You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

446 lines
12KB

  1. ;*****************************************************************************
  2. ;* x86-optimized AC-3 DSP utils
  3. ;* Copyright (c) 2011 Justin Ruggles
  4. ;*
  5. ;* This file is part of Libav.
  6. ;*
  7. ;* Libav is free software; you can redistribute it and/or
  8. ;* modify it under the terms of the GNU Lesser General Public
  9. ;* License as published by the Free Software Foundation; either
  10. ;* version 2.1 of the License, or (at your option) any later version.
  11. ;*
  12. ;* Libav is distributed in the hope that it will be useful,
  13. ;* but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. ;* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. ;* Lesser General Public License for more details.
  16. ;*
  17. ;* You should have received a copy of the GNU Lesser General Public
  18. ;* License along with Libav; if not, write to the Free Software
  19. ;* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. ;******************************************************************************
  21. %include "x86inc.asm"
  22. %include "x86util.asm"
  23. SECTION_RODATA
  24. ; 16777216.0f - used in ff_float_to_fixed24()
  25. pf_1_24: times 4 dd 0x4B800000
  26. ; used in ff_ac3_compute_mantissa_size()
  27. cextern ac3_bap_bits
  28. pw_bap_mul1: dw 21846, 21846, 0, 32768, 21846, 21846, 0, 32768
  29. pw_bap_mul2: dw 5, 7, 0, 7, 5, 7, 0, 7
  30. ; used in ff_ac3_extract_exponents()
  31. pd_1: times 4 dd 1
  32. pd_151: times 4 dd 151
  33. SECTION .text
  34. ;-----------------------------------------------------------------------------
  35. ; void ff_ac3_exponent_min(uint8_t *exp, int num_reuse_blocks, int nb_coefs)
  36. ;-----------------------------------------------------------------------------
  37. %macro AC3_EXPONENT_MIN 1
  38. cglobal ac3_exponent_min_%1, 3,4,2, exp, reuse_blks, expn, offset
  39. shl reuse_blksq, 8
  40. jz .end
  41. LOOP_ALIGN
  42. .nextexp:
  43. mov offsetq, reuse_blksq
  44. mova m0, [expq+offsetq]
  45. sub offsetq, 256
  46. LOOP_ALIGN
  47. .nextblk:
  48. PMINUB m0, [expq+offsetq], m1
  49. sub offsetq, 256
  50. jae .nextblk
  51. mova [expq], m0
  52. add expq, mmsize
  53. sub expnq, mmsize
  54. jg .nextexp
  55. .end:
  56. REP_RET
  57. %endmacro
  58. %define PMINUB PMINUB_MMX
  59. %define LOOP_ALIGN
  60. INIT_MMX
  61. AC3_EXPONENT_MIN mmx
  62. %if HAVE_MMX2
  63. %define PMINUB PMINUB_MMXEXT
  64. %define LOOP_ALIGN ALIGN 16
  65. AC3_EXPONENT_MIN mmxext
  66. %endif
  67. %if HAVE_SSE
  68. INIT_XMM
  69. AC3_EXPONENT_MIN sse2
  70. %endif
  71. %undef PMINUB
  72. %undef LOOP_ALIGN
  73. ;-----------------------------------------------------------------------------
  74. ; int ff_ac3_max_msb_abs_int16(const int16_t *src, int len)
  75. ;
  76. ; This function uses 2 different methods to calculate a valid result.
  77. ; 1) logical 'or' of abs of each element
  78. ; This is used for ssse3 because of the pabsw instruction.
  79. ; It is also used for mmx because of the lack of min/max instructions.
  80. ; 2) calculate min/max for the array, then or(abs(min),abs(max))
  81. ; This is used for mmxext and sse2 because they have pminsw/pmaxsw.
  82. ;-----------------------------------------------------------------------------
  83. %macro AC3_MAX_MSB_ABS_INT16 2
  84. cglobal ac3_max_msb_abs_int16_%1, 2,2,5, src, len
  85. pxor m2, m2
  86. pxor m3, m3
  87. .loop:
  88. %ifidn %2, min_max
  89. mova m0, [srcq]
  90. mova m1, [srcq+mmsize]
  91. pminsw m2, m0
  92. pminsw m2, m1
  93. pmaxsw m3, m0
  94. pmaxsw m3, m1
  95. %else ; or_abs
  96. %ifidn %1, mmx
  97. mova m0, [srcq]
  98. mova m1, [srcq+mmsize]
  99. ABS2 m0, m1, m3, m4
  100. %else ; ssse3
  101. ; using memory args is faster for ssse3
  102. pabsw m0, [srcq]
  103. pabsw m1, [srcq+mmsize]
  104. %endif
  105. por m2, m0
  106. por m2, m1
  107. %endif
  108. add srcq, mmsize*2
  109. sub lend, mmsize
  110. ja .loop
  111. %ifidn %2, min_max
  112. ABS2 m2, m3, m0, m1
  113. por m2, m3
  114. %endif
  115. %ifidn mmsize, 16
  116. movhlps m0, m2
  117. por m2, m0
  118. %endif
  119. PSHUFLW m0, m2, 0xe
  120. por m2, m0
  121. PSHUFLW m0, m2, 0x1
  122. por m2, m0
  123. movd eax, m2
  124. and eax, 0xFFFF
  125. RET
  126. %endmacro
  127. INIT_MMX
  128. %define ABS2 ABS2_MMX
  129. %define PSHUFLW pshufw
  130. AC3_MAX_MSB_ABS_INT16 mmx, or_abs
  131. %define ABS2 ABS2_MMX2
  132. AC3_MAX_MSB_ABS_INT16 mmxext, min_max
  133. INIT_XMM
  134. %define PSHUFLW pshuflw
  135. AC3_MAX_MSB_ABS_INT16 sse2, min_max
  136. %define ABS2 ABS2_SSSE3
  137. AC3_MAX_MSB_ABS_INT16 ssse3, or_abs
  138. ;-----------------------------------------------------------------------------
  139. ; macro used for ff_ac3_lshift_int16() and ff_ac3_rshift_int32()
  140. ;-----------------------------------------------------------------------------
  141. %macro AC3_SHIFT 4 ; l/r, 16/32, shift instruction, instruction set
  142. cglobal ac3_%1shift_int%2_%4, 3,3,5, src, len, shift
  143. movd m0, shiftd
  144. .loop:
  145. mova m1, [srcq ]
  146. mova m2, [srcq+mmsize ]
  147. mova m3, [srcq+mmsize*2]
  148. mova m4, [srcq+mmsize*3]
  149. %3 m1, m0
  150. %3 m2, m0
  151. %3 m3, m0
  152. %3 m4, m0
  153. mova [srcq ], m1
  154. mova [srcq+mmsize ], m2
  155. mova [srcq+mmsize*2], m3
  156. mova [srcq+mmsize*3], m4
  157. add srcq, mmsize*4
  158. sub lend, mmsize*32/%2
  159. ja .loop
  160. .end:
  161. REP_RET
  162. %endmacro
  163. ;-----------------------------------------------------------------------------
  164. ; void ff_ac3_lshift_int16(int16_t *src, unsigned int len, unsigned int shift)
  165. ;-----------------------------------------------------------------------------
  166. INIT_MMX
  167. AC3_SHIFT l, 16, psllw, mmx
  168. INIT_XMM
  169. AC3_SHIFT l, 16, psllw, sse2
  170. ;-----------------------------------------------------------------------------
  171. ; void ff_ac3_rshift_int32(int32_t *src, unsigned int len, unsigned int shift)
  172. ;-----------------------------------------------------------------------------
  173. INIT_MMX
  174. AC3_SHIFT r, 32, psrad, mmx
  175. INIT_XMM
  176. AC3_SHIFT r, 32, psrad, sse2
  177. ;-----------------------------------------------------------------------------
  178. ; void ff_float_to_fixed24(int32_t *dst, const float *src, unsigned int len)
  179. ;-----------------------------------------------------------------------------
  180. ; The 3DNow! version is not bit-identical because pf2id uses truncation rather
  181. ; than round-to-nearest.
  182. INIT_MMX
  183. cglobal float_to_fixed24_3dnow, 3,3,0, dst, src, len
  184. movq m0, [pf_1_24]
  185. .loop:
  186. movq m1, [srcq ]
  187. movq m2, [srcq+8 ]
  188. movq m3, [srcq+16]
  189. movq m4, [srcq+24]
  190. pfmul m1, m0
  191. pfmul m2, m0
  192. pfmul m3, m0
  193. pfmul m4, m0
  194. pf2id m1, m1
  195. pf2id m2, m2
  196. pf2id m3, m3
  197. pf2id m4, m4
  198. movq [dstq ], m1
  199. movq [dstq+8 ], m2
  200. movq [dstq+16], m3
  201. movq [dstq+24], m4
  202. add srcq, 32
  203. add dstq, 32
  204. sub lend, 8
  205. ja .loop
  206. REP_RET
  207. INIT_XMM
  208. cglobal float_to_fixed24_sse, 3,3,3, dst, src, len
  209. movaps m0, [pf_1_24]
  210. .loop:
  211. movaps m1, [srcq ]
  212. movaps m2, [srcq+16]
  213. mulps m1, m0
  214. mulps m2, m0
  215. cvtps2pi mm0, m1
  216. movhlps m1, m1
  217. cvtps2pi mm1, m1
  218. cvtps2pi mm2, m2
  219. movhlps m2, m2
  220. cvtps2pi mm3, m2
  221. movq [dstq ], mm0
  222. movq [dstq+ 8], mm1
  223. movq [dstq+16], mm2
  224. movq [dstq+24], mm3
  225. add srcq, 32
  226. add dstq, 32
  227. sub lend, 8
  228. ja .loop
  229. REP_RET
  230. INIT_XMM
  231. cglobal float_to_fixed24_sse2, 3,3,9, dst, src, len
  232. movaps m0, [pf_1_24]
  233. .loop:
  234. movaps m1, [srcq ]
  235. movaps m2, [srcq+16 ]
  236. movaps m3, [srcq+32 ]
  237. movaps m4, [srcq+48 ]
  238. %ifdef m8
  239. movaps m5, [srcq+64 ]
  240. movaps m6, [srcq+80 ]
  241. movaps m7, [srcq+96 ]
  242. movaps m8, [srcq+112]
  243. %endif
  244. mulps m1, m0
  245. mulps m2, m0
  246. mulps m3, m0
  247. mulps m4, m0
  248. %ifdef m8
  249. mulps m5, m0
  250. mulps m6, m0
  251. mulps m7, m0
  252. mulps m8, m0
  253. %endif
  254. cvtps2dq m1, m1
  255. cvtps2dq m2, m2
  256. cvtps2dq m3, m3
  257. cvtps2dq m4, m4
  258. %ifdef m8
  259. cvtps2dq m5, m5
  260. cvtps2dq m6, m6
  261. cvtps2dq m7, m7
  262. cvtps2dq m8, m8
  263. %endif
  264. movdqa [dstq ], m1
  265. movdqa [dstq+16 ], m2
  266. movdqa [dstq+32 ], m3
  267. movdqa [dstq+48 ], m4
  268. %ifdef m8
  269. movdqa [dstq+64 ], m5
  270. movdqa [dstq+80 ], m6
  271. movdqa [dstq+96 ], m7
  272. movdqa [dstq+112], m8
  273. add srcq, 128
  274. add dstq, 128
  275. sub lenq, 32
  276. %else
  277. add srcq, 64
  278. add dstq, 64
  279. sub lenq, 16
  280. %endif
  281. ja .loop
  282. REP_RET
  283. ;------------------------------------------------------------------------------
  284. ; int ff_ac3_compute_mantissa_size(uint16_t mant_cnt[6][16])
  285. ;------------------------------------------------------------------------------
  286. %macro PHADDD4 2 ; xmm src, xmm tmp
  287. movhlps %2, %1
  288. paddd %1, %2
  289. pshufd %2, %1, 0x1
  290. paddd %1, %2
  291. %endmacro
  292. INIT_XMM
  293. cglobal ac3_compute_mantissa_size_sse2, 1,2,4, mant_cnt, sum
  294. movdqa m0, [mant_cntq ]
  295. movdqa m1, [mant_cntq+ 1*16]
  296. paddw m0, [mant_cntq+ 2*16]
  297. paddw m1, [mant_cntq+ 3*16]
  298. paddw m0, [mant_cntq+ 4*16]
  299. paddw m1, [mant_cntq+ 5*16]
  300. paddw m0, [mant_cntq+ 6*16]
  301. paddw m1, [mant_cntq+ 7*16]
  302. paddw m0, [mant_cntq+ 8*16]
  303. paddw m1, [mant_cntq+ 9*16]
  304. paddw m0, [mant_cntq+10*16]
  305. paddw m1, [mant_cntq+11*16]
  306. pmaddwd m0, [ac3_bap_bits ]
  307. pmaddwd m1, [ac3_bap_bits+16]
  308. paddd m0, m1
  309. PHADDD4 m0, m1
  310. movd sumd, m0
  311. movdqa m3, [pw_bap_mul1]
  312. movhpd m0, [mant_cntq +2]
  313. movlpd m0, [mant_cntq+1*32+2]
  314. movhpd m1, [mant_cntq+2*32+2]
  315. movlpd m1, [mant_cntq+3*32+2]
  316. movhpd m2, [mant_cntq+4*32+2]
  317. movlpd m2, [mant_cntq+5*32+2]
  318. pmulhuw m0, m3
  319. pmulhuw m1, m3
  320. pmulhuw m2, m3
  321. paddusw m0, m1
  322. paddusw m0, m2
  323. pmaddwd m0, [pw_bap_mul2]
  324. PHADDD4 m0, m1
  325. movd eax, m0
  326. add eax, sumd
  327. RET
  328. ;------------------------------------------------------------------------------
  329. ; void ff_ac3_extract_exponents(uint8_t *exp, int32_t *coef, int nb_coefs)
  330. ;------------------------------------------------------------------------------
  331. %macro PABSD_MMX 2 ; src/dst, tmp
  332. pxor %2, %2
  333. pcmpgtd %2, %1
  334. pxor %1, %2
  335. psubd %1, %2
  336. %endmacro
  337. %macro PABSD_SSSE3 1-2 ; src/dst, unused
  338. pabsd %1, %1
  339. %endmacro
  340. %if HAVE_AMD3DNOW
  341. INIT_MMX
  342. cglobal ac3_extract_exponents_3dnow, 3,3,0, exp, coef, len
  343. add expq, lenq
  344. lea coefq, [coefq+4*lenq]
  345. neg lenq
  346. movq m3, [pd_1]
  347. movq m4, [pd_151]
  348. .loop:
  349. movq m0, [coefq+4*lenq ]
  350. movq m1, [coefq+4*lenq+8]
  351. PABSD_MMX m0, m2
  352. PABSD_MMX m1, m2
  353. pslld m0, 1
  354. por m0, m3
  355. pi2fd m2, m0
  356. psrld m2, 23
  357. movq m0, m4
  358. psubd m0, m2
  359. pslld m1, 1
  360. por m1, m3
  361. pi2fd m2, m1
  362. psrld m2, 23
  363. movq m1, m4
  364. psubd m1, m2
  365. packssdw m0, m0
  366. packuswb m0, m0
  367. packssdw m1, m1
  368. packuswb m1, m1
  369. punpcklwd m0, m1
  370. movd [expq+lenq], m0
  371. add lenq, 4
  372. jl .loop
  373. REP_RET
  374. %endif
  375. %macro AC3_EXTRACT_EXPONENTS 1
  376. cglobal ac3_extract_exponents_%1, 3,3,4, exp, coef, len
  377. add expq, lenq
  378. lea coefq, [coefq+4*lenq]
  379. neg lenq
  380. mova m2, [pd_1]
  381. mova m3, [pd_151]
  382. .loop:
  383. ; move 4 32-bit coefs to xmm0
  384. mova m0, [coefq+4*lenq]
  385. ; absolute value
  386. PABSD m0, m1
  387. ; convert to float and extract exponents
  388. pslld m0, 1
  389. por m0, m2
  390. cvtdq2ps m1, m0
  391. psrld m1, 23
  392. mova m0, m3
  393. psubd m0, m1
  394. ; move the lowest byte in each of 4 dwords to the low dword
  395. ; NOTE: We cannot just extract the low bytes with pshufb because the dword
  396. ; result for 16777215 is -1 due to float inaccuracy. Using packuswb
  397. ; clips this to 0, which is the correct exponent.
  398. packssdw m0, m0
  399. packuswb m0, m0
  400. movd [expq+lenq], m0
  401. add lenq, 4
  402. jl .loop
  403. REP_RET
  404. %endmacro
  405. %if HAVE_SSE
  406. INIT_XMM
  407. %define PABSD PABSD_MMX
  408. AC3_EXTRACT_EXPONENTS sse2
  409. %if HAVE_SSSE3
  410. %define PABSD PABSD_SSSE3
  411. AC3_EXTRACT_EXPONENTS ssse3
  412. %endif
  413. %endif