You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2880 lines
85KB

  1. /*
  2. * MPEG Audio decoder
  3. * Copyright (c) 2001, 2002 Fabrice Bellard.
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file mpegaudiodec.c
  23. * MPEG Audio decoder.
  24. */
  25. //#define DEBUG
  26. #include "avcodec.h"
  27. #include "bitstream.h"
  28. #include "dsputil.h"
  29. /*
  30. * TODO:
  31. * - in low precision mode, use more 16 bit multiplies in synth filter
  32. * - test lsf / mpeg25 extensively.
  33. */
  34. /* define USE_HIGHPRECISION to have a bit exact (but slower) mpeg
  35. audio decoder */
  36. #ifdef CONFIG_MPEGAUDIO_HP
  37. # define USE_HIGHPRECISION
  38. #endif
  39. #include "mpegaudio.h"
  40. #include "mathops.h"
  41. #define FRAC_ONE (1 << FRAC_BITS)
  42. #define FIX(a) ((int)((a) * FRAC_ONE))
  43. /* WARNING: only correct for posititive numbers */
  44. #define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
  45. #define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
  46. #define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
  47. /****************/
  48. #define HEADER_SIZE 4
  49. #define BACKSTEP_SIZE 512
  50. #define EXTRABYTES 24
  51. struct GranuleDef;
  52. typedef struct MPADecodeContext {
  53. DECLARE_ALIGNED_8(uint8_t, last_buf[2*BACKSTEP_SIZE + EXTRABYTES]);
  54. int last_buf_size;
  55. int frame_size;
  56. /* next header (used in free format parsing) */
  57. uint32_t free_format_next_header;
  58. int error_protection;
  59. int layer;
  60. int sample_rate;
  61. int sample_rate_index; /* between 0 and 8 */
  62. int bit_rate;
  63. GetBitContext gb;
  64. GetBitContext in_gb;
  65. int nb_channels;
  66. int mode;
  67. int mode_ext;
  68. int lsf;
  69. MPA_INT synth_buf[MPA_MAX_CHANNELS][512 * 2] __attribute__((aligned(16)));
  70. int synth_buf_offset[MPA_MAX_CHANNELS];
  71. int32_t sb_samples[MPA_MAX_CHANNELS][36][SBLIMIT] __attribute__((aligned(16)));
  72. int32_t mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
  73. #ifdef DEBUG
  74. int frame_count;
  75. #endif
  76. void (*compute_antialias)(struct MPADecodeContext *s, struct GranuleDef *g);
  77. int adu_mode; ///< 0 for standard mp3, 1 for adu formatted mp3
  78. int dither_state;
  79. int error_resilience;
  80. } MPADecodeContext;
  81. /**
  82. * Context for MP3On4 decoder
  83. */
  84. typedef struct MP3On4DecodeContext {
  85. int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
  86. int chan_cfg; ///< channel config number
  87. MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
  88. } MP3On4DecodeContext;
  89. /* layer 3 "granule" */
  90. typedef struct GranuleDef {
  91. uint8_t scfsi;
  92. int part2_3_length;
  93. int big_values;
  94. int global_gain;
  95. int scalefac_compress;
  96. uint8_t block_type;
  97. uint8_t switch_point;
  98. int table_select[3];
  99. int subblock_gain[3];
  100. uint8_t scalefac_scale;
  101. uint8_t count1table_select;
  102. int region_size[3]; /* number of huffman codes in each region */
  103. int preflag;
  104. int short_start, long_end; /* long/short band indexes */
  105. uint8_t scale_factors[40];
  106. int32_t sb_hybrid[SBLIMIT * 18]; /* 576 samples */
  107. } GranuleDef;
  108. #define MODE_EXT_MS_STEREO 2
  109. #define MODE_EXT_I_STEREO 1
  110. /* layer 3 huffman tables */
  111. typedef struct HuffTable {
  112. int xsize;
  113. const uint8_t *bits;
  114. const uint16_t *codes;
  115. } HuffTable;
  116. #include "mpegaudiodectab.h"
  117. static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g);
  118. static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g);
  119. /* vlc structure for decoding layer 3 huffman tables */
  120. static VLC huff_vlc[16];
  121. static VLC huff_quad_vlc[2];
  122. /* computed from band_size_long */
  123. static uint16_t band_index_long[9][23];
  124. /* XXX: free when all decoders are closed */
  125. #define TABLE_4_3_SIZE (8191 + 16)*4
  126. static int8_t *table_4_3_exp;
  127. static uint32_t *table_4_3_value;
  128. static uint32_t exp_table[512];
  129. static uint32_t expval_table[512][16];
  130. /* intensity stereo coef table */
  131. static int32_t is_table[2][16];
  132. static int32_t is_table_lsf[2][2][16];
  133. static int32_t csa_table[8][4];
  134. static float csa_table_float[8][4];
  135. static int32_t mdct_win[8][36];
  136. /* lower 2 bits: modulo 3, higher bits: shift */
  137. static uint16_t scale_factor_modshift[64];
  138. /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
  139. static int32_t scale_factor_mult[15][3];
  140. /* mult table for layer 2 group quantization */
  141. #define SCALE_GEN(v) \
  142. { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
  143. static const int32_t scale_factor_mult2[3][3] = {
  144. SCALE_GEN(4.0 / 3.0), /* 3 steps */
  145. SCALE_GEN(4.0 / 5.0), /* 5 steps */
  146. SCALE_GEN(4.0 / 9.0), /* 9 steps */
  147. };
  148. static MPA_INT window[512] __attribute__((aligned(16)));
  149. /* layer 1 unscaling */
  150. /* n = number of bits of the mantissa minus 1 */
  151. static inline int l1_unscale(int n, int mant, int scale_factor)
  152. {
  153. int shift, mod;
  154. int64_t val;
  155. shift = scale_factor_modshift[scale_factor];
  156. mod = shift & 3;
  157. shift >>= 2;
  158. val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
  159. shift += n;
  160. /* NOTE: at this point, 1 <= shift >= 21 + 15 */
  161. return (int)((val + (1LL << (shift - 1))) >> shift);
  162. }
  163. static inline int l2_unscale_group(int steps, int mant, int scale_factor)
  164. {
  165. int shift, mod, val;
  166. shift = scale_factor_modshift[scale_factor];
  167. mod = shift & 3;
  168. shift >>= 2;
  169. val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
  170. /* NOTE: at this point, 0 <= shift <= 21 */
  171. if (shift > 0)
  172. val = (val + (1 << (shift - 1))) >> shift;
  173. return val;
  174. }
  175. /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
  176. static inline int l3_unscale(int value, int exponent)
  177. {
  178. unsigned int m;
  179. int e;
  180. e = table_4_3_exp [4*value + (exponent&3)];
  181. m = table_4_3_value[4*value + (exponent&3)];
  182. e -= (exponent >> 2);
  183. assert(e>=1);
  184. if (e > 31)
  185. return 0;
  186. m = (m + (1 << (e-1))) >> e;
  187. return m;
  188. }
  189. /* all integer n^(4/3) computation code */
  190. #define DEV_ORDER 13
  191. #define POW_FRAC_BITS 24
  192. #define POW_FRAC_ONE (1 << POW_FRAC_BITS)
  193. #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
  194. #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
  195. static int dev_4_3_coefs[DEV_ORDER];
  196. #if 0 /* unused */
  197. static int pow_mult3[3] = {
  198. POW_FIX(1.0),
  199. POW_FIX(1.25992104989487316476),
  200. POW_FIX(1.58740105196819947474),
  201. };
  202. #endif
  203. static void int_pow_init(void)
  204. {
  205. int i, a;
  206. a = POW_FIX(1.0);
  207. for(i=0;i<DEV_ORDER;i++) {
  208. a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
  209. dev_4_3_coefs[i] = a;
  210. }
  211. }
  212. #if 0 /* unused, remove? */
  213. /* return the mantissa and the binary exponent */
  214. static int int_pow(int i, int *exp_ptr)
  215. {
  216. int e, er, eq, j;
  217. int a, a1;
  218. /* renormalize */
  219. a = i;
  220. e = POW_FRAC_BITS;
  221. while (a < (1 << (POW_FRAC_BITS - 1))) {
  222. a = a << 1;
  223. e--;
  224. }
  225. a -= (1 << POW_FRAC_BITS);
  226. a1 = 0;
  227. for(j = DEV_ORDER - 1; j >= 0; j--)
  228. a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
  229. a = (1 << POW_FRAC_BITS) + a1;
  230. /* exponent compute (exact) */
  231. e = e * 4;
  232. er = e % 3;
  233. eq = e / 3;
  234. a = POW_MULL(a, pow_mult3[er]);
  235. while (a >= 2 * POW_FRAC_ONE) {
  236. a = a >> 1;
  237. eq++;
  238. }
  239. /* convert to float */
  240. while (a < POW_FRAC_ONE) {
  241. a = a << 1;
  242. eq--;
  243. }
  244. /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
  245. #if POW_FRAC_BITS > FRAC_BITS
  246. a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
  247. /* correct overflow */
  248. if (a >= 2 * (1 << FRAC_BITS)) {
  249. a = a >> 1;
  250. eq++;
  251. }
  252. #endif
  253. *exp_ptr = eq;
  254. return a;
  255. }
  256. #endif
  257. static int decode_init(AVCodecContext * avctx)
  258. {
  259. MPADecodeContext *s = avctx->priv_data;
  260. static int init=0;
  261. int i, j, k;
  262. #if defined(USE_HIGHPRECISION) && defined(CONFIG_AUDIO_NONSHORT)
  263. avctx->sample_fmt= SAMPLE_FMT_S32;
  264. #else
  265. avctx->sample_fmt= SAMPLE_FMT_S16;
  266. #endif
  267. s->error_resilience= avctx->error_resilience;
  268. if(avctx->antialias_algo != FF_AA_FLOAT)
  269. s->compute_antialias= compute_antialias_integer;
  270. else
  271. s->compute_antialias= compute_antialias_float;
  272. if (!init && !avctx->parse_only) {
  273. /* scale factors table for layer 1/2 */
  274. for(i=0;i<64;i++) {
  275. int shift, mod;
  276. /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
  277. shift = (i / 3);
  278. mod = i % 3;
  279. scale_factor_modshift[i] = mod | (shift << 2);
  280. }
  281. /* scale factor multiply for layer 1 */
  282. for(i=0;i<15;i++) {
  283. int n, norm;
  284. n = i + 2;
  285. norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
  286. scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm);
  287. scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm);
  288. scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm);
  289. dprintf("%d: norm=%x s=%x %x %x\n",
  290. i, norm,
  291. scale_factor_mult[i][0],
  292. scale_factor_mult[i][1],
  293. scale_factor_mult[i][2]);
  294. }
  295. ff_mpa_synth_init(window);
  296. /* huffman decode tables */
  297. for(i=1;i<16;i++) {
  298. const HuffTable *h = &mpa_huff_tables[i];
  299. int xsize, x, y;
  300. unsigned int n;
  301. uint8_t tmp_bits [512];
  302. uint16_t tmp_codes[512];
  303. memset(tmp_bits , 0, sizeof(tmp_bits ));
  304. memset(tmp_codes, 0, sizeof(tmp_codes));
  305. xsize = h->xsize;
  306. n = xsize * xsize;
  307. j = 0;
  308. for(x=0;x<xsize;x++) {
  309. for(y=0;y<xsize;y++){
  310. tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ];
  311. tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
  312. }
  313. }
  314. /* XXX: fail test */
  315. init_vlc(&huff_vlc[i], 7, 512,
  316. tmp_bits, 1, 1, tmp_codes, 2, 2, 1);
  317. }
  318. for(i=0;i<2;i++) {
  319. init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
  320. mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1, 1);
  321. }
  322. for(i=0;i<9;i++) {
  323. k = 0;
  324. for(j=0;j<22;j++) {
  325. band_index_long[i][j] = k;
  326. k += band_size_long[i][j];
  327. }
  328. band_index_long[i][22] = k;
  329. }
  330. /* compute n ^ (4/3) and store it in mantissa/exp format */
  331. table_4_3_exp= av_mallocz_static(TABLE_4_3_SIZE * sizeof(table_4_3_exp[0]));
  332. if(!table_4_3_exp)
  333. return -1;
  334. table_4_3_value= av_mallocz_static(TABLE_4_3_SIZE * sizeof(table_4_3_value[0]));
  335. if(!table_4_3_value)
  336. return -1;
  337. int_pow_init();
  338. for(i=1;i<TABLE_4_3_SIZE;i++) {
  339. double f, fm;
  340. int e, m;
  341. f = pow((double)(i/4), 4.0 / 3.0) * pow(2, (i&3)*0.25);
  342. fm = frexp(f, &e);
  343. m = (uint32_t)(fm*(1LL<<31) + 0.5);
  344. e+= FRAC_BITS - 31 + 5 - 100;
  345. /* normalized to FRAC_BITS */
  346. table_4_3_value[i] = m;
  347. // av_log(NULL, AV_LOG_DEBUG, "%d %d %f\n", i, m, pow((double)i, 4.0 / 3.0));
  348. table_4_3_exp[i] = -e;
  349. }
  350. for(i=0; i<512*16; i++){
  351. int exponent= (i>>4);
  352. double f= pow(i&15, 4.0 / 3.0) * pow(2, (exponent-400)*0.25 + FRAC_BITS + 5);
  353. expval_table[exponent][i&15]= llrint(f);
  354. if((i&15)==1)
  355. exp_table[exponent]= llrint(f);
  356. }
  357. for(i=0;i<7;i++) {
  358. float f;
  359. int v;
  360. if (i != 6) {
  361. f = tan((double)i * M_PI / 12.0);
  362. v = FIXR(f / (1.0 + f));
  363. } else {
  364. v = FIXR(1.0);
  365. }
  366. is_table[0][i] = v;
  367. is_table[1][6 - i] = v;
  368. }
  369. /* invalid values */
  370. for(i=7;i<16;i++)
  371. is_table[0][i] = is_table[1][i] = 0.0;
  372. for(i=0;i<16;i++) {
  373. double f;
  374. int e, k;
  375. for(j=0;j<2;j++) {
  376. e = -(j + 1) * ((i + 1) >> 1);
  377. f = pow(2.0, e / 4.0);
  378. k = i & 1;
  379. is_table_lsf[j][k ^ 1][i] = FIXR(f);
  380. is_table_lsf[j][k][i] = FIXR(1.0);
  381. dprintf("is_table_lsf %d %d: %x %x\n",
  382. i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
  383. }
  384. }
  385. for(i=0;i<8;i++) {
  386. float ci, cs, ca;
  387. ci = ci_table[i];
  388. cs = 1.0 / sqrt(1.0 + ci * ci);
  389. ca = cs * ci;
  390. csa_table[i][0] = FIXHR(cs/4);
  391. csa_table[i][1] = FIXHR(ca/4);
  392. csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
  393. csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
  394. csa_table_float[i][0] = cs;
  395. csa_table_float[i][1] = ca;
  396. csa_table_float[i][2] = ca + cs;
  397. csa_table_float[i][3] = ca - cs;
  398. // printf("%d %d %d %d\n", FIX(cs), FIX(cs-1), FIX(ca), FIX(cs)-FIX(ca));
  399. // av_log(NULL, AV_LOG_DEBUG,"%f %f %f %f\n", cs, ca, ca+cs, ca-cs);
  400. }
  401. /* compute mdct windows */
  402. for(i=0;i<36;i++) {
  403. for(j=0; j<4; j++){
  404. double d;
  405. if(j==2 && i%3 != 1)
  406. continue;
  407. d= sin(M_PI * (i + 0.5) / 36.0);
  408. if(j==1){
  409. if (i>=30) d= 0;
  410. else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0);
  411. else if(i>=18) d= 1;
  412. }else if(j==3){
  413. if (i< 6) d= 0;
  414. else if(i< 12) d= sin(M_PI * (i - 6 + 0.5) / 12.0);
  415. else if(i< 18) d= 1;
  416. }
  417. //merge last stage of imdct into the window coefficients
  418. d*= 0.5 / cos(M_PI*(2*i + 19)/72);
  419. if(j==2)
  420. mdct_win[j][i/3] = FIXHR((d / (1<<5)));
  421. else
  422. mdct_win[j][i ] = FIXHR((d / (1<<5)));
  423. // av_log(NULL, AV_LOG_DEBUG, "%2d %d %f\n", i,j,d / (1<<5));
  424. }
  425. }
  426. /* NOTE: we do frequency inversion adter the MDCT by changing
  427. the sign of the right window coefs */
  428. for(j=0;j<4;j++) {
  429. for(i=0;i<36;i+=2) {
  430. mdct_win[j + 4][i] = mdct_win[j][i];
  431. mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
  432. }
  433. }
  434. #if defined(DEBUG)
  435. for(j=0;j<8;j++) {
  436. av_log(avctx, AV_LOG_DEBUG, "win%d=\n", j);
  437. for(i=0;i<36;i++)
  438. av_log(avctx, AV_LOG_DEBUG, "%f, ", (double)mdct_win[j][i] / FRAC_ONE);
  439. av_log(avctx, AV_LOG_DEBUG, "\n");
  440. }
  441. #endif
  442. init = 1;
  443. }
  444. #ifdef DEBUG
  445. s->frame_count = 0;
  446. #endif
  447. if (avctx->codec_id == CODEC_ID_MP3ADU)
  448. s->adu_mode = 1;
  449. return 0;
  450. }
  451. /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
  452. /* cos(i*pi/64) */
  453. #define COS0_0 FIXHR(0.50060299823519630134/2)
  454. #define COS0_1 FIXHR(0.50547095989754365998/2)
  455. #define COS0_2 FIXHR(0.51544730992262454697/2)
  456. #define COS0_3 FIXHR(0.53104259108978417447/2)
  457. #define COS0_4 FIXHR(0.55310389603444452782/2)
  458. #define COS0_5 FIXHR(0.58293496820613387367/2)
  459. #define COS0_6 FIXHR(0.62250412303566481615/2)
  460. #define COS0_7 FIXHR(0.67480834145500574602/2)
  461. #define COS0_8 FIXHR(0.74453627100229844977/2)
  462. #define COS0_9 FIXHR(0.83934964541552703873/2)
  463. #define COS0_10 FIXHR(0.97256823786196069369/2)
  464. #define COS0_11 FIXHR(1.16943993343288495515/4)
  465. #define COS0_12 FIXHR(1.48416461631416627724/4)
  466. #define COS0_13 FIXHR(2.05778100995341155085/8)
  467. #define COS0_14 FIXHR(3.40760841846871878570/8)
  468. #define COS0_15 FIXHR(10.19000812354805681150/32)
  469. #define COS1_0 FIXHR(0.50241928618815570551/2)
  470. #define COS1_1 FIXHR(0.52249861493968888062/2)
  471. #define COS1_2 FIXHR(0.56694403481635770368/2)
  472. #define COS1_3 FIXHR(0.64682178335999012954/2)
  473. #define COS1_4 FIXHR(0.78815462345125022473/2)
  474. #define COS1_5 FIXHR(1.06067768599034747134/4)
  475. #define COS1_6 FIXHR(1.72244709823833392782/4)
  476. #define COS1_7 FIXHR(5.10114861868916385802/16)
  477. #define COS2_0 FIXHR(0.50979557910415916894/2)
  478. #define COS2_1 FIXHR(0.60134488693504528054/2)
  479. #define COS2_2 FIXHR(0.89997622313641570463/2)
  480. #define COS2_3 FIXHR(2.56291544774150617881/8)
  481. #define COS3_0 FIXHR(0.54119610014619698439/2)
  482. #define COS3_1 FIXHR(1.30656296487637652785/4)
  483. #define COS4_0 FIXHR(0.70710678118654752439/2)
  484. /* butterfly operator */
  485. #define BF(a, b, c, s)\
  486. {\
  487. tmp0 = tab[a] + tab[b];\
  488. tmp1 = tab[a] - tab[b];\
  489. tab[a] = tmp0;\
  490. tab[b] = MULH(tmp1<<(s), c);\
  491. }
  492. #define BF1(a, b, c, d)\
  493. {\
  494. BF(a, b, COS4_0, 1);\
  495. BF(c, d,-COS4_0, 1);\
  496. tab[c] += tab[d];\
  497. }
  498. #define BF2(a, b, c, d)\
  499. {\
  500. BF(a, b, COS4_0, 1);\
  501. BF(c, d,-COS4_0, 1);\
  502. tab[c] += tab[d];\
  503. tab[a] += tab[c];\
  504. tab[c] += tab[b];\
  505. tab[b] += tab[d];\
  506. }
  507. #define ADD(a, b) tab[a] += tab[b]
  508. /* DCT32 without 1/sqrt(2) coef zero scaling. */
  509. static void dct32(int32_t *out, int32_t *tab)
  510. {
  511. int tmp0, tmp1;
  512. /* pass 1 */
  513. BF( 0, 31, COS0_0 , 1);
  514. BF(15, 16, COS0_15, 5);
  515. /* pass 2 */
  516. BF( 0, 15, COS1_0 , 1);
  517. BF(16, 31,-COS1_0 , 1);
  518. /* pass 1 */
  519. BF( 7, 24, COS0_7 , 1);
  520. BF( 8, 23, COS0_8 , 1);
  521. /* pass 2 */
  522. BF( 7, 8, COS1_7 , 4);
  523. BF(23, 24,-COS1_7 , 4);
  524. /* pass 3 */
  525. BF( 0, 7, COS2_0 , 1);
  526. BF( 8, 15,-COS2_0 , 1);
  527. BF(16, 23, COS2_0 , 1);
  528. BF(24, 31,-COS2_0 , 1);
  529. /* pass 1 */
  530. BF( 3, 28, COS0_3 , 1);
  531. BF(12, 19, COS0_12, 2);
  532. /* pass 2 */
  533. BF( 3, 12, COS1_3 , 1);
  534. BF(19, 28,-COS1_3 , 1);
  535. /* pass 1 */
  536. BF( 4, 27, COS0_4 , 1);
  537. BF(11, 20, COS0_11, 2);
  538. /* pass 2 */
  539. BF( 4, 11, COS1_4 , 1);
  540. BF(20, 27,-COS1_4 , 1);
  541. /* pass 3 */
  542. BF( 3, 4, COS2_3 , 3);
  543. BF(11, 12,-COS2_3 , 3);
  544. BF(19, 20, COS2_3 , 3);
  545. BF(27, 28,-COS2_3 , 3);
  546. /* pass 4 */
  547. BF( 0, 3, COS3_0 , 1);
  548. BF( 4, 7,-COS3_0 , 1);
  549. BF( 8, 11, COS3_0 , 1);
  550. BF(12, 15,-COS3_0 , 1);
  551. BF(16, 19, COS3_0 , 1);
  552. BF(20, 23,-COS3_0 , 1);
  553. BF(24, 27, COS3_0 , 1);
  554. BF(28, 31,-COS3_0 , 1);
  555. /* pass 1 */
  556. BF( 1, 30, COS0_1 , 1);
  557. BF(14, 17, COS0_14, 3);
  558. /* pass 2 */
  559. BF( 1, 14, COS1_1 , 1);
  560. BF(17, 30,-COS1_1 , 1);
  561. /* pass 1 */
  562. BF( 6, 25, COS0_6 , 1);
  563. BF( 9, 22, COS0_9 , 1);
  564. /* pass 2 */
  565. BF( 6, 9, COS1_6 , 2);
  566. BF(22, 25,-COS1_6 , 2);
  567. /* pass 3 */
  568. BF( 1, 6, COS2_1 , 1);
  569. BF( 9, 14,-COS2_1 , 1);
  570. BF(17, 22, COS2_1 , 1);
  571. BF(25, 30,-COS2_1 , 1);
  572. /* pass 1 */
  573. BF( 2, 29, COS0_2 , 1);
  574. BF(13, 18, COS0_13, 3);
  575. /* pass 2 */
  576. BF( 2, 13, COS1_2 , 1);
  577. BF(18, 29,-COS1_2 , 1);
  578. /* pass 1 */
  579. BF( 5, 26, COS0_5 , 1);
  580. BF(10, 21, COS0_10, 1);
  581. /* pass 2 */
  582. BF( 5, 10, COS1_5 , 2);
  583. BF(21, 26,-COS1_5 , 2);
  584. /* pass 3 */
  585. BF( 2, 5, COS2_2 , 1);
  586. BF(10, 13,-COS2_2 , 1);
  587. BF(18, 21, COS2_2 , 1);
  588. BF(26, 29,-COS2_2 , 1);
  589. /* pass 4 */
  590. BF( 1, 2, COS3_1 , 2);
  591. BF( 5, 6,-COS3_1 , 2);
  592. BF( 9, 10, COS3_1 , 2);
  593. BF(13, 14,-COS3_1 , 2);
  594. BF(17, 18, COS3_1 , 2);
  595. BF(21, 22,-COS3_1 , 2);
  596. BF(25, 26, COS3_1 , 2);
  597. BF(29, 30,-COS3_1 , 2);
  598. /* pass 5 */
  599. BF1( 0, 1, 2, 3);
  600. BF2( 4, 5, 6, 7);
  601. BF1( 8, 9, 10, 11);
  602. BF2(12, 13, 14, 15);
  603. BF1(16, 17, 18, 19);
  604. BF2(20, 21, 22, 23);
  605. BF1(24, 25, 26, 27);
  606. BF2(28, 29, 30, 31);
  607. /* pass 6 */
  608. ADD( 8, 12);
  609. ADD(12, 10);
  610. ADD(10, 14);
  611. ADD(14, 9);
  612. ADD( 9, 13);
  613. ADD(13, 11);
  614. ADD(11, 15);
  615. out[ 0] = tab[0];
  616. out[16] = tab[1];
  617. out[ 8] = tab[2];
  618. out[24] = tab[3];
  619. out[ 4] = tab[4];
  620. out[20] = tab[5];
  621. out[12] = tab[6];
  622. out[28] = tab[7];
  623. out[ 2] = tab[8];
  624. out[18] = tab[9];
  625. out[10] = tab[10];
  626. out[26] = tab[11];
  627. out[ 6] = tab[12];
  628. out[22] = tab[13];
  629. out[14] = tab[14];
  630. out[30] = tab[15];
  631. ADD(24, 28);
  632. ADD(28, 26);
  633. ADD(26, 30);
  634. ADD(30, 25);
  635. ADD(25, 29);
  636. ADD(29, 27);
  637. ADD(27, 31);
  638. out[ 1] = tab[16] + tab[24];
  639. out[17] = tab[17] + tab[25];
  640. out[ 9] = tab[18] + tab[26];
  641. out[25] = tab[19] + tab[27];
  642. out[ 5] = tab[20] + tab[28];
  643. out[21] = tab[21] + tab[29];
  644. out[13] = tab[22] + tab[30];
  645. out[29] = tab[23] + tab[31];
  646. out[ 3] = tab[24] + tab[20];
  647. out[19] = tab[25] + tab[21];
  648. out[11] = tab[26] + tab[22];
  649. out[27] = tab[27] + tab[23];
  650. out[ 7] = tab[28] + tab[18];
  651. out[23] = tab[29] + tab[19];
  652. out[15] = tab[30] + tab[17];
  653. out[31] = tab[31];
  654. }
  655. #if FRAC_BITS <= 15
  656. static inline int round_sample(int *sum)
  657. {
  658. int sum1;
  659. sum1 = (*sum) >> OUT_SHIFT;
  660. *sum &= (1<<OUT_SHIFT)-1;
  661. if (sum1 < OUT_MIN)
  662. sum1 = OUT_MIN;
  663. else if (sum1 > OUT_MAX)
  664. sum1 = OUT_MAX;
  665. return sum1;
  666. }
  667. /* signed 16x16 -> 32 multiply add accumulate */
  668. #define MACS(rt, ra, rb) MAC16(rt, ra, rb)
  669. /* signed 16x16 -> 32 multiply */
  670. #define MULS(ra, rb) MUL16(ra, rb)
  671. #else
  672. static inline int round_sample(int64_t *sum)
  673. {
  674. int sum1;
  675. sum1 = (int)((*sum) >> OUT_SHIFT);
  676. *sum &= (1<<OUT_SHIFT)-1;
  677. if (sum1 < OUT_MIN)
  678. sum1 = OUT_MIN;
  679. else if (sum1 > OUT_MAX)
  680. sum1 = OUT_MAX;
  681. return sum1;
  682. }
  683. # define MULS(ra, rb) MUL64(ra, rb)
  684. #endif
  685. #define SUM8(sum, op, w, p) \
  686. { \
  687. sum op MULS((w)[0 * 64], p[0 * 64]);\
  688. sum op MULS((w)[1 * 64], p[1 * 64]);\
  689. sum op MULS((w)[2 * 64], p[2 * 64]);\
  690. sum op MULS((w)[3 * 64], p[3 * 64]);\
  691. sum op MULS((w)[4 * 64], p[4 * 64]);\
  692. sum op MULS((w)[5 * 64], p[5 * 64]);\
  693. sum op MULS((w)[6 * 64], p[6 * 64]);\
  694. sum op MULS((w)[7 * 64], p[7 * 64]);\
  695. }
  696. #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
  697. { \
  698. int tmp;\
  699. tmp = p[0 * 64];\
  700. sum1 op1 MULS((w1)[0 * 64], tmp);\
  701. sum2 op2 MULS((w2)[0 * 64], tmp);\
  702. tmp = p[1 * 64];\
  703. sum1 op1 MULS((w1)[1 * 64], tmp);\
  704. sum2 op2 MULS((w2)[1 * 64], tmp);\
  705. tmp = p[2 * 64];\
  706. sum1 op1 MULS((w1)[2 * 64], tmp);\
  707. sum2 op2 MULS((w2)[2 * 64], tmp);\
  708. tmp = p[3 * 64];\
  709. sum1 op1 MULS((w1)[3 * 64], tmp);\
  710. sum2 op2 MULS((w2)[3 * 64], tmp);\
  711. tmp = p[4 * 64];\
  712. sum1 op1 MULS((w1)[4 * 64], tmp);\
  713. sum2 op2 MULS((w2)[4 * 64], tmp);\
  714. tmp = p[5 * 64];\
  715. sum1 op1 MULS((w1)[5 * 64], tmp);\
  716. sum2 op2 MULS((w2)[5 * 64], tmp);\
  717. tmp = p[6 * 64];\
  718. sum1 op1 MULS((w1)[6 * 64], tmp);\
  719. sum2 op2 MULS((w2)[6 * 64], tmp);\
  720. tmp = p[7 * 64];\
  721. sum1 op1 MULS((w1)[7 * 64], tmp);\
  722. sum2 op2 MULS((w2)[7 * 64], tmp);\
  723. }
  724. void ff_mpa_synth_init(MPA_INT *window)
  725. {
  726. int i;
  727. /* max = 18760, max sum over all 16 coefs : 44736 */
  728. for(i=0;i<257;i++) {
  729. int v;
  730. v = mpa_enwindow[i];
  731. #if WFRAC_BITS < 16
  732. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  733. #endif
  734. window[i] = v;
  735. if ((i & 63) != 0)
  736. v = -v;
  737. if (i != 0)
  738. window[512 - i] = v;
  739. }
  740. }
  741. /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
  742. 32 samples. */
  743. /* XXX: optimize by avoiding ring buffer usage */
  744. void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
  745. MPA_INT *window, int *dither_state,
  746. OUT_INT *samples, int incr,
  747. int32_t sb_samples[SBLIMIT])
  748. {
  749. int32_t tmp[32];
  750. register MPA_INT *synth_buf;
  751. register const MPA_INT *w, *w2, *p;
  752. int j, offset, v;
  753. OUT_INT *samples2;
  754. #if FRAC_BITS <= 15
  755. int sum, sum2;
  756. #else
  757. int64_t sum, sum2;
  758. #endif
  759. dct32(tmp, sb_samples);
  760. offset = *synth_buf_offset;
  761. synth_buf = synth_buf_ptr + offset;
  762. for(j=0;j<32;j++) {
  763. v = tmp[j];
  764. #if FRAC_BITS <= 15
  765. /* NOTE: can cause a loss in precision if very high amplitude
  766. sound */
  767. if (v > 32767)
  768. v = 32767;
  769. else if (v < -32768)
  770. v = -32768;
  771. #endif
  772. synth_buf[j] = v;
  773. }
  774. /* copy to avoid wrap */
  775. memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
  776. samples2 = samples + 31 * incr;
  777. w = window;
  778. w2 = window + 31;
  779. sum = *dither_state;
  780. p = synth_buf + 16;
  781. SUM8(sum, +=, w, p);
  782. p = synth_buf + 48;
  783. SUM8(sum, -=, w + 32, p);
  784. *samples = round_sample(&sum);
  785. samples += incr;
  786. w++;
  787. /* we calculate two samples at the same time to avoid one memory
  788. access per two sample */
  789. for(j=1;j<16;j++) {
  790. sum2 = 0;
  791. p = synth_buf + 16 + j;
  792. SUM8P2(sum, +=, sum2, -=, w, w2, p);
  793. p = synth_buf + 48 - j;
  794. SUM8P2(sum, -=, sum2, -=, w + 32, w2 + 32, p);
  795. *samples = round_sample(&sum);
  796. samples += incr;
  797. sum += sum2;
  798. *samples2 = round_sample(&sum);
  799. samples2 -= incr;
  800. w++;
  801. w2--;
  802. }
  803. p = synth_buf + 32;
  804. SUM8(sum, -=, w + 32, p);
  805. *samples = round_sample(&sum);
  806. *dither_state= sum;
  807. offset = (offset - 32) & 511;
  808. *synth_buf_offset = offset;
  809. }
  810. #define C3 FIXHR(0.86602540378443864676/2)
  811. /* 0.5 / cos(pi*(2*i+1)/36) */
  812. static const int icos36[9] = {
  813. FIXR(0.50190991877167369479),
  814. FIXR(0.51763809020504152469), //0
  815. FIXR(0.55168895948124587824),
  816. FIXR(0.61038729438072803416),
  817. FIXR(0.70710678118654752439), //1
  818. FIXR(0.87172339781054900991),
  819. FIXR(1.18310079157624925896),
  820. FIXR(1.93185165257813657349), //2
  821. FIXR(5.73685662283492756461),
  822. };
  823. /* 0.5 / cos(pi*(2*i+1)/36) */
  824. static const int icos36h[9] = {
  825. FIXHR(0.50190991877167369479/2),
  826. FIXHR(0.51763809020504152469/2), //0
  827. FIXHR(0.55168895948124587824/2),
  828. FIXHR(0.61038729438072803416/2),
  829. FIXHR(0.70710678118654752439/2), //1
  830. FIXHR(0.87172339781054900991/2),
  831. FIXHR(1.18310079157624925896/4),
  832. FIXHR(1.93185165257813657349/4), //2
  833. // FIXHR(5.73685662283492756461),
  834. };
  835. /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
  836. cases. */
  837. static void imdct12(int *out, int *in)
  838. {
  839. int in0, in1, in2, in3, in4, in5, t1, t2;
  840. in0= in[0*3];
  841. in1= in[1*3] + in[0*3];
  842. in2= in[2*3] + in[1*3];
  843. in3= in[3*3] + in[2*3];
  844. in4= in[4*3] + in[3*3];
  845. in5= in[5*3] + in[4*3];
  846. in5 += in3;
  847. in3 += in1;
  848. in2= MULH(2*in2, C3);
  849. in3= MULH(4*in3, C3);
  850. t1 = in0 - in4;
  851. t2 = MULH(2*(in1 - in5), icos36h[4]);
  852. out[ 7]=
  853. out[10]= t1 + t2;
  854. out[ 1]=
  855. out[ 4]= t1 - t2;
  856. in0 += in4>>1;
  857. in4 = in0 + in2;
  858. in5 += 2*in1;
  859. in1 = MULH(in5 + in3, icos36h[1]);
  860. out[ 8]=
  861. out[ 9]= in4 + in1;
  862. out[ 2]=
  863. out[ 3]= in4 - in1;
  864. in0 -= in2;
  865. in5 = MULH(2*(in5 - in3), icos36h[7]);
  866. out[ 0]=
  867. out[ 5]= in0 - in5;
  868. out[ 6]=
  869. out[11]= in0 + in5;
  870. }
  871. /* cos(pi*i/18) */
  872. #define C1 FIXHR(0.98480775301220805936/2)
  873. #define C2 FIXHR(0.93969262078590838405/2)
  874. #define C3 FIXHR(0.86602540378443864676/2)
  875. #define C4 FIXHR(0.76604444311897803520/2)
  876. #define C5 FIXHR(0.64278760968653932632/2)
  877. #define C6 FIXHR(0.5/2)
  878. #define C7 FIXHR(0.34202014332566873304/2)
  879. #define C8 FIXHR(0.17364817766693034885/2)
  880. /* using Lee like decomposition followed by hand coded 9 points DCT */
  881. static void imdct36(int *out, int *buf, int *in, int *win)
  882. {
  883. int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
  884. int tmp[18], *tmp1, *in1;
  885. for(i=17;i>=1;i--)
  886. in[i] += in[i-1];
  887. for(i=17;i>=3;i-=2)
  888. in[i] += in[i-2];
  889. for(j=0;j<2;j++) {
  890. tmp1 = tmp + j;
  891. in1 = in + j;
  892. #if 0
  893. //more accurate but slower
  894. int64_t t0, t1, t2, t3;
  895. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  896. t3 = (in1[2*0] + (int64_t)(in1[2*6]>>1))<<32;
  897. t1 = in1[2*0] - in1[2*6];
  898. tmp1[ 6] = t1 - (t2>>1);
  899. tmp1[16] = t1 + t2;
  900. t0 = MUL64(2*(in1[2*2] + in1[2*4]), C2);
  901. t1 = MUL64( in1[2*4] - in1[2*8] , -2*C8);
  902. t2 = MUL64(2*(in1[2*2] + in1[2*8]), -C4);
  903. tmp1[10] = (t3 - t0 - t2) >> 32;
  904. tmp1[ 2] = (t3 + t0 + t1) >> 32;
  905. tmp1[14] = (t3 + t2 - t1) >> 32;
  906. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  907. t2 = MUL64(2*(in1[2*1] + in1[2*5]), C1);
  908. t3 = MUL64( in1[2*5] - in1[2*7] , -2*C7);
  909. t0 = MUL64(2*in1[2*3], C3);
  910. t1 = MUL64(2*(in1[2*1] + in1[2*7]), -C5);
  911. tmp1[ 0] = (t2 + t3 + t0) >> 32;
  912. tmp1[12] = (t2 + t1 - t0) >> 32;
  913. tmp1[ 8] = (t3 - t1 - t0) >> 32;
  914. #else
  915. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  916. t3 = in1[2*0] + (in1[2*6]>>1);
  917. t1 = in1[2*0] - in1[2*6];
  918. tmp1[ 6] = t1 - (t2>>1);
  919. tmp1[16] = t1 + t2;
  920. t0 = MULH(2*(in1[2*2] + in1[2*4]), C2);
  921. t1 = MULH( in1[2*4] - in1[2*8] , -2*C8);
  922. t2 = MULH(2*(in1[2*2] + in1[2*8]), -C4);
  923. tmp1[10] = t3 - t0 - t2;
  924. tmp1[ 2] = t3 + t0 + t1;
  925. tmp1[14] = t3 + t2 - t1;
  926. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  927. t2 = MULH(2*(in1[2*1] + in1[2*5]), C1);
  928. t3 = MULH( in1[2*5] - in1[2*7] , -2*C7);
  929. t0 = MULH(2*in1[2*3], C3);
  930. t1 = MULH(2*(in1[2*1] + in1[2*7]), -C5);
  931. tmp1[ 0] = t2 + t3 + t0;
  932. tmp1[12] = t2 + t1 - t0;
  933. tmp1[ 8] = t3 - t1 - t0;
  934. #endif
  935. }
  936. i = 0;
  937. for(j=0;j<4;j++) {
  938. t0 = tmp[i];
  939. t1 = tmp[i + 2];
  940. s0 = t1 + t0;
  941. s2 = t1 - t0;
  942. t2 = tmp[i + 1];
  943. t3 = tmp[i + 3];
  944. s1 = MULH(2*(t3 + t2), icos36h[j]);
  945. s3 = MULL(t3 - t2, icos36[8 - j]);
  946. t0 = s0 + s1;
  947. t1 = s0 - s1;
  948. out[(9 + j)*SBLIMIT] = MULH(t1, win[9 + j]) + buf[9 + j];
  949. out[(8 - j)*SBLIMIT] = MULH(t1, win[8 - j]) + buf[8 - j];
  950. buf[9 + j] = MULH(t0, win[18 + 9 + j]);
  951. buf[8 - j] = MULH(t0, win[18 + 8 - j]);
  952. t0 = s2 + s3;
  953. t1 = s2 - s3;
  954. out[(9 + 8 - j)*SBLIMIT] = MULH(t1, win[9 + 8 - j]) + buf[9 + 8 - j];
  955. out[( j)*SBLIMIT] = MULH(t1, win[ j]) + buf[ j];
  956. buf[9 + 8 - j] = MULH(t0, win[18 + 9 + 8 - j]);
  957. buf[ + j] = MULH(t0, win[18 + j]);
  958. i += 4;
  959. }
  960. s0 = tmp[16];
  961. s1 = MULH(2*tmp[17], icos36h[4]);
  962. t0 = s0 + s1;
  963. t1 = s0 - s1;
  964. out[(9 + 4)*SBLIMIT] = MULH(t1, win[9 + 4]) + buf[9 + 4];
  965. out[(8 - 4)*SBLIMIT] = MULH(t1, win[8 - 4]) + buf[8 - 4];
  966. buf[9 + 4] = MULH(t0, win[18 + 9 + 4]);
  967. buf[8 - 4] = MULH(t0, win[18 + 8 - 4]);
  968. }
  969. /* header decoding. MUST check the header before because no
  970. consistency check is done there. Return 1 if free format found and
  971. that the frame size must be computed externally */
  972. static int decode_header(MPADecodeContext *s, uint32_t header)
  973. {
  974. int sample_rate, frame_size, mpeg25, padding;
  975. int sample_rate_index, bitrate_index;
  976. if (header & (1<<20)) {
  977. s->lsf = (header & (1<<19)) ? 0 : 1;
  978. mpeg25 = 0;
  979. } else {
  980. s->lsf = 1;
  981. mpeg25 = 1;
  982. }
  983. s->layer = 4 - ((header >> 17) & 3);
  984. /* extract frequency */
  985. sample_rate_index = (header >> 10) & 3;
  986. sample_rate = mpa_freq_tab[sample_rate_index] >> (s->lsf + mpeg25);
  987. sample_rate_index += 3 * (s->lsf + mpeg25);
  988. s->sample_rate_index = sample_rate_index;
  989. s->error_protection = ((header >> 16) & 1) ^ 1;
  990. s->sample_rate = sample_rate;
  991. bitrate_index = (header >> 12) & 0xf;
  992. padding = (header >> 9) & 1;
  993. //extension = (header >> 8) & 1;
  994. s->mode = (header >> 6) & 3;
  995. s->mode_ext = (header >> 4) & 3;
  996. //copyright = (header >> 3) & 1;
  997. //original = (header >> 2) & 1;
  998. //emphasis = header & 3;
  999. if (s->mode == MPA_MONO)
  1000. s->nb_channels = 1;
  1001. else
  1002. s->nb_channels = 2;
  1003. if (bitrate_index != 0) {
  1004. frame_size = mpa_bitrate_tab[s->lsf][s->layer - 1][bitrate_index];
  1005. s->bit_rate = frame_size * 1000;
  1006. switch(s->layer) {
  1007. case 1:
  1008. frame_size = (frame_size * 12000) / sample_rate;
  1009. frame_size = (frame_size + padding) * 4;
  1010. break;
  1011. case 2:
  1012. frame_size = (frame_size * 144000) / sample_rate;
  1013. frame_size += padding;
  1014. break;
  1015. default:
  1016. case 3:
  1017. frame_size = (frame_size * 144000) / (sample_rate << s->lsf);
  1018. frame_size += padding;
  1019. break;
  1020. }
  1021. s->frame_size = frame_size;
  1022. } else {
  1023. /* if no frame size computed, signal it */
  1024. return 1;
  1025. }
  1026. #if defined(DEBUG)
  1027. dprintf("layer%d, %d Hz, %d kbits/s, ",
  1028. s->layer, s->sample_rate, s->bit_rate);
  1029. if (s->nb_channels == 2) {
  1030. if (s->layer == 3) {
  1031. if (s->mode_ext & MODE_EXT_MS_STEREO)
  1032. dprintf("ms-");
  1033. if (s->mode_ext & MODE_EXT_I_STEREO)
  1034. dprintf("i-");
  1035. }
  1036. dprintf("stereo");
  1037. } else {
  1038. dprintf("mono");
  1039. }
  1040. dprintf("\n");
  1041. #endif
  1042. return 0;
  1043. }
  1044. /* useful helper to get mpeg audio stream infos. Return -1 if error in
  1045. header, otherwise the coded frame size in bytes */
  1046. int mpa_decode_header(AVCodecContext *avctx, uint32_t head, int *sample_rate)
  1047. {
  1048. MPADecodeContext s1, *s = &s1;
  1049. if (ff_mpa_check_header(head) != 0)
  1050. return -1;
  1051. if (decode_header(s, head) != 0) {
  1052. return -1;
  1053. }
  1054. switch(s->layer) {
  1055. case 1:
  1056. avctx->frame_size = 384;
  1057. break;
  1058. case 2:
  1059. avctx->frame_size = 1152;
  1060. break;
  1061. default:
  1062. case 3:
  1063. if (s->lsf)
  1064. avctx->frame_size = 576;
  1065. else
  1066. avctx->frame_size = 1152;
  1067. break;
  1068. }
  1069. *sample_rate = s->sample_rate;
  1070. avctx->channels = s->nb_channels;
  1071. avctx->bit_rate = s->bit_rate;
  1072. avctx->sub_id = s->layer;
  1073. return s->frame_size;
  1074. }
  1075. /* return the number of decoded frames */
  1076. static int mp_decode_layer1(MPADecodeContext *s)
  1077. {
  1078. int bound, i, v, n, ch, j, mant;
  1079. uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
  1080. uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
  1081. if (s->mode == MPA_JSTEREO)
  1082. bound = (s->mode_ext + 1) * 4;
  1083. else
  1084. bound = SBLIMIT;
  1085. /* allocation bits */
  1086. for(i=0;i<bound;i++) {
  1087. for(ch=0;ch<s->nb_channels;ch++) {
  1088. allocation[ch][i] = get_bits(&s->gb, 4);
  1089. }
  1090. }
  1091. for(i=bound;i<SBLIMIT;i++) {
  1092. allocation[0][i] = get_bits(&s->gb, 4);
  1093. }
  1094. /* scale factors */
  1095. for(i=0;i<bound;i++) {
  1096. for(ch=0;ch<s->nb_channels;ch++) {
  1097. if (allocation[ch][i])
  1098. scale_factors[ch][i] = get_bits(&s->gb, 6);
  1099. }
  1100. }
  1101. for(i=bound;i<SBLIMIT;i++) {
  1102. if (allocation[0][i]) {
  1103. scale_factors[0][i] = get_bits(&s->gb, 6);
  1104. scale_factors[1][i] = get_bits(&s->gb, 6);
  1105. }
  1106. }
  1107. /* compute samples */
  1108. for(j=0;j<12;j++) {
  1109. for(i=0;i<bound;i++) {
  1110. for(ch=0;ch<s->nb_channels;ch++) {
  1111. n = allocation[ch][i];
  1112. if (n) {
  1113. mant = get_bits(&s->gb, n + 1);
  1114. v = l1_unscale(n, mant, scale_factors[ch][i]);
  1115. } else {
  1116. v = 0;
  1117. }
  1118. s->sb_samples[ch][j][i] = v;
  1119. }
  1120. }
  1121. for(i=bound;i<SBLIMIT;i++) {
  1122. n = allocation[0][i];
  1123. if (n) {
  1124. mant = get_bits(&s->gb, n + 1);
  1125. v = l1_unscale(n, mant, scale_factors[0][i]);
  1126. s->sb_samples[0][j][i] = v;
  1127. v = l1_unscale(n, mant, scale_factors[1][i]);
  1128. s->sb_samples[1][j][i] = v;
  1129. } else {
  1130. s->sb_samples[0][j][i] = 0;
  1131. s->sb_samples[1][j][i] = 0;
  1132. }
  1133. }
  1134. }
  1135. return 12;
  1136. }
  1137. /* bitrate is in kb/s */
  1138. int l2_select_table(int bitrate, int nb_channels, int freq, int lsf)
  1139. {
  1140. int ch_bitrate, table;
  1141. ch_bitrate = bitrate / nb_channels;
  1142. if (!lsf) {
  1143. if ((freq == 48000 && ch_bitrate >= 56) ||
  1144. (ch_bitrate >= 56 && ch_bitrate <= 80))
  1145. table = 0;
  1146. else if (freq != 48000 && ch_bitrate >= 96)
  1147. table = 1;
  1148. else if (freq != 32000 && ch_bitrate <= 48)
  1149. table = 2;
  1150. else
  1151. table = 3;
  1152. } else {
  1153. table = 4;
  1154. }
  1155. return table;
  1156. }
  1157. static int mp_decode_layer2(MPADecodeContext *s)
  1158. {
  1159. int sblimit; /* number of used subbands */
  1160. const unsigned char *alloc_table;
  1161. int table, bit_alloc_bits, i, j, ch, bound, v;
  1162. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  1163. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  1164. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
  1165. int scale, qindex, bits, steps, k, l, m, b;
  1166. /* select decoding table */
  1167. table = l2_select_table(s->bit_rate / 1000, s->nb_channels,
  1168. s->sample_rate, s->lsf);
  1169. sblimit = sblimit_table[table];
  1170. alloc_table = alloc_tables[table];
  1171. if (s->mode == MPA_JSTEREO)
  1172. bound = (s->mode_ext + 1) * 4;
  1173. else
  1174. bound = sblimit;
  1175. dprintf("bound=%d sblimit=%d\n", bound, sblimit);
  1176. /* sanity check */
  1177. if( bound > sblimit ) bound = sblimit;
  1178. /* parse bit allocation */
  1179. j = 0;
  1180. for(i=0;i<bound;i++) {
  1181. bit_alloc_bits = alloc_table[j];
  1182. for(ch=0;ch<s->nb_channels;ch++) {
  1183. bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
  1184. }
  1185. j += 1 << bit_alloc_bits;
  1186. }
  1187. for(i=bound;i<sblimit;i++) {
  1188. bit_alloc_bits = alloc_table[j];
  1189. v = get_bits(&s->gb, bit_alloc_bits);
  1190. bit_alloc[0][i] = v;
  1191. bit_alloc[1][i] = v;
  1192. j += 1 << bit_alloc_bits;
  1193. }
  1194. #ifdef DEBUG
  1195. {
  1196. for(ch=0;ch<s->nb_channels;ch++) {
  1197. for(i=0;i<sblimit;i++)
  1198. dprintf(" %d", bit_alloc[ch][i]);
  1199. dprintf("\n");
  1200. }
  1201. }
  1202. #endif
  1203. /* scale codes */
  1204. for(i=0;i<sblimit;i++) {
  1205. for(ch=0;ch<s->nb_channels;ch++) {
  1206. if (bit_alloc[ch][i])
  1207. scale_code[ch][i] = get_bits(&s->gb, 2);
  1208. }
  1209. }
  1210. /* scale factors */
  1211. for(i=0;i<sblimit;i++) {
  1212. for(ch=0;ch<s->nb_channels;ch++) {
  1213. if (bit_alloc[ch][i]) {
  1214. sf = scale_factors[ch][i];
  1215. switch(scale_code[ch][i]) {
  1216. default:
  1217. case 0:
  1218. sf[0] = get_bits(&s->gb, 6);
  1219. sf[1] = get_bits(&s->gb, 6);
  1220. sf[2] = get_bits(&s->gb, 6);
  1221. break;
  1222. case 2:
  1223. sf[0] = get_bits(&s->gb, 6);
  1224. sf[1] = sf[0];
  1225. sf[2] = sf[0];
  1226. break;
  1227. case 1:
  1228. sf[0] = get_bits(&s->gb, 6);
  1229. sf[2] = get_bits(&s->gb, 6);
  1230. sf[1] = sf[0];
  1231. break;
  1232. case 3:
  1233. sf[0] = get_bits(&s->gb, 6);
  1234. sf[2] = get_bits(&s->gb, 6);
  1235. sf[1] = sf[2];
  1236. break;
  1237. }
  1238. }
  1239. }
  1240. }
  1241. #ifdef DEBUG
  1242. for(ch=0;ch<s->nb_channels;ch++) {
  1243. for(i=0;i<sblimit;i++) {
  1244. if (bit_alloc[ch][i]) {
  1245. sf = scale_factors[ch][i];
  1246. dprintf(" %d %d %d", sf[0], sf[1], sf[2]);
  1247. } else {
  1248. dprintf(" -");
  1249. }
  1250. }
  1251. dprintf("\n");
  1252. }
  1253. #endif
  1254. /* samples */
  1255. for(k=0;k<3;k++) {
  1256. for(l=0;l<12;l+=3) {
  1257. j = 0;
  1258. for(i=0;i<bound;i++) {
  1259. bit_alloc_bits = alloc_table[j];
  1260. for(ch=0;ch<s->nb_channels;ch++) {
  1261. b = bit_alloc[ch][i];
  1262. if (b) {
  1263. scale = scale_factors[ch][i][k];
  1264. qindex = alloc_table[j+b];
  1265. bits = quant_bits[qindex];
  1266. if (bits < 0) {
  1267. /* 3 values at the same time */
  1268. v = get_bits(&s->gb, -bits);
  1269. steps = quant_steps[qindex];
  1270. s->sb_samples[ch][k * 12 + l + 0][i] =
  1271. l2_unscale_group(steps, v % steps, scale);
  1272. v = v / steps;
  1273. s->sb_samples[ch][k * 12 + l + 1][i] =
  1274. l2_unscale_group(steps, v % steps, scale);
  1275. v = v / steps;
  1276. s->sb_samples[ch][k * 12 + l + 2][i] =
  1277. l2_unscale_group(steps, v, scale);
  1278. } else {
  1279. for(m=0;m<3;m++) {
  1280. v = get_bits(&s->gb, bits);
  1281. v = l1_unscale(bits - 1, v, scale);
  1282. s->sb_samples[ch][k * 12 + l + m][i] = v;
  1283. }
  1284. }
  1285. } else {
  1286. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1287. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1288. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1289. }
  1290. }
  1291. /* next subband in alloc table */
  1292. j += 1 << bit_alloc_bits;
  1293. }
  1294. /* XXX: find a way to avoid this duplication of code */
  1295. for(i=bound;i<sblimit;i++) {
  1296. bit_alloc_bits = alloc_table[j];
  1297. b = bit_alloc[0][i];
  1298. if (b) {
  1299. int mant, scale0, scale1;
  1300. scale0 = scale_factors[0][i][k];
  1301. scale1 = scale_factors[1][i][k];
  1302. qindex = alloc_table[j+b];
  1303. bits = quant_bits[qindex];
  1304. if (bits < 0) {
  1305. /* 3 values at the same time */
  1306. v = get_bits(&s->gb, -bits);
  1307. steps = quant_steps[qindex];
  1308. mant = v % steps;
  1309. v = v / steps;
  1310. s->sb_samples[0][k * 12 + l + 0][i] =
  1311. l2_unscale_group(steps, mant, scale0);
  1312. s->sb_samples[1][k * 12 + l + 0][i] =
  1313. l2_unscale_group(steps, mant, scale1);
  1314. mant = v % steps;
  1315. v = v / steps;
  1316. s->sb_samples[0][k * 12 + l + 1][i] =
  1317. l2_unscale_group(steps, mant, scale0);
  1318. s->sb_samples[1][k * 12 + l + 1][i] =
  1319. l2_unscale_group(steps, mant, scale1);
  1320. s->sb_samples[0][k * 12 + l + 2][i] =
  1321. l2_unscale_group(steps, v, scale0);
  1322. s->sb_samples[1][k * 12 + l + 2][i] =
  1323. l2_unscale_group(steps, v, scale1);
  1324. } else {
  1325. for(m=0;m<3;m++) {
  1326. mant = get_bits(&s->gb, bits);
  1327. s->sb_samples[0][k * 12 + l + m][i] =
  1328. l1_unscale(bits - 1, mant, scale0);
  1329. s->sb_samples[1][k * 12 + l + m][i] =
  1330. l1_unscale(bits - 1, mant, scale1);
  1331. }
  1332. }
  1333. } else {
  1334. s->sb_samples[0][k * 12 + l + 0][i] = 0;
  1335. s->sb_samples[0][k * 12 + l + 1][i] = 0;
  1336. s->sb_samples[0][k * 12 + l + 2][i] = 0;
  1337. s->sb_samples[1][k * 12 + l + 0][i] = 0;
  1338. s->sb_samples[1][k * 12 + l + 1][i] = 0;
  1339. s->sb_samples[1][k * 12 + l + 2][i] = 0;
  1340. }
  1341. /* next subband in alloc table */
  1342. j += 1 << bit_alloc_bits;
  1343. }
  1344. /* fill remaining samples to zero */
  1345. for(i=sblimit;i<SBLIMIT;i++) {
  1346. for(ch=0;ch<s->nb_channels;ch++) {
  1347. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1348. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1349. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1350. }
  1351. }
  1352. }
  1353. }
  1354. return 3 * 12;
  1355. }
  1356. static inline void lsf_sf_expand(int *slen,
  1357. int sf, int n1, int n2, int n3)
  1358. {
  1359. if (n3) {
  1360. slen[3] = sf % n3;
  1361. sf /= n3;
  1362. } else {
  1363. slen[3] = 0;
  1364. }
  1365. if (n2) {
  1366. slen[2] = sf % n2;
  1367. sf /= n2;
  1368. } else {
  1369. slen[2] = 0;
  1370. }
  1371. slen[1] = sf % n1;
  1372. sf /= n1;
  1373. slen[0] = sf;
  1374. }
  1375. static void exponents_from_scale_factors(MPADecodeContext *s,
  1376. GranuleDef *g,
  1377. int16_t *exponents)
  1378. {
  1379. const uint8_t *bstab, *pretab;
  1380. int len, i, j, k, l, v0, shift, gain, gains[3];
  1381. int16_t *exp_ptr;
  1382. exp_ptr = exponents;
  1383. gain = g->global_gain - 210;
  1384. shift = g->scalefac_scale + 1;
  1385. bstab = band_size_long[s->sample_rate_index];
  1386. pretab = mpa_pretab[g->preflag];
  1387. for(i=0;i<g->long_end;i++) {
  1388. v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
  1389. len = bstab[i];
  1390. for(j=len;j>0;j--)
  1391. *exp_ptr++ = v0;
  1392. }
  1393. if (g->short_start < 13) {
  1394. bstab = band_size_short[s->sample_rate_index];
  1395. gains[0] = gain - (g->subblock_gain[0] << 3);
  1396. gains[1] = gain - (g->subblock_gain[1] << 3);
  1397. gains[2] = gain - (g->subblock_gain[2] << 3);
  1398. k = g->long_end;
  1399. for(i=g->short_start;i<13;i++) {
  1400. len = bstab[i];
  1401. for(l=0;l<3;l++) {
  1402. v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
  1403. for(j=len;j>0;j--)
  1404. *exp_ptr++ = v0;
  1405. }
  1406. }
  1407. }
  1408. }
  1409. /* handle n = 0 too */
  1410. static inline int get_bitsz(GetBitContext *s, int n)
  1411. {
  1412. if (n == 0)
  1413. return 0;
  1414. else
  1415. return get_bits(s, n);
  1416. }
  1417. static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos, int *end_pos2){
  1418. if(s->in_gb.buffer && *pos >= s->gb.size_in_bits){
  1419. s->gb= s->in_gb;
  1420. s->in_gb.buffer=NULL;
  1421. assert((get_bits_count(&s->gb) & 7) == 0);
  1422. skip_bits_long(&s->gb, *pos - *end_pos);
  1423. *end_pos2=
  1424. *end_pos= *end_pos2 + get_bits_count(&s->gb) - *pos;
  1425. *pos= get_bits_count(&s->gb);
  1426. }
  1427. }
  1428. static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
  1429. int16_t *exponents, int end_pos2)
  1430. {
  1431. int s_index;
  1432. int i;
  1433. int last_pos, bits_left;
  1434. VLC *vlc;
  1435. int end_pos= FFMIN(end_pos2, s->gb.size_in_bits);
  1436. /* low frequencies (called big values) */
  1437. s_index = 0;
  1438. for(i=0;i<3;i++) {
  1439. int j, k, l, linbits;
  1440. j = g->region_size[i];
  1441. if (j == 0)
  1442. continue;
  1443. /* select vlc table */
  1444. k = g->table_select[i];
  1445. l = mpa_huff_data[k][0];
  1446. linbits = mpa_huff_data[k][1];
  1447. vlc = &huff_vlc[l];
  1448. if(!l){
  1449. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*2*j);
  1450. s_index += 2*j;
  1451. continue;
  1452. }
  1453. /* read huffcode and compute each couple */
  1454. for(;j>0;j--) {
  1455. int exponent, x, y, v;
  1456. int pos= get_bits_count(&s->gb);
  1457. if (pos >= end_pos){
  1458. // av_log(NULL, AV_LOG_ERROR, "pos: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
  1459. switch_buffer(s, &pos, &end_pos, &end_pos2);
  1460. // av_log(NULL, AV_LOG_ERROR, "new pos: %d %d\n", pos, end_pos);
  1461. if(pos >= end_pos)
  1462. break;
  1463. }
  1464. y = get_vlc2(&s->gb, vlc->table, 7, 3);
  1465. if(!y){
  1466. g->sb_hybrid[s_index ] =
  1467. g->sb_hybrid[s_index+1] = 0;
  1468. s_index += 2;
  1469. continue;
  1470. }
  1471. exponent= exponents[s_index];
  1472. dprintf("region=%d n=%d x=%d y=%d exp=%d\n",
  1473. i, g->region_size[i] - j, x, y, exponent);
  1474. if(y&16){
  1475. x = y >> 5;
  1476. y = y & 0x0f;
  1477. if (x < 15){
  1478. v = expval_table[ exponent ][ x ];
  1479. // v = expval_table[ (exponent&3) ][ x ] >> FFMIN(0 - (exponent>>2), 31);
  1480. }else{
  1481. x += get_bitsz(&s->gb, linbits);
  1482. v = l3_unscale(x, exponent);
  1483. }
  1484. if (get_bits1(&s->gb))
  1485. v = -v;
  1486. g->sb_hybrid[s_index] = v;
  1487. if (y < 15){
  1488. v = expval_table[ exponent ][ y ];
  1489. }else{
  1490. y += get_bitsz(&s->gb, linbits);
  1491. v = l3_unscale(y, exponent);
  1492. }
  1493. if (get_bits1(&s->gb))
  1494. v = -v;
  1495. g->sb_hybrid[s_index+1] = v;
  1496. }else{
  1497. x = y >> 5;
  1498. y = y & 0x0f;
  1499. x += y;
  1500. if (x < 15){
  1501. v = expval_table[ exponent ][ x ];
  1502. }else{
  1503. x += get_bitsz(&s->gb, linbits);
  1504. v = l3_unscale(x, exponent);
  1505. }
  1506. if (get_bits1(&s->gb))
  1507. v = -v;
  1508. g->sb_hybrid[s_index+!!y] = v;
  1509. g->sb_hybrid[s_index+ !y] = 0;
  1510. }
  1511. s_index+=2;
  1512. }
  1513. }
  1514. /* high frequencies */
  1515. vlc = &huff_quad_vlc[g->count1table_select];
  1516. last_pos=0;
  1517. while (s_index <= 572) {
  1518. int pos, code;
  1519. pos = get_bits_count(&s->gb);
  1520. if (pos >= end_pos) {
  1521. if (pos > end_pos2 && last_pos){
  1522. /* some encoders generate an incorrect size for this
  1523. part. We must go back into the data */
  1524. s_index -= 4;
  1525. skip_bits_long(&s->gb, last_pos - pos);
  1526. av_log(NULL, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
  1527. if(s->error_resilience >= FF_ER_COMPLIANT)
  1528. s_index=0;
  1529. break;
  1530. }
  1531. // av_log(NULL, AV_LOG_ERROR, "pos2: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
  1532. switch_buffer(s, &pos, &end_pos, &end_pos2);
  1533. // av_log(NULL, AV_LOG_ERROR, "new pos2: %d %d %d\n", pos, end_pos, s_index);
  1534. if(pos >= end_pos)
  1535. break;
  1536. }
  1537. last_pos= pos;
  1538. code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
  1539. dprintf("t=%d code=%d\n", g->count1table_select, code);
  1540. g->sb_hybrid[s_index+0]=
  1541. g->sb_hybrid[s_index+1]=
  1542. g->sb_hybrid[s_index+2]=
  1543. g->sb_hybrid[s_index+3]= 0;
  1544. while(code){
  1545. const static int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0};
  1546. int v;
  1547. int pos= s_index+idxtab[code];
  1548. code ^= 8>>idxtab[code];
  1549. v = exp_table[ exponents[pos] ];
  1550. // v = exp_table[ (exponents[pos]&3) ] >> FFMIN(0 - (exponents[pos]>>2), 31);
  1551. if(get_bits1(&s->gb))
  1552. v = -v;
  1553. g->sb_hybrid[pos] = v;
  1554. }
  1555. s_index+=4;
  1556. }
  1557. /* skip extension bits */
  1558. bits_left = end_pos2 - get_bits_count(&s->gb);
  1559. //av_log(NULL, AV_LOG_ERROR, "left:%d buf:%p\n", bits_left, s->in_gb.buffer);
  1560. if (bits_left < 0/* || bits_left > 500*/) {
  1561. av_log(NULL, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  1562. s_index=0;
  1563. }else if(bits_left > 0 && s->error_resilience >= FF_ER_AGGRESSIVE){
  1564. av_log(NULL, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  1565. s_index=0;
  1566. }
  1567. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*(576 - s_index));
  1568. skip_bits_long(&s->gb, bits_left);
  1569. i= get_bits_count(&s->gb);
  1570. switch_buffer(s, &i, &end_pos, &end_pos2);
  1571. return 0;
  1572. }
  1573. /* Reorder short blocks from bitstream order to interleaved order. It
  1574. would be faster to do it in parsing, but the code would be far more
  1575. complicated */
  1576. static void reorder_block(MPADecodeContext *s, GranuleDef *g)
  1577. {
  1578. int i, j, len;
  1579. int32_t *ptr, *dst, *ptr1;
  1580. int32_t tmp[576];
  1581. if (g->block_type != 2)
  1582. return;
  1583. if (g->switch_point) {
  1584. if (s->sample_rate_index != 8) {
  1585. ptr = g->sb_hybrid + 36;
  1586. } else {
  1587. ptr = g->sb_hybrid + 48;
  1588. }
  1589. } else {
  1590. ptr = g->sb_hybrid;
  1591. }
  1592. for(i=g->short_start;i<13;i++) {
  1593. len = band_size_short[s->sample_rate_index][i];
  1594. ptr1 = ptr;
  1595. dst = tmp;
  1596. for(j=len;j>0;j--) {
  1597. *dst++ = ptr[0*len];
  1598. *dst++ = ptr[1*len];
  1599. *dst++ = ptr[2*len];
  1600. ptr++;
  1601. }
  1602. ptr+=2*len;
  1603. memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
  1604. }
  1605. }
  1606. #define ISQRT2 FIXR(0.70710678118654752440)
  1607. static void compute_stereo(MPADecodeContext *s,
  1608. GranuleDef *g0, GranuleDef *g1)
  1609. {
  1610. int i, j, k, l;
  1611. int32_t v1, v2;
  1612. int sf_max, tmp0, tmp1, sf, len, non_zero_found;
  1613. int32_t (*is_tab)[16];
  1614. int32_t *tab0, *tab1;
  1615. int non_zero_found_short[3];
  1616. /* intensity stereo */
  1617. if (s->mode_ext & MODE_EXT_I_STEREO) {
  1618. if (!s->lsf) {
  1619. is_tab = is_table;
  1620. sf_max = 7;
  1621. } else {
  1622. is_tab = is_table_lsf[g1->scalefac_compress & 1];
  1623. sf_max = 16;
  1624. }
  1625. tab0 = g0->sb_hybrid + 576;
  1626. tab1 = g1->sb_hybrid + 576;
  1627. non_zero_found_short[0] = 0;
  1628. non_zero_found_short[1] = 0;
  1629. non_zero_found_short[2] = 0;
  1630. k = (13 - g1->short_start) * 3 + g1->long_end - 3;
  1631. for(i = 12;i >= g1->short_start;i--) {
  1632. /* for last band, use previous scale factor */
  1633. if (i != 11)
  1634. k -= 3;
  1635. len = band_size_short[s->sample_rate_index][i];
  1636. for(l=2;l>=0;l--) {
  1637. tab0 -= len;
  1638. tab1 -= len;
  1639. if (!non_zero_found_short[l]) {
  1640. /* test if non zero band. if so, stop doing i-stereo */
  1641. for(j=0;j<len;j++) {
  1642. if (tab1[j] != 0) {
  1643. non_zero_found_short[l] = 1;
  1644. goto found1;
  1645. }
  1646. }
  1647. sf = g1->scale_factors[k + l];
  1648. if (sf >= sf_max)
  1649. goto found1;
  1650. v1 = is_tab[0][sf];
  1651. v2 = is_tab[1][sf];
  1652. for(j=0;j<len;j++) {
  1653. tmp0 = tab0[j];
  1654. tab0[j] = MULL(tmp0, v1);
  1655. tab1[j] = MULL(tmp0, v2);
  1656. }
  1657. } else {
  1658. found1:
  1659. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1660. /* lower part of the spectrum : do ms stereo
  1661. if enabled */
  1662. for(j=0;j<len;j++) {
  1663. tmp0 = tab0[j];
  1664. tmp1 = tab1[j];
  1665. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1666. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1667. }
  1668. }
  1669. }
  1670. }
  1671. }
  1672. non_zero_found = non_zero_found_short[0] |
  1673. non_zero_found_short[1] |
  1674. non_zero_found_short[2];
  1675. for(i = g1->long_end - 1;i >= 0;i--) {
  1676. len = band_size_long[s->sample_rate_index][i];
  1677. tab0 -= len;
  1678. tab1 -= len;
  1679. /* test if non zero band. if so, stop doing i-stereo */
  1680. if (!non_zero_found) {
  1681. for(j=0;j<len;j++) {
  1682. if (tab1[j] != 0) {
  1683. non_zero_found = 1;
  1684. goto found2;
  1685. }
  1686. }
  1687. /* for last band, use previous scale factor */
  1688. k = (i == 21) ? 20 : i;
  1689. sf = g1->scale_factors[k];
  1690. if (sf >= sf_max)
  1691. goto found2;
  1692. v1 = is_tab[0][sf];
  1693. v2 = is_tab[1][sf];
  1694. for(j=0;j<len;j++) {
  1695. tmp0 = tab0[j];
  1696. tab0[j] = MULL(tmp0, v1);
  1697. tab1[j] = MULL(tmp0, v2);
  1698. }
  1699. } else {
  1700. found2:
  1701. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1702. /* lower part of the spectrum : do ms stereo
  1703. if enabled */
  1704. for(j=0;j<len;j++) {
  1705. tmp0 = tab0[j];
  1706. tmp1 = tab1[j];
  1707. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1708. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1709. }
  1710. }
  1711. }
  1712. }
  1713. } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1714. /* ms stereo ONLY */
  1715. /* NOTE: the 1/sqrt(2) normalization factor is included in the
  1716. global gain */
  1717. tab0 = g0->sb_hybrid;
  1718. tab1 = g1->sb_hybrid;
  1719. for(i=0;i<576;i++) {
  1720. tmp0 = tab0[i];
  1721. tmp1 = tab1[i];
  1722. tab0[i] = tmp0 + tmp1;
  1723. tab1[i] = tmp0 - tmp1;
  1724. }
  1725. }
  1726. }
  1727. static void compute_antialias_integer(MPADecodeContext *s,
  1728. GranuleDef *g)
  1729. {
  1730. int32_t *ptr, *csa;
  1731. int n, i;
  1732. /* we antialias only "long" bands */
  1733. if (g->block_type == 2) {
  1734. if (!g->switch_point)
  1735. return;
  1736. /* XXX: check this for 8000Hz case */
  1737. n = 1;
  1738. } else {
  1739. n = SBLIMIT - 1;
  1740. }
  1741. ptr = g->sb_hybrid + 18;
  1742. for(i = n;i > 0;i--) {
  1743. int tmp0, tmp1, tmp2;
  1744. csa = &csa_table[0][0];
  1745. #define INT_AA(j) \
  1746. tmp0 = ptr[-1-j];\
  1747. tmp1 = ptr[ j];\
  1748. tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\
  1749. ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\
  1750. ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j]));
  1751. INT_AA(0)
  1752. INT_AA(1)
  1753. INT_AA(2)
  1754. INT_AA(3)
  1755. INT_AA(4)
  1756. INT_AA(5)
  1757. INT_AA(6)
  1758. INT_AA(7)
  1759. ptr += 18;
  1760. }
  1761. }
  1762. static void compute_antialias_float(MPADecodeContext *s,
  1763. GranuleDef *g)
  1764. {
  1765. int32_t *ptr;
  1766. int n, i;
  1767. /* we antialias only "long" bands */
  1768. if (g->block_type == 2) {
  1769. if (!g->switch_point)
  1770. return;
  1771. /* XXX: check this for 8000Hz case */
  1772. n = 1;
  1773. } else {
  1774. n = SBLIMIT - 1;
  1775. }
  1776. ptr = g->sb_hybrid + 18;
  1777. for(i = n;i > 0;i--) {
  1778. float tmp0, tmp1;
  1779. float *csa = &csa_table_float[0][0];
  1780. #define FLOAT_AA(j)\
  1781. tmp0= ptr[-1-j];\
  1782. tmp1= ptr[ j];\
  1783. ptr[-1-j] = lrintf(tmp0 * csa[0+4*j] - tmp1 * csa[1+4*j]);\
  1784. ptr[ j] = lrintf(tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j]);
  1785. FLOAT_AA(0)
  1786. FLOAT_AA(1)
  1787. FLOAT_AA(2)
  1788. FLOAT_AA(3)
  1789. FLOAT_AA(4)
  1790. FLOAT_AA(5)
  1791. FLOAT_AA(6)
  1792. FLOAT_AA(7)
  1793. ptr += 18;
  1794. }
  1795. }
  1796. static void compute_imdct(MPADecodeContext *s,
  1797. GranuleDef *g,
  1798. int32_t *sb_samples,
  1799. int32_t *mdct_buf)
  1800. {
  1801. int32_t *ptr, *win, *win1, *buf, *out_ptr, *ptr1;
  1802. int32_t out2[12];
  1803. int i, j, mdct_long_end, v, sblimit;
  1804. /* find last non zero block */
  1805. ptr = g->sb_hybrid + 576;
  1806. ptr1 = g->sb_hybrid + 2 * 18;
  1807. while (ptr >= ptr1) {
  1808. ptr -= 6;
  1809. v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
  1810. if (v != 0)
  1811. break;
  1812. }
  1813. sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
  1814. if (g->block_type == 2) {
  1815. /* XXX: check for 8000 Hz */
  1816. if (g->switch_point)
  1817. mdct_long_end = 2;
  1818. else
  1819. mdct_long_end = 0;
  1820. } else {
  1821. mdct_long_end = sblimit;
  1822. }
  1823. buf = mdct_buf;
  1824. ptr = g->sb_hybrid;
  1825. for(j=0;j<mdct_long_end;j++) {
  1826. /* apply window & overlap with previous buffer */
  1827. out_ptr = sb_samples + j;
  1828. /* select window */
  1829. if (g->switch_point && j < 2)
  1830. win1 = mdct_win[0];
  1831. else
  1832. win1 = mdct_win[g->block_type];
  1833. /* select frequency inversion */
  1834. win = win1 + ((4 * 36) & -(j & 1));
  1835. imdct36(out_ptr, buf, ptr, win);
  1836. out_ptr += 18*SBLIMIT;
  1837. ptr += 18;
  1838. buf += 18;
  1839. }
  1840. for(j=mdct_long_end;j<sblimit;j++) {
  1841. /* select frequency inversion */
  1842. win = mdct_win[2] + ((4 * 36) & -(j & 1));
  1843. out_ptr = sb_samples + j;
  1844. for(i=0; i<6; i++){
  1845. *out_ptr = buf[i];
  1846. out_ptr += SBLIMIT;
  1847. }
  1848. imdct12(out2, ptr + 0);
  1849. for(i=0;i<6;i++) {
  1850. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*1];
  1851. buf[i + 6*2] = MULH(out2[i + 6], win[i + 6]);
  1852. out_ptr += SBLIMIT;
  1853. }
  1854. imdct12(out2, ptr + 1);
  1855. for(i=0;i<6;i++) {
  1856. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*2];
  1857. buf[i + 6*0] = MULH(out2[i + 6], win[i + 6]);
  1858. out_ptr += SBLIMIT;
  1859. }
  1860. imdct12(out2, ptr + 2);
  1861. for(i=0;i<6;i++) {
  1862. buf[i + 6*0] = MULH(out2[i], win[i]) + buf[i + 6*0];
  1863. buf[i + 6*1] = MULH(out2[i + 6], win[i + 6]);
  1864. buf[i + 6*2] = 0;
  1865. }
  1866. ptr += 18;
  1867. buf += 18;
  1868. }
  1869. /* zero bands */
  1870. for(j=sblimit;j<SBLIMIT;j++) {
  1871. /* overlap */
  1872. out_ptr = sb_samples + j;
  1873. for(i=0;i<18;i++) {
  1874. *out_ptr = buf[i];
  1875. buf[i] = 0;
  1876. out_ptr += SBLIMIT;
  1877. }
  1878. buf += 18;
  1879. }
  1880. }
  1881. #if defined(DEBUG)
  1882. void sample_dump(int fnum, int32_t *tab, int n)
  1883. {
  1884. static FILE *files[16], *f;
  1885. char buf[512];
  1886. int i;
  1887. int32_t v;
  1888. f = files[fnum];
  1889. if (!f) {
  1890. snprintf(buf, sizeof(buf), "/tmp/out%d.%s.pcm",
  1891. fnum,
  1892. #ifdef USE_HIGHPRECISION
  1893. "hp"
  1894. #else
  1895. "lp"
  1896. #endif
  1897. );
  1898. f = fopen(buf, "w");
  1899. if (!f)
  1900. return;
  1901. files[fnum] = f;
  1902. }
  1903. if (fnum == 0) {
  1904. static int pos = 0;
  1905. av_log(NULL, AV_LOG_DEBUG, "pos=%d\n", pos);
  1906. for(i=0;i<n;i++) {
  1907. av_log(NULL, AV_LOG_DEBUG, " %0.4f", (double)tab[i] / FRAC_ONE);
  1908. if ((i % 18) == 17)
  1909. av_log(NULL, AV_LOG_DEBUG, "\n");
  1910. }
  1911. pos += n;
  1912. }
  1913. for(i=0;i<n;i++) {
  1914. /* normalize to 23 frac bits */
  1915. v = tab[i] << (23 - FRAC_BITS);
  1916. fwrite(&v, 1, sizeof(int32_t), f);
  1917. }
  1918. }
  1919. #endif
  1920. /* main layer3 decoding function */
  1921. static int mp_decode_layer3(MPADecodeContext *s)
  1922. {
  1923. int nb_granules, main_data_begin, private_bits;
  1924. int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
  1925. GranuleDef granules[2][2], *g;
  1926. int16_t exponents[576];
  1927. /* read side info */
  1928. if (s->lsf) {
  1929. main_data_begin = get_bits(&s->gb, 8);
  1930. private_bits = get_bits(&s->gb, s->nb_channels);
  1931. nb_granules = 1;
  1932. } else {
  1933. main_data_begin = get_bits(&s->gb, 9);
  1934. if (s->nb_channels == 2)
  1935. private_bits = get_bits(&s->gb, 3);
  1936. else
  1937. private_bits = get_bits(&s->gb, 5);
  1938. nb_granules = 2;
  1939. for(ch=0;ch<s->nb_channels;ch++) {
  1940. granules[ch][0].scfsi = 0; /* all scale factors are transmitted */
  1941. granules[ch][1].scfsi = get_bits(&s->gb, 4);
  1942. }
  1943. }
  1944. for(gr=0;gr<nb_granules;gr++) {
  1945. for(ch=0;ch<s->nb_channels;ch++) {
  1946. dprintf("gr=%d ch=%d: side_info\n", gr, ch);
  1947. g = &granules[ch][gr];
  1948. g->part2_3_length = get_bits(&s->gb, 12);
  1949. g->big_values = get_bits(&s->gb, 9);
  1950. if(g->big_values > 288){
  1951. av_log(NULL, AV_LOG_ERROR, "big_values too big\n");
  1952. return -1;
  1953. }
  1954. g->global_gain = get_bits(&s->gb, 8);
  1955. /* if MS stereo only is selected, we precompute the
  1956. 1/sqrt(2) renormalization factor */
  1957. if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
  1958. MODE_EXT_MS_STEREO)
  1959. g->global_gain -= 2;
  1960. if (s->lsf)
  1961. g->scalefac_compress = get_bits(&s->gb, 9);
  1962. else
  1963. g->scalefac_compress = get_bits(&s->gb, 4);
  1964. blocksplit_flag = get_bits(&s->gb, 1);
  1965. if (blocksplit_flag) {
  1966. g->block_type = get_bits(&s->gb, 2);
  1967. if (g->block_type == 0){
  1968. av_log(NULL, AV_LOG_ERROR, "invalid block type\n");
  1969. return -1;
  1970. }
  1971. g->switch_point = get_bits(&s->gb, 1);
  1972. for(i=0;i<2;i++)
  1973. g->table_select[i] = get_bits(&s->gb, 5);
  1974. for(i=0;i<3;i++)
  1975. g->subblock_gain[i] = get_bits(&s->gb, 3);
  1976. /* compute huffman coded region sizes */
  1977. if (g->block_type == 2)
  1978. g->region_size[0] = (36 / 2);
  1979. else {
  1980. if (s->sample_rate_index <= 2)
  1981. g->region_size[0] = (36 / 2);
  1982. else if (s->sample_rate_index != 8)
  1983. g->region_size[0] = (54 / 2);
  1984. else
  1985. g->region_size[0] = (108 / 2);
  1986. }
  1987. g->region_size[1] = (576 / 2);
  1988. } else {
  1989. int region_address1, region_address2, l;
  1990. g->block_type = 0;
  1991. g->switch_point = 0;
  1992. for(i=0;i<3;i++)
  1993. g->table_select[i] = get_bits(&s->gb, 5);
  1994. /* compute huffman coded region sizes */
  1995. region_address1 = get_bits(&s->gb, 4);
  1996. region_address2 = get_bits(&s->gb, 3);
  1997. dprintf("region1=%d region2=%d\n",
  1998. region_address1, region_address2);
  1999. g->region_size[0] =
  2000. band_index_long[s->sample_rate_index][region_address1 + 1] >> 1;
  2001. l = region_address1 + region_address2 + 2;
  2002. /* should not overflow */
  2003. if (l > 22)
  2004. l = 22;
  2005. g->region_size[1] =
  2006. band_index_long[s->sample_rate_index][l] >> 1;
  2007. }
  2008. /* convert region offsets to region sizes and truncate
  2009. size to big_values */
  2010. g->region_size[2] = (576 / 2);
  2011. j = 0;
  2012. for(i=0;i<3;i++) {
  2013. k = FFMIN(g->region_size[i], g->big_values);
  2014. g->region_size[i] = k - j;
  2015. j = k;
  2016. }
  2017. /* compute band indexes */
  2018. if (g->block_type == 2) {
  2019. if (g->switch_point) {
  2020. /* if switched mode, we handle the 36 first samples as
  2021. long blocks. For 8000Hz, we handle the 48 first
  2022. exponents as long blocks (XXX: check this!) */
  2023. if (s->sample_rate_index <= 2)
  2024. g->long_end = 8;
  2025. else if (s->sample_rate_index != 8)
  2026. g->long_end = 6;
  2027. else
  2028. g->long_end = 4; /* 8000 Hz */
  2029. g->short_start = 2 + (s->sample_rate_index != 8);
  2030. } else {
  2031. g->long_end = 0;
  2032. g->short_start = 0;
  2033. }
  2034. } else {
  2035. g->short_start = 13;
  2036. g->long_end = 22;
  2037. }
  2038. g->preflag = 0;
  2039. if (!s->lsf)
  2040. g->preflag = get_bits(&s->gb, 1);
  2041. g->scalefac_scale = get_bits(&s->gb, 1);
  2042. g->count1table_select = get_bits(&s->gb, 1);
  2043. dprintf("block_type=%d switch_point=%d\n",
  2044. g->block_type, g->switch_point);
  2045. }
  2046. }
  2047. if (!s->adu_mode) {
  2048. const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
  2049. assert((get_bits_count(&s->gb) & 7) == 0);
  2050. /* now we get bits from the main_data_begin offset */
  2051. dprintf("seekback: %d\n", main_data_begin);
  2052. //av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s->last_buf_size);
  2053. memcpy(s->last_buf + s->last_buf_size, ptr, EXTRABYTES);
  2054. s->in_gb= s->gb;
  2055. init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
  2056. skip_bits_long(&s->gb, 8*(s->last_buf_size - main_data_begin));
  2057. }
  2058. for(gr=0;gr<nb_granules;gr++) {
  2059. for(ch=0;ch<s->nb_channels;ch++) {
  2060. g = &granules[ch][gr];
  2061. if(get_bits_count(&s->gb)<0){
  2062. av_log(NULL, AV_LOG_ERROR, "mdb:%d, lastbuf:%d skiping granule %d\n",
  2063. main_data_begin, s->last_buf_size, gr);
  2064. skip_bits_long(&s->gb, g->part2_3_length);
  2065. memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
  2066. if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->in_gb.buffer){
  2067. skip_bits_long(&s->in_gb, get_bits_count(&s->gb) - s->gb.size_in_bits);
  2068. s->gb= s->in_gb;
  2069. s->in_gb.buffer=NULL;
  2070. }
  2071. continue;
  2072. }
  2073. bits_pos = get_bits_count(&s->gb);
  2074. if (!s->lsf) {
  2075. uint8_t *sc;
  2076. int slen, slen1, slen2;
  2077. /* MPEG1 scale factors */
  2078. slen1 = slen_table[0][g->scalefac_compress];
  2079. slen2 = slen_table[1][g->scalefac_compress];
  2080. dprintf("slen1=%d slen2=%d\n", slen1, slen2);
  2081. if (g->block_type == 2) {
  2082. n = g->switch_point ? 17 : 18;
  2083. j = 0;
  2084. if(slen1){
  2085. for(i=0;i<n;i++)
  2086. g->scale_factors[j++] = get_bits(&s->gb, slen1);
  2087. }else{
  2088. for(i=0;i<n;i++)
  2089. g->scale_factors[j++] = 0;
  2090. }
  2091. if(slen2){
  2092. for(i=0;i<18;i++)
  2093. g->scale_factors[j++] = get_bits(&s->gb, slen2);
  2094. for(i=0;i<3;i++)
  2095. g->scale_factors[j++] = 0;
  2096. }else{
  2097. for(i=0;i<21;i++)
  2098. g->scale_factors[j++] = 0;
  2099. }
  2100. } else {
  2101. sc = granules[ch][0].scale_factors;
  2102. j = 0;
  2103. for(k=0;k<4;k++) {
  2104. n = (k == 0 ? 6 : 5);
  2105. if ((g->scfsi & (0x8 >> k)) == 0) {
  2106. slen = (k < 2) ? slen1 : slen2;
  2107. if(slen){
  2108. for(i=0;i<n;i++)
  2109. g->scale_factors[j++] = get_bits(&s->gb, slen);
  2110. }else{
  2111. for(i=0;i<n;i++)
  2112. g->scale_factors[j++] = 0;
  2113. }
  2114. } else {
  2115. /* simply copy from last granule */
  2116. for(i=0;i<n;i++) {
  2117. g->scale_factors[j] = sc[j];
  2118. j++;
  2119. }
  2120. }
  2121. }
  2122. g->scale_factors[j++] = 0;
  2123. }
  2124. #if defined(DEBUG)
  2125. {
  2126. dprintf("scfsi=%x gr=%d ch=%d scale_factors:\n",
  2127. g->scfsi, gr, ch);
  2128. for(i=0;i<j;i++)
  2129. dprintf(" %d", g->scale_factors[i]);
  2130. dprintf("\n");
  2131. }
  2132. #endif
  2133. } else {
  2134. int tindex, tindex2, slen[4], sl, sf;
  2135. /* LSF scale factors */
  2136. if (g->block_type == 2) {
  2137. tindex = g->switch_point ? 2 : 1;
  2138. } else {
  2139. tindex = 0;
  2140. }
  2141. sf = g->scalefac_compress;
  2142. if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
  2143. /* intensity stereo case */
  2144. sf >>= 1;
  2145. if (sf < 180) {
  2146. lsf_sf_expand(slen, sf, 6, 6, 0);
  2147. tindex2 = 3;
  2148. } else if (sf < 244) {
  2149. lsf_sf_expand(slen, sf - 180, 4, 4, 0);
  2150. tindex2 = 4;
  2151. } else {
  2152. lsf_sf_expand(slen, sf - 244, 3, 0, 0);
  2153. tindex2 = 5;
  2154. }
  2155. } else {
  2156. /* normal case */
  2157. if (sf < 400) {
  2158. lsf_sf_expand(slen, sf, 5, 4, 4);
  2159. tindex2 = 0;
  2160. } else if (sf < 500) {
  2161. lsf_sf_expand(slen, sf - 400, 5, 4, 0);
  2162. tindex2 = 1;
  2163. } else {
  2164. lsf_sf_expand(slen, sf - 500, 3, 0, 0);
  2165. tindex2 = 2;
  2166. g->preflag = 1;
  2167. }
  2168. }
  2169. j = 0;
  2170. for(k=0;k<4;k++) {
  2171. n = lsf_nsf_table[tindex2][tindex][k];
  2172. sl = slen[k];
  2173. if(sl){
  2174. for(i=0;i<n;i++)
  2175. g->scale_factors[j++] = get_bits(&s->gb, sl);
  2176. }else{
  2177. for(i=0;i<n;i++)
  2178. g->scale_factors[j++] = 0;
  2179. }
  2180. }
  2181. /* XXX: should compute exact size */
  2182. for(;j<40;j++)
  2183. g->scale_factors[j] = 0;
  2184. #if defined(DEBUG)
  2185. {
  2186. dprintf("gr=%d ch=%d scale_factors:\n",
  2187. gr, ch);
  2188. for(i=0;i<40;i++)
  2189. dprintf(" %d", g->scale_factors[i]);
  2190. dprintf("\n");
  2191. }
  2192. #endif
  2193. }
  2194. exponents_from_scale_factors(s, g, exponents);
  2195. /* read Huffman coded residue */
  2196. huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
  2197. #if defined(DEBUG)
  2198. sample_dump(0, g->sb_hybrid, 576);
  2199. #endif
  2200. } /* ch */
  2201. if (s->nb_channels == 2)
  2202. compute_stereo(s, &granules[0][gr], &granules[1][gr]);
  2203. for(ch=0;ch<s->nb_channels;ch++) {
  2204. g = &granules[ch][gr];
  2205. reorder_block(s, g);
  2206. #if defined(DEBUG)
  2207. sample_dump(0, g->sb_hybrid, 576);
  2208. #endif
  2209. s->compute_antialias(s, g);
  2210. #if defined(DEBUG)
  2211. sample_dump(1, g->sb_hybrid, 576);
  2212. #endif
  2213. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  2214. #if defined(DEBUG)
  2215. sample_dump(2, &s->sb_samples[ch][18 * gr][0], 576);
  2216. #endif
  2217. }
  2218. } /* gr */
  2219. if(get_bits_count(&s->gb)<0)
  2220. skip_bits_long(&s->gb, -get_bits_count(&s->gb));
  2221. return nb_granules * 18;
  2222. }
  2223. static int mp_decode_frame(MPADecodeContext *s,
  2224. OUT_INT *samples, const uint8_t *buf, int buf_size)
  2225. {
  2226. int i, nb_frames, ch;
  2227. OUT_INT *samples_ptr;
  2228. init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE)*8);
  2229. /* skip error protection field */
  2230. if (s->error_protection)
  2231. get_bits(&s->gb, 16);
  2232. dprintf("frame %d:\n", s->frame_count);
  2233. switch(s->layer) {
  2234. case 1:
  2235. nb_frames = mp_decode_layer1(s);
  2236. break;
  2237. case 2:
  2238. nb_frames = mp_decode_layer2(s);
  2239. break;
  2240. case 3:
  2241. default:
  2242. nb_frames = mp_decode_layer3(s);
  2243. s->last_buf_size=0;
  2244. if(s->in_gb.buffer){
  2245. align_get_bits(&s->gb);
  2246. i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
  2247. if(i >= 0 && i <= BACKSTEP_SIZE){
  2248. memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
  2249. s->last_buf_size=i;
  2250. }else
  2251. av_log(NULL, AV_LOG_ERROR, "invalid old backstep %d\n", i);
  2252. s->gb= s->in_gb;
  2253. s->in_gb.buffer= NULL;
  2254. }
  2255. align_get_bits(&s->gb);
  2256. assert((get_bits_count(&s->gb) & 7) == 0);
  2257. i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
  2258. if(i<0 || i > BACKSTEP_SIZE || nb_frames<0){
  2259. av_log(NULL, AV_LOG_ERROR, "invalid new backstep %d\n", i);
  2260. i= FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
  2261. }
  2262. assert(i <= buf_size - HEADER_SIZE && i>= 0);
  2263. memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
  2264. s->last_buf_size += i;
  2265. break;
  2266. }
  2267. #if defined(DEBUG)
  2268. for(i=0;i<nb_frames;i++) {
  2269. for(ch=0;ch<s->nb_channels;ch++) {
  2270. int j;
  2271. dprintf("%d-%d:", i, ch);
  2272. for(j=0;j<SBLIMIT;j++)
  2273. dprintf(" %0.6f", (double)s->sb_samples[ch][i][j] / FRAC_ONE);
  2274. dprintf("\n");
  2275. }
  2276. }
  2277. #endif
  2278. /* apply the synthesis filter */
  2279. for(ch=0;ch<s->nb_channels;ch++) {
  2280. samples_ptr = samples + ch;
  2281. for(i=0;i<nb_frames;i++) {
  2282. ff_mpa_synth_filter(s->synth_buf[ch], &(s->synth_buf_offset[ch]),
  2283. window, &s->dither_state,
  2284. samples_ptr, s->nb_channels,
  2285. s->sb_samples[ch][i]);
  2286. samples_ptr += 32 * s->nb_channels;
  2287. }
  2288. }
  2289. #ifdef DEBUG
  2290. s->frame_count++;
  2291. #endif
  2292. return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
  2293. }
  2294. static int decode_frame(AVCodecContext * avctx,
  2295. void *data, int *data_size,
  2296. uint8_t * buf, int buf_size)
  2297. {
  2298. MPADecodeContext *s = avctx->priv_data;
  2299. uint32_t header;
  2300. int out_size;
  2301. OUT_INT *out_samples = data;
  2302. retry:
  2303. if(buf_size < HEADER_SIZE)
  2304. return -1;
  2305. header = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
  2306. if(ff_mpa_check_header(header) < 0){
  2307. buf++;
  2308. // buf_size--;
  2309. av_log(avctx, AV_LOG_ERROR, "Header missing skipping one byte.\n");
  2310. goto retry;
  2311. }
  2312. if (decode_header(s, header) == 1) {
  2313. /* free format: prepare to compute frame size */
  2314. s->frame_size = -1;
  2315. return -1;
  2316. }
  2317. /* update codec info */
  2318. avctx->channels = s->nb_channels;
  2319. avctx->bit_rate = s->bit_rate;
  2320. avctx->sub_id = s->layer;
  2321. switch(s->layer) {
  2322. case 1:
  2323. avctx->frame_size = 384;
  2324. break;
  2325. case 2:
  2326. avctx->frame_size = 1152;
  2327. break;
  2328. case 3:
  2329. if (s->lsf)
  2330. avctx->frame_size = 576;
  2331. else
  2332. avctx->frame_size = 1152;
  2333. break;
  2334. }
  2335. if(s->frame_size<=0 || s->frame_size > buf_size){
  2336. av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
  2337. return -1;
  2338. }else if(s->frame_size < buf_size){
  2339. av_log(avctx, AV_LOG_ERROR, "incorrect frame size\n");
  2340. }
  2341. out_size = mp_decode_frame(s, out_samples, buf, buf_size);
  2342. if(out_size>=0){
  2343. *data_size = out_size;
  2344. avctx->sample_rate = s->sample_rate;
  2345. //FIXME maybe move the other codec info stuff from above here too
  2346. }else
  2347. av_log(avctx, AV_LOG_DEBUG, "Error while decoding MPEG audio frame.\n"); //FIXME return -1 / but also return the number of bytes consumed
  2348. s->frame_size = 0;
  2349. return buf_size;
  2350. }
  2351. static void flush(AVCodecContext *avctx){
  2352. MPADecodeContext *s = avctx->priv_data;
  2353. s->last_buf_size= 0;
  2354. }
  2355. #ifdef CONFIG_MP3ADU_DECODER
  2356. static int decode_frame_adu(AVCodecContext * avctx,
  2357. void *data, int *data_size,
  2358. uint8_t * buf, int buf_size)
  2359. {
  2360. MPADecodeContext *s = avctx->priv_data;
  2361. uint32_t header;
  2362. int len, out_size;
  2363. OUT_INT *out_samples = data;
  2364. len = buf_size;
  2365. // Discard too short frames
  2366. if (buf_size < HEADER_SIZE) {
  2367. *data_size = 0;
  2368. return buf_size;
  2369. }
  2370. if (len > MPA_MAX_CODED_FRAME_SIZE)
  2371. len = MPA_MAX_CODED_FRAME_SIZE;
  2372. // Get header and restore sync word
  2373. header = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3] | 0xffe00000;
  2374. if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
  2375. *data_size = 0;
  2376. return buf_size;
  2377. }
  2378. decode_header(s, header);
  2379. /* update codec info */
  2380. avctx->sample_rate = s->sample_rate;
  2381. avctx->channels = s->nb_channels;
  2382. avctx->bit_rate = s->bit_rate;
  2383. avctx->sub_id = s->layer;
  2384. avctx->frame_size=s->frame_size = len;
  2385. if (avctx->parse_only) {
  2386. out_size = buf_size;
  2387. } else {
  2388. out_size = mp_decode_frame(s, out_samples, buf, buf_size);
  2389. }
  2390. *data_size = out_size;
  2391. return buf_size;
  2392. }
  2393. #endif /* CONFIG_MP3ADU_DECODER */
  2394. #ifdef CONFIG_MP3ON4_DECODER
  2395. /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
  2396. static int mp3Frames[16] = {0,1,1,2,3,3,4,5,2}; /* number of mp3 decoder instances */
  2397. static int mp3Channels[16] = {0,1,2,3,4,5,6,8,4}; /* total output channels */
  2398. /* offsets into output buffer, assume output order is FL FR BL BR C LFE */
  2399. static int chan_offset[9][5] = {
  2400. {0},
  2401. {0}, // C
  2402. {0}, // FLR
  2403. {2,0}, // C FLR
  2404. {2,0,3}, // C FLR BS
  2405. {4,0,2}, // C FLR BLRS
  2406. {4,0,2,5}, // C FLR BLRS LFE
  2407. {4,0,2,6,5}, // C FLR BLRS BLR LFE
  2408. {0,2} // FLR BLRS
  2409. };
  2410. static int decode_init_mp3on4(AVCodecContext * avctx)
  2411. {
  2412. MP3On4DecodeContext *s = avctx->priv_data;
  2413. int i;
  2414. if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
  2415. av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
  2416. return -1;
  2417. }
  2418. s->chan_cfg = (((unsigned char *)avctx->extradata)[1] >> 3) & 0x0f;
  2419. s->frames = mp3Frames[s->chan_cfg];
  2420. if(!s->frames) {
  2421. av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
  2422. return -1;
  2423. }
  2424. avctx->channels = mp3Channels[s->chan_cfg];
  2425. /* Init the first mp3 decoder in standard way, so that all tables get builded
  2426. * We replace avctx->priv_data with the context of the first decoder so that
  2427. * decode_init() does not have to be changed.
  2428. * Other decoders will be inited here copying data from the first context
  2429. */
  2430. // Allocate zeroed memory for the first decoder context
  2431. s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
  2432. // Put decoder context in place to make init_decode() happy
  2433. avctx->priv_data = s->mp3decctx[0];
  2434. decode_init(avctx);
  2435. // Restore mp3on4 context pointer
  2436. avctx->priv_data = s;
  2437. s->mp3decctx[0]->adu_mode = 1; // Set adu mode
  2438. /* Create a separate codec/context for each frame (first is already ok).
  2439. * Each frame is 1 or 2 channels - up to 5 frames allowed
  2440. */
  2441. for (i = 1; i < s->frames; i++) {
  2442. s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
  2443. s->mp3decctx[i]->compute_antialias = s->mp3decctx[0]->compute_antialias;
  2444. s->mp3decctx[i]->adu_mode = 1;
  2445. }
  2446. return 0;
  2447. }
  2448. static int decode_close_mp3on4(AVCodecContext * avctx)
  2449. {
  2450. MP3On4DecodeContext *s = avctx->priv_data;
  2451. int i;
  2452. for (i = 0; i < s->frames; i++)
  2453. if (s->mp3decctx[i])
  2454. av_free(s->mp3decctx[i]);
  2455. return 0;
  2456. }
  2457. static int decode_frame_mp3on4(AVCodecContext * avctx,
  2458. void *data, int *data_size,
  2459. uint8_t * buf, int buf_size)
  2460. {
  2461. MP3On4DecodeContext *s = avctx->priv_data;
  2462. MPADecodeContext *m;
  2463. int len, out_size = 0;
  2464. uint32_t header;
  2465. OUT_INT *out_samples = data;
  2466. OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS];
  2467. OUT_INT *outptr, *bp;
  2468. int fsize;
  2469. unsigned char *start2 = buf, *start;
  2470. int fr, i, j, n;
  2471. int off = avctx->channels;
  2472. int *coff = chan_offset[s->chan_cfg];
  2473. len = buf_size;
  2474. // Discard too short frames
  2475. if (buf_size < HEADER_SIZE) {
  2476. *data_size = 0;
  2477. return buf_size;
  2478. }
  2479. // If only one decoder interleave is not needed
  2480. outptr = s->frames == 1 ? out_samples : decoded_buf;
  2481. for (fr = 0; fr < s->frames; fr++) {
  2482. start = start2;
  2483. fsize = (start[0] << 4) | (start[1] >> 4);
  2484. start2 += fsize;
  2485. if (fsize > len)
  2486. fsize = len;
  2487. len -= fsize;
  2488. if (fsize > MPA_MAX_CODED_FRAME_SIZE)
  2489. fsize = MPA_MAX_CODED_FRAME_SIZE;
  2490. m = s->mp3decctx[fr];
  2491. assert (m != NULL);
  2492. // Get header
  2493. header = (start[0] << 24) | (start[1] << 16) | (start[2] << 8) | start[3] | 0xfff00000;
  2494. if (ff_mpa_check_header(header) < 0) { // Bad header, discard block
  2495. *data_size = 0;
  2496. return buf_size;
  2497. }
  2498. decode_header(m, header);
  2499. mp_decode_frame(m, decoded_buf, start, fsize);
  2500. n = MPA_FRAME_SIZE * m->nb_channels;
  2501. out_size += n * sizeof(OUT_INT);
  2502. if(s->frames > 1) {
  2503. /* interleave output data */
  2504. bp = out_samples + coff[fr];
  2505. if(m->nb_channels == 1) {
  2506. for(j = 0; j < n; j++) {
  2507. *bp = decoded_buf[j];
  2508. bp += off;
  2509. }
  2510. } else {
  2511. for(j = 0; j < n; j++) {
  2512. bp[0] = decoded_buf[j++];
  2513. bp[1] = decoded_buf[j];
  2514. bp += off;
  2515. }
  2516. }
  2517. }
  2518. }
  2519. /* update codec info */
  2520. avctx->sample_rate = s->mp3decctx[0]->sample_rate;
  2521. avctx->frame_size= buf_size;
  2522. avctx->bit_rate = 0;
  2523. for (i = 0; i < s->frames; i++)
  2524. avctx->bit_rate += s->mp3decctx[i]->bit_rate;
  2525. *data_size = out_size;
  2526. return buf_size;
  2527. }
  2528. #endif /* CONFIG_MP3ON4_DECODER */
  2529. #ifdef CONFIG_MP2_DECODER
  2530. AVCodec mp2_decoder =
  2531. {
  2532. "mp2",
  2533. CODEC_TYPE_AUDIO,
  2534. CODEC_ID_MP2,
  2535. sizeof(MPADecodeContext),
  2536. decode_init,
  2537. NULL,
  2538. NULL,
  2539. decode_frame,
  2540. CODEC_CAP_PARSE_ONLY,
  2541. };
  2542. #endif
  2543. #ifdef CONFIG_MP3_DECODER
  2544. AVCodec mp3_decoder =
  2545. {
  2546. "mp3",
  2547. CODEC_TYPE_AUDIO,
  2548. CODEC_ID_MP3,
  2549. sizeof(MPADecodeContext),
  2550. decode_init,
  2551. NULL,
  2552. NULL,
  2553. decode_frame,
  2554. CODEC_CAP_PARSE_ONLY,
  2555. .flush= flush,
  2556. };
  2557. #endif
  2558. #ifdef CONFIG_MP3ADU_DECODER
  2559. AVCodec mp3adu_decoder =
  2560. {
  2561. "mp3adu",
  2562. CODEC_TYPE_AUDIO,
  2563. CODEC_ID_MP3ADU,
  2564. sizeof(MPADecodeContext),
  2565. decode_init,
  2566. NULL,
  2567. NULL,
  2568. decode_frame_adu,
  2569. CODEC_CAP_PARSE_ONLY,
  2570. .flush= flush,
  2571. };
  2572. #endif
  2573. #ifdef CONFIG_MP3ON4_DECODER
  2574. AVCodec mp3on4_decoder =
  2575. {
  2576. "mp3on4",
  2577. CODEC_TYPE_AUDIO,
  2578. CODEC_ID_MP3ON4,
  2579. sizeof(MP3On4DecodeContext),
  2580. decode_init_mp3on4,
  2581. NULL,
  2582. decode_close_mp3on4,
  2583. decode_frame_mp3on4,
  2584. .flush= flush,
  2585. };
  2586. #endif