You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2287 lines
82KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "config.h"
  21. #define _SVID_SOURCE // needed for MAP_ANONYMOUS
  22. #define _DARWIN_C_SOURCE // needed for MAP_ANON
  23. #include <inttypes.h>
  24. #include <math.h>
  25. #include <stdio.h>
  26. #include <string.h>
  27. #if HAVE_SYS_MMAN_H
  28. #include <sys/mman.h>
  29. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  30. #define MAP_ANONYMOUS MAP_ANON
  31. #endif
  32. #endif
  33. #if HAVE_VIRTUALALLOC
  34. #define WIN32_LEAN_AND_MEAN
  35. #include <windows.h>
  36. #endif
  37. #include "libavutil/attributes.h"
  38. #include "libavutil/avassert.h"
  39. #include "libavutil/avutil.h"
  40. #include "libavutil/bswap.h"
  41. #include "libavutil/cpu.h"
  42. #include "libavutil/imgutils.h"
  43. #include "libavutil/intreadwrite.h"
  44. #include "libavutil/mathematics.h"
  45. #include "libavutil/opt.h"
  46. #include "libavutil/pixdesc.h"
  47. #include "libavutil/ppc/cpu.h"
  48. #include "libavutil/x86/asm.h"
  49. #include "libavutil/x86/cpu.h"
  50. #include "rgb2rgb.h"
  51. #include "swscale.h"
  52. #include "swscale_internal.h"
  53. static void handle_formats(SwsContext *c);
  54. unsigned swscale_version(void)
  55. {
  56. av_assert0(LIBSWSCALE_VERSION_MICRO >= 100);
  57. return LIBSWSCALE_VERSION_INT;
  58. }
  59. const char *swscale_configuration(void)
  60. {
  61. return FFMPEG_CONFIGURATION;
  62. }
  63. const char *swscale_license(void)
  64. {
  65. #define LICENSE_PREFIX "libswscale license: "
  66. return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  67. }
  68. typedef struct FormatEntry {
  69. uint8_t is_supported_in :1;
  70. uint8_t is_supported_out :1;
  71. uint8_t is_supported_endianness :1;
  72. } FormatEntry;
  73. static const FormatEntry format_entries[AV_PIX_FMT_NB] = {
  74. [AV_PIX_FMT_YUV420P] = { 1, 1 },
  75. [AV_PIX_FMT_YUYV422] = { 1, 1 },
  76. [AV_PIX_FMT_RGB24] = { 1, 1 },
  77. [AV_PIX_FMT_BGR24] = { 1, 1 },
  78. [AV_PIX_FMT_YUV422P] = { 1, 1 },
  79. [AV_PIX_FMT_YUV444P] = { 1, 1 },
  80. [AV_PIX_FMT_YUV410P] = { 1, 1 },
  81. [AV_PIX_FMT_YUV411P] = { 1, 1 },
  82. [AV_PIX_FMT_GRAY8] = { 1, 1 },
  83. [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
  84. [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
  85. [AV_PIX_FMT_PAL8] = { 1, 0 },
  86. [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
  87. [AV_PIX_FMT_YUVJ411P] = { 1, 1 },
  88. [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
  89. [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
  90. [AV_PIX_FMT_YVYU422] = { 1, 1 },
  91. [AV_PIX_FMT_UYVY422] = { 1, 1 },
  92. [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
  93. [AV_PIX_FMT_BGR8] = { 1, 1 },
  94. [AV_PIX_FMT_BGR4] = { 0, 1 },
  95. [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
  96. [AV_PIX_FMT_RGB8] = { 1, 1 },
  97. [AV_PIX_FMT_RGB4] = { 0, 1 },
  98. [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
  99. [AV_PIX_FMT_NV12] = { 1, 1 },
  100. [AV_PIX_FMT_NV21] = { 1, 1 },
  101. [AV_PIX_FMT_ARGB] = { 1, 1 },
  102. [AV_PIX_FMT_RGBA] = { 1, 1 },
  103. [AV_PIX_FMT_ABGR] = { 1, 1 },
  104. [AV_PIX_FMT_BGRA] = { 1, 1 },
  105. [AV_PIX_FMT_0RGB] = { 1, 1 },
  106. [AV_PIX_FMT_RGB0] = { 1, 1 },
  107. [AV_PIX_FMT_0BGR] = { 1, 1 },
  108. [AV_PIX_FMT_BGR0] = { 1, 1 },
  109. [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
  110. [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
  111. [AV_PIX_FMT_YUV440P] = { 1, 1 },
  112. [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
  113. [AV_PIX_FMT_YUV440P10LE] = { 1, 1 },
  114. [AV_PIX_FMT_YUV440P10BE] = { 1, 1 },
  115. [AV_PIX_FMT_YUV440P12LE] = { 1, 1 },
  116. [AV_PIX_FMT_YUV440P12BE] = { 1, 1 },
  117. [AV_PIX_FMT_YUVA420P] = { 1, 1 },
  118. [AV_PIX_FMT_YUVA422P] = { 1, 1 },
  119. [AV_PIX_FMT_YUVA444P] = { 1, 1 },
  120. [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
  121. [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
  122. [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
  123. [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
  124. [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
  125. [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
  126. [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
  127. [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
  128. [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
  129. [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
  130. [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
  131. [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
  132. [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
  133. [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
  134. [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
  135. [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
  136. [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
  137. [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
  138. [AV_PIX_FMT_RGB48BE] = { 1, 1 },
  139. [AV_PIX_FMT_RGB48LE] = { 1, 1 },
  140. [AV_PIX_FMT_RGBA64BE] = { 1, 1, 1 },
  141. [AV_PIX_FMT_RGBA64LE] = { 1, 1, 1 },
  142. [AV_PIX_FMT_RGB565BE] = { 1, 1 },
  143. [AV_PIX_FMT_RGB565LE] = { 1, 1 },
  144. [AV_PIX_FMT_RGB555BE] = { 1, 1 },
  145. [AV_PIX_FMT_RGB555LE] = { 1, 1 },
  146. [AV_PIX_FMT_BGR565BE] = { 1, 1 },
  147. [AV_PIX_FMT_BGR565LE] = { 1, 1 },
  148. [AV_PIX_FMT_BGR555BE] = { 1, 1 },
  149. [AV_PIX_FMT_BGR555LE] = { 1, 1 },
  150. [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
  151. [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
  152. [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
  153. [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
  154. [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
  155. [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
  156. [AV_PIX_FMT_RGB444LE] = { 1, 1 },
  157. [AV_PIX_FMT_RGB444BE] = { 1, 1 },
  158. [AV_PIX_FMT_BGR444LE] = { 1, 1 },
  159. [AV_PIX_FMT_BGR444BE] = { 1, 1 },
  160. [AV_PIX_FMT_YA8] = { 1, 1 },
  161. [AV_PIX_FMT_YA16BE] = { 1, 0 },
  162. [AV_PIX_FMT_YA16LE] = { 1, 0 },
  163. [AV_PIX_FMT_BGR48BE] = { 1, 1 },
  164. [AV_PIX_FMT_BGR48LE] = { 1, 1 },
  165. [AV_PIX_FMT_BGRA64BE] = { 1, 1, 1 },
  166. [AV_PIX_FMT_BGRA64LE] = { 1, 1, 1 },
  167. [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
  168. [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
  169. [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
  170. [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
  171. [AV_PIX_FMT_YUV420P12BE] = { 1, 1 },
  172. [AV_PIX_FMT_YUV420P12LE] = { 1, 1 },
  173. [AV_PIX_FMT_YUV420P14BE] = { 1, 1 },
  174. [AV_PIX_FMT_YUV420P14LE] = { 1, 1 },
  175. [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
  176. [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
  177. [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
  178. [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
  179. [AV_PIX_FMT_YUV422P12BE] = { 1, 1 },
  180. [AV_PIX_FMT_YUV422P12LE] = { 1, 1 },
  181. [AV_PIX_FMT_YUV422P14BE] = { 1, 1 },
  182. [AV_PIX_FMT_YUV422P14LE] = { 1, 1 },
  183. [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
  184. [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
  185. [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
  186. [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
  187. [AV_PIX_FMT_YUV444P12BE] = { 1, 1 },
  188. [AV_PIX_FMT_YUV444P12LE] = { 1, 1 },
  189. [AV_PIX_FMT_YUV444P14BE] = { 1, 1 },
  190. [AV_PIX_FMT_YUV444P14LE] = { 1, 1 },
  191. [AV_PIX_FMT_GBRP] = { 1, 1 },
  192. [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
  193. [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
  194. [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
  195. [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
  196. [AV_PIX_FMT_GBRP12LE] = { 1, 1 },
  197. [AV_PIX_FMT_GBRP12BE] = { 1, 1 },
  198. [AV_PIX_FMT_GBRP14LE] = { 1, 1 },
  199. [AV_PIX_FMT_GBRP14BE] = { 1, 1 },
  200. [AV_PIX_FMT_GBRP16LE] = { 1, 0 },
  201. [AV_PIX_FMT_GBRP16BE] = { 1, 0 },
  202. [AV_PIX_FMT_GBRAP] = { 1, 1 },
  203. [AV_PIX_FMT_GBRAP16LE] = { 1, 0 },
  204. [AV_PIX_FMT_GBRAP16BE] = { 1, 0 },
  205. [AV_PIX_FMT_BAYER_BGGR8] = { 1, 0 },
  206. [AV_PIX_FMT_BAYER_RGGB8] = { 1, 0 },
  207. [AV_PIX_FMT_BAYER_GBRG8] = { 1, 0 },
  208. [AV_PIX_FMT_BAYER_GRBG8] = { 1, 0 },
  209. [AV_PIX_FMT_BAYER_BGGR16LE] = { 1, 0 },
  210. [AV_PIX_FMT_BAYER_BGGR16BE] = { 1, 0 },
  211. [AV_PIX_FMT_BAYER_RGGB16LE] = { 1, 0 },
  212. [AV_PIX_FMT_BAYER_RGGB16BE] = { 1, 0 },
  213. [AV_PIX_FMT_BAYER_GBRG16LE] = { 1, 0 },
  214. [AV_PIX_FMT_BAYER_GBRG16BE] = { 1, 0 },
  215. [AV_PIX_FMT_BAYER_GRBG16LE] = { 1, 0 },
  216. [AV_PIX_FMT_BAYER_GRBG16BE] = { 1, 0 },
  217. [AV_PIX_FMT_XYZ12BE] = { 1, 1, 1 },
  218. [AV_PIX_FMT_XYZ12LE] = { 1, 1, 1 },
  219. [AV_PIX_FMT_AYUV64LE] = { 1, 1},
  220. };
  221. int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
  222. {
  223. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  224. format_entries[pix_fmt].is_supported_in : 0;
  225. }
  226. int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
  227. {
  228. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  229. format_entries[pix_fmt].is_supported_out : 0;
  230. }
  231. int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt)
  232. {
  233. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  234. format_entries[pix_fmt].is_supported_endianness : 0;
  235. }
  236. static double getSplineCoeff(double a, double b, double c, double d,
  237. double dist)
  238. {
  239. if (dist <= 1.0)
  240. return ((d * dist + c) * dist + b) * dist + a;
  241. else
  242. return getSplineCoeff(0.0,
  243. b + 2.0 * c + 3.0 * d,
  244. c + 3.0 * d,
  245. -b - 3.0 * c - 6.0 * d,
  246. dist - 1.0);
  247. }
  248. static av_cold int get_local_pos(SwsContext *s, int chr_subsample, int pos, int dir)
  249. {
  250. if (pos == -1 || pos <= -513) {
  251. pos = (128 << chr_subsample) - 128;
  252. }
  253. pos += 128; // relative to ideal left edge
  254. return pos >> chr_subsample;
  255. }
  256. typedef struct {
  257. int flag; ///< flag associated to the algorithm
  258. const char *description; ///< human-readable description
  259. int size_factor; ///< size factor used when initing the filters
  260. } ScaleAlgorithm;
  261. static const ScaleAlgorithm scale_algorithms[] = {
  262. { SWS_AREA, "area averaging", 1 /* downscale only, for upscale it is bilinear */ },
  263. { SWS_BICUBIC, "bicubic", 4 },
  264. { SWS_BICUBLIN, "luma bicubic / chroma bilinear", -1 },
  265. { SWS_BILINEAR, "bilinear", 2 },
  266. { SWS_FAST_BILINEAR, "fast bilinear", -1 },
  267. { SWS_GAUSS, "Gaussian", 8 /* infinite ;) */ },
  268. { SWS_LANCZOS, "Lanczos", -1 /* custom */ },
  269. { SWS_POINT, "nearest neighbor / point", -1 },
  270. { SWS_SINC, "sinc", 20 /* infinite ;) */ },
  271. { SWS_SPLINE, "bicubic spline", 20 /* infinite :)*/ },
  272. { SWS_X, "experimental", 8 },
  273. };
  274. static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
  275. int *outFilterSize, int xInc, int srcW,
  276. int dstW, int filterAlign, int one,
  277. int flags, int cpu_flags,
  278. SwsVector *srcFilter, SwsVector *dstFilter,
  279. double param[2], int srcPos, int dstPos)
  280. {
  281. int i;
  282. int filterSize;
  283. int filter2Size;
  284. int minFilterSize;
  285. int64_t *filter = NULL;
  286. int64_t *filter2 = NULL;
  287. const int64_t fone = 1LL << (54 - FFMIN(av_log2(srcW/dstW), 8));
  288. int ret = -1;
  289. emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
  290. // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
  291. FF_ALLOC_ARRAY_OR_GOTO(NULL, *filterPos, (dstW + 3), sizeof(**filterPos), fail);
  292. if (FFABS(xInc - 0x10000) < 10 && srcPos == dstPos) { // unscaled
  293. int i;
  294. filterSize = 1;
  295. FF_ALLOCZ_ARRAY_OR_GOTO(NULL, filter,
  296. dstW, sizeof(*filter) * filterSize, fail);
  297. for (i = 0; i < dstW; i++) {
  298. filter[i * filterSize] = fone;
  299. (*filterPos)[i] = i;
  300. }
  301. } else if (flags & SWS_POINT) { // lame looking point sampling mode
  302. int i;
  303. int64_t xDstInSrc;
  304. filterSize = 1;
  305. FF_ALLOC_ARRAY_OR_GOTO(NULL, filter,
  306. dstW, sizeof(*filter) * filterSize, fail);
  307. xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
  308. for (i = 0; i < dstW; i++) {
  309. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  310. (*filterPos)[i] = xx;
  311. filter[i] = fone;
  312. xDstInSrc += xInc;
  313. }
  314. } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
  315. (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
  316. int i;
  317. int64_t xDstInSrc;
  318. filterSize = 2;
  319. FF_ALLOC_ARRAY_OR_GOTO(NULL, filter,
  320. dstW, sizeof(*filter) * filterSize, fail);
  321. xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
  322. for (i = 0; i < dstW; i++) {
  323. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  324. int j;
  325. (*filterPos)[i] = xx;
  326. // bilinear upscale / linear interpolate / area averaging
  327. for (j = 0; j < filterSize; j++) {
  328. int64_t coeff= fone - FFABS(((int64_t)xx<<16) - xDstInSrc)*(fone>>16);
  329. if (coeff < 0)
  330. coeff = 0;
  331. filter[i * filterSize + j] = coeff;
  332. xx++;
  333. }
  334. xDstInSrc += xInc;
  335. }
  336. } else {
  337. int64_t xDstInSrc;
  338. int sizeFactor = -1;
  339. for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
  340. if (flags & scale_algorithms[i].flag && scale_algorithms[i].size_factor > 0) {
  341. sizeFactor = scale_algorithms[i].size_factor;
  342. break;
  343. }
  344. }
  345. if (flags & SWS_LANCZOS)
  346. sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
  347. av_assert0(sizeFactor > 0);
  348. if (xInc <= 1 << 16)
  349. filterSize = 1 + sizeFactor; // upscale
  350. else
  351. filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
  352. filterSize = FFMIN(filterSize, srcW - 2);
  353. filterSize = FFMAX(filterSize, 1);
  354. FF_ALLOC_ARRAY_OR_GOTO(NULL, filter,
  355. dstW, sizeof(*filter) * filterSize, fail);
  356. xDstInSrc = ((dstPos*(int64_t)xInc)>>7) - ((srcPos*0x10000LL)>>7);
  357. for (i = 0; i < dstW; i++) {
  358. int xx = (xDstInSrc - ((int64_t)(filterSize - 2) << 16)) / (1 << 17);
  359. int j;
  360. (*filterPos)[i] = xx;
  361. for (j = 0; j < filterSize; j++) {
  362. int64_t d = (FFABS(((int64_t)xx * (1 << 17)) - xDstInSrc)) << 13;
  363. double floatd;
  364. int64_t coeff;
  365. if (xInc > 1 << 16)
  366. d = d * dstW / srcW;
  367. floatd = d * (1.0 / (1 << 30));
  368. if (flags & SWS_BICUBIC) {
  369. int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
  370. int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
  371. if (d >= 1LL << 31) {
  372. coeff = 0.0;
  373. } else {
  374. int64_t dd = (d * d) >> 30;
  375. int64_t ddd = (dd * d) >> 30;
  376. if (d < 1LL << 30)
  377. coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
  378. (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
  379. (6 * (1 << 24) - 2 * B) * (1 << 30);
  380. else
  381. coeff = (-B - 6 * C) * ddd +
  382. (6 * B + 30 * C) * dd +
  383. (-12 * B - 48 * C) * d +
  384. (8 * B + 24 * C) * (1 << 30);
  385. }
  386. coeff /= (1LL<<54)/fone;
  387. }
  388. #if 0
  389. else if (flags & SWS_X) {
  390. double p = param ? param * 0.01 : 0.3;
  391. coeff = d ? sin(d * M_PI) / (d * M_PI) : 1.0;
  392. coeff *= pow(2.0, -p * d * d);
  393. }
  394. #endif
  395. else if (flags & SWS_X) {
  396. double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  397. double c;
  398. if (floatd < 1.0)
  399. c = cos(floatd * M_PI);
  400. else
  401. c = -1.0;
  402. if (c < 0.0)
  403. c = -pow(-c, A);
  404. else
  405. c = pow(c, A);
  406. coeff = (c * 0.5 + 0.5) * fone;
  407. } else if (flags & SWS_AREA) {
  408. int64_t d2 = d - (1 << 29);
  409. if (d2 * xInc < -(1LL << (29 + 16)))
  410. coeff = 1.0 * (1LL << (30 + 16));
  411. else if (d2 * xInc < (1LL << (29 + 16)))
  412. coeff = -d2 * xInc + (1LL << (29 + 16));
  413. else
  414. coeff = 0.0;
  415. coeff *= fone >> (30 + 16);
  416. } else if (flags & SWS_GAUSS) {
  417. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  418. coeff = (pow(2.0, -p * floatd * floatd)) * fone;
  419. } else if (flags & SWS_SINC) {
  420. coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
  421. } else if (flags & SWS_LANCZOS) {
  422. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  423. coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
  424. (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
  425. if (floatd > p)
  426. coeff = 0;
  427. } else if (flags & SWS_BILINEAR) {
  428. coeff = (1 << 30) - d;
  429. if (coeff < 0)
  430. coeff = 0;
  431. coeff *= fone >> 30;
  432. } else if (flags & SWS_SPLINE) {
  433. double p = -2.196152422706632;
  434. coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
  435. } else {
  436. av_assert0(0);
  437. }
  438. filter[i * filterSize + j] = coeff;
  439. xx++;
  440. }
  441. xDstInSrc += 2 * xInc;
  442. }
  443. }
  444. /* apply src & dst Filter to filter -> filter2
  445. * av_free(filter);
  446. */
  447. av_assert0(filterSize > 0);
  448. filter2Size = filterSize;
  449. if (srcFilter)
  450. filter2Size += srcFilter->length - 1;
  451. if (dstFilter)
  452. filter2Size += dstFilter->length - 1;
  453. av_assert0(filter2Size > 0);
  454. FF_ALLOCZ_ARRAY_OR_GOTO(NULL, filter2, dstW, filter2Size * sizeof(*filter2), fail);
  455. for (i = 0; i < dstW; i++) {
  456. int j, k;
  457. if (srcFilter) {
  458. for (k = 0; k < srcFilter->length; k++) {
  459. for (j = 0; j < filterSize; j++)
  460. filter2[i * filter2Size + k + j] +=
  461. srcFilter->coeff[k] * filter[i * filterSize + j];
  462. }
  463. } else {
  464. for (j = 0; j < filterSize; j++)
  465. filter2[i * filter2Size + j] = filter[i * filterSize + j];
  466. }
  467. // FIXME dstFilter
  468. (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
  469. }
  470. av_freep(&filter);
  471. /* try to reduce the filter-size (step1 find size and shift left) */
  472. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  473. minFilterSize = 0;
  474. for (i = dstW - 1; i >= 0; i--) {
  475. int min = filter2Size;
  476. int j;
  477. int64_t cutOff = 0.0;
  478. /* get rid of near zero elements on the left by shifting left */
  479. for (j = 0; j < filter2Size; j++) {
  480. int k;
  481. cutOff += FFABS(filter2[i * filter2Size]);
  482. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  483. break;
  484. /* preserve monotonicity because the core can't handle the
  485. * filter otherwise */
  486. if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
  487. break;
  488. // move filter coefficients left
  489. for (k = 1; k < filter2Size; k++)
  490. filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
  491. filter2[i * filter2Size + k - 1] = 0;
  492. (*filterPos)[i]++;
  493. }
  494. cutOff = 0;
  495. /* count near zeros on the right */
  496. for (j = filter2Size - 1; j > 0; j--) {
  497. cutOff += FFABS(filter2[i * filter2Size + j]);
  498. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  499. break;
  500. min--;
  501. }
  502. if (min > minFilterSize)
  503. minFilterSize = min;
  504. }
  505. if (PPC_ALTIVEC(cpu_flags)) {
  506. // we can handle the special case 4, so we don't want to go the full 8
  507. if (minFilterSize < 5)
  508. filterAlign = 4;
  509. /* We really don't want to waste our time doing useless computation, so
  510. * fall back on the scalar C code for very small filters.
  511. * Vectorizing is worth it only if you have a decent-sized vector. */
  512. if (minFilterSize < 3)
  513. filterAlign = 1;
  514. }
  515. if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
  516. // special case for unscaled vertical filtering
  517. if (minFilterSize == 1 && filterAlign == 2)
  518. filterAlign = 1;
  519. }
  520. av_assert0(minFilterSize > 0);
  521. filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
  522. av_assert0(filterSize > 0);
  523. filter = av_malloc_array(dstW, filterSize * sizeof(*filter));
  524. if (!filter)
  525. goto fail;
  526. if (filterSize >= MAX_FILTER_SIZE * 16 /
  527. ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16)) {
  528. ret = RETCODE_USE_CASCADE;
  529. goto fail;
  530. }
  531. *outFilterSize = filterSize;
  532. if (flags & SWS_PRINT_INFO)
  533. av_log(NULL, AV_LOG_VERBOSE,
  534. "SwScaler: reducing / aligning filtersize %d -> %d\n",
  535. filter2Size, filterSize);
  536. /* try to reduce the filter-size (step2 reduce it) */
  537. for (i = 0; i < dstW; i++) {
  538. int j;
  539. for (j = 0; j < filterSize; j++) {
  540. if (j >= filter2Size)
  541. filter[i * filterSize + j] = 0;
  542. else
  543. filter[i * filterSize + j] = filter2[i * filter2Size + j];
  544. if ((flags & SWS_BITEXACT) && j >= minFilterSize)
  545. filter[i * filterSize + j] = 0;
  546. }
  547. }
  548. // FIXME try to align filterPos if possible
  549. // fix borders
  550. for (i = 0; i < dstW; i++) {
  551. int j;
  552. if ((*filterPos)[i] < 0) {
  553. // move filter coefficients left to compensate for filterPos
  554. for (j = 1; j < filterSize; j++) {
  555. int left = FFMAX(j + (*filterPos)[i], 0);
  556. filter[i * filterSize + left] += filter[i * filterSize + j];
  557. filter[i * filterSize + j] = 0;
  558. }
  559. (*filterPos)[i]= 0;
  560. }
  561. if ((*filterPos)[i] + filterSize > srcW) {
  562. int shift = (*filterPos)[i] + FFMIN(filterSize - srcW, 0);
  563. int64_t acc = 0;
  564. for (j = filterSize - 1; j >= 0; j--) {
  565. if ((*filterPos)[i] + j >= srcW) {
  566. acc += filter[i * filterSize + j];
  567. filter[i * filterSize + j] = 0;
  568. }
  569. }
  570. for (j = filterSize - 1; j >= 0; j--) {
  571. if (j < shift) {
  572. filter[i * filterSize + j] = 0;
  573. } else {
  574. filter[i * filterSize + j] = filter[i * filterSize + j - shift];
  575. }
  576. }
  577. (*filterPos)[i]-= shift;
  578. filter[i * filterSize + srcW - 1 - (*filterPos)[i]] += acc;
  579. }
  580. av_assert0((*filterPos)[i] >= 0);
  581. av_assert0((*filterPos)[i] < srcW);
  582. if ((*filterPos)[i] + filterSize > srcW) {
  583. for (j = 0; j < filterSize; j++) {
  584. av_assert0((*filterPos)[i] + j < srcW || !filter[i * filterSize + j]);
  585. }
  586. }
  587. }
  588. // Note the +1 is for the MMX scaler which reads over the end
  589. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  590. FF_ALLOCZ_ARRAY_OR_GOTO(NULL, *outFilter,
  591. (dstW + 3), *outFilterSize * sizeof(int16_t), fail);
  592. /* normalize & store in outFilter */
  593. for (i = 0; i < dstW; i++) {
  594. int j;
  595. int64_t error = 0;
  596. int64_t sum = 0;
  597. for (j = 0; j < filterSize; j++) {
  598. sum += filter[i * filterSize + j];
  599. }
  600. sum = (sum + one / 2) / one;
  601. if (!sum) {
  602. av_log(NULL, AV_LOG_WARNING, "SwScaler: zero vector in scaling\n");
  603. sum = 1;
  604. }
  605. for (j = 0; j < *outFilterSize; j++) {
  606. int64_t v = filter[i * filterSize + j] + error;
  607. int intV = ROUNDED_DIV(v, sum);
  608. (*outFilter)[i * (*outFilterSize) + j] = intV;
  609. error = v - intV * sum;
  610. }
  611. }
  612. (*filterPos)[dstW + 0] =
  613. (*filterPos)[dstW + 1] =
  614. (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
  615. * read over the end */
  616. for (i = 0; i < *outFilterSize; i++) {
  617. int k = (dstW - 1) * (*outFilterSize) + i;
  618. (*outFilter)[k + 1 * (*outFilterSize)] =
  619. (*outFilter)[k + 2 * (*outFilterSize)] =
  620. (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
  621. }
  622. ret = 0;
  623. fail:
  624. if(ret < 0)
  625. av_log(NULL, ret == RETCODE_USE_CASCADE ? AV_LOG_DEBUG : AV_LOG_ERROR, "sws: initFilter failed\n");
  626. av_free(filter);
  627. av_free(filter2);
  628. return ret;
  629. }
  630. static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
  631. {
  632. int64_t W, V, Z, Cy, Cu, Cv;
  633. int64_t vr = table[0];
  634. int64_t ub = table[1];
  635. int64_t ug = -table[2];
  636. int64_t vg = -table[3];
  637. int64_t ONE = 65536;
  638. int64_t cy = ONE;
  639. uint8_t *p = (uint8_t*)c->input_rgb2yuv_table;
  640. int i;
  641. static const int8_t map[] = {
  642. BY_IDX, GY_IDX, -1 , BY_IDX, BY_IDX, GY_IDX, -1 , BY_IDX,
  643. RY_IDX, -1 , GY_IDX, RY_IDX, RY_IDX, -1 , GY_IDX, RY_IDX,
  644. RY_IDX, GY_IDX, -1 , RY_IDX, RY_IDX, GY_IDX, -1 , RY_IDX,
  645. BY_IDX, -1 , GY_IDX, BY_IDX, BY_IDX, -1 , GY_IDX, BY_IDX,
  646. BU_IDX, GU_IDX, -1 , BU_IDX, BU_IDX, GU_IDX, -1 , BU_IDX,
  647. RU_IDX, -1 , GU_IDX, RU_IDX, RU_IDX, -1 , GU_IDX, RU_IDX,
  648. RU_IDX, GU_IDX, -1 , RU_IDX, RU_IDX, GU_IDX, -1 , RU_IDX,
  649. BU_IDX, -1 , GU_IDX, BU_IDX, BU_IDX, -1 , GU_IDX, BU_IDX,
  650. BV_IDX, GV_IDX, -1 , BV_IDX, BV_IDX, GV_IDX, -1 , BV_IDX,
  651. RV_IDX, -1 , GV_IDX, RV_IDX, RV_IDX, -1 , GV_IDX, RV_IDX,
  652. RV_IDX, GV_IDX, -1 , RV_IDX, RV_IDX, GV_IDX, -1 , RV_IDX,
  653. BV_IDX, -1 , GV_IDX, BV_IDX, BV_IDX, -1 , GV_IDX, BV_IDX,
  654. RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX,
  655. BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX,
  656. GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 ,
  657. -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX,
  658. RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX,
  659. BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX,
  660. GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 ,
  661. -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX,
  662. RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX,
  663. BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX,
  664. GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 ,
  665. -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, //23
  666. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //24
  667. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //25
  668. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //26
  669. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //27
  670. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //28
  671. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //29
  672. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //30
  673. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //31
  674. BY_IDX, GY_IDX, RY_IDX, -1 , -1 , -1 , -1 , -1 , //32
  675. BU_IDX, GU_IDX, RU_IDX, -1 , -1 , -1 , -1 , -1 , //33
  676. BV_IDX, GV_IDX, RV_IDX, -1 , -1 , -1 , -1 , -1 , //34
  677. };
  678. dstRange = 0; //FIXME range = 1 is handled elsewhere
  679. if (!dstRange) {
  680. cy = cy * 255 / 219;
  681. } else {
  682. vr = vr * 224 / 255;
  683. ub = ub * 224 / 255;
  684. ug = ug * 224 / 255;
  685. vg = vg * 224 / 255;
  686. }
  687. W = ROUNDED_DIV(ONE*ONE*ug, ub);
  688. V = ROUNDED_DIV(ONE*ONE*vg, vr);
  689. Z = ONE*ONE-W-V;
  690. Cy = ROUNDED_DIV(cy*Z, ONE);
  691. Cu = ROUNDED_DIV(ub*Z, ONE);
  692. Cv = ROUNDED_DIV(vr*Z, ONE);
  693. c->input_rgb2yuv_table[RY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cy);
  694. c->input_rgb2yuv_table[GY_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cy);
  695. c->input_rgb2yuv_table[BY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cy);
  696. c->input_rgb2yuv_table[RU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cu);
  697. c->input_rgb2yuv_table[GU_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cu);
  698. c->input_rgb2yuv_table[BU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(Z+W) , Cu);
  699. c->input_rgb2yuv_table[RV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(V+Z) , Cv);
  700. c->input_rgb2yuv_table[GV_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cv);
  701. c->input_rgb2yuv_table[BV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cv);
  702. if(/*!dstRange && */!memcmp(table, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], sizeof(ff_yuv2rgb_coeffs[SWS_CS_DEFAULT]))) {
  703. c->input_rgb2yuv_table[BY_IDX] = ((int)(0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  704. c->input_rgb2yuv_table[BV_IDX] = (-(int)(0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  705. c->input_rgb2yuv_table[BU_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  706. c->input_rgb2yuv_table[GY_IDX] = ((int)(0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  707. c->input_rgb2yuv_table[GV_IDX] = (-(int)(0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  708. c->input_rgb2yuv_table[GU_IDX] = (-(int)(0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  709. c->input_rgb2yuv_table[RY_IDX] = ((int)(0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  710. c->input_rgb2yuv_table[RV_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  711. c->input_rgb2yuv_table[RU_IDX] = (-(int)(0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  712. }
  713. for(i=0; i<FF_ARRAY_ELEMS(map); i++)
  714. AV_WL16(p + 16*4 + 2*i, map[i] >= 0 ? c->input_rgb2yuv_table[map[i]] : 0);
  715. }
  716. static void fill_xyztables(struct SwsContext *c)
  717. {
  718. int i;
  719. double xyzgamma = XYZ_GAMMA;
  720. double rgbgamma = 1.0 / RGB_GAMMA;
  721. double xyzgammainv = 1.0 / XYZ_GAMMA;
  722. double rgbgammainv = RGB_GAMMA;
  723. static const int16_t xyz2rgb_matrix[3][4] = {
  724. {13270, -6295, -2041},
  725. {-3969, 7682, 170},
  726. { 228, -835, 4329} };
  727. static const int16_t rgb2xyz_matrix[3][4] = {
  728. {1689, 1464, 739},
  729. { 871, 2929, 296},
  730. { 79, 488, 3891} };
  731. static int16_t xyzgamma_tab[4096], rgbgamma_tab[4096], xyzgammainv_tab[4096], rgbgammainv_tab[4096];
  732. memcpy(c->xyz2rgb_matrix, xyz2rgb_matrix, sizeof(c->xyz2rgb_matrix));
  733. memcpy(c->rgb2xyz_matrix, rgb2xyz_matrix, sizeof(c->rgb2xyz_matrix));
  734. c->xyzgamma = xyzgamma_tab;
  735. c->rgbgamma = rgbgamma_tab;
  736. c->xyzgammainv = xyzgammainv_tab;
  737. c->rgbgammainv = rgbgammainv_tab;
  738. if (rgbgamma_tab[4095])
  739. return;
  740. /* set gamma vectors */
  741. for (i = 0; i < 4096; i++) {
  742. xyzgamma_tab[i] = lrint(pow(i / 4095.0, xyzgamma) * 4095.0);
  743. rgbgamma_tab[i] = lrint(pow(i / 4095.0, rgbgamma) * 4095.0);
  744. xyzgammainv_tab[i] = lrint(pow(i / 4095.0, xyzgammainv) * 4095.0);
  745. rgbgammainv_tab[i] = lrint(pow(i / 4095.0, rgbgammainv) * 4095.0);
  746. }
  747. }
  748. int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
  749. int srcRange, const int table[4], int dstRange,
  750. int brightness, int contrast, int saturation)
  751. {
  752. const AVPixFmtDescriptor *desc_dst;
  753. const AVPixFmtDescriptor *desc_src;
  754. int need_reinit = 0;
  755. memmove(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
  756. memmove(c->dstColorspaceTable, table, sizeof(int) * 4);
  757. handle_formats(c);
  758. desc_dst = av_pix_fmt_desc_get(c->dstFormat);
  759. desc_src = av_pix_fmt_desc_get(c->srcFormat);
  760. if(!isYUV(c->dstFormat) && !isGray(c->dstFormat))
  761. dstRange = 0;
  762. if(!isYUV(c->srcFormat) && !isGray(c->srcFormat))
  763. srcRange = 0;
  764. c->brightness = brightness;
  765. c->contrast = contrast;
  766. c->saturation = saturation;
  767. if (c->srcRange != srcRange || c->dstRange != dstRange)
  768. need_reinit = 1;
  769. c->srcRange = srcRange;
  770. c->dstRange = dstRange;
  771. //The srcBpc check is possibly wrong but we seem to lack a definitive reference to test this
  772. //and what we have in ticket 2939 looks better with this check
  773. if (need_reinit && (c->srcBpc == 8 || !isYUV(c->srcFormat)))
  774. ff_sws_init_range_convert(c);
  775. if ((isYUV(c->dstFormat) || isGray(c->dstFormat)) && (isYUV(c->srcFormat) || isGray(c->srcFormat)))
  776. return -1;
  777. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  778. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  779. if (!isYUV(c->dstFormat) && !isGray(c->dstFormat)) {
  780. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
  781. contrast, saturation);
  782. // FIXME factorize
  783. if (ARCH_PPC)
  784. ff_yuv2rgb_init_tables_ppc(c, inv_table, brightness,
  785. contrast, saturation);
  786. }
  787. fill_rgb2yuv_table(c, table, dstRange);
  788. return 0;
  789. }
  790. int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
  791. int *srcRange, int **table, int *dstRange,
  792. int *brightness, int *contrast, int *saturation)
  793. {
  794. if (!c )
  795. return -1;
  796. *inv_table = c->srcColorspaceTable;
  797. *table = c->dstColorspaceTable;
  798. *srcRange = c->srcRange;
  799. *dstRange = c->dstRange;
  800. *brightness = c->brightness;
  801. *contrast = c->contrast;
  802. *saturation = c->saturation;
  803. return 0;
  804. }
  805. static int handle_jpeg(enum AVPixelFormat *format)
  806. {
  807. switch (*format) {
  808. case AV_PIX_FMT_YUVJ420P:
  809. *format = AV_PIX_FMT_YUV420P;
  810. return 1;
  811. case AV_PIX_FMT_YUVJ411P:
  812. *format = AV_PIX_FMT_YUV411P;
  813. return 1;
  814. case AV_PIX_FMT_YUVJ422P:
  815. *format = AV_PIX_FMT_YUV422P;
  816. return 1;
  817. case AV_PIX_FMT_YUVJ444P:
  818. *format = AV_PIX_FMT_YUV444P;
  819. return 1;
  820. case AV_PIX_FMT_YUVJ440P:
  821. *format = AV_PIX_FMT_YUV440P;
  822. return 1;
  823. case AV_PIX_FMT_GRAY8:
  824. case AV_PIX_FMT_GRAY16LE:
  825. case AV_PIX_FMT_GRAY16BE:
  826. return 1;
  827. default:
  828. return 0;
  829. }
  830. }
  831. static int handle_0alpha(enum AVPixelFormat *format)
  832. {
  833. switch (*format) {
  834. case AV_PIX_FMT_0BGR : *format = AV_PIX_FMT_ABGR ; return 1;
  835. case AV_PIX_FMT_BGR0 : *format = AV_PIX_FMT_BGRA ; return 4;
  836. case AV_PIX_FMT_0RGB : *format = AV_PIX_FMT_ARGB ; return 1;
  837. case AV_PIX_FMT_RGB0 : *format = AV_PIX_FMT_RGBA ; return 4;
  838. default: return 0;
  839. }
  840. }
  841. static int handle_xyz(enum AVPixelFormat *format)
  842. {
  843. switch (*format) {
  844. case AV_PIX_FMT_XYZ12BE : *format = AV_PIX_FMT_RGB48BE; return 1;
  845. case AV_PIX_FMT_XYZ12LE : *format = AV_PIX_FMT_RGB48LE; return 1;
  846. default: return 0;
  847. }
  848. }
  849. static void handle_formats(SwsContext *c)
  850. {
  851. c->src0Alpha |= handle_0alpha(&c->srcFormat);
  852. c->dst0Alpha |= handle_0alpha(&c->dstFormat);
  853. c->srcXYZ |= handle_xyz(&c->srcFormat);
  854. c->dstXYZ |= handle_xyz(&c->dstFormat);
  855. if (c->srcXYZ || c->dstXYZ)
  856. fill_xyztables(c);
  857. }
  858. SwsContext *sws_alloc_context(void)
  859. {
  860. SwsContext *c = av_mallocz(sizeof(SwsContext));
  861. av_assert0(offsetof(SwsContext, redDither) + DITHER32_INT == offsetof(SwsContext, dither32));
  862. if (c) {
  863. c->av_class = &sws_context_class;
  864. av_opt_set_defaults(c);
  865. }
  866. return c;
  867. }
  868. static uint16_t * alloc_gamma_tbl(double e)
  869. {
  870. int i = 0;
  871. uint16_t * tbl;
  872. tbl = (uint16_t*)av_malloc(sizeof(uint16_t) * 1 << 16);
  873. if (!tbl)
  874. return NULL;
  875. for (i = 0; i < 65536; ++i) {
  876. tbl[i] = pow(i / 65535.0, e) * 65535.0;
  877. }
  878. return tbl;
  879. }
  880. static enum AVPixelFormat alphaless_fmt(enum AVPixelFormat fmt)
  881. {
  882. switch(fmt) {
  883. case AV_PIX_FMT_ARGB: return AV_PIX_FMT_RGB24;
  884. case AV_PIX_FMT_RGBA: return AV_PIX_FMT_RGB24;
  885. case AV_PIX_FMT_ABGR: return AV_PIX_FMT_BGR24;
  886. case AV_PIX_FMT_BGRA: return AV_PIX_FMT_BGR24;
  887. case AV_PIX_FMT_YA8: return AV_PIX_FMT_GRAY8;
  888. case AV_PIX_FMT_YUVA420P: return AV_PIX_FMT_YUV420P;
  889. case AV_PIX_FMT_YUVA422P: return AV_PIX_FMT_YUV422P;
  890. case AV_PIX_FMT_YUVA444P: return AV_PIX_FMT_YUV444P;
  891. case AV_PIX_FMT_GBRAP: return AV_PIX_FMT_GBRP;
  892. case AV_PIX_FMT_GBRAP16LE: return AV_PIX_FMT_GBRP16;
  893. case AV_PIX_FMT_GBRAP16BE: return AV_PIX_FMT_GBRP16;
  894. case AV_PIX_FMT_RGBA64LE: return AV_PIX_FMT_RGB48;
  895. case AV_PIX_FMT_RGBA64BE: return AV_PIX_FMT_RGB48;
  896. case AV_PIX_FMT_BGRA64LE: return AV_PIX_FMT_BGR48;
  897. case AV_PIX_FMT_BGRA64BE: return AV_PIX_FMT_BGR48;
  898. case AV_PIX_FMT_YA16BE: return AV_PIX_FMT_GRAY16;
  899. case AV_PIX_FMT_YA16LE: return AV_PIX_FMT_GRAY16;
  900. case AV_PIX_FMT_YUVA420P9BE: return AV_PIX_FMT_YUV420P9;
  901. case AV_PIX_FMT_YUVA422P9BE: return AV_PIX_FMT_YUV422P9;
  902. case AV_PIX_FMT_YUVA444P9BE: return AV_PIX_FMT_YUV444P9;
  903. case AV_PIX_FMT_YUVA420P9LE: return AV_PIX_FMT_YUV420P9;
  904. case AV_PIX_FMT_YUVA422P9LE: return AV_PIX_FMT_YUV422P9;
  905. case AV_PIX_FMT_YUVA444P9LE: return AV_PIX_FMT_YUV444P9;
  906. case AV_PIX_FMT_YUVA420P10BE: return AV_PIX_FMT_YUV420P10;
  907. case AV_PIX_FMT_YUVA422P10BE: return AV_PIX_FMT_YUV422P10;
  908. case AV_PIX_FMT_YUVA444P10BE: return AV_PIX_FMT_YUV444P10;
  909. case AV_PIX_FMT_YUVA420P10LE: return AV_PIX_FMT_YUV420P10;
  910. case AV_PIX_FMT_YUVA422P10LE: return AV_PIX_FMT_YUV422P10;
  911. case AV_PIX_FMT_YUVA444P10LE: return AV_PIX_FMT_YUV444P10;
  912. case AV_PIX_FMT_YUVA420P16BE: return AV_PIX_FMT_YUV420P16;
  913. case AV_PIX_FMT_YUVA422P16BE: return AV_PIX_FMT_YUV422P16;
  914. case AV_PIX_FMT_YUVA444P16BE: return AV_PIX_FMT_YUV444P16;
  915. case AV_PIX_FMT_YUVA420P16LE: return AV_PIX_FMT_YUV420P16;
  916. case AV_PIX_FMT_YUVA422P16LE: return AV_PIX_FMT_YUV422P16;
  917. case AV_PIX_FMT_YUVA444P16LE: return AV_PIX_FMT_YUV444P16;
  918. // case AV_PIX_FMT_AYUV64LE:
  919. // case AV_PIX_FMT_AYUV64BE:
  920. // case AV_PIX_FMT_PAL8:
  921. default: return AV_PIX_FMT_NONE;
  922. }
  923. }
  924. av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter,
  925. SwsFilter *dstFilter)
  926. {
  927. int i, j;
  928. int usesVFilter, usesHFilter;
  929. int unscaled;
  930. SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
  931. int srcW = c->srcW;
  932. int srcH = c->srcH;
  933. int dstW = c->dstW;
  934. int dstH = c->dstH;
  935. int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 66, 16);
  936. int flags, cpu_flags;
  937. enum AVPixelFormat srcFormat = c->srcFormat;
  938. enum AVPixelFormat dstFormat = c->dstFormat;
  939. const AVPixFmtDescriptor *desc_src;
  940. const AVPixFmtDescriptor *desc_dst;
  941. int ret = 0;
  942. enum AVPixelFormat tmpFmt;
  943. cpu_flags = av_get_cpu_flags();
  944. flags = c->flags;
  945. emms_c();
  946. if (!rgb15to16)
  947. sws_rgb2rgb_init();
  948. unscaled = (srcW == dstW && srcH == dstH);
  949. c->srcRange |= handle_jpeg(&c->srcFormat);
  950. c->dstRange |= handle_jpeg(&c->dstFormat);
  951. if(srcFormat!=c->srcFormat || dstFormat!=c->dstFormat)
  952. av_log(c, AV_LOG_WARNING, "deprecated pixel format used, make sure you did set range correctly\n");
  953. if (!c->contrast && !c->saturation && !c->dstFormatBpp)
  954. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
  955. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
  956. c->dstRange, 0, 1 << 16, 1 << 16);
  957. handle_formats(c);
  958. srcFormat = c->srcFormat;
  959. dstFormat = c->dstFormat;
  960. desc_src = av_pix_fmt_desc_get(srcFormat);
  961. desc_dst = av_pix_fmt_desc_get(dstFormat);
  962. if (!(unscaled && sws_isSupportedEndiannessConversion(srcFormat) &&
  963. av_pix_fmt_swap_endianness(srcFormat) == dstFormat)) {
  964. if (!sws_isSupportedInput(srcFormat)) {
  965. av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
  966. av_get_pix_fmt_name(srcFormat));
  967. return AVERROR(EINVAL);
  968. }
  969. if (!sws_isSupportedOutput(dstFormat)) {
  970. av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
  971. av_get_pix_fmt_name(dstFormat));
  972. return AVERROR(EINVAL);
  973. }
  974. }
  975. av_assert2(desc_src && desc_dst);
  976. i = flags & (SWS_POINT |
  977. SWS_AREA |
  978. SWS_BILINEAR |
  979. SWS_FAST_BILINEAR |
  980. SWS_BICUBIC |
  981. SWS_X |
  982. SWS_GAUSS |
  983. SWS_LANCZOS |
  984. SWS_SINC |
  985. SWS_SPLINE |
  986. SWS_BICUBLIN);
  987. /* provide a default scaler if not set by caller */
  988. if (!i) {
  989. if (dstW < srcW && dstH < srcH)
  990. flags |= SWS_BICUBIC;
  991. else if (dstW > srcW && dstH > srcH)
  992. flags |= SWS_BICUBIC;
  993. else
  994. flags |= SWS_BICUBIC;
  995. c->flags = flags;
  996. } else if (i & (i - 1)) {
  997. av_log(c, AV_LOG_ERROR,
  998. "Exactly one scaler algorithm must be chosen, got %X\n", i);
  999. return AVERROR(EINVAL);
  1000. }
  1001. /* sanity check */
  1002. if (srcW < 1 || srcH < 1 || dstW < 1 || dstH < 1) {
  1003. /* FIXME check if these are enough and try to lower them after
  1004. * fixing the relevant parts of the code */
  1005. av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
  1006. srcW, srcH, dstW, dstH);
  1007. return AVERROR(EINVAL);
  1008. }
  1009. if (!dstFilter)
  1010. dstFilter = &dummyFilter;
  1011. if (!srcFilter)
  1012. srcFilter = &dummyFilter;
  1013. c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
  1014. c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
  1015. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  1016. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  1017. c->vRounder = 4 * 0x0001000100010001ULL;
  1018. usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
  1019. (srcFilter->chrV && srcFilter->chrV->length > 1) ||
  1020. (dstFilter->lumV && dstFilter->lumV->length > 1) ||
  1021. (dstFilter->chrV && dstFilter->chrV->length > 1);
  1022. usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
  1023. (srcFilter->chrH && srcFilter->chrH->length > 1) ||
  1024. (dstFilter->lumH && dstFilter->lumH->length > 1) ||
  1025. (dstFilter->chrH && dstFilter->chrH->length > 1);
  1026. av_pix_fmt_get_chroma_sub_sample(srcFormat, &c->chrSrcHSubSample, &c->chrSrcVSubSample);
  1027. av_pix_fmt_get_chroma_sub_sample(dstFormat, &c->chrDstHSubSample, &c->chrDstVSubSample);
  1028. if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) {
  1029. if (dstW&1) {
  1030. av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to odd output size\n");
  1031. flags |= SWS_FULL_CHR_H_INT;
  1032. c->flags = flags;
  1033. }
  1034. if ( c->chrSrcHSubSample == 0
  1035. && c->chrSrcVSubSample == 0
  1036. && c->dither != SWS_DITHER_BAYER //SWS_FULL_CHR_H_INT is currently not supported with SWS_DITHER_BAYER
  1037. && !(c->flags & SWS_FAST_BILINEAR)
  1038. ) {
  1039. av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to input having non subsampled chroma\n");
  1040. flags |= SWS_FULL_CHR_H_INT;
  1041. c->flags = flags;
  1042. }
  1043. }
  1044. if (c->dither == SWS_DITHER_AUTO) {
  1045. if (flags & SWS_ERROR_DIFFUSION)
  1046. c->dither = SWS_DITHER_ED;
  1047. }
  1048. if(dstFormat == AV_PIX_FMT_BGR4_BYTE ||
  1049. dstFormat == AV_PIX_FMT_RGB4_BYTE ||
  1050. dstFormat == AV_PIX_FMT_BGR8 ||
  1051. dstFormat == AV_PIX_FMT_RGB8) {
  1052. if (c->dither == SWS_DITHER_AUTO)
  1053. c->dither = (flags & SWS_FULL_CHR_H_INT) ? SWS_DITHER_ED : SWS_DITHER_BAYER;
  1054. if (!(flags & SWS_FULL_CHR_H_INT)) {
  1055. if (c->dither == SWS_DITHER_ED || c->dither == SWS_DITHER_A_DITHER || c->dither == SWS_DITHER_X_DITHER) {
  1056. av_log(c, AV_LOG_DEBUG,
  1057. "Desired dithering only supported in full chroma interpolation for destination format '%s'\n",
  1058. av_get_pix_fmt_name(dstFormat));
  1059. flags |= SWS_FULL_CHR_H_INT;
  1060. c->flags = flags;
  1061. }
  1062. }
  1063. if (flags & SWS_FULL_CHR_H_INT) {
  1064. if (c->dither == SWS_DITHER_BAYER) {
  1065. av_log(c, AV_LOG_DEBUG,
  1066. "Ordered dither is not supported in full chroma interpolation for destination format '%s'\n",
  1067. av_get_pix_fmt_name(dstFormat));
  1068. c->dither = SWS_DITHER_ED;
  1069. }
  1070. }
  1071. }
  1072. if (isPlanarRGB(dstFormat)) {
  1073. if (!(flags & SWS_FULL_CHR_H_INT)) {
  1074. av_log(c, AV_LOG_DEBUG,
  1075. "%s output is not supported with half chroma resolution, switching to full\n",
  1076. av_get_pix_fmt_name(dstFormat));
  1077. flags |= SWS_FULL_CHR_H_INT;
  1078. c->flags = flags;
  1079. }
  1080. }
  1081. /* reuse chroma for 2 pixels RGB/BGR unless user wants full
  1082. * chroma interpolation */
  1083. if (flags & SWS_FULL_CHR_H_INT &&
  1084. isAnyRGB(dstFormat) &&
  1085. !isPlanarRGB(dstFormat) &&
  1086. dstFormat != AV_PIX_FMT_RGBA64LE &&
  1087. dstFormat != AV_PIX_FMT_RGBA64BE &&
  1088. dstFormat != AV_PIX_FMT_BGRA64LE &&
  1089. dstFormat != AV_PIX_FMT_BGRA64BE &&
  1090. dstFormat != AV_PIX_FMT_RGB48LE &&
  1091. dstFormat != AV_PIX_FMT_RGB48BE &&
  1092. dstFormat != AV_PIX_FMT_BGR48LE &&
  1093. dstFormat != AV_PIX_FMT_BGR48BE &&
  1094. dstFormat != AV_PIX_FMT_RGBA &&
  1095. dstFormat != AV_PIX_FMT_ARGB &&
  1096. dstFormat != AV_PIX_FMT_BGRA &&
  1097. dstFormat != AV_PIX_FMT_ABGR &&
  1098. dstFormat != AV_PIX_FMT_RGB24 &&
  1099. dstFormat != AV_PIX_FMT_BGR24 &&
  1100. dstFormat != AV_PIX_FMT_BGR4_BYTE &&
  1101. dstFormat != AV_PIX_FMT_RGB4_BYTE &&
  1102. dstFormat != AV_PIX_FMT_BGR8 &&
  1103. dstFormat != AV_PIX_FMT_RGB8
  1104. ) {
  1105. av_log(c, AV_LOG_WARNING,
  1106. "full chroma interpolation for destination format '%s' not yet implemented\n",
  1107. av_get_pix_fmt_name(dstFormat));
  1108. flags &= ~SWS_FULL_CHR_H_INT;
  1109. c->flags = flags;
  1110. }
  1111. if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
  1112. c->chrDstHSubSample = 1;
  1113. // drop some chroma lines if the user wants it
  1114. c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
  1115. SWS_SRC_V_CHR_DROP_SHIFT;
  1116. c->chrSrcVSubSample += c->vChrDrop;
  1117. /* drop every other pixel for chroma calculation unless user
  1118. * wants full chroma */
  1119. if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
  1120. srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
  1121. srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
  1122. srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
  1123. srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
  1124. srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
  1125. srcFormat != AV_PIX_FMT_GBRP12BE && srcFormat != AV_PIX_FMT_GBRP12LE &&
  1126. srcFormat != AV_PIX_FMT_GBRP14BE && srcFormat != AV_PIX_FMT_GBRP14LE &&
  1127. srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
  1128. ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
  1129. (flags & SWS_FAST_BILINEAR)))
  1130. c->chrSrcHSubSample = 1;
  1131. // Note the FF_CEIL_RSHIFT is so that we always round toward +inf.
  1132. c->chrSrcW = FF_CEIL_RSHIFT(srcW, c->chrSrcHSubSample);
  1133. c->chrSrcH = FF_CEIL_RSHIFT(srcH, c->chrSrcVSubSample);
  1134. c->chrDstW = FF_CEIL_RSHIFT(dstW, c->chrDstHSubSample);
  1135. c->chrDstH = FF_CEIL_RSHIFT(dstH, c->chrDstVSubSample);
  1136. FF_ALLOCZ_OR_GOTO(c, c->formatConvBuffer, FFALIGN(srcW*2+78, 16) * 2, fail);
  1137. c->srcBpc = 1 + desc_src->comp[0].depth_minus1;
  1138. if (c->srcBpc < 8)
  1139. c->srcBpc = 8;
  1140. c->dstBpc = 1 + desc_dst->comp[0].depth_minus1;
  1141. if (c->dstBpc < 8)
  1142. c->dstBpc = 8;
  1143. if (isAnyRGB(srcFormat) || srcFormat == AV_PIX_FMT_PAL8)
  1144. c->srcBpc = 16;
  1145. if (c->dstBpc == 16)
  1146. dst_stride <<= 1;
  1147. if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 14) {
  1148. c->canMMXEXTBeUsed = dstW >= srcW && (dstW & 31) == 0 &&
  1149. c->chrDstW >= c->chrSrcW &&
  1150. (srcW & 15) == 0;
  1151. if (!c->canMMXEXTBeUsed && dstW >= srcW && c->chrDstW >= c->chrSrcW && (srcW & 15) == 0
  1152. && (flags & SWS_FAST_BILINEAR)) {
  1153. if (flags & SWS_PRINT_INFO)
  1154. av_log(c, AV_LOG_INFO,
  1155. "output width is not a multiple of 32 -> no MMXEXT scaler\n");
  1156. }
  1157. if (usesHFilter || isNBPS(c->srcFormat) || is16BPS(c->srcFormat) || isAnyRGB(c->srcFormat))
  1158. c->canMMXEXTBeUsed = 0;
  1159. } else
  1160. c->canMMXEXTBeUsed = 0;
  1161. c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
  1162. c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
  1163. /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
  1164. * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
  1165. * correct scaling.
  1166. * n-2 is the last chrominance sample available.
  1167. * This is not perfect, but no one should notice the difference, the more
  1168. * correct variant would be like the vertical one, but that would require
  1169. * some special code for the first and last pixel */
  1170. if (flags & SWS_FAST_BILINEAR) {
  1171. if (c->canMMXEXTBeUsed) {
  1172. c->lumXInc += 20;
  1173. c->chrXInc += 20;
  1174. }
  1175. // we don't use the x86 asm scaler if MMX is available
  1176. else if (INLINE_MMX(cpu_flags) && c->dstBpc <= 14) {
  1177. c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
  1178. c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
  1179. }
  1180. }
  1181. // hardcoded for now
  1182. c->gamma_value = 2.2;
  1183. tmpFmt = AV_PIX_FMT_RGBA64LE;
  1184. if (!unscaled && c->gamma_flag && (srcFormat != tmpFmt || dstFormat != tmpFmt)) {
  1185. SwsContext *c2;
  1186. c->cascaded_context[0] = NULL;
  1187. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1188. srcW, srcH, tmpFmt, 64);
  1189. if (ret < 0)
  1190. return ret;
  1191. c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
  1192. srcW, srcH, tmpFmt,
  1193. flags, NULL, NULL, c->param);
  1194. if (!c->cascaded_context[0]) {
  1195. return -1;
  1196. }
  1197. c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFmt,
  1198. dstW, dstH, tmpFmt,
  1199. flags, srcFilter, dstFilter, c->param);
  1200. if (!c->cascaded_context[1])
  1201. return -1;
  1202. c2 = c->cascaded_context[1];
  1203. c2->is_internal_gamma = 1;
  1204. c2->gamma = alloc_gamma_tbl( c->gamma_value);
  1205. c2->inv_gamma = alloc_gamma_tbl(1.f/c->gamma_value);
  1206. if (!c2->gamma || !c2->inv_gamma)
  1207. return AVERROR(ENOMEM);
  1208. c->cascaded_context[2] = NULL;
  1209. if (dstFormat != tmpFmt) {
  1210. ret = av_image_alloc(c->cascaded1_tmp, c->cascaded1_tmpStride,
  1211. dstW, dstH, tmpFmt, 64);
  1212. if (ret < 0)
  1213. return ret;
  1214. c->cascaded_context[2] = sws_getContext(dstW, dstH, tmpFmt,
  1215. dstW, dstH, dstFormat,
  1216. flags, NULL, NULL, c->param);
  1217. if (!c->cascaded_context[2])
  1218. return -1;
  1219. }
  1220. return 0;
  1221. }
  1222. if (isBayer(srcFormat)) {
  1223. if (!unscaled ||
  1224. (dstFormat != AV_PIX_FMT_RGB24 && dstFormat != AV_PIX_FMT_YUV420P)) {
  1225. enum AVPixelFormat tmpFormat = AV_PIX_FMT_RGB24;
  1226. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1227. srcW, srcH, tmpFormat, 64);
  1228. if (ret < 0)
  1229. return ret;
  1230. c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
  1231. srcW, srcH, tmpFormat,
  1232. flags, srcFilter, NULL, c->param);
  1233. if (!c->cascaded_context[0])
  1234. return -1;
  1235. c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFormat,
  1236. dstW, dstH, dstFormat,
  1237. flags, NULL, dstFilter, c->param);
  1238. if (!c->cascaded_context[1])
  1239. return -1;
  1240. return 0;
  1241. }
  1242. }
  1243. if (CONFIG_SWSCALE_ALPHA && isALPHA(srcFormat) && !isALPHA(dstFormat)) {
  1244. enum AVPixelFormat tmpFormat = alphaless_fmt(srcFormat);
  1245. if (tmpFormat != AV_PIX_FMT_NONE && c->alphablend != SWS_ALPHA_BLEND_NONE)
  1246. if (!unscaled ||
  1247. dstFormat != tmpFormat ||
  1248. usesHFilter || usesVFilter ||
  1249. c->srcRange != c->dstRange
  1250. ) {
  1251. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1252. srcW, srcH, tmpFormat, 64);
  1253. if (ret < 0)
  1254. return ret;
  1255. c->cascaded_context[0] = sws_alloc_set_opts(srcW, srcH, srcFormat,
  1256. srcW, srcH, tmpFormat,
  1257. flags, c->param);
  1258. if (!c->cascaded_context[0])
  1259. return -1;
  1260. c->cascaded_context[0]->alphablend = c->alphablend;
  1261. ret = sws_init_context(c->cascaded_context[0], NULL , NULL);
  1262. if (ret < 0)
  1263. return ret;
  1264. c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFormat,
  1265. dstW, dstH, dstFormat,
  1266. flags, srcFilter, dstFilter, c->param);
  1267. if (!c->cascaded_context[1])
  1268. return -1;
  1269. return 0;
  1270. }
  1271. }
  1272. #define USE_MMAP (HAVE_MMAP && HAVE_MPROTECT && defined MAP_ANONYMOUS)
  1273. /* precalculate horizontal scaler filter coefficients */
  1274. {
  1275. #if HAVE_MMXEXT_INLINE
  1276. // can't downscale !!!
  1277. if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
  1278. c->lumMmxextFilterCodeSize = ff_init_hscaler_mmxext(dstW, c->lumXInc, NULL,
  1279. NULL, NULL, 8);
  1280. c->chrMmxextFilterCodeSize = ff_init_hscaler_mmxext(c->chrDstW, c->chrXInc,
  1281. NULL, NULL, NULL, 4);
  1282. #if USE_MMAP
  1283. c->lumMmxextFilterCode = mmap(NULL, c->lumMmxextFilterCodeSize,
  1284. PROT_READ | PROT_WRITE,
  1285. MAP_PRIVATE | MAP_ANONYMOUS,
  1286. -1, 0);
  1287. c->chrMmxextFilterCode = mmap(NULL, c->chrMmxextFilterCodeSize,
  1288. PROT_READ | PROT_WRITE,
  1289. MAP_PRIVATE | MAP_ANONYMOUS,
  1290. -1, 0);
  1291. #elif HAVE_VIRTUALALLOC
  1292. c->lumMmxextFilterCode = VirtualAlloc(NULL,
  1293. c->lumMmxextFilterCodeSize,
  1294. MEM_COMMIT,
  1295. PAGE_EXECUTE_READWRITE);
  1296. c->chrMmxextFilterCode = VirtualAlloc(NULL,
  1297. c->chrMmxextFilterCodeSize,
  1298. MEM_COMMIT,
  1299. PAGE_EXECUTE_READWRITE);
  1300. #else
  1301. c->lumMmxextFilterCode = av_malloc(c->lumMmxextFilterCodeSize);
  1302. c->chrMmxextFilterCode = av_malloc(c->chrMmxextFilterCodeSize);
  1303. #endif
  1304. #ifdef MAP_ANONYMOUS
  1305. if (c->lumMmxextFilterCode == MAP_FAILED || c->chrMmxextFilterCode == MAP_FAILED)
  1306. #else
  1307. if (!c->lumMmxextFilterCode || !c->chrMmxextFilterCode)
  1308. #endif
  1309. {
  1310. av_log(c, AV_LOG_ERROR, "Failed to allocate MMX2FilterCode\n");
  1311. return AVERROR(ENOMEM);
  1312. }
  1313. FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
  1314. FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
  1315. FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
  1316. FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
  1317. ff_init_hscaler_mmxext( dstW, c->lumXInc, c->lumMmxextFilterCode,
  1318. c->hLumFilter, (uint32_t*)c->hLumFilterPos, 8);
  1319. ff_init_hscaler_mmxext(c->chrDstW, c->chrXInc, c->chrMmxextFilterCode,
  1320. c->hChrFilter, (uint32_t*)c->hChrFilterPos, 4);
  1321. #if USE_MMAP
  1322. if ( mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1
  1323. || mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1) {
  1324. av_log(c, AV_LOG_ERROR, "mprotect failed, cannot use fast bilinear scaler\n");
  1325. goto fail;
  1326. }
  1327. #endif
  1328. } else
  1329. #endif /* HAVE_MMXEXT_INLINE */
  1330. {
  1331. const int filterAlign = X86_MMX(cpu_flags) ? 4 :
  1332. PPC_ALTIVEC(cpu_flags) ? 8 : 1;
  1333. if ((ret = initFilter(&c->hLumFilter, &c->hLumFilterPos,
  1334. &c->hLumFilterSize, c->lumXInc,
  1335. srcW, dstW, filterAlign, 1 << 14,
  1336. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1337. cpu_flags, srcFilter->lumH, dstFilter->lumH,
  1338. c->param,
  1339. get_local_pos(c, 0, 0, 0),
  1340. get_local_pos(c, 0, 0, 0))) < 0)
  1341. goto fail;
  1342. if ((ret = initFilter(&c->hChrFilter, &c->hChrFilterPos,
  1343. &c->hChrFilterSize, c->chrXInc,
  1344. c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
  1345. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1346. cpu_flags, srcFilter->chrH, dstFilter->chrH,
  1347. c->param,
  1348. get_local_pos(c, c->chrSrcHSubSample, c->src_h_chr_pos, 0),
  1349. get_local_pos(c, c->chrDstHSubSample, c->dst_h_chr_pos, 0))) < 0)
  1350. goto fail;
  1351. }
  1352. } // initialize horizontal stuff
  1353. /* precalculate vertical scaler filter coefficients */
  1354. {
  1355. const int filterAlign = X86_MMX(cpu_flags) ? 2 :
  1356. PPC_ALTIVEC(cpu_flags) ? 8 : 1;
  1357. if ((ret = initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
  1358. c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
  1359. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1360. cpu_flags, srcFilter->lumV, dstFilter->lumV,
  1361. c->param,
  1362. get_local_pos(c, 0, 0, 1),
  1363. get_local_pos(c, 0, 0, 1))) < 0)
  1364. goto fail;
  1365. if ((ret = initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
  1366. c->chrYInc, c->chrSrcH, c->chrDstH,
  1367. filterAlign, (1 << 12),
  1368. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1369. cpu_flags, srcFilter->chrV, dstFilter->chrV,
  1370. c->param,
  1371. get_local_pos(c, c->chrSrcVSubSample, c->src_v_chr_pos, 1),
  1372. get_local_pos(c, c->chrDstVSubSample, c->dst_v_chr_pos, 1))) < 0)
  1373. goto fail;
  1374. #if HAVE_ALTIVEC
  1375. FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
  1376. FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
  1377. for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
  1378. int j;
  1379. short *p = (short *)&c->vYCoeffsBank[i];
  1380. for (j = 0; j < 8; j++)
  1381. p[j] = c->vLumFilter[i];
  1382. }
  1383. for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
  1384. int j;
  1385. short *p = (short *)&c->vCCoeffsBank[i];
  1386. for (j = 0; j < 8; j++)
  1387. p[j] = c->vChrFilter[i];
  1388. }
  1389. #endif
  1390. }
  1391. // calculate buffer sizes so that they won't run out while handling these damn slices
  1392. c->vLumBufSize = c->vLumFilterSize;
  1393. c->vChrBufSize = c->vChrFilterSize;
  1394. for (i = 0; i < dstH; i++) {
  1395. int chrI = (int64_t)i * c->chrDstH / dstH;
  1396. int nextSlice = FFMAX(c->vLumFilterPos[i] + c->vLumFilterSize - 1,
  1397. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)
  1398. << c->chrSrcVSubSample));
  1399. nextSlice >>= c->chrSrcVSubSample;
  1400. nextSlice <<= c->chrSrcVSubSample;
  1401. if (c->vLumFilterPos[i] + c->vLumBufSize < nextSlice)
  1402. c->vLumBufSize = nextSlice - c->vLumFilterPos[i];
  1403. if (c->vChrFilterPos[chrI] + c->vChrBufSize <
  1404. (nextSlice >> c->chrSrcVSubSample))
  1405. c->vChrBufSize = (nextSlice >> c->chrSrcVSubSample) -
  1406. c->vChrFilterPos[chrI];
  1407. }
  1408. for (i = 0; i < 4; i++)
  1409. FF_ALLOCZ_OR_GOTO(c, c->dither_error[i], (c->dstW+2) * sizeof(int), fail);
  1410. /* Allocate pixbufs (we use dynamic allocation because otherwise we would
  1411. * need to allocate several megabytes to handle all possible cases) */
  1412. FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1413. FF_ALLOCZ_OR_GOTO(c, c->chrUPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1414. FF_ALLOCZ_OR_GOTO(c, c->chrVPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1415. if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
  1416. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1417. /* Note we need at least one pixel more at the end because of the MMX code
  1418. * (just in case someone wants to replace the 4000/8000). */
  1419. /* align at 16 bytes for AltiVec */
  1420. for (i = 0; i < c->vLumBufSize; i++) {
  1421. FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i + c->vLumBufSize],
  1422. dst_stride + 16, fail);
  1423. c->lumPixBuf[i] = c->lumPixBuf[i + c->vLumBufSize];
  1424. }
  1425. // 64 / c->scalingBpp is the same as 16 / sizeof(scaling_intermediate)
  1426. c->uv_off = (dst_stride>>1) + 64 / (c->dstBpc &~ 7);
  1427. c->uv_offx2 = dst_stride + 16;
  1428. for (i = 0; i < c->vChrBufSize; i++) {
  1429. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf[i + c->vChrBufSize],
  1430. dst_stride * 2 + 32, fail);
  1431. c->chrUPixBuf[i] = c->chrUPixBuf[i + c->vChrBufSize];
  1432. c->chrVPixBuf[i] = c->chrVPixBuf[i + c->vChrBufSize]
  1433. = c->chrUPixBuf[i] + (dst_stride >> 1) + 8;
  1434. }
  1435. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
  1436. for (i = 0; i < c->vLumBufSize; i++) {
  1437. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i + c->vLumBufSize],
  1438. dst_stride + 16, fail);
  1439. c->alpPixBuf[i] = c->alpPixBuf[i + c->vLumBufSize];
  1440. }
  1441. // try to avoid drawing green stuff between the right end and the stride end
  1442. for (i = 0; i < c->vChrBufSize; i++)
  1443. if(desc_dst->comp[0].depth_minus1 == 15){
  1444. av_assert0(c->dstBpc > 14);
  1445. for(j=0; j<dst_stride/2+1; j++)
  1446. ((int32_t*)(c->chrUPixBuf[i]))[j] = 1<<18;
  1447. } else
  1448. for(j=0; j<dst_stride+1; j++)
  1449. ((int16_t*)(c->chrUPixBuf[i]))[j] = 1<<14;
  1450. av_assert0(c->chrDstH <= dstH);
  1451. if (flags & SWS_PRINT_INFO) {
  1452. const char *scaler = NULL, *cpucaps;
  1453. for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
  1454. if (flags & scale_algorithms[i].flag) {
  1455. scaler = scale_algorithms[i].description;
  1456. break;
  1457. }
  1458. }
  1459. if (!scaler)
  1460. scaler = "ehh flags invalid?!";
  1461. av_log(c, AV_LOG_INFO, "%s scaler, from %s to %s%s ",
  1462. scaler,
  1463. av_get_pix_fmt_name(srcFormat),
  1464. #ifdef DITHER1XBPP
  1465. dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
  1466. dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
  1467. dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
  1468. "dithered " : "",
  1469. #else
  1470. "",
  1471. #endif
  1472. av_get_pix_fmt_name(dstFormat));
  1473. if (INLINE_MMXEXT(cpu_flags))
  1474. cpucaps = "MMXEXT";
  1475. else if (INLINE_AMD3DNOW(cpu_flags))
  1476. cpucaps = "3DNOW";
  1477. else if (INLINE_MMX(cpu_flags))
  1478. cpucaps = "MMX";
  1479. else if (PPC_ALTIVEC(cpu_flags))
  1480. cpucaps = "AltiVec";
  1481. else
  1482. cpucaps = "C";
  1483. av_log(c, AV_LOG_INFO, "using %s\n", cpucaps);
  1484. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  1485. av_log(c, AV_LOG_DEBUG,
  1486. "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1487. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  1488. av_log(c, AV_LOG_DEBUG,
  1489. "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1490. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
  1491. c->chrXInc, c->chrYInc);
  1492. }
  1493. /* alpha blend special case, note this has been split via cascaded contexts if its scaled */
  1494. if (unscaled && !usesHFilter && !usesVFilter &&
  1495. c->alphablend != SWS_ALPHA_BLEND_NONE &&
  1496. isALPHA(srcFormat) &&
  1497. (c->srcRange == c->dstRange || isAnyRGB(dstFormat)) &&
  1498. alphaless_fmt(srcFormat) == dstFormat
  1499. ) {
  1500. c->swscale = ff_sws_alphablendaway;
  1501. if (flags & SWS_PRINT_INFO)
  1502. av_log(c, AV_LOG_INFO,
  1503. "using alpha blendaway %s -> %s special converter\n",
  1504. av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
  1505. return 0;
  1506. }
  1507. /* unscaled special cases */
  1508. if (unscaled && !usesHFilter && !usesVFilter &&
  1509. (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
  1510. ff_get_unscaled_swscale(c);
  1511. if (c->swscale) {
  1512. if (flags & SWS_PRINT_INFO)
  1513. av_log(c, AV_LOG_INFO,
  1514. "using unscaled %s -> %s special converter\n",
  1515. av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
  1516. return 0;
  1517. }
  1518. }
  1519. c->swscale = ff_getSwsFunc(c);
  1520. return ff_init_filters(c);
  1521. fail: // FIXME replace things by appropriate error codes
  1522. if (ret == RETCODE_USE_CASCADE) {
  1523. int tmpW = sqrt(srcW * (int64_t)dstW);
  1524. int tmpH = sqrt(srcH * (int64_t)dstH);
  1525. enum AVPixelFormat tmpFormat = AV_PIX_FMT_YUV420P;
  1526. if (srcW*(int64_t)srcH <= 4LL*dstW*dstH)
  1527. return AVERROR(EINVAL);
  1528. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1529. tmpW, tmpH, tmpFormat, 64);
  1530. if (ret < 0)
  1531. return ret;
  1532. c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
  1533. tmpW, tmpH, tmpFormat,
  1534. flags, srcFilter, NULL, c->param);
  1535. if (!c->cascaded_context[0])
  1536. return -1;
  1537. c->cascaded_context[1] = sws_getContext(tmpW, tmpH, tmpFormat,
  1538. dstW, dstH, dstFormat,
  1539. flags, NULL, dstFilter, c->param);
  1540. if (!c->cascaded_context[1])
  1541. return -1;
  1542. return 0;
  1543. }
  1544. return -1;
  1545. }
  1546. SwsContext *sws_alloc_set_opts(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1547. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1548. int flags, const double *param)
  1549. {
  1550. SwsContext *c;
  1551. if (!(c = sws_alloc_context()))
  1552. return NULL;
  1553. c->flags = flags;
  1554. c->srcW = srcW;
  1555. c->srcH = srcH;
  1556. c->dstW = dstW;
  1557. c->dstH = dstH;
  1558. c->srcFormat = srcFormat;
  1559. c->dstFormat = dstFormat;
  1560. if (param) {
  1561. c->param[0] = param[0];
  1562. c->param[1] = param[1];
  1563. }
  1564. return c;
  1565. }
  1566. SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1567. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1568. int flags, SwsFilter *srcFilter,
  1569. SwsFilter *dstFilter, const double *param)
  1570. {
  1571. SwsContext *c;
  1572. c = sws_alloc_set_opts(srcW, srcH, srcFormat,
  1573. dstW, dstH, dstFormat,
  1574. flags, param);
  1575. if (!c)
  1576. return NULL;
  1577. if (sws_init_context(c, srcFilter, dstFilter) < 0) {
  1578. sws_freeContext(c);
  1579. return NULL;
  1580. }
  1581. return c;
  1582. }
  1583. static int isnan_vec(SwsVector *a)
  1584. {
  1585. int i;
  1586. for (i=0; i<a->length; i++)
  1587. if (isnan(a->coeff[i]))
  1588. return 1;
  1589. return 0;
  1590. }
  1591. static void makenan_vec(SwsVector *a)
  1592. {
  1593. int i;
  1594. for (i=0; i<a->length; i++)
  1595. a->coeff[i] = NAN;
  1596. }
  1597. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  1598. float lumaSharpen, float chromaSharpen,
  1599. float chromaHShift, float chromaVShift,
  1600. int verbose)
  1601. {
  1602. SwsFilter *filter = av_malloc(sizeof(SwsFilter));
  1603. if (!filter)
  1604. return NULL;
  1605. if (lumaGBlur != 0.0) {
  1606. filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
  1607. filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
  1608. } else {
  1609. filter->lumH = sws_getIdentityVec();
  1610. filter->lumV = sws_getIdentityVec();
  1611. }
  1612. if (chromaGBlur != 0.0) {
  1613. filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
  1614. filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
  1615. } else {
  1616. filter->chrH = sws_getIdentityVec();
  1617. filter->chrV = sws_getIdentityVec();
  1618. }
  1619. if (!filter->lumH || !filter->lumV || !filter->chrH || !filter->chrV)
  1620. goto fail;
  1621. if (chromaSharpen != 0.0) {
  1622. SwsVector *id = sws_getIdentityVec();
  1623. if (!id)
  1624. goto fail;
  1625. sws_scaleVec(filter->chrH, -chromaSharpen);
  1626. sws_scaleVec(filter->chrV, -chromaSharpen);
  1627. sws_addVec(filter->chrH, id);
  1628. sws_addVec(filter->chrV, id);
  1629. sws_freeVec(id);
  1630. }
  1631. if (lumaSharpen != 0.0) {
  1632. SwsVector *id = sws_getIdentityVec();
  1633. if (!id)
  1634. goto fail;
  1635. sws_scaleVec(filter->lumH, -lumaSharpen);
  1636. sws_scaleVec(filter->lumV, -lumaSharpen);
  1637. sws_addVec(filter->lumH, id);
  1638. sws_addVec(filter->lumV, id);
  1639. sws_freeVec(id);
  1640. }
  1641. if (chromaHShift != 0.0)
  1642. sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
  1643. if (chromaVShift != 0.0)
  1644. sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
  1645. sws_normalizeVec(filter->chrH, 1.0);
  1646. sws_normalizeVec(filter->chrV, 1.0);
  1647. sws_normalizeVec(filter->lumH, 1.0);
  1648. sws_normalizeVec(filter->lumV, 1.0);
  1649. if (isnan_vec(filter->chrH) ||
  1650. isnan_vec(filter->chrV) ||
  1651. isnan_vec(filter->lumH) ||
  1652. isnan_vec(filter->lumV))
  1653. goto fail;
  1654. if (verbose)
  1655. sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  1656. if (verbose)
  1657. sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  1658. return filter;
  1659. fail:
  1660. sws_freeVec(filter->lumH);
  1661. sws_freeVec(filter->lumV);
  1662. sws_freeVec(filter->chrH);
  1663. sws_freeVec(filter->chrV);
  1664. av_freep(&filter);
  1665. return NULL;
  1666. }
  1667. SwsVector *sws_allocVec(int length)
  1668. {
  1669. SwsVector *vec;
  1670. if(length <= 0 || length > INT_MAX/ sizeof(double))
  1671. return NULL;
  1672. vec = av_malloc(sizeof(SwsVector));
  1673. if (!vec)
  1674. return NULL;
  1675. vec->length = length;
  1676. vec->coeff = av_malloc(sizeof(double) * length);
  1677. if (!vec->coeff)
  1678. av_freep(&vec);
  1679. return vec;
  1680. }
  1681. SwsVector *sws_getGaussianVec(double variance, double quality)
  1682. {
  1683. const int length = (int)(variance * quality + 0.5) | 1;
  1684. int i;
  1685. double middle = (length - 1) * 0.5;
  1686. SwsVector *vec;
  1687. if(variance < 0 || quality < 0)
  1688. return NULL;
  1689. vec = sws_allocVec(length);
  1690. if (!vec)
  1691. return NULL;
  1692. for (i = 0; i < length; i++) {
  1693. double dist = i - middle;
  1694. vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
  1695. sqrt(2 * variance * M_PI);
  1696. }
  1697. sws_normalizeVec(vec, 1.0);
  1698. return vec;
  1699. }
  1700. SwsVector *sws_getConstVec(double c, int length)
  1701. {
  1702. int i;
  1703. SwsVector *vec = sws_allocVec(length);
  1704. if (!vec)
  1705. return NULL;
  1706. for (i = 0; i < length; i++)
  1707. vec->coeff[i] = c;
  1708. return vec;
  1709. }
  1710. SwsVector *sws_getIdentityVec(void)
  1711. {
  1712. return sws_getConstVec(1.0, 1);
  1713. }
  1714. static double sws_dcVec(SwsVector *a)
  1715. {
  1716. int i;
  1717. double sum = 0;
  1718. for (i = 0; i < a->length; i++)
  1719. sum += a->coeff[i];
  1720. return sum;
  1721. }
  1722. void sws_scaleVec(SwsVector *a, double scalar)
  1723. {
  1724. int i;
  1725. for (i = 0; i < a->length; i++)
  1726. a->coeff[i] *= scalar;
  1727. }
  1728. void sws_normalizeVec(SwsVector *a, double height)
  1729. {
  1730. sws_scaleVec(a, height / sws_dcVec(a));
  1731. }
  1732. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
  1733. {
  1734. int length = a->length + b->length - 1;
  1735. int i, j;
  1736. SwsVector *vec = sws_getConstVec(0.0, length);
  1737. if (!vec)
  1738. return NULL;
  1739. for (i = 0; i < a->length; i++) {
  1740. for (j = 0; j < b->length; j++) {
  1741. vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
  1742. }
  1743. }
  1744. return vec;
  1745. }
  1746. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
  1747. {
  1748. int length = FFMAX(a->length, b->length);
  1749. int i;
  1750. SwsVector *vec = sws_getConstVec(0.0, length);
  1751. if (!vec)
  1752. return NULL;
  1753. for (i = 0; i < a->length; i++)
  1754. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1755. for (i = 0; i < b->length; i++)
  1756. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
  1757. return vec;
  1758. }
  1759. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
  1760. {
  1761. int length = FFMAX(a->length, b->length);
  1762. int i;
  1763. SwsVector *vec = sws_getConstVec(0.0, length);
  1764. if (!vec)
  1765. return NULL;
  1766. for (i = 0; i < a->length; i++)
  1767. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1768. for (i = 0; i < b->length; i++)
  1769. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
  1770. return vec;
  1771. }
  1772. /* shift left / or right if "shift" is negative */
  1773. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
  1774. {
  1775. int length = a->length + FFABS(shift) * 2;
  1776. int i;
  1777. SwsVector *vec = sws_getConstVec(0.0, length);
  1778. if (!vec)
  1779. return NULL;
  1780. for (i = 0; i < a->length; i++) {
  1781. vec->coeff[i + (length - 1) / 2 -
  1782. (a->length - 1) / 2 - shift] = a->coeff[i];
  1783. }
  1784. return vec;
  1785. }
  1786. void sws_shiftVec(SwsVector *a, int shift)
  1787. {
  1788. SwsVector *shifted = sws_getShiftedVec(a, shift);
  1789. if (!shifted) {
  1790. makenan_vec(a);
  1791. return;
  1792. }
  1793. av_free(a->coeff);
  1794. a->coeff = shifted->coeff;
  1795. a->length = shifted->length;
  1796. av_free(shifted);
  1797. }
  1798. void sws_addVec(SwsVector *a, SwsVector *b)
  1799. {
  1800. SwsVector *sum = sws_sumVec(a, b);
  1801. if (!sum) {
  1802. makenan_vec(a);
  1803. return;
  1804. }
  1805. av_free(a->coeff);
  1806. a->coeff = sum->coeff;
  1807. a->length = sum->length;
  1808. av_free(sum);
  1809. }
  1810. void sws_subVec(SwsVector *a, SwsVector *b)
  1811. {
  1812. SwsVector *diff = sws_diffVec(a, b);
  1813. if (!diff) {
  1814. makenan_vec(a);
  1815. return;
  1816. }
  1817. av_free(a->coeff);
  1818. a->coeff = diff->coeff;
  1819. a->length = diff->length;
  1820. av_free(diff);
  1821. }
  1822. void sws_convVec(SwsVector *a, SwsVector *b)
  1823. {
  1824. SwsVector *conv = sws_getConvVec(a, b);
  1825. if (!conv) {
  1826. makenan_vec(a);
  1827. return;
  1828. }
  1829. av_free(a->coeff);
  1830. a->coeff = conv->coeff;
  1831. a->length = conv->length;
  1832. av_free(conv);
  1833. }
  1834. SwsVector *sws_cloneVec(SwsVector *a)
  1835. {
  1836. SwsVector *vec = sws_allocVec(a->length);
  1837. if (!vec)
  1838. return NULL;
  1839. memcpy(vec->coeff, a->coeff, a->length * sizeof(*a->coeff));
  1840. return vec;
  1841. }
  1842. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
  1843. {
  1844. int i;
  1845. double max = 0;
  1846. double min = 0;
  1847. double range;
  1848. for (i = 0; i < a->length; i++)
  1849. if (a->coeff[i] > max)
  1850. max = a->coeff[i];
  1851. for (i = 0; i < a->length; i++)
  1852. if (a->coeff[i] < min)
  1853. min = a->coeff[i];
  1854. range = max - min;
  1855. for (i = 0; i < a->length; i++) {
  1856. int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
  1857. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  1858. for (; x > 0; x--)
  1859. av_log(log_ctx, log_level, " ");
  1860. av_log(log_ctx, log_level, "|\n");
  1861. }
  1862. }
  1863. void sws_freeVec(SwsVector *a)
  1864. {
  1865. if (!a)
  1866. return;
  1867. av_freep(&a->coeff);
  1868. a->length = 0;
  1869. av_free(a);
  1870. }
  1871. void sws_freeFilter(SwsFilter *filter)
  1872. {
  1873. if (!filter)
  1874. return;
  1875. sws_freeVec(filter->lumH);
  1876. sws_freeVec(filter->lumV);
  1877. sws_freeVec(filter->chrH);
  1878. sws_freeVec(filter->chrV);
  1879. av_free(filter);
  1880. }
  1881. void sws_freeContext(SwsContext *c)
  1882. {
  1883. int i;
  1884. if (!c)
  1885. return;
  1886. if (c->lumPixBuf) {
  1887. for (i = 0; i < c->vLumBufSize; i++)
  1888. av_freep(&c->lumPixBuf[i]);
  1889. av_freep(&c->lumPixBuf);
  1890. }
  1891. if (c->chrUPixBuf) {
  1892. for (i = 0; i < c->vChrBufSize; i++)
  1893. av_freep(&c->chrUPixBuf[i]);
  1894. av_freep(&c->chrUPixBuf);
  1895. av_freep(&c->chrVPixBuf);
  1896. }
  1897. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
  1898. for (i = 0; i < c->vLumBufSize; i++)
  1899. av_freep(&c->alpPixBuf[i]);
  1900. av_freep(&c->alpPixBuf);
  1901. }
  1902. for (i = 0; i < 4; i++)
  1903. av_freep(&c->dither_error[i]);
  1904. av_freep(&c->vLumFilter);
  1905. av_freep(&c->vChrFilter);
  1906. av_freep(&c->hLumFilter);
  1907. av_freep(&c->hChrFilter);
  1908. #if HAVE_ALTIVEC
  1909. av_freep(&c->vYCoeffsBank);
  1910. av_freep(&c->vCCoeffsBank);
  1911. #endif
  1912. av_freep(&c->vLumFilterPos);
  1913. av_freep(&c->vChrFilterPos);
  1914. av_freep(&c->hLumFilterPos);
  1915. av_freep(&c->hChrFilterPos);
  1916. #if HAVE_MMX_INLINE
  1917. #if USE_MMAP
  1918. if (c->lumMmxextFilterCode)
  1919. munmap(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize);
  1920. if (c->chrMmxextFilterCode)
  1921. munmap(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize);
  1922. #elif HAVE_VIRTUALALLOC
  1923. if (c->lumMmxextFilterCode)
  1924. VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
  1925. if (c->chrMmxextFilterCode)
  1926. VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
  1927. #else
  1928. av_free(c->lumMmxextFilterCode);
  1929. av_free(c->chrMmxextFilterCode);
  1930. #endif
  1931. c->lumMmxextFilterCode = NULL;
  1932. c->chrMmxextFilterCode = NULL;
  1933. #endif /* HAVE_MMX_INLINE */
  1934. av_freep(&c->yuvTable);
  1935. av_freep(&c->formatConvBuffer);
  1936. sws_freeContext(c->cascaded_context[0]);
  1937. sws_freeContext(c->cascaded_context[1]);
  1938. sws_freeContext(c->cascaded_context[2]);
  1939. memset(c->cascaded_context, 0, sizeof(c->cascaded_context));
  1940. av_freep(&c->cascaded_tmp[0]);
  1941. av_freep(&c->cascaded1_tmp[0]);
  1942. av_freep(&c->gamma);
  1943. av_freep(&c->inv_gamma);
  1944. ff_free_filters(c);
  1945. av_free(c);
  1946. }
  1947. struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
  1948. int srcH, enum AVPixelFormat srcFormat,
  1949. int dstW, int dstH,
  1950. enum AVPixelFormat dstFormat, int flags,
  1951. SwsFilter *srcFilter,
  1952. SwsFilter *dstFilter,
  1953. const double *param)
  1954. {
  1955. static const double default_param[2] = { SWS_PARAM_DEFAULT,
  1956. SWS_PARAM_DEFAULT };
  1957. int64_t src_h_chr_pos = -513, dst_h_chr_pos = -513,
  1958. src_v_chr_pos = -513, dst_v_chr_pos = -513;
  1959. if (!param)
  1960. param = default_param;
  1961. if (context &&
  1962. (context->srcW != srcW ||
  1963. context->srcH != srcH ||
  1964. context->srcFormat != srcFormat ||
  1965. context->dstW != dstW ||
  1966. context->dstH != dstH ||
  1967. context->dstFormat != dstFormat ||
  1968. context->flags != flags ||
  1969. context->param[0] != param[0] ||
  1970. context->param[1] != param[1])) {
  1971. av_opt_get_int(context, "src_h_chr_pos", 0, &src_h_chr_pos);
  1972. av_opt_get_int(context, "src_v_chr_pos", 0, &src_v_chr_pos);
  1973. av_opt_get_int(context, "dst_h_chr_pos", 0, &dst_h_chr_pos);
  1974. av_opt_get_int(context, "dst_v_chr_pos", 0, &dst_v_chr_pos);
  1975. sws_freeContext(context);
  1976. context = NULL;
  1977. }
  1978. if (!context) {
  1979. if (!(context = sws_alloc_context()))
  1980. return NULL;
  1981. context->srcW = srcW;
  1982. context->srcH = srcH;
  1983. context->srcFormat = srcFormat;
  1984. context->dstW = dstW;
  1985. context->dstH = dstH;
  1986. context->dstFormat = dstFormat;
  1987. context->flags = flags;
  1988. context->param[0] = param[0];
  1989. context->param[1] = param[1];
  1990. av_opt_set_int(context, "src_h_chr_pos", src_h_chr_pos, 0);
  1991. av_opt_set_int(context, "src_v_chr_pos", src_v_chr_pos, 0);
  1992. av_opt_set_int(context, "dst_h_chr_pos", dst_h_chr_pos, 0);
  1993. av_opt_set_int(context, "dst_v_chr_pos", dst_v_chr_pos, 0);
  1994. if (sws_init_context(context, srcFilter, dstFilter) < 0) {
  1995. sws_freeContext(context);
  1996. return NULL;
  1997. }
  1998. }
  1999. return context;
  2000. }