You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

242 lines
7.2KB

  1. /*
  2. * AAC Spectral Band Replication decoding functions
  3. * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
  4. * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
  5. *
  6. * This file is part of Libav.
  7. *
  8. * Libav is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * Libav is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with Libav; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. #include "config.h"
  23. #include "libavutil/attributes.h"
  24. #include "sbrdsp.h"
  25. static void sbr_sum64x5_c(float *z)
  26. {
  27. int k;
  28. for (k = 0; k < 64; k++) {
  29. float f = z[k] + z[k + 64] + z[k + 128] + z[k + 192] + z[k + 256];
  30. z[k] = f;
  31. }
  32. }
  33. static float sbr_sum_square_c(float (*x)[2], int n)
  34. {
  35. float sum = 0.0f;
  36. int i;
  37. for (i = 0; i < n; i++)
  38. sum += x[i][0] * x[i][0] + x[i][1] * x[i][1];
  39. return sum;
  40. }
  41. static void sbr_neg_odd_64_c(float *x)
  42. {
  43. int i;
  44. for (i = 1; i < 64; i += 2)
  45. x[i] = -x[i];
  46. }
  47. static void sbr_qmf_pre_shuffle_c(float *z)
  48. {
  49. int k;
  50. z[64] = z[0];
  51. z[65] = z[1];
  52. for (k = 1; k < 32; k++) {
  53. z[64+2*k ] = -z[64 - k];
  54. z[64+2*k+1] = z[ k + 1];
  55. }
  56. }
  57. static void sbr_qmf_post_shuffle_c(float W[32][2], const float *z)
  58. {
  59. int k;
  60. for (k = 0; k < 32; k++) {
  61. W[k][0] = -z[63-k];
  62. W[k][1] = z[k];
  63. }
  64. }
  65. static void sbr_qmf_deint_neg_c(float *v, const float *src)
  66. {
  67. int i;
  68. for (i = 0; i < 32; i++) {
  69. v[ i] = src[63 - 2*i ];
  70. v[63 - i] = -src[63 - 2*i - 1];
  71. }
  72. }
  73. static void sbr_qmf_deint_bfly_c(float *v, const float *src0, const float *src1)
  74. {
  75. int i;
  76. for (i = 0; i < 64; i++) {
  77. v[ i] = src0[i] - src1[63 - i];
  78. v[127 - i] = src0[i] + src1[63 - i];
  79. }
  80. }
  81. static av_always_inline void autocorrelate(const float x[40][2],
  82. float phi[3][2][2], int lag)
  83. {
  84. int i;
  85. float real_sum = 0.0f;
  86. float imag_sum = 0.0f;
  87. if (lag) {
  88. for (i = 1; i < 38; i++) {
  89. real_sum += x[i][0] * x[i+lag][0] + x[i][1] * x[i+lag][1];
  90. imag_sum += x[i][0] * x[i+lag][1] - x[i][1] * x[i+lag][0];
  91. }
  92. phi[2-lag][1][0] = real_sum + x[ 0][0] * x[lag][0] + x[ 0][1] * x[lag][1];
  93. phi[2-lag][1][1] = imag_sum + x[ 0][0] * x[lag][1] - x[ 0][1] * x[lag][0];
  94. if (lag == 1) {
  95. phi[0][0][0] = real_sum + x[38][0] * x[39][0] + x[38][1] * x[39][1];
  96. phi[0][0][1] = imag_sum + x[38][0] * x[39][1] - x[38][1] * x[39][0];
  97. }
  98. } else {
  99. for (i = 1; i < 38; i++) {
  100. real_sum += x[i][0] * x[i][0] + x[i][1] * x[i][1];
  101. }
  102. phi[2][1][0] = real_sum + x[ 0][0] * x[ 0][0] + x[ 0][1] * x[ 0][1];
  103. phi[1][0][0] = real_sum + x[38][0] * x[38][0] + x[38][1] * x[38][1];
  104. }
  105. }
  106. static void sbr_autocorrelate_c(const float x[40][2], float phi[3][2][2])
  107. {
  108. autocorrelate(x, phi, 0);
  109. autocorrelate(x, phi, 1);
  110. autocorrelate(x, phi, 2);
  111. }
  112. static void sbr_hf_gen_c(float (*X_high)[2], const float (*X_low)[2],
  113. const float alpha0[2], const float alpha1[2],
  114. float bw, int start, int end)
  115. {
  116. float alpha[4];
  117. int i;
  118. alpha[0] = alpha1[0] * bw * bw;
  119. alpha[1] = alpha1[1] * bw * bw;
  120. alpha[2] = alpha0[0] * bw;
  121. alpha[3] = alpha0[1] * bw;
  122. for (i = start; i < end; i++) {
  123. X_high[i][0] =
  124. X_low[i - 2][0] * alpha[0] -
  125. X_low[i - 2][1] * alpha[1] +
  126. X_low[i - 1][0] * alpha[2] -
  127. X_low[i - 1][1] * alpha[3] +
  128. X_low[i][0];
  129. X_high[i][1] =
  130. X_low[i - 2][1] * alpha[0] +
  131. X_low[i - 2][0] * alpha[1] +
  132. X_low[i - 1][1] * alpha[2] +
  133. X_low[i - 1][0] * alpha[3] +
  134. X_low[i][1];
  135. }
  136. }
  137. static void sbr_hf_g_filt_c(float (*Y)[2], const float (*X_high)[40][2],
  138. const float *g_filt, int m_max, int ixh)
  139. {
  140. int m;
  141. for (m = 0; m < m_max; m++) {
  142. Y[m][0] = X_high[m][ixh][0] * g_filt[m];
  143. Y[m][1] = X_high[m][ixh][1] * g_filt[m];
  144. }
  145. }
  146. static av_always_inline void sbr_hf_apply_noise(float (*Y)[2],
  147. const float *s_m,
  148. const float *q_filt,
  149. int noise,
  150. float phi_sign0,
  151. float phi_sign1,
  152. int m_max)
  153. {
  154. int m;
  155. for (m = 0; m < m_max; m++) {
  156. float y0 = Y[m][0];
  157. float y1 = Y[m][1];
  158. noise = (noise + 1) & 0x1ff;
  159. if (s_m[m]) {
  160. y0 += s_m[m] * phi_sign0;
  161. y1 += s_m[m] * phi_sign1;
  162. } else {
  163. y0 += q_filt[m] * ff_sbr_noise_table[noise][0];
  164. y1 += q_filt[m] * ff_sbr_noise_table[noise][1];
  165. }
  166. Y[m][0] = y0;
  167. Y[m][1] = y1;
  168. phi_sign1 = -phi_sign1;
  169. }
  170. }
  171. static void sbr_hf_apply_noise_0(float (*Y)[2], const float *s_m,
  172. const float *q_filt, int noise,
  173. int kx, int m_max)
  174. {
  175. sbr_hf_apply_noise(Y, s_m, q_filt, noise, 1.0, 0.0, m_max);
  176. }
  177. static void sbr_hf_apply_noise_1(float (*Y)[2], const float *s_m,
  178. const float *q_filt, int noise,
  179. int kx, int m_max)
  180. {
  181. float phi_sign = 1 - 2 * (kx & 1);
  182. sbr_hf_apply_noise(Y, s_m, q_filt, noise, 0.0, phi_sign, m_max);
  183. }
  184. static void sbr_hf_apply_noise_2(float (*Y)[2], const float *s_m,
  185. const float *q_filt, int noise,
  186. int kx, int m_max)
  187. {
  188. sbr_hf_apply_noise(Y, s_m, q_filt, noise, -1.0, 0.0, m_max);
  189. }
  190. static void sbr_hf_apply_noise_3(float (*Y)[2], const float *s_m,
  191. const float *q_filt, int noise,
  192. int kx, int m_max)
  193. {
  194. float phi_sign = 1 - 2 * (kx & 1);
  195. sbr_hf_apply_noise(Y, s_m, q_filt, noise, 0.0, -phi_sign, m_max);
  196. }
  197. av_cold void ff_sbrdsp_init(SBRDSPContext *s)
  198. {
  199. s->sum64x5 = sbr_sum64x5_c;
  200. s->sum_square = sbr_sum_square_c;
  201. s->neg_odd_64 = sbr_neg_odd_64_c;
  202. s->qmf_pre_shuffle = sbr_qmf_pre_shuffle_c;
  203. s->qmf_post_shuffle = sbr_qmf_post_shuffle_c;
  204. s->qmf_deint_neg = sbr_qmf_deint_neg_c;
  205. s->qmf_deint_bfly = sbr_qmf_deint_bfly_c;
  206. s->autocorrelate = sbr_autocorrelate_c;
  207. s->hf_gen = sbr_hf_gen_c;
  208. s->hf_g_filt = sbr_hf_g_filt_c;
  209. s->hf_apply_noise[0] = sbr_hf_apply_noise_0;
  210. s->hf_apply_noise[1] = sbr_hf_apply_noise_1;
  211. s->hf_apply_noise[2] = sbr_hf_apply_noise_2;
  212. s->hf_apply_noise[3] = sbr_hf_apply_noise_3;
  213. if (ARCH_ARM)
  214. ff_sbrdsp_init_arm(s);
  215. }