You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

800 lines
23KB

  1. /*
  2. * The simplest mpeg audio layer 2 encoder
  3. * Copyright (c) 2000, 2001 Fabrice Bellard.
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file mpegaudio.c
  23. * The simplest mpeg audio layer 2 encoder.
  24. */
  25. #include "avcodec.h"
  26. #include "bitstream.h"
  27. #include "mpegaudio.h"
  28. /* currently, cannot change these constants (need to modify
  29. quantization stage) */
  30. #define MUL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS)
  31. #define FIX(a) ((int)((a) * (1 << FRAC_BITS)))
  32. #define SAMPLES_BUF_SIZE 4096
  33. typedef struct MpegAudioContext {
  34. PutBitContext pb;
  35. int nb_channels;
  36. int freq, bit_rate;
  37. int lsf; /* 1 if mpeg2 low bitrate selected */
  38. int bitrate_index; /* bit rate */
  39. int freq_index;
  40. int frame_size; /* frame size, in bits, without padding */
  41. int64_t nb_samples; /* total number of samples encoded */
  42. /* padding computation */
  43. int frame_frac, frame_frac_incr, do_padding;
  44. short samples_buf[MPA_MAX_CHANNELS][SAMPLES_BUF_SIZE]; /* buffer for filter */
  45. int samples_offset[MPA_MAX_CHANNELS]; /* offset in samples_buf */
  46. int sb_samples[MPA_MAX_CHANNELS][3][12][SBLIMIT];
  47. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3]; /* scale factors */
  48. /* code to group 3 scale factors */
  49. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  50. int sblimit; /* number of used subbands */
  51. const unsigned char *alloc_table;
  52. } MpegAudioContext;
  53. /* define it to use floats in quantization (I don't like floats !) */
  54. //#define USE_FLOATS
  55. #include "mpegaudiotab.h"
  56. static int MPA_encode_init(AVCodecContext *avctx)
  57. {
  58. MpegAudioContext *s = avctx->priv_data;
  59. int freq = avctx->sample_rate;
  60. int bitrate = avctx->bit_rate;
  61. int channels = avctx->channels;
  62. int i, v, table;
  63. float a;
  64. if (channels > 2)
  65. return -1;
  66. bitrate = bitrate / 1000;
  67. s->nb_channels = channels;
  68. s->freq = freq;
  69. s->bit_rate = bitrate * 1000;
  70. avctx->frame_size = MPA_FRAME_SIZE;
  71. /* encoding freq */
  72. s->lsf = 0;
  73. for(i=0;i<3;i++) {
  74. if (mpa_freq_tab[i] == freq)
  75. break;
  76. if ((mpa_freq_tab[i] / 2) == freq) {
  77. s->lsf = 1;
  78. break;
  79. }
  80. }
  81. if (i == 3){
  82. av_log(avctx, AV_LOG_ERROR, "Sampling rate %d is not allowed in mp2\n", freq);
  83. return -1;
  84. }
  85. s->freq_index = i;
  86. /* encoding bitrate & frequency */
  87. for(i=0;i<15;i++) {
  88. if (mpa_bitrate_tab[s->lsf][1][i] == bitrate)
  89. break;
  90. }
  91. if (i == 15){
  92. av_log(avctx, AV_LOG_ERROR, "bitrate %d is not allowed in mp2\n", bitrate);
  93. return -1;
  94. }
  95. s->bitrate_index = i;
  96. /* compute total header size & pad bit */
  97. a = (float)(bitrate * 1000 * MPA_FRAME_SIZE) / (freq * 8.0);
  98. s->frame_size = ((int)a) * 8;
  99. /* frame fractional size to compute padding */
  100. s->frame_frac = 0;
  101. s->frame_frac_incr = (int)((a - floor(a)) * 65536.0);
  102. /* select the right allocation table */
  103. table = l2_select_table(bitrate, s->nb_channels, freq, s->lsf);
  104. /* number of used subbands */
  105. s->sblimit = sblimit_table[table];
  106. s->alloc_table = alloc_tables[table];
  107. #ifdef DEBUG
  108. av_log(avctx, AV_LOG_DEBUG, "%d kb/s, %d Hz, frame_size=%d bits, table=%d, padincr=%x\n",
  109. bitrate, freq, s->frame_size, table, s->frame_frac_incr);
  110. #endif
  111. for(i=0;i<s->nb_channels;i++)
  112. s->samples_offset[i] = 0;
  113. for(i=0;i<257;i++) {
  114. int v;
  115. v = mpa_enwindow[i];
  116. #if WFRAC_BITS != 16
  117. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  118. #endif
  119. filter_bank[i] = v;
  120. if ((i & 63) != 0)
  121. v = -v;
  122. if (i != 0)
  123. filter_bank[512 - i] = v;
  124. }
  125. for(i=0;i<64;i++) {
  126. v = (int)(pow(2.0, (3 - i) / 3.0) * (1 << 20));
  127. if (v <= 0)
  128. v = 1;
  129. scale_factor_table[i] = v;
  130. #ifdef USE_FLOATS
  131. scale_factor_inv_table[i] = pow(2.0, -(3 - i) / 3.0) / (float)(1 << 20);
  132. #else
  133. #define P 15
  134. scale_factor_shift[i] = 21 - P - (i / 3);
  135. scale_factor_mult[i] = (1 << P) * pow(2.0, (i % 3) / 3.0);
  136. #endif
  137. }
  138. for(i=0;i<128;i++) {
  139. v = i - 64;
  140. if (v <= -3)
  141. v = 0;
  142. else if (v < 0)
  143. v = 1;
  144. else if (v == 0)
  145. v = 2;
  146. else if (v < 3)
  147. v = 3;
  148. else
  149. v = 4;
  150. scale_diff_table[i] = v;
  151. }
  152. for(i=0;i<17;i++) {
  153. v = quant_bits[i];
  154. if (v < 0)
  155. v = -v;
  156. else
  157. v = v * 3;
  158. total_quant_bits[i] = 12 * v;
  159. }
  160. avctx->coded_frame= avcodec_alloc_frame();
  161. avctx->coded_frame->key_frame= 1;
  162. return 0;
  163. }
  164. /* 32 point floating point IDCT without 1/sqrt(2) coef zero scaling */
  165. static void idct32(int *out, int *tab)
  166. {
  167. int i, j;
  168. int *t, *t1, xr;
  169. const int *xp = costab32;
  170. for(j=31;j>=3;j-=2) tab[j] += tab[j - 2];
  171. t = tab + 30;
  172. t1 = tab + 2;
  173. do {
  174. t[0] += t[-4];
  175. t[1] += t[1 - 4];
  176. t -= 4;
  177. } while (t != t1);
  178. t = tab + 28;
  179. t1 = tab + 4;
  180. do {
  181. t[0] += t[-8];
  182. t[1] += t[1-8];
  183. t[2] += t[2-8];
  184. t[3] += t[3-8];
  185. t -= 8;
  186. } while (t != t1);
  187. t = tab;
  188. t1 = tab + 32;
  189. do {
  190. t[ 3] = -t[ 3];
  191. t[ 6] = -t[ 6];
  192. t[11] = -t[11];
  193. t[12] = -t[12];
  194. t[13] = -t[13];
  195. t[15] = -t[15];
  196. t += 16;
  197. } while (t != t1);
  198. t = tab;
  199. t1 = tab + 8;
  200. do {
  201. int x1, x2, x3, x4;
  202. x3 = MUL(t[16], FIX(SQRT2*0.5));
  203. x4 = t[0] - x3;
  204. x3 = t[0] + x3;
  205. x2 = MUL(-(t[24] + t[8]), FIX(SQRT2*0.5));
  206. x1 = MUL((t[8] - x2), xp[0]);
  207. x2 = MUL((t[8] + x2), xp[1]);
  208. t[ 0] = x3 + x1;
  209. t[ 8] = x4 - x2;
  210. t[16] = x4 + x2;
  211. t[24] = x3 - x1;
  212. t++;
  213. } while (t != t1);
  214. xp += 2;
  215. t = tab;
  216. t1 = tab + 4;
  217. do {
  218. xr = MUL(t[28],xp[0]);
  219. t[28] = (t[0] - xr);
  220. t[0] = (t[0] + xr);
  221. xr = MUL(t[4],xp[1]);
  222. t[ 4] = (t[24] - xr);
  223. t[24] = (t[24] + xr);
  224. xr = MUL(t[20],xp[2]);
  225. t[20] = (t[8] - xr);
  226. t[ 8] = (t[8] + xr);
  227. xr = MUL(t[12],xp[3]);
  228. t[12] = (t[16] - xr);
  229. t[16] = (t[16] + xr);
  230. t++;
  231. } while (t != t1);
  232. xp += 4;
  233. for (i = 0; i < 4; i++) {
  234. xr = MUL(tab[30-i*4],xp[0]);
  235. tab[30-i*4] = (tab[i*4] - xr);
  236. tab[ i*4] = (tab[i*4] + xr);
  237. xr = MUL(tab[ 2+i*4],xp[1]);
  238. tab[ 2+i*4] = (tab[28-i*4] - xr);
  239. tab[28-i*4] = (tab[28-i*4] + xr);
  240. xr = MUL(tab[31-i*4],xp[0]);
  241. tab[31-i*4] = (tab[1+i*4] - xr);
  242. tab[ 1+i*4] = (tab[1+i*4] + xr);
  243. xr = MUL(tab[ 3+i*4],xp[1]);
  244. tab[ 3+i*4] = (tab[29-i*4] - xr);
  245. tab[29-i*4] = (tab[29-i*4] + xr);
  246. xp += 2;
  247. }
  248. t = tab + 30;
  249. t1 = tab + 1;
  250. do {
  251. xr = MUL(t1[0], *xp);
  252. t1[0] = (t[0] - xr);
  253. t[0] = (t[0] + xr);
  254. t -= 2;
  255. t1 += 2;
  256. xp++;
  257. } while (t >= tab);
  258. for(i=0;i<32;i++) {
  259. out[i] = tab[bitinv32[i]];
  260. }
  261. }
  262. #define WSHIFT (WFRAC_BITS + 15 - FRAC_BITS)
  263. static void filter(MpegAudioContext *s, int ch, short *samples, int incr)
  264. {
  265. short *p, *q;
  266. int sum, offset, i, j;
  267. int tmp[64];
  268. int tmp1[32];
  269. int *out;
  270. // print_pow1(samples, 1152);
  271. offset = s->samples_offset[ch];
  272. out = &s->sb_samples[ch][0][0][0];
  273. for(j=0;j<36;j++) {
  274. /* 32 samples at once */
  275. for(i=0;i<32;i++) {
  276. s->samples_buf[ch][offset + (31 - i)] = samples[0];
  277. samples += incr;
  278. }
  279. /* filter */
  280. p = s->samples_buf[ch] + offset;
  281. q = filter_bank;
  282. /* maxsum = 23169 */
  283. for(i=0;i<64;i++) {
  284. sum = p[0*64] * q[0*64];
  285. sum += p[1*64] * q[1*64];
  286. sum += p[2*64] * q[2*64];
  287. sum += p[3*64] * q[3*64];
  288. sum += p[4*64] * q[4*64];
  289. sum += p[5*64] * q[5*64];
  290. sum += p[6*64] * q[6*64];
  291. sum += p[7*64] * q[7*64];
  292. tmp[i] = sum;
  293. p++;
  294. q++;
  295. }
  296. tmp1[0] = tmp[16] >> WSHIFT;
  297. for( i=1; i<=16; i++ ) tmp1[i] = (tmp[i+16]+tmp[16-i]) >> WSHIFT;
  298. for( i=17; i<=31; i++ ) tmp1[i] = (tmp[i+16]-tmp[80-i]) >> WSHIFT;
  299. idct32(out, tmp1);
  300. /* advance of 32 samples */
  301. offset -= 32;
  302. out += 32;
  303. /* handle the wrap around */
  304. if (offset < 0) {
  305. memmove(s->samples_buf[ch] + SAMPLES_BUF_SIZE - (512 - 32),
  306. s->samples_buf[ch], (512 - 32) * 2);
  307. offset = SAMPLES_BUF_SIZE - 512;
  308. }
  309. }
  310. s->samples_offset[ch] = offset;
  311. // print_pow(s->sb_samples, 1152);
  312. }
  313. static void compute_scale_factors(unsigned char scale_code[SBLIMIT],
  314. unsigned char scale_factors[SBLIMIT][3],
  315. int sb_samples[3][12][SBLIMIT],
  316. int sblimit)
  317. {
  318. int *p, vmax, v, n, i, j, k, code;
  319. int index, d1, d2;
  320. unsigned char *sf = &scale_factors[0][0];
  321. for(j=0;j<sblimit;j++) {
  322. for(i=0;i<3;i++) {
  323. /* find the max absolute value */
  324. p = &sb_samples[i][0][j];
  325. vmax = abs(*p);
  326. for(k=1;k<12;k++) {
  327. p += SBLIMIT;
  328. v = abs(*p);
  329. if (v > vmax)
  330. vmax = v;
  331. }
  332. /* compute the scale factor index using log 2 computations */
  333. if (vmax > 0) {
  334. n = av_log2(vmax);
  335. /* n is the position of the MSB of vmax. now
  336. use at most 2 compares to find the index */
  337. index = (21 - n) * 3 - 3;
  338. if (index >= 0) {
  339. while (vmax <= scale_factor_table[index+1])
  340. index++;
  341. } else {
  342. index = 0; /* very unlikely case of overflow */
  343. }
  344. } else {
  345. index = 62; /* value 63 is not allowed */
  346. }
  347. #if 0
  348. printf("%2d:%d in=%x %x %d\n",
  349. j, i, vmax, scale_factor_table[index], index);
  350. #endif
  351. /* store the scale factor */
  352. assert(index >=0 && index <= 63);
  353. sf[i] = index;
  354. }
  355. /* compute the transmission factor : look if the scale factors
  356. are close enough to each other */
  357. d1 = scale_diff_table[sf[0] - sf[1] + 64];
  358. d2 = scale_diff_table[sf[1] - sf[2] + 64];
  359. /* handle the 25 cases */
  360. switch(d1 * 5 + d2) {
  361. case 0*5+0:
  362. case 0*5+4:
  363. case 3*5+4:
  364. case 4*5+0:
  365. case 4*5+4:
  366. code = 0;
  367. break;
  368. case 0*5+1:
  369. case 0*5+2:
  370. case 4*5+1:
  371. case 4*5+2:
  372. code = 3;
  373. sf[2] = sf[1];
  374. break;
  375. case 0*5+3:
  376. case 4*5+3:
  377. code = 3;
  378. sf[1] = sf[2];
  379. break;
  380. case 1*5+0:
  381. case 1*5+4:
  382. case 2*5+4:
  383. code = 1;
  384. sf[1] = sf[0];
  385. break;
  386. case 1*5+1:
  387. case 1*5+2:
  388. case 2*5+0:
  389. case 2*5+1:
  390. case 2*5+2:
  391. code = 2;
  392. sf[1] = sf[2] = sf[0];
  393. break;
  394. case 2*5+3:
  395. case 3*5+3:
  396. code = 2;
  397. sf[0] = sf[1] = sf[2];
  398. break;
  399. case 3*5+0:
  400. case 3*5+1:
  401. case 3*5+2:
  402. code = 2;
  403. sf[0] = sf[2] = sf[1];
  404. break;
  405. case 1*5+3:
  406. code = 2;
  407. if (sf[0] > sf[2])
  408. sf[0] = sf[2];
  409. sf[1] = sf[2] = sf[0];
  410. break;
  411. default:
  412. assert(0); //cant happen
  413. code = 0; /* kill warning */
  414. }
  415. #if 0
  416. printf("%d: %2d %2d %2d %d %d -> %d\n", j,
  417. sf[0], sf[1], sf[2], d1, d2, code);
  418. #endif
  419. scale_code[j] = code;
  420. sf += 3;
  421. }
  422. }
  423. /* The most important function : psycho acoustic module. In this
  424. encoder there is basically none, so this is the worst you can do,
  425. but also this is the simpler. */
  426. static void psycho_acoustic_model(MpegAudioContext *s, short smr[SBLIMIT])
  427. {
  428. int i;
  429. for(i=0;i<s->sblimit;i++) {
  430. smr[i] = (int)(fixed_smr[i] * 10);
  431. }
  432. }
  433. #define SB_NOTALLOCATED 0
  434. #define SB_ALLOCATED 1
  435. #define SB_NOMORE 2
  436. /* Try to maximize the smr while using a number of bits inferior to
  437. the frame size. I tried to make the code simpler, faster and
  438. smaller than other encoders :-) */
  439. static void compute_bit_allocation(MpegAudioContext *s,
  440. short smr1[MPA_MAX_CHANNELS][SBLIMIT],
  441. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
  442. int *padding)
  443. {
  444. int i, ch, b, max_smr, max_ch, max_sb, current_frame_size, max_frame_size;
  445. int incr;
  446. short smr[MPA_MAX_CHANNELS][SBLIMIT];
  447. unsigned char subband_status[MPA_MAX_CHANNELS][SBLIMIT];
  448. const unsigned char *alloc;
  449. memcpy(smr, smr1, s->nb_channels * sizeof(short) * SBLIMIT);
  450. memset(subband_status, SB_NOTALLOCATED, s->nb_channels * SBLIMIT);
  451. memset(bit_alloc, 0, s->nb_channels * SBLIMIT);
  452. /* compute frame size and padding */
  453. max_frame_size = s->frame_size;
  454. s->frame_frac += s->frame_frac_incr;
  455. if (s->frame_frac >= 65536) {
  456. s->frame_frac -= 65536;
  457. s->do_padding = 1;
  458. max_frame_size += 8;
  459. } else {
  460. s->do_padding = 0;
  461. }
  462. /* compute the header + bit alloc size */
  463. current_frame_size = 32;
  464. alloc = s->alloc_table;
  465. for(i=0;i<s->sblimit;i++) {
  466. incr = alloc[0];
  467. current_frame_size += incr * s->nb_channels;
  468. alloc += 1 << incr;
  469. }
  470. for(;;) {
  471. /* look for the subband with the largest signal to mask ratio */
  472. max_sb = -1;
  473. max_ch = -1;
  474. max_smr = 0x80000000;
  475. for(ch=0;ch<s->nb_channels;ch++) {
  476. for(i=0;i<s->sblimit;i++) {
  477. if (smr[ch][i] > max_smr && subband_status[ch][i] != SB_NOMORE) {
  478. max_smr = smr[ch][i];
  479. max_sb = i;
  480. max_ch = ch;
  481. }
  482. }
  483. }
  484. #if 0
  485. printf("current=%d max=%d max_sb=%d alloc=%d\n",
  486. current_frame_size, max_frame_size, max_sb,
  487. bit_alloc[max_sb]);
  488. #endif
  489. if (max_sb < 0)
  490. break;
  491. /* find alloc table entry (XXX: not optimal, should use
  492. pointer table) */
  493. alloc = s->alloc_table;
  494. for(i=0;i<max_sb;i++) {
  495. alloc += 1 << alloc[0];
  496. }
  497. if (subband_status[max_ch][max_sb] == SB_NOTALLOCATED) {
  498. /* nothing was coded for this band: add the necessary bits */
  499. incr = 2 + nb_scale_factors[s->scale_code[max_ch][max_sb]] * 6;
  500. incr += total_quant_bits[alloc[1]];
  501. } else {
  502. /* increments bit allocation */
  503. b = bit_alloc[max_ch][max_sb];
  504. incr = total_quant_bits[alloc[b + 1]] -
  505. total_quant_bits[alloc[b]];
  506. }
  507. if (current_frame_size + incr <= max_frame_size) {
  508. /* can increase size */
  509. b = ++bit_alloc[max_ch][max_sb];
  510. current_frame_size += incr;
  511. /* decrease smr by the resolution we added */
  512. smr[max_ch][max_sb] = smr1[max_ch][max_sb] - quant_snr[alloc[b]];
  513. /* max allocation size reached ? */
  514. if (b == ((1 << alloc[0]) - 1))
  515. subband_status[max_ch][max_sb] = SB_NOMORE;
  516. else
  517. subband_status[max_ch][max_sb] = SB_ALLOCATED;
  518. } else {
  519. /* cannot increase the size of this subband */
  520. subband_status[max_ch][max_sb] = SB_NOMORE;
  521. }
  522. }
  523. *padding = max_frame_size - current_frame_size;
  524. assert(*padding >= 0);
  525. #if 0
  526. for(i=0;i<s->sblimit;i++) {
  527. printf("%d ", bit_alloc[i]);
  528. }
  529. printf("\n");
  530. #endif
  531. }
  532. /*
  533. * Output the mpeg audio layer 2 frame. Note how the code is small
  534. * compared to other encoders :-)
  535. */
  536. static void encode_frame(MpegAudioContext *s,
  537. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
  538. int padding)
  539. {
  540. int i, j, k, l, bit_alloc_bits, b, ch;
  541. unsigned char *sf;
  542. int q[3];
  543. PutBitContext *p = &s->pb;
  544. /* header */
  545. put_bits(p, 12, 0xfff);
  546. put_bits(p, 1, 1 - s->lsf); /* 1 = mpeg1 ID, 0 = mpeg2 lsf ID */
  547. put_bits(p, 2, 4-2); /* layer 2 */
  548. put_bits(p, 1, 1); /* no error protection */
  549. put_bits(p, 4, s->bitrate_index);
  550. put_bits(p, 2, s->freq_index);
  551. put_bits(p, 1, s->do_padding); /* use padding */
  552. put_bits(p, 1, 0); /* private_bit */
  553. put_bits(p, 2, s->nb_channels == 2 ? MPA_STEREO : MPA_MONO);
  554. put_bits(p, 2, 0); /* mode_ext */
  555. put_bits(p, 1, 0); /* no copyright */
  556. put_bits(p, 1, 1); /* original */
  557. put_bits(p, 2, 0); /* no emphasis */
  558. /* bit allocation */
  559. j = 0;
  560. for(i=0;i<s->sblimit;i++) {
  561. bit_alloc_bits = s->alloc_table[j];
  562. for(ch=0;ch<s->nb_channels;ch++) {
  563. put_bits(p, bit_alloc_bits, bit_alloc[ch][i]);
  564. }
  565. j += 1 << bit_alloc_bits;
  566. }
  567. /* scale codes */
  568. for(i=0;i<s->sblimit;i++) {
  569. for(ch=0;ch<s->nb_channels;ch++) {
  570. if (bit_alloc[ch][i])
  571. put_bits(p, 2, s->scale_code[ch][i]);
  572. }
  573. }
  574. /* scale factors */
  575. for(i=0;i<s->sblimit;i++) {
  576. for(ch=0;ch<s->nb_channels;ch++) {
  577. if (bit_alloc[ch][i]) {
  578. sf = &s->scale_factors[ch][i][0];
  579. switch(s->scale_code[ch][i]) {
  580. case 0:
  581. put_bits(p, 6, sf[0]);
  582. put_bits(p, 6, sf[1]);
  583. put_bits(p, 6, sf[2]);
  584. break;
  585. case 3:
  586. case 1:
  587. put_bits(p, 6, sf[0]);
  588. put_bits(p, 6, sf[2]);
  589. break;
  590. case 2:
  591. put_bits(p, 6, sf[0]);
  592. break;
  593. }
  594. }
  595. }
  596. }
  597. /* quantization & write sub band samples */
  598. for(k=0;k<3;k++) {
  599. for(l=0;l<12;l+=3) {
  600. j = 0;
  601. for(i=0;i<s->sblimit;i++) {
  602. bit_alloc_bits = s->alloc_table[j];
  603. for(ch=0;ch<s->nb_channels;ch++) {
  604. b = bit_alloc[ch][i];
  605. if (b) {
  606. int qindex, steps, m, sample, bits;
  607. /* we encode 3 sub band samples of the same sub band at a time */
  608. qindex = s->alloc_table[j+b];
  609. steps = quant_steps[qindex];
  610. for(m=0;m<3;m++) {
  611. sample = s->sb_samples[ch][k][l + m][i];
  612. /* divide by scale factor */
  613. #ifdef USE_FLOATS
  614. {
  615. float a;
  616. a = (float)sample * scale_factor_inv_table[s->scale_factors[ch][i][k]];
  617. q[m] = (int)((a + 1.0) * steps * 0.5);
  618. }
  619. #else
  620. {
  621. int q1, e, shift, mult;
  622. e = s->scale_factors[ch][i][k];
  623. shift = scale_factor_shift[e];
  624. mult = scale_factor_mult[e];
  625. /* normalize to P bits */
  626. if (shift < 0)
  627. q1 = sample << (-shift);
  628. else
  629. q1 = sample >> shift;
  630. q1 = (q1 * mult) >> P;
  631. q[m] = ((q1 + (1 << P)) * steps) >> (P + 1);
  632. }
  633. #endif
  634. if (q[m] >= steps)
  635. q[m] = steps - 1;
  636. assert(q[m] >= 0 && q[m] < steps);
  637. }
  638. bits = quant_bits[qindex];
  639. if (bits < 0) {
  640. /* group the 3 values to save bits */
  641. put_bits(p, -bits,
  642. q[0] + steps * (q[1] + steps * q[2]));
  643. #if 0
  644. printf("%d: gr1 %d\n",
  645. i, q[0] + steps * (q[1] + steps * q[2]));
  646. #endif
  647. } else {
  648. #if 0
  649. printf("%d: gr3 %d %d %d\n",
  650. i, q[0], q[1], q[2]);
  651. #endif
  652. put_bits(p, bits, q[0]);
  653. put_bits(p, bits, q[1]);
  654. put_bits(p, bits, q[2]);
  655. }
  656. }
  657. }
  658. /* next subband in alloc table */
  659. j += 1 << bit_alloc_bits;
  660. }
  661. }
  662. }
  663. /* padding */
  664. for(i=0;i<padding;i++)
  665. put_bits(p, 1, 0);
  666. /* flush */
  667. flush_put_bits(p);
  668. }
  669. static int MPA_encode_frame(AVCodecContext *avctx,
  670. unsigned char *frame, int buf_size, void *data)
  671. {
  672. MpegAudioContext *s = avctx->priv_data;
  673. short *samples = data;
  674. short smr[MPA_MAX_CHANNELS][SBLIMIT];
  675. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  676. int padding, i;
  677. for(i=0;i<s->nb_channels;i++) {
  678. filter(s, i, samples + i, s->nb_channels);
  679. }
  680. for(i=0;i<s->nb_channels;i++) {
  681. compute_scale_factors(s->scale_code[i], s->scale_factors[i],
  682. s->sb_samples[i], s->sblimit);
  683. }
  684. for(i=0;i<s->nb_channels;i++) {
  685. psycho_acoustic_model(s, smr[i]);
  686. }
  687. compute_bit_allocation(s, smr, bit_alloc, &padding);
  688. init_put_bits(&s->pb, frame, MPA_MAX_CODED_FRAME_SIZE);
  689. encode_frame(s, bit_alloc, padding);
  690. s->nb_samples += MPA_FRAME_SIZE;
  691. return pbBufPtr(&s->pb) - s->pb.buf;
  692. }
  693. static int MPA_encode_close(AVCodecContext *avctx)
  694. {
  695. av_freep(&avctx->coded_frame);
  696. return 0;
  697. }
  698. AVCodec mp2_encoder = {
  699. "mp2",
  700. CODEC_TYPE_AUDIO,
  701. CODEC_ID_MP2,
  702. sizeof(MpegAudioContext),
  703. MPA_encode_init,
  704. MPA_encode_frame,
  705. MPA_encode_close,
  706. NULL,
  707. };
  708. #undef FIX