You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

898 lines
35KB

  1. /*
  2. * DSP utils
  3. * Copyright (c) 2000, 2001, 2002 Fabrice Bellard
  4. * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file libavcodec/dsputil.h
  24. * DSP utils.
  25. * note, many functions in here may use MMX which trashes the FPU state, it is
  26. * absolutely necessary to call emms_c() between dsp & float/double code
  27. */
  28. #ifndef AVCODEC_DSPUTIL_H
  29. #define AVCODEC_DSPUTIL_H
  30. #include "libavutil/intreadwrite.h"
  31. #include "avcodec.h"
  32. //#define DEBUG
  33. /* dct code */
  34. typedef short DCTELEM;
  35. typedef int DWTELEM;
  36. typedef short IDWTELEM;
  37. void fdct_ifast (DCTELEM *data);
  38. void fdct_ifast248 (DCTELEM *data);
  39. void ff_jpeg_fdct_islow (DCTELEM *data);
  40. void ff_fdct248_islow (DCTELEM *data);
  41. void j_rev_dct (DCTELEM *data);
  42. void j_rev_dct4 (DCTELEM *data);
  43. void j_rev_dct2 (DCTELEM *data);
  44. void j_rev_dct1 (DCTELEM *data);
  45. void ff_wmv2_idct_c(DCTELEM *data);
  46. void ff_fdct_mmx(DCTELEM *block);
  47. void ff_fdct_mmx2(DCTELEM *block);
  48. void ff_fdct_sse2(DCTELEM *block);
  49. void ff_h264_idct8_add_c(uint8_t *dst, DCTELEM *block, int stride);
  50. void ff_h264_idct_add_c(uint8_t *dst, DCTELEM *block, int stride);
  51. void ff_h264_idct8_dc_add_c(uint8_t *dst, DCTELEM *block, int stride);
  52. void ff_h264_idct_dc_add_c(uint8_t *dst, DCTELEM *block, int stride);
  53. void ff_h264_lowres_idct_add_c(uint8_t *dst, int stride, DCTELEM *block);
  54. void ff_h264_lowres_idct_put_c(uint8_t *dst, int stride, DCTELEM *block);
  55. void ff_h264_idct_add16_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
  56. void ff_h264_idct_add16intra_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
  57. void ff_h264_idct8_add4_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
  58. void ff_h264_idct_add8_c(uint8_t **dest, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
  59. void ff_vector_fmul_add_add_c(float *dst, const float *src0, const float *src1,
  60. const float *src2, int src3, int blocksize, int step);
  61. void ff_vector_fmul_window_c(float *dst, const float *src0, const float *src1,
  62. const float *win, float add_bias, int len);
  63. void ff_float_to_int16_c(int16_t *dst, const float *src, long len);
  64. void ff_float_to_int16_interleave_c(int16_t *dst, const float **src, long len, int channels);
  65. /* encoding scans */
  66. extern const uint8_t ff_alternate_horizontal_scan[64];
  67. extern const uint8_t ff_alternate_vertical_scan[64];
  68. extern const uint8_t ff_zigzag_direct[64];
  69. extern const uint8_t ff_zigzag248_direct[64];
  70. /* pixel operations */
  71. #define MAX_NEG_CROP 1024
  72. /* temporary */
  73. extern uint32_t ff_squareTbl[512];
  74. extern uint8_t ff_cropTbl[256 + 2 * MAX_NEG_CROP];
  75. /* VP3 DSP functions */
  76. void ff_vp3_idct_c(DCTELEM *block/* align 16*/);
  77. void ff_vp3_idct_put_c(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
  78. void ff_vp3_idct_add_c(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
  79. void ff_vp3_v_loop_filter_c(uint8_t *src, int stride, int *bounding_values);
  80. void ff_vp3_h_loop_filter_c(uint8_t *src, int stride, int *bounding_values);
  81. /* VP6 DSP functions */
  82. void ff_vp6_filter_diag4_c(uint8_t *dst, uint8_t *src, int stride,
  83. const int16_t *h_weights, const int16_t *v_weights);
  84. /* 1/2^n downscaling functions from imgconvert.c */
  85. void ff_img_copy_plane(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
  86. void ff_shrink22(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
  87. void ff_shrink44(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
  88. void ff_shrink88(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
  89. void ff_gmc_c(uint8_t *dst, uint8_t *src, int stride, int h, int ox, int oy,
  90. int dxx, int dxy, int dyx, int dyy, int shift, int r, int width, int height);
  91. /* minimum alignment rules ;)
  92. If you notice errors in the align stuff, need more alignment for some ASM code
  93. for some CPU or need to use a function with less aligned data then send a mail
  94. to the ffmpeg-devel mailing list, ...
  95. !warning These alignments might not match reality, (missing attribute((align))
  96. stuff somewhere possible).
  97. I (Michael) did not check them, these are just the alignments which I think
  98. could be reached easily ...
  99. !future video codecs might need functions with less strict alignment
  100. */
  101. /*
  102. void get_pixels_c(DCTELEM *block, const uint8_t *pixels, int line_size);
  103. void diff_pixels_c(DCTELEM *block, const uint8_t *s1, const uint8_t *s2, int stride);
  104. void put_pixels_clamped_c(const DCTELEM *block, uint8_t *pixels, int line_size);
  105. void add_pixels_clamped_c(const DCTELEM *block, uint8_t *pixels, int line_size);
  106. void clear_blocks_c(DCTELEM *blocks);
  107. */
  108. /* add and put pixel (decoding) */
  109. // blocksizes for op_pixels_func are 8x4,8x8 16x8 16x16
  110. //h for op_pixels_func is limited to {width/2, width} but never larger than 16 and never smaller then 4
  111. typedef void (*op_pixels_func)(uint8_t *block/*align width (8 or 16)*/, const uint8_t *pixels/*align 1*/, int line_size, int h);
  112. typedef void (*tpel_mc_func)(uint8_t *block/*align width (8 or 16)*/, const uint8_t *pixels/*align 1*/, int line_size, int w, int h);
  113. typedef void (*qpel_mc_func)(uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);
  114. typedef void (*h264_chroma_mc_func)(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int srcStride, int h, int x, int y);
  115. typedef void (*h264_weight_func)(uint8_t *block, int stride, int log2_denom, int weight, int offset);
  116. typedef void (*h264_biweight_func)(uint8_t *dst, uint8_t *src, int stride, int log2_denom, int weightd, int weights, int offset);
  117. #define DEF_OLD_QPEL(name)\
  118. void ff_put_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);\
  119. void ff_put_no_rnd_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);\
  120. void ff_avg_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);
  121. DEF_OLD_QPEL(qpel16_mc11_old_c)
  122. DEF_OLD_QPEL(qpel16_mc31_old_c)
  123. DEF_OLD_QPEL(qpel16_mc12_old_c)
  124. DEF_OLD_QPEL(qpel16_mc32_old_c)
  125. DEF_OLD_QPEL(qpel16_mc13_old_c)
  126. DEF_OLD_QPEL(qpel16_mc33_old_c)
  127. DEF_OLD_QPEL(qpel8_mc11_old_c)
  128. DEF_OLD_QPEL(qpel8_mc31_old_c)
  129. DEF_OLD_QPEL(qpel8_mc12_old_c)
  130. DEF_OLD_QPEL(qpel8_mc32_old_c)
  131. DEF_OLD_QPEL(qpel8_mc13_old_c)
  132. DEF_OLD_QPEL(qpel8_mc33_old_c)
  133. #define CALL_2X_PIXELS(a, b, n)\
  134. static void a(uint8_t *block, const uint8_t *pixels, int line_size, int h){\
  135. b(block , pixels , line_size, h);\
  136. b(block+n, pixels+n, line_size, h);\
  137. }
  138. /* motion estimation */
  139. // h is limited to {width/2, width, 2*width} but never larger than 16 and never smaller then 2
  140. // although currently h<4 is not used as functions with width <8 are neither used nor implemented
  141. typedef int (*me_cmp_func)(void /*MpegEncContext*/ *s, uint8_t *blk1/*align width (8 or 16)*/, uint8_t *blk2/*align 1*/, int line_size, int h)/* __attribute__ ((const))*/;
  142. // for snow slices
  143. typedef struct slice_buffer_s slice_buffer;
  144. /**
  145. * Scantable.
  146. */
  147. typedef struct ScanTable{
  148. const uint8_t *scantable;
  149. uint8_t permutated[64];
  150. uint8_t raster_end[64];
  151. #if ARCH_PPC
  152. /** Used by dct_quantize_altivec to find last-non-zero */
  153. DECLARE_ALIGNED(16, uint8_t, inverse[64]);
  154. #endif
  155. } ScanTable;
  156. void ff_init_scantable(uint8_t *, ScanTable *st, const uint8_t *src_scantable);
  157. void ff_emulated_edge_mc(uint8_t *buf, uint8_t *src, int linesize,
  158. int block_w, int block_h,
  159. int src_x, int src_y, int w, int h);
  160. /**
  161. * DSPContext.
  162. */
  163. typedef struct DSPContext {
  164. /* pixel ops : interface with DCT */
  165. void (*get_pixels)(DCTELEM *block/*align 16*/, const uint8_t *pixels/*align 8*/, int line_size);
  166. void (*diff_pixels)(DCTELEM *block/*align 16*/, const uint8_t *s1/*align 8*/, const uint8_t *s2/*align 8*/, int stride);
  167. void (*put_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
  168. void (*put_signed_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
  169. void (*add_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
  170. void (*add_pixels8)(uint8_t *pixels, DCTELEM *block, int line_size);
  171. void (*add_pixels4)(uint8_t *pixels, DCTELEM *block, int line_size);
  172. int (*sum_abs_dctelem)(DCTELEM *block/*align 16*/);
  173. /**
  174. * translational global motion compensation.
  175. */
  176. void (*gmc1)(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int srcStride, int h, int x16, int y16, int rounder);
  177. /**
  178. * global motion compensation.
  179. */
  180. void (*gmc )(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int stride, int h, int ox, int oy,
  181. int dxx, int dxy, int dyx, int dyy, int shift, int r, int width, int height);
  182. void (*clear_block)(DCTELEM *block/*align 16*/);
  183. void (*clear_blocks)(DCTELEM *blocks/*align 16*/);
  184. int (*pix_sum)(uint8_t * pix, int line_size);
  185. int (*pix_norm1)(uint8_t * pix, int line_size);
  186. // 16x16 8x8 4x4 2x2 16x8 8x4 4x2 8x16 4x8 2x4
  187. me_cmp_func sad[6]; /* identical to pix_absAxA except additional void * */
  188. me_cmp_func sse[6];
  189. me_cmp_func hadamard8_diff[6];
  190. me_cmp_func dct_sad[6];
  191. me_cmp_func quant_psnr[6];
  192. me_cmp_func bit[6];
  193. me_cmp_func rd[6];
  194. me_cmp_func vsad[6];
  195. me_cmp_func vsse[6];
  196. me_cmp_func nsse[6];
  197. me_cmp_func w53[6];
  198. me_cmp_func w97[6];
  199. me_cmp_func dct_max[6];
  200. me_cmp_func dct264_sad[6];
  201. me_cmp_func me_pre_cmp[6];
  202. me_cmp_func me_cmp[6];
  203. me_cmp_func me_sub_cmp[6];
  204. me_cmp_func mb_cmp[6];
  205. me_cmp_func ildct_cmp[6]; //only width 16 used
  206. me_cmp_func frame_skip_cmp[6]; //only width 8 used
  207. int (*ssd_int8_vs_int16)(const int8_t *pix1, const int16_t *pix2,
  208. int size);
  209. /**
  210. * Halfpel motion compensation with rounding (a+b+1)>>1.
  211. * this is an array[4][4] of motion compensation functions for 4
  212. * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
  213. * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
  214. * @param block destination where the result is stored
  215. * @param pixels source
  216. * @param line_size number of bytes in a horizontal line of block
  217. * @param h height
  218. */
  219. op_pixels_func put_pixels_tab[4][4];
  220. /**
  221. * Halfpel motion compensation with rounding (a+b+1)>>1.
  222. * This is an array[4][4] of motion compensation functions for 4
  223. * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
  224. * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
  225. * @param block destination into which the result is averaged (a+b+1)>>1
  226. * @param pixels source
  227. * @param line_size number of bytes in a horizontal line of block
  228. * @param h height
  229. */
  230. op_pixels_func avg_pixels_tab[4][4];
  231. /**
  232. * Halfpel motion compensation with no rounding (a+b)>>1.
  233. * this is an array[2][4] of motion compensation functions for 2
  234. * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
  235. * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
  236. * @param block destination where the result is stored
  237. * @param pixels source
  238. * @param line_size number of bytes in a horizontal line of block
  239. * @param h height
  240. */
  241. op_pixels_func put_no_rnd_pixels_tab[4][4];
  242. /**
  243. * Halfpel motion compensation with no rounding (a+b)>>1.
  244. * this is an array[2][4] of motion compensation functions for 2
  245. * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
  246. * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
  247. * @param block destination into which the result is averaged (a+b)>>1
  248. * @param pixels source
  249. * @param line_size number of bytes in a horizontal line of block
  250. * @param h height
  251. */
  252. op_pixels_func avg_no_rnd_pixels_tab[4][4];
  253. void (*put_no_rnd_pixels_l2[2])(uint8_t *block/*align width (8 or 16)*/, const uint8_t *a/*align 1*/, const uint8_t *b/*align 1*/, int line_size, int h);
  254. /**
  255. * Thirdpel motion compensation with rounding (a+b+1)>>1.
  256. * this is an array[12] of motion compensation functions for the 9 thirdpe
  257. * positions<br>
  258. * *pixels_tab[ xthirdpel + 4*ythirdpel ]
  259. * @param block destination where the result is stored
  260. * @param pixels source
  261. * @param line_size number of bytes in a horizontal line of block
  262. * @param h height
  263. */
  264. tpel_mc_func put_tpel_pixels_tab[11]; //FIXME individual func ptr per width?
  265. tpel_mc_func avg_tpel_pixels_tab[11]; //FIXME individual func ptr per width?
  266. qpel_mc_func put_qpel_pixels_tab[2][16];
  267. qpel_mc_func avg_qpel_pixels_tab[2][16];
  268. qpel_mc_func put_no_rnd_qpel_pixels_tab[2][16];
  269. qpel_mc_func avg_no_rnd_qpel_pixels_tab[2][16];
  270. qpel_mc_func put_mspel_pixels_tab[8];
  271. /**
  272. * h264 Chroma MC
  273. */
  274. h264_chroma_mc_func put_h264_chroma_pixels_tab[3];
  275. h264_chroma_mc_func avg_h264_chroma_pixels_tab[3];
  276. /* This is really one func used in VC-1 decoding */
  277. h264_chroma_mc_func put_no_rnd_vc1_chroma_pixels_tab[3];
  278. h264_chroma_mc_func avg_no_rnd_vc1_chroma_pixels_tab[3];
  279. qpel_mc_func put_h264_qpel_pixels_tab[4][16];
  280. qpel_mc_func avg_h264_qpel_pixels_tab[4][16];
  281. qpel_mc_func put_2tap_qpel_pixels_tab[4][16];
  282. qpel_mc_func avg_2tap_qpel_pixels_tab[4][16];
  283. h264_weight_func weight_h264_pixels_tab[10];
  284. h264_biweight_func biweight_h264_pixels_tab[10];
  285. /* AVS specific */
  286. qpel_mc_func put_cavs_qpel_pixels_tab[2][16];
  287. qpel_mc_func avg_cavs_qpel_pixels_tab[2][16];
  288. void (*cavs_filter_lv)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
  289. void (*cavs_filter_lh)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
  290. void (*cavs_filter_cv)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
  291. void (*cavs_filter_ch)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
  292. void (*cavs_idct8_add)(uint8_t *dst, DCTELEM *block, int stride);
  293. me_cmp_func pix_abs[2][4];
  294. /* huffyuv specific */
  295. void (*add_bytes)(uint8_t *dst/*align 16*/, uint8_t *src/*align 16*/, int w);
  296. void (*add_bytes_l2)(uint8_t *dst/*align 16*/, uint8_t *src1/*align 16*/, uint8_t *src2/*align 16*/, int w);
  297. void (*diff_bytes)(uint8_t *dst/*align 16*/, uint8_t *src1/*align 16*/, uint8_t *src2/*align 1*/,int w);
  298. /**
  299. * subtract huffyuv's variant of median prediction
  300. * note, this might read from src1[-1], src2[-1]
  301. */
  302. void (*sub_hfyu_median_prediction)(uint8_t *dst, uint8_t *src1, uint8_t *src2, int w, int *left, int *left_top);
  303. void (*add_hfyu_median_prediction)(uint8_t *dst, uint8_t *top, uint8_t *diff, int w, int *left, int *left_top);
  304. /* this might write to dst[w] */
  305. void (*add_png_paeth_prediction)(uint8_t *dst, uint8_t *src, uint8_t *top, int w, int bpp);
  306. void (*bswap_buf)(uint32_t *dst, const uint32_t *src, int w);
  307. void (*h264_v_loop_filter_luma)(uint8_t *pix/*align 16*/, int stride, int alpha, int beta, int8_t *tc0);
  308. void (*h264_h_loop_filter_luma)(uint8_t *pix/*align 4 */, int stride, int alpha, int beta, int8_t *tc0);
  309. /* v/h_loop_filter_luma_intra: align 16 */
  310. void (*h264_v_loop_filter_luma_intra)(uint8_t *pix, int stride, int alpha, int beta);
  311. void (*h264_h_loop_filter_luma_intra)(uint8_t *pix, int stride, int alpha, int beta);
  312. void (*h264_v_loop_filter_chroma)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta, int8_t *tc0);
  313. void (*h264_h_loop_filter_chroma)(uint8_t *pix/*align 4*/, int stride, int alpha, int beta, int8_t *tc0);
  314. void (*h264_v_loop_filter_chroma_intra)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta);
  315. void (*h264_h_loop_filter_chroma_intra)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta);
  316. // h264_loop_filter_strength: simd only. the C version is inlined in h264.c
  317. void (*h264_loop_filter_strength)(int16_t bS[2][4][4], uint8_t nnz[40], int8_t ref[2][40], int16_t mv[2][40][2],
  318. int bidir, int edges, int step, int mask_mv0, int mask_mv1, int field);
  319. void (*h263_v_loop_filter)(uint8_t *src, int stride, int qscale);
  320. void (*h263_h_loop_filter)(uint8_t *src, int stride, int qscale);
  321. void (*h261_loop_filter)(uint8_t *src, int stride);
  322. void (*x8_v_loop_filter)(uint8_t *src, int stride, int qscale);
  323. void (*x8_h_loop_filter)(uint8_t *src, int stride, int qscale);
  324. void (*vp3_v_loop_filter)(uint8_t *src, int stride, int *bounding_values);
  325. void (*vp3_h_loop_filter)(uint8_t *src, int stride, int *bounding_values);
  326. void (*vp6_filter_diag4)(uint8_t *dst, uint8_t *src, int stride,
  327. const int16_t *h_weights,const int16_t *v_weights);
  328. /* assume len is a multiple of 4, and arrays are 16-byte aligned */
  329. void (*vorbis_inverse_coupling)(float *mag, float *ang, int blocksize);
  330. void (*ac3_downmix)(float (*samples)[256], float (*matrix)[2], int out_ch, int in_ch, int len);
  331. /* no alignment needed */
  332. void (*flac_compute_autocorr)(const int32_t *data, int len, int lag, double *autoc);
  333. /* assume len is a multiple of 8, and arrays are 16-byte aligned */
  334. void (*vector_fmul)(float *dst, const float *src, int len);
  335. void (*vector_fmul_reverse)(float *dst, const float *src0, const float *src1, int len);
  336. /* assume len is a multiple of 8, and src arrays are 16-byte aligned */
  337. void (*vector_fmul_add_add)(float *dst, const float *src0, const float *src1, const float *src2, int src3, int len, int step);
  338. /* assume len is a multiple of 4, and arrays are 16-byte aligned */
  339. void (*vector_fmul_window)(float *dst, const float *src0, const float *src1, const float *win, float add_bias, int len);
  340. /* assume len is a multiple of 8, and arrays are 16-byte aligned */
  341. void (*int32_to_float_fmul_scalar)(float *dst, const int *src, float mul, int len);
  342. void (*vector_clipf)(float *dst /* align 16 */, const float *src /* align 16 */, float min, float max, int len /* align 16 */);
  343. /* C version: convert floats from the range [384.0,386.0] to ints in [-32768,32767]
  344. * simd versions: convert floats from [-32768.0,32767.0] without rescaling and arrays are 16byte aligned */
  345. void (*float_to_int16)(int16_t *dst, const float *src, long len);
  346. void (*float_to_int16_interleave)(int16_t *dst, const float **src, long len, int channels);
  347. /* (I)DCT */
  348. void (*fdct)(DCTELEM *block/* align 16*/);
  349. void (*fdct248)(DCTELEM *block/* align 16*/);
  350. /* IDCT really*/
  351. void (*idct)(DCTELEM *block/* align 16*/);
  352. /**
  353. * block -> idct -> clip to unsigned 8 bit -> dest.
  354. * (-1392, 0, 0, ...) -> idct -> (-174, -174, ...) -> put -> (0, 0, ...)
  355. * @param line_size size in bytes of a horizontal line of dest
  356. */
  357. void (*idct_put)(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
  358. /**
  359. * block -> idct -> add dest -> clip to unsigned 8 bit -> dest.
  360. * @param line_size size in bytes of a horizontal line of dest
  361. */
  362. void (*idct_add)(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
  363. /**
  364. * idct input permutation.
  365. * several optimized IDCTs need a permutated input (relative to the normal order of the reference
  366. * IDCT)
  367. * this permutation must be performed before the idct_put/add, note, normally this can be merged
  368. * with the zigzag/alternate scan<br>
  369. * an example to avoid confusion:
  370. * - (->decode coeffs -> zigzag reorder -> dequant -> reference idct ->...)
  371. * - (x -> referece dct -> reference idct -> x)
  372. * - (x -> referece dct -> simple_mmx_perm = idct_permutation -> simple_idct_mmx -> x)
  373. * - (->decode coeffs -> zigzag reorder -> simple_mmx_perm -> dequant -> simple_idct_mmx ->...)
  374. */
  375. uint8_t idct_permutation[64];
  376. int idct_permutation_type;
  377. #define FF_NO_IDCT_PERM 1
  378. #define FF_LIBMPEG2_IDCT_PERM 2
  379. #define FF_SIMPLE_IDCT_PERM 3
  380. #define FF_TRANSPOSE_IDCT_PERM 4
  381. #define FF_PARTTRANS_IDCT_PERM 5
  382. #define FF_SSE2_IDCT_PERM 6
  383. int (*try_8x8basis)(int16_t rem[64], int16_t weight[64], int16_t basis[64], int scale);
  384. void (*add_8x8basis)(int16_t rem[64], int16_t basis[64], int scale);
  385. #define BASIS_SHIFT 16
  386. #define RECON_SHIFT 6
  387. void (*draw_edges)(uint8_t *buf, int wrap, int width, int height, int w);
  388. #define EDGE_WIDTH 16
  389. /* h264 functions */
  390. /* NOTE!!! if you implement any of h264_idct8_add, h264_idct8_add4 then you must implement all of them
  391. NOTE!!! if you implement any of h264_idct_add, h264_idct_add16, h264_idct_add16intra, h264_idct_add8 then you must implement all of them
  392. The reason for above, is that no 2 out of one list may use a different permutation.
  393. */
  394. void (*h264_idct_add)(uint8_t *dst/*align 4*/, DCTELEM *block/*align 16*/, int stride);
  395. void (*h264_idct8_add)(uint8_t *dst/*align 8*/, DCTELEM *block/*align 16*/, int stride);
  396. void (*h264_idct_dc_add)(uint8_t *dst/*align 4*/, DCTELEM *block/*align 16*/, int stride);
  397. void (*h264_idct8_dc_add)(uint8_t *dst/*align 8*/, DCTELEM *block/*align 16*/, int stride);
  398. void (*h264_dct)(DCTELEM block[4][4]);
  399. void (*h264_idct_add16)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
  400. void (*h264_idct8_add4)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
  401. void (*h264_idct_add8)(uint8_t **dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
  402. void (*h264_idct_add16intra)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
  403. /* snow wavelet */
  404. void (*vertical_compose97i)(IDWTELEM *b0, IDWTELEM *b1, IDWTELEM *b2, IDWTELEM *b3, IDWTELEM *b4, IDWTELEM *b5, int width);
  405. void (*horizontal_compose97i)(IDWTELEM *b, int width);
  406. void (*inner_add_yblock)(const uint8_t *obmc, const int obmc_stride, uint8_t * * block, int b_w, int b_h, int src_x, int src_y, int src_stride, slice_buffer * sb, int add, uint8_t * dst8);
  407. void (*prefetch)(void *mem, int stride, int h);
  408. void (*shrink[4])(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
  409. /* mlp/truehd functions */
  410. void (*mlp_filter_channel)(int32_t *state, const int32_t *coeff,
  411. int firorder, int iirorder,
  412. unsigned int filter_shift, int32_t mask, int blocksize,
  413. int32_t *sample_buffer);
  414. /* vc1 functions */
  415. void (*vc1_inv_trans_8x8)(DCTELEM *b);
  416. void (*vc1_inv_trans_8x4)(uint8_t *dest, int line_size, DCTELEM *block);
  417. void (*vc1_inv_trans_4x8)(uint8_t *dest, int line_size, DCTELEM *block);
  418. void (*vc1_inv_trans_4x4)(uint8_t *dest, int line_size, DCTELEM *block);
  419. void (*vc1_inv_trans_8x8_dc)(uint8_t *dest, int line_size, DCTELEM *block);
  420. void (*vc1_inv_trans_8x4_dc)(uint8_t *dest, int line_size, DCTELEM *block);
  421. void (*vc1_inv_trans_4x8_dc)(uint8_t *dest, int line_size, DCTELEM *block);
  422. void (*vc1_inv_trans_4x4_dc)(uint8_t *dest, int line_size, DCTELEM *block);
  423. void (*vc1_v_overlap)(uint8_t* src, int stride);
  424. void (*vc1_h_overlap)(uint8_t* src, int stride);
  425. void (*vc1_v_loop_filter4)(uint8_t *src, int stride, int pq);
  426. void (*vc1_h_loop_filter4)(uint8_t *src, int stride, int pq);
  427. void (*vc1_v_loop_filter8)(uint8_t *src, int stride, int pq);
  428. void (*vc1_h_loop_filter8)(uint8_t *src, int stride, int pq);
  429. void (*vc1_v_loop_filter16)(uint8_t *src, int stride, int pq);
  430. void (*vc1_h_loop_filter16)(uint8_t *src, int stride, int pq);
  431. /* put 8x8 block with bicubic interpolation and quarterpel precision
  432. * last argument is actually round value instead of height
  433. */
  434. op_pixels_func put_vc1_mspel_pixels_tab[16];
  435. op_pixels_func avg_vc1_mspel_pixels_tab[16];
  436. /* intrax8 functions */
  437. void (*x8_spatial_compensation[12])(uint8_t *src , uint8_t *dst, int linesize);
  438. void (*x8_setup_spatial_compensation)(uint8_t *src, uint8_t *dst, int linesize,
  439. int * range, int * sum, int edges);
  440. /* ape functions */
  441. /**
  442. * Add contents of the second vector to the first one.
  443. * @param len length of vectors, should be multiple of 16
  444. */
  445. void (*add_int16)(int16_t *v1/*align 16*/, int16_t *v2, int len);
  446. /**
  447. * Add contents of the second vector to the first one.
  448. * @param len length of vectors, should be multiple of 16
  449. */
  450. void (*sub_int16)(int16_t *v1/*align 16*/, int16_t *v2, int len);
  451. /**
  452. * Calculate scalar product of two vectors.
  453. * @param len length of vectors, should be multiple of 16
  454. * @param shift number of bits to discard from product
  455. */
  456. int32_t (*scalarproduct_int16)(int16_t *v1, int16_t *v2/*align 16*/, int len, int shift);
  457. /* rv30 functions */
  458. qpel_mc_func put_rv30_tpel_pixels_tab[4][16];
  459. qpel_mc_func avg_rv30_tpel_pixels_tab[4][16];
  460. /* rv40 functions */
  461. qpel_mc_func put_rv40_qpel_pixels_tab[4][16];
  462. qpel_mc_func avg_rv40_qpel_pixels_tab[4][16];
  463. h264_chroma_mc_func put_rv40_chroma_pixels_tab[3];
  464. h264_chroma_mc_func avg_rv40_chroma_pixels_tab[3];
  465. } DSPContext;
  466. void dsputil_static_init(void);
  467. void dsputil_init(DSPContext* p, AVCodecContext *avctx);
  468. int ff_check_alignment(void);
  469. /**
  470. * permute block according to permuatation.
  471. * @param last last non zero element in scantable order
  472. */
  473. void ff_block_permute(DCTELEM *block, uint8_t *permutation, const uint8_t *scantable, int last);
  474. void ff_set_cmp(DSPContext* c, me_cmp_func *cmp, int type);
  475. #define BYTE_VEC32(c) ((c)*0x01010101UL)
  476. static inline uint32_t rnd_avg32(uint32_t a, uint32_t b)
  477. {
  478. return (a | b) - (((a ^ b) & ~BYTE_VEC32(0x01)) >> 1);
  479. }
  480. static inline uint32_t no_rnd_avg32(uint32_t a, uint32_t b)
  481. {
  482. return (a & b) + (((a ^ b) & ~BYTE_VEC32(0x01)) >> 1);
  483. }
  484. static inline int get_penalty_factor(int lambda, int lambda2, int type){
  485. switch(type&0xFF){
  486. default:
  487. case FF_CMP_SAD:
  488. return lambda>>FF_LAMBDA_SHIFT;
  489. case FF_CMP_DCT:
  490. return (3*lambda)>>(FF_LAMBDA_SHIFT+1);
  491. case FF_CMP_W53:
  492. return (4*lambda)>>(FF_LAMBDA_SHIFT);
  493. case FF_CMP_W97:
  494. return (2*lambda)>>(FF_LAMBDA_SHIFT);
  495. case FF_CMP_SATD:
  496. case FF_CMP_DCT264:
  497. return (2*lambda)>>FF_LAMBDA_SHIFT;
  498. case FF_CMP_RD:
  499. case FF_CMP_PSNR:
  500. case FF_CMP_SSE:
  501. case FF_CMP_NSSE:
  502. return lambda2>>FF_LAMBDA_SHIFT;
  503. case FF_CMP_BIT:
  504. return 1;
  505. }
  506. }
  507. /**
  508. * Empty mmx state.
  509. * this must be called between any dsp function and float/double code.
  510. * for example sin(); dsp->idct_put(); emms_c(); cos()
  511. */
  512. #define emms_c()
  513. /* should be defined by architectures supporting
  514. one or more MultiMedia extension */
  515. int mm_support(void);
  516. extern int mm_flags;
  517. void dsputil_init_alpha(DSPContext* c, AVCodecContext *avctx);
  518. void dsputil_init_arm(DSPContext* c, AVCodecContext *avctx);
  519. void dsputil_init_bfin(DSPContext* c, AVCodecContext *avctx);
  520. void dsputil_init_mlib(DSPContext* c, AVCodecContext *avctx);
  521. void dsputil_init_mmi(DSPContext* c, AVCodecContext *avctx);
  522. void dsputil_init_mmx(DSPContext* c, AVCodecContext *avctx);
  523. void dsputil_init_ppc(DSPContext* c, AVCodecContext *avctx);
  524. void dsputil_init_sh4(DSPContext* c, AVCodecContext *avctx);
  525. void dsputil_init_vis(DSPContext* c, AVCodecContext *avctx);
  526. #define DECLARE_ALIGNED_16(t, v) DECLARE_ALIGNED(16, t, v)
  527. #define DECLARE_ALIGNED_8(t, v) DECLARE_ALIGNED(8, t, v)
  528. #if HAVE_MMX
  529. #undef emms_c
  530. static inline void emms(void)
  531. {
  532. __asm__ volatile ("emms;":::"memory");
  533. }
  534. #define emms_c() \
  535. {\
  536. if (mm_flags & FF_MM_MMX)\
  537. emms();\
  538. }
  539. #elif ARCH_ARM
  540. #if HAVE_NEON
  541. # define STRIDE_ALIGN 16
  542. #endif
  543. #elif ARCH_PPC
  544. #define STRIDE_ALIGN 16
  545. #elif HAVE_MMI
  546. #define STRIDE_ALIGN 16
  547. #else
  548. #define mm_flags 0
  549. #define mm_support() 0
  550. #endif
  551. #ifndef STRIDE_ALIGN
  552. # define STRIDE_ALIGN 8
  553. #endif
  554. /* PSNR */
  555. void get_psnr(uint8_t *orig_image[3], uint8_t *coded_image[3],
  556. int orig_linesize[3], int coded_linesize,
  557. AVCodecContext *avctx);
  558. /* FFT computation */
  559. /* NOTE: soon integer code will be added, so you must use the
  560. FFTSample type */
  561. typedef float FFTSample;
  562. typedef struct FFTComplex {
  563. FFTSample re, im;
  564. } FFTComplex;
  565. typedef struct FFTContext {
  566. int nbits;
  567. int inverse;
  568. uint16_t *revtab;
  569. FFTComplex *exptab;
  570. FFTComplex *exptab1; /* only used by SSE code */
  571. FFTComplex *tmp_buf;
  572. int mdct_size; /* size of MDCT (i.e. number of input data * 2) */
  573. int mdct_bits; /* n = 2^nbits */
  574. /* pre/post rotation tables */
  575. FFTSample *tcos;
  576. FFTSample *tsin;
  577. void (*fft_permute)(struct FFTContext *s, FFTComplex *z);
  578. void (*fft_calc)(struct FFTContext *s, FFTComplex *z);
  579. void (*imdct_calc)(struct FFTContext *s, FFTSample *output, const FFTSample *input);
  580. void (*imdct_half)(struct FFTContext *s, FFTSample *output, const FFTSample *input);
  581. void (*mdct_calc)(struct FFTContext *s, FFTSample *output, const FFTSample *input);
  582. int split_radix;
  583. } FFTContext;
  584. extern FFTSample* const ff_cos_tabs[13];
  585. /**
  586. * Sets up a complex FFT.
  587. * @param nbits log2 of the length of the input array
  588. * @param inverse if 0 perform the forward transform, if 1 perform the inverse
  589. */
  590. int ff_fft_init(FFTContext *s, int nbits, int inverse);
  591. void ff_fft_permute_c(FFTContext *s, FFTComplex *z);
  592. void ff_fft_calc_c(FFTContext *s, FFTComplex *z);
  593. void ff_fft_init_altivec(FFTContext *s);
  594. void ff_fft_init_mmx(FFTContext *s);
  595. void ff_fft_init_arm(FFTContext *s);
  596. /**
  597. * Do the permutation needed BEFORE calling ff_fft_calc().
  598. */
  599. static inline void ff_fft_permute(FFTContext *s, FFTComplex *z)
  600. {
  601. s->fft_permute(s, z);
  602. }
  603. /**
  604. * Do a complex FFT with the parameters defined in ff_fft_init(). The
  605. * input data must be permuted before. No 1.0/sqrt(n) normalization is done.
  606. */
  607. static inline void ff_fft_calc(FFTContext *s, FFTComplex *z)
  608. {
  609. s->fft_calc(s, z);
  610. }
  611. void ff_fft_end(FFTContext *s);
  612. /* MDCT computation */
  613. static inline void ff_imdct_calc(FFTContext *s, FFTSample *output, const FFTSample *input)
  614. {
  615. s->imdct_calc(s, output, input);
  616. }
  617. static inline void ff_imdct_half(FFTContext *s, FFTSample *output, const FFTSample *input)
  618. {
  619. s->imdct_half(s, output, input);
  620. }
  621. static inline void ff_mdct_calc(FFTContext *s, FFTSample *output,
  622. const FFTSample *input)
  623. {
  624. s->mdct_calc(s, output, input);
  625. }
  626. /**
  627. * Generate a Kaiser-Bessel Derived Window.
  628. * @param window pointer to half window
  629. * @param alpha determines window shape
  630. * @param n size of half window
  631. */
  632. void ff_kbd_window_init(float *window, float alpha, int n);
  633. /**
  634. * Generate a sine window.
  635. * @param window pointer to half window
  636. * @param n size of half window
  637. */
  638. void ff_sine_window_init(float *window, int n);
  639. extern float ff_sine_32 [ 32];
  640. extern float ff_sine_64 [ 64];
  641. extern float ff_sine_128 [ 128];
  642. extern float ff_sine_256 [ 256];
  643. extern float ff_sine_512 [ 512];
  644. extern float ff_sine_1024[1024];
  645. extern float ff_sine_2048[2048];
  646. extern float ff_sine_4096[4096];
  647. extern float * const ff_sine_windows[13];
  648. int ff_mdct_init(FFTContext *s, int nbits, int inverse, double scale);
  649. void ff_imdct_calc_c(FFTContext *s, FFTSample *output, const FFTSample *input);
  650. void ff_imdct_half_c(FFTContext *s, FFTSample *output, const FFTSample *input);
  651. void ff_mdct_calc_c(FFTContext *s, FFTSample *output, const FFTSample *input);
  652. void ff_mdct_end(FFTContext *s);
  653. /* Real Discrete Fourier Transform */
  654. enum RDFTransformType {
  655. RDFT,
  656. IRDFT,
  657. RIDFT,
  658. IRIDFT,
  659. };
  660. typedef struct {
  661. int nbits;
  662. int inverse;
  663. int sign_convention;
  664. /* pre/post rotation tables */
  665. FFTSample *tcos;
  666. FFTSample *tsin;
  667. FFTContext fft;
  668. } RDFTContext;
  669. /**
  670. * Sets up a real FFT.
  671. * @param nbits log2 of the length of the input array
  672. * @param trans the type of transform
  673. */
  674. int ff_rdft_init(RDFTContext *s, int nbits, enum RDFTransformType trans);
  675. void ff_rdft_calc(RDFTContext *s, FFTSample *data);
  676. void ff_rdft_end(RDFTContext *s);
  677. #define WRAPPER8_16(name8, name16)\
  678. static int name16(void /*MpegEncContext*/ *s, uint8_t *dst, uint8_t *src, int stride, int h){\
  679. return name8(s, dst , src , stride, h)\
  680. +name8(s, dst+8 , src+8 , stride, h);\
  681. }
  682. #define WRAPPER8_16_SQ(name8, name16)\
  683. static int name16(void /*MpegEncContext*/ *s, uint8_t *dst, uint8_t *src, int stride, int h){\
  684. int score=0;\
  685. score +=name8(s, dst , src , stride, 8);\
  686. score +=name8(s, dst+8 , src+8 , stride, 8);\
  687. if(h==16){\
  688. dst += 8*stride;\
  689. src += 8*stride;\
  690. score +=name8(s, dst , src , stride, 8);\
  691. score +=name8(s, dst+8 , src+8 , stride, 8);\
  692. }\
  693. return score;\
  694. }
  695. static inline void copy_block2(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
  696. {
  697. int i;
  698. for(i=0; i<h; i++)
  699. {
  700. AV_WN16(dst , AV_RN16(src ));
  701. dst+=dstStride;
  702. src+=srcStride;
  703. }
  704. }
  705. static inline void copy_block4(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
  706. {
  707. int i;
  708. for(i=0; i<h; i++)
  709. {
  710. AV_WN32(dst , AV_RN32(src ));
  711. dst+=dstStride;
  712. src+=srcStride;
  713. }
  714. }
  715. static inline void copy_block8(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
  716. {
  717. int i;
  718. for(i=0; i<h; i++)
  719. {
  720. AV_WN32(dst , AV_RN32(src ));
  721. AV_WN32(dst+4 , AV_RN32(src+4 ));
  722. dst+=dstStride;
  723. src+=srcStride;
  724. }
  725. }
  726. static inline void copy_block9(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
  727. {
  728. int i;
  729. for(i=0; i<h; i++)
  730. {
  731. AV_WN32(dst , AV_RN32(src ));
  732. AV_WN32(dst+4 , AV_RN32(src+4 ));
  733. dst[8]= src[8];
  734. dst+=dstStride;
  735. src+=srcStride;
  736. }
  737. }
  738. static inline void copy_block16(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
  739. {
  740. int i;
  741. for(i=0; i<h; i++)
  742. {
  743. AV_WN32(dst , AV_RN32(src ));
  744. AV_WN32(dst+4 , AV_RN32(src+4 ));
  745. AV_WN32(dst+8 , AV_RN32(src+8 ));
  746. AV_WN32(dst+12, AV_RN32(src+12));
  747. dst+=dstStride;
  748. src+=srcStride;
  749. }
  750. }
  751. static inline void copy_block17(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
  752. {
  753. int i;
  754. for(i=0; i<h; i++)
  755. {
  756. AV_WN32(dst , AV_RN32(src ));
  757. AV_WN32(dst+4 , AV_RN32(src+4 ));
  758. AV_WN32(dst+8 , AV_RN32(src+8 ));
  759. AV_WN32(dst+12, AV_RN32(src+12));
  760. dst[16]= src[16];
  761. dst+=dstStride;
  762. src+=srcStride;
  763. }
  764. }
  765. #endif /* AVCODEC_DSPUTIL_H */