else{
  799. codebook_sum= svq1_inter_codebook_sum[level];
  800. codebook= svq1_inter_codebooks[level];
  801. mean_vlc= svq1_inter_mean_vlc + 256;
  802. multistage_vlc= svq1_inter_multistage_vlc[level];
  803. for(y=0; y<h; y++){
  804. for(x=0; x<w; x++){
  805. int v= src[x + y*stride] - ref[x + y*stride];
  806. block[0][x + w*y]= v;
  807. best_score += v*v;
  808. block_sum[0] += v;
  809. }
  810. }
  811. }
  812. best_count=0;
  813. best_score -= ((block_sum[0]*block_sum[0])>>(level+3));
  814. best_mean= (block_sum[0] + (size>>1)) >> (level+3);
  815. if(level<4){
  816. for(count=1; count<7; count++){
  817. int best_vector_score= INT_MAX;
  818. int best_vector_sum=-999, best_vector_mean=-999;
  819. const int stage= count-1;
  820. const int8_t *vector;
  821. for(i=0; i<16; i++){
  822. int sum= codebook_sum[stage*16 + i];
  823. int sqr=0;
  824. int diff, mean, score;
  825. vector = codebook + stage*size*16 + i*size;
  826. for(j=0; j<size; j++){
  827. int v= vector[j];
  828. sqr += (v - block[stage][j])*(v - block[stage][j]);
  829. }
  830. diff= block_sum[stage] - sum;
  831. mean= (diff + (size>>1)) >> (level+3);
  832. assert(mean >-300 && mean<300);
  833. if(intra) mean= av_clip(mean, 0, 255);
  834. else mean= av_clip(mean, -256, 255);
  835. score= sqr - ((diff*(int64_t)diff)>>(level+3)); //FIXME 64bit slooow
  836. if(score < best_vector_score){
  837. best_vector_score= score;
  838. best_vector[stage]= i;
  839. best_vector_sum= sum;
  840. best_vector_mean= mean;
  841. }
  842. }
  843. assert(best_vector_mean != -999);
  844. vector= codebook + stage*size*16 + best_vector[stage]*size;
  845. for(j=0; j<size; j++){
  846. block[stage+1][j] = block[stage][j] - vector[j];
  847. }
  848. block_sum[stage+1]= block_sum[stage] - best_vector_sum;
  849. best_vector_score +=
  850. lambda*(+ 1 + 4*count
  851. + multistage_vlc[1+count][1]
  852. + mean_vlc[best_vector_mean][1]);
  853. if(best_vector_score < best_score){
  854. best_score= best_vector_score;
  855. best_count= count;
  856. best_mean= best_vector_mean;
  857. }
  858. }
  859. }
  860. split=0;
  861. if(best_score > threshold && level){
  862. int score=0;
  863. int offset= (level&1) ? stride*h/2 : w/2;
  864. PutBitContext backup[6];
  865. for(i=level-1; i>=0; i--){
  866. backup[i]= s->reorder_pb[i];
  867. }
  868. score += encode_block(s, src , ref , decoded , stride, level-1, threshold>>1, lambda, intra);
  869. score += encode_block(s, src + offset, ref + offset, decoded + offset, stride, level-1, threshold>>1, lambda, intra);
  870. score += lambda;
  871. if(score < best_score){
  872. best_score= score;
  873. split=1;
  874. }else{
  875. for(i=level-1; i>=0; i--){
  876. s->reorder_pb[i]= backup[i];
  877. }
  878. }
  879. }
  880. if (level > 0)
  881. put_bits(&s->reorder_pb[level], 1, split);
  882. if(!split){
  883. assert((best_mean >= 0 && best_mean<256) || !intra);
  884. assert(best_mean >= -256 && best_mean<256);
  885. assert(best_count >=0 && best_count<7);
  886. assert(level<4 || best_count==0);
  887. /* output the encoding */
  888. put_bits(&s->reorder_pb[level],
  889. multistage_vlc[1 + best_count][1],
  890. multistage_vlc[1 + best_count][0]);
  891. put_bits(&s->reorder_pb[level], mean_vlc[best_mean][1],
  892. mean_vlc[best_mean][0]);
  893. for (i = 0; i < best_count; i++){
  894. assert(best_vector[i]>=0 && best_vector[i]<16);
  895. put_bits(&s->reorder_pb[level], 4, best_vector[i]);
  896. }
  897. for(y=0; y<h; y++){
  898. for(x=0; x<w; x++){
  899. decoded[x + y*stride]= src[x + y*stride] - block[best_count][x + w*y] + best_mean;
  900. }
  901. }
  902. }
  903. return best_score;
  904. }
  905. static int svq1_encode_plane(SVQ1Context *s, int plane, unsigned char *src_plane, unsigned char *ref_plane, unsigned char *decoded_plane,
  906. int width, int height, int src_stride, int stride)
  907. {
  908. int x, y;
  909. int i;
  910. int block_width, block_height;
  911. int level;
  912. int threshold[6];
  913. const int lambda= (s->picture.quality*s->picture.quality) >> (2*FF_LAMBDA_SHIFT);
  914. /* figure out the acceptable level thresholds in advance */
  915. threshold[5] = QUALITY_THRESHOLD;
  916. for (level = 4; level >= 0; level--)
  917. threshold[level] = threshold[level + 1] * THRESHOLD_MULTIPLIER;
  918. block_width = (width + 15) / 16;
  919. block_height = (height + 15) / 16;
  920. if(s->picture.pict_type == P_TYPE){
  921. s->m.avctx= s->avctx;
  922. s->m.current_picture_ptr= &s->m.current_picture;
  923. s->m.last_picture_ptr = &s->m.last_picture;
  924. s->m.last_picture.data[0]= ref_plane;
  925. s->m.linesize=
  926. s->m.last_picture.linesize[0]=
  927. s->m.new_picture.linesize[0]=
  928. s->m.current_picture.linesize[0]= stride;
  929. s->m.width= width;
  930. s->m.height= height;
  931. s->m.mb_width= block_width;
  932. s->m.mb_height= block_height;
  933. s->m.mb_stride= s->m.mb_width+1;
  934. s->m.b8_stride= 2*s->m.mb_width+1;
  935. s->m.f_code=1;
  936. s->m.pict_type= s->picture.pict_type;
  937. s->m.me_method= s->avctx->me_method;
  938. s->m.me.scene_change_score=0;
  939. s->m.flags= s->avctx->flags;
  940. // s->m.out_format = FMT_H263;
  941. // s->m.unrestricted_mv= 1;
  942. s->m.lambda= s->picture.quality;
  943. s->m.qscale= (s->m.lambda*139 + FF_LAMBDA_SCALE*64) >> (FF_LAMBDA_SHIFT + 7);
  944. s->m.lambda2= (s->m.lambda*s->m.lambda + FF_LAMBDA_SCALE/2) >> FF_LAMBDA_SHIFT;
  945. if(!s->motion_val8[plane]){
  946. s->motion_val8 [plane]= av_mallocz((s->m.b8_stride*block_height*2 + 2)*2*sizeof(int16_t));
  947. s->motion_val16[plane]= av_mallocz((s->m.mb_stride*(block_height + 2) + 1)*2*sizeof(int16_t));
  948. }
  949. s->m.mb_type= s->mb_type;
  950. //dummies, to avoid segfaults
  951. s->m.current_picture.mb_mean= (uint8_t *)s->dummy;
  952. s->m.current_picture.mb_var= (uint16_t*)s->dummy;
  953. s->m.current_picture.mc_mb_var= (uint16_t*)s->dummy;
  954. s->m.current_picture.mb_type= s->dummy;
  955. s->m.current_picture.motion_val[0]= s->motion_val8[plane] + 2;
  956. s->m.p_mv_table= s->motion_val16[plane] + s->m.mb_stride + 1;
  957. s->m.dsp= s->dsp; //move
  958. ff_init_me(&s->m);
  959. s->m.me.dia_size= s->avctx->dia_size;
  960. s->m.first_slice_line=1;
  961. for (y = 0; y < block_height; y++) {
  962. uint8_t src[stride*16];
  963. s->m.new_picture.data[0]= src - y*16*stride; //ugly
  964. s->m.mb_y= y;
  965. for(i=0; i<16 && i + 16*y<height; i++){
  966. memcpy(&src[i*stride], &src_plane[(i+16*y)*src_stride], width);
  967. for(x=width; x<16*block_width; x++)
  968. src[i*stride+x]= src[i*stride+x-1];
  969. }
  970. for(; i<16 && i + 16*y<16*block_height; i++)
  971. memcpy(&src[i*stride], &src[(i-1)*stride], 16*block_width);
  972. for (x = 0; x < block_width; x++) {
  973. s->m.mb_x= x;
  974. ff_init_block_index(&s->m);
  975. ff_update_block_index(&s->m);
  976. ff_estimate_p_frame_motion(&s->m, x, y);
  977. }
  978. s->m.first_slice_line=0;
  979. }
  980. ff_fix_long_p_mvs(&s->m);
  981. ff_fix_long_mvs(&s->m, NULL, 0, s->m.p_mv_table, s->m.f_code, CANDIDATE_MB_TYPE_INTER, 0);
  982. }
  983. s->m.first_slice_line=1;
  984. for (y = 0; y < block_height; y++) {
  985. uint8_t src[stride*16];
  986. for(i=0; i<16 && i + 16*y<height; i++){
  987. memcpy(&src[i*stride], &src_plane[(i+16*y)*src_stride], width);
  988. for(x=width; x<16*block_width; x++)
  989. src[i*stride+x]= src[i*stride+x-1];
  990. }
  991. for(; i<16 && i + 16*y<16*block_height; i++)
  992. memcpy(&src[i*stride], &src[(i-1)*stride], 16*block_width);
  993. s->m.mb_y= y;
  994. for (x = 0; x < block_width; x++) {
  995. uint8_t reorder_buffer[3][6][7*32];
  996. int count[3][6];
  997. int offset = y * 16 * stride + x * 16;
  998. uint8_t *decoded= decoded_plane + offset;
  999. uint8_t *ref= ref_plane + offset;
  1000. int score[4]={0,0,0,0}, best;
  1001. uint8_t temp[16*stride];
  1002. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 3000){ //FIXME check size
  1003. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  1004. return -1;
  1005. }
  1006. s->m.mb_x= x;
  1007. ff_init_block_index(&s->m);
  1008. ff_update_block_index(&s->m);
  1009. if(s->picture.pict_type == I_TYPE || (s->m.mb_type[x + y*s->m.mb_stride]&CANDIDATE_MB_TYPE_INTRA)){
  1010. for(i=0; i<6; i++){
  1011. init_put_bits(&s->reorder_pb[i], reorder_buffer[0][i], 7*32);
  1012. }
  1013. if(s->picture.pict_type == P_TYPE){
  1014. const uint8_t *vlc= svq1_block_type_vlc[SVQ1_BLOCK_INTRA];
  1015. put_bits(&s->reorder_pb[5], vlc[1], vlc[0]);
  1016. score[0]= vlc[1]*lambda;
  1017. }
  1018. score[0]+= encode_block(s, src+16*x, NULL, temp, stride, 5, 64, lambda, 1);
  1019. for(i=0; i<6; i++){
  1020. count[0][i]= put_bits_count(&s->reorder_pb[i]);
  1021. flush_put_bits(&s->reorder_pb[i]);
  1022. }
  1023. }else
  1024. score[0]= INT_MAX;
  1025. best=0;
  1026. if(s->picture.pict_type == P_TYPE){
  1027. const uint8_t *vlc= svq1_block_type_vlc[SVQ1_BLOCK_INTER];
  1028. int mx, my, pred_x, pred_y, dxy;
  1029. int16_t *motion_ptr;
  1030. motion_ptr= h263_pred_motion(&s->m, 0, 0, &pred_x, &pred_y);
  1031. if(s->m.mb_type[x + y*s->m.mb_stride]&CANDIDATE_MB_TYPE_INTER){
  1032. for(i=0; i<6; i++)
  1033. init_put_bits(&s->reorder_pb[i], reorder_buffer[1][i], 7*32);
  1034. put_bits(&s->reorder_pb[5], vlc[1], vlc[0]);
  1035. s->m.pb= s->reorder_pb[5];
  1036. mx= motion_ptr[0];
  1037. my= motion_ptr[1];
  1038. assert(mx>=-32 && mx<=31);
  1039. assert(my>=-32 && my<=31);
  1040. assert(pred_x>=-32 && pred_x<=31);
  1041. assert(pred_y>=-32 && pred_y<=31);
  1042. ff_h263_encode_motion(&s->m, mx - pred_x, 1);
  1043. ff_h263_encode_motion(&s->m, my - pred_y, 1);
  1044. s->reorder_pb[5]= s->m.pb;
  1045. score[1] += lambda*put_bits_count(&s->reorder_pb[5]);
  1046. dxy= (mx&1) + 2*(my&1);
  1047. s->dsp.put_pixels_tab[0][dxy](temp+16, ref + (mx>>1) + stride*(my>>1), stride, 16);
  1048. score[1]+= encode_block(s, src+16*x, temp+16, decoded, stride, 5, 64, lambda, 0);
  1049. best= score[1] <= score[0];
  1050. vlc= svq1_block_type_vlc[SVQ1_BLOCK_SKIP];
  1051. score[2]= s->dsp.sse[0](NULL, src+16*x, ref, stride, 16);
  1052. score[2]+= vlc[1]*lambda;
  1053. if(score[2] < score[best] && mx==0 && my==0){
  1054. best=2;
  1055. s->dsp.put_pixels_tab[0][0](decoded, ref, stride, 16);
  1056. for(i=0; i<6; i++){
  1057. count[2][i]=0;
  1058. }
  1059. put_bits(&s->pb, vlc[1], vlc[0]);
  1060. }
  1061. }
  1062. if(best==1){
  1063. for(i=0; i<6; i++){
  1064. count[1][i]= put_bits_count(&s->reorder_pb[i]);
  1065. flush_put_bits(&s->reorder_pb[i]);
  1066. }
  1067. }else{
  1068. motion_ptr[0 ] = motion_ptr[1 ]=
  1069. motion_ptr[2 ] = motion_ptr[3 ]=
  1070. motion_ptr[0+2*s->m.b8_stride] = motion_ptr[1+2*s->m.b8_stride]=
  1071. motion_ptr[2+2*s->m.b8_stride] = motion_ptr[3+2*s->m.b8_stride]=0;
  1072. }
  1073. }
  1074. s->rd_total += score[best];
  1075. for(i=5; i>=0; i--){
  1076. ff_copy_bits(&s->pb, reorder_buffer[best][i], count[best][i]);
  1077. }
  1078. if(best==0){
  1079. s->dsp.put_pixels_tab[0][0](decoded, temp, stride, 16);
  1080. }
  1081. }
  1082. s->m.first_slice_line=0;
  1083. }
  1084. return 0;
  1085. }
  1086. static int svq1_encode_init(AVCodecContext *avctx)
  1087. {
  1088. SVQ1Context * const s = avctx->priv_data;
  1089. dsputil_init(&s->dsp, avctx);
  1090. avctx->coded_frame= (AVFrame*)&s->picture;
  1091. s->frame_width = avctx->width;
  1092. s->frame_height = avctx->height;
  1093. s->y_block_width = (s->frame_width + 15) / 16;
  1094. s->y_block_height = (s->frame_height + 15) / 16;
  1095. s->c_block_width = (s->frame_width / 4 + 15) / 16;
  1096. s->c_block_height = (s->frame_height / 4 + 15) / 16;
  1097. s->avctx= avctx;
  1098. s->m.avctx= avctx;
  1099. s->m.me.scratchpad= av_mallocz((avctx->width+64)*2*16*2*sizeof(uint8_t));
  1100. s->m.me.map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
  1101. s->m.me.score_map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
  1102. s->mb_type = av_mallocz((s->y_block_width+1)*s->y_block_height*sizeof(int16_t));
  1103. s->dummy = av_mallocz((s->y_block_width+1)*s->y_block_height*sizeof(int32_t));
  1104. h263_encode_init(&s->m); //mv_penalty
  1105. return 0;
  1106. }
  1107. static int svq1_encode_frame(AVCodecContext *avctx, unsigned char *buf,
  1108. int buf_size, void *data)
  1109. {
  1110. SVQ1Context * const s = avctx->priv_data;
  1111. AVFrame *pict = data;
  1112. AVFrame * const p= (AVFrame*)&s->picture;
  1113. AVFrame temp;
  1114. int i;
  1115. if(avctx->pix_fmt != PIX_FMT_YUV410P){
  1116. av_log(avctx, AV_LOG_ERROR, "unsupported pixel format\n");
  1117. return -1;
  1118. }
  1119. if(!s->current_picture.data[0]){
  1120. avctx->get_buffer(avctx, &s->current_picture);
  1121. avctx->get_buffer(avctx, &s->last_picture);
  1122. }
  1123. temp= s->current_picture;
  1124. s->current_picture= s->last_picture;
  1125. s->last_picture= temp;
  1126. init_put_bits(&s->pb, buf, buf_size);
  1127. *p = *pict;
  1128. p->pict_type = avctx->gop_size && avctx->frame_number % avctx->gop_size ? P_TYPE : I_TYPE;
  1129. p->key_frame = p->pict_type == I_TYPE;
  1130. svq1_write_header(s, p->pict_type);
  1131. for(i=0; i<3; i++){
  1132. if(svq1_encode_plane(s, i,
  1133. s->picture.data[i], s->last_picture.data[i], s->current_picture.data[i],
  1134. s->frame_width / (i?4:1), s->frame_height / (i?4:1),
  1135. s->picture.linesize[i], s->current_picture.linesize[i]) < 0)
  1136. return -1;
  1137. }
  1138. // align_put_bits(&s->pb);
  1139. while(put_bits_count(&s->pb) & 31)
  1140. put_bits(&s->pb, 1, 0);
  1141. flush_put_bits(&s->pb);
  1142. return (put_bits_count(&s->pb) / 8);
  1143. }
  1144. static int svq1_encode_end(AVCodecContext *avctx)
  1145. {
  1146. SVQ1Context * const s = avctx->priv_data;
  1147. int i;
  1148. av_log(avctx, AV_LOG_DEBUG, "RD: %f\n", s->rd_total/(double)(avctx->width*avctx->height*avctx->frame_number));
  1149. av_freep(&s->m.me.scratchpad);
  1150. av_freep(&s->m.me.map);
  1151. av_freep(&s->m.me.score_map);
  1152. av_freep(&s->mb_type);
  1153. av_freep(&s->dummy);
  1154. for(i=0; i<3; i++){
  1155. av_freep(&s->motion_val8[i]);
  1156. av_freep(&s->motion_val16[i]);
  1157. }
  1158. return 0;
  1159. }
  1160. #endif //CONFIG_ENCODERS
  1161. #ifdef CONFIG_DECODERS
  1162. AVCodec svq1_decoder = {
  1163. "svq1",
  1164. CODEC_TYPE_VIDEO,
  1165. CODEC_ID_SVQ1,
  1166. sizeof(MpegEncContext),
  1167. svq1_decode_init,
  1168. NULL,
  1169. svq1_decode_end,
  1170. svq1_decode_frame,
  1171. CODEC_CAP_DR1,
  1172. .flush= ff_mpeg_flush,
  1173. .pix_fmts= (enum PixelFormat[]){PIX_FMT_YUV410P, -1},
  1174. };
  1175. #endif
  1176. #ifdef CONFIG_ENCODERS
  1177. AVCodec svq1_encoder = {
  1178. "svq1",
  1179. CODEC_TYPE_VIDEO,
  1180. CODEC_ID_SVQ1,
  1181. sizeof(SVQ1Context),
  1182. svq1_encode_init,
  1183. svq1_encode_frame,
  1184. svq1_encode_end,
  1185. .pix_fmts= (enum PixelFormat[]){PIX_FMT_YUV410P, -1},
  1186. };
  1187. #endif //CONFIG_ENCODERS