| 
							- /*
 -  * audio resampling
 -  * Copyright (c) 2004-2012 Michael Niedermayer <michaelni@gmx.at>
 -  * bessel function: Copyright (c) 2006 Xiaogang Zhang
 -  *
 -  * This file is part of FFmpeg.
 -  *
 -  * FFmpeg is free software; you can redistribute it and/or
 -  * modify it under the terms of the GNU Lesser General Public
 -  * License as published by the Free Software Foundation; either
 -  * version 2.1 of the License, or (at your option) any later version.
 -  *
 -  * FFmpeg is distributed in the hope that it will be useful,
 -  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 -  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 -  * Lesser General Public License for more details.
 -  *
 -  * You should have received a copy of the GNU Lesser General Public
 -  * License along with FFmpeg; if not, write to the Free Software
 -  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 -  */
 - 
 - /**
 -  * @file
 -  * audio resampling
 -  * @author Michael Niedermayer <michaelni@gmx.at>
 -  */
 - 
 - #include "libavutil/avassert.h"
 - #include "resample.h"
 - 
 - static inline double eval_poly(const double *coeff, int size, double x) {
 -     double sum = coeff[size-1];
 -     int i;
 -     for (i = size-2; i >= 0; --i) {
 -         sum *= x;
 -         sum += coeff[i];
 -     }
 -     return sum;
 - }
 - 
 - /**
 -  * 0th order modified bessel function of the first kind.
 -  * Algorithm taken from the Boost project, source:
 -  * https://searchcode.com/codesearch/view/14918379/
 -  * Use, modification and distribution are subject to the
 -  * Boost Software License, Version 1.0 (see notice below).
 -  * Boost Software License - Version 1.0 - August 17th, 2003
 - Permission is hereby granted, free of charge, to any person or organization
 - obtaining a copy of the software and accompanying documentation covered by
 - this license (the "Software") to use, reproduce, display, distribute,
 - execute, and transmit the Software, and to prepare derivative works of the
 - Software, and to permit third-parties to whom the Software is furnished to
 - do so, all subject to the following:
 - 
 - The copyright notices in the Software and this entire statement, including
 - the above license grant, this restriction and the following disclaimer,
 - must be included in all copies of the Software, in whole or in part, and
 - all derivative works of the Software, unless such copies or derivative
 - works are solely in the form of machine-executable object code generated by
 - a source language processor.
 - 
 - THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 - IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 - FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
 - SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
 - FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
 - ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 - DEALINGS IN THE SOFTWARE.
 -  */
 - 
 - static double bessel(double x) {
 - // Modified Bessel function of the first kind of order zero
 - // minimax rational approximations on intervals, see
 - // Blair and Edwards, Chalk River Report AECL-4928, 1974
 -     static const double p1[] = {
 -         -2.2335582639474375249e+15,
 -         -5.5050369673018427753e+14,
 -         -3.2940087627407749166e+13,
 -         -8.4925101247114157499e+11,
 -         -1.1912746104985237192e+10,
 -         -1.0313066708737980747e+08,
 -         -5.9545626019847898221e+05,
 -         -2.4125195876041896775e+03,
 -         -7.0935347449210549190e+00,
 -         -1.5453977791786851041e-02,
 -         -2.5172644670688975051e-05,
 -         -3.0517226450451067446e-08,
 -         -2.6843448573468483278e-11,
 -         -1.5982226675653184646e-14,
 -         -5.2487866627945699800e-18,
 -     };
 -     static const double q1[] = {
 -         -2.2335582639474375245e+15,
 -          7.8858692566751002988e+12,
 -         -1.2207067397808979846e+10,
 -          1.0377081058062166144e+07,
 -         -4.8527560179962773045e+03,
 -          1.0,
 -     };
 -     static const double p2[] = {
 -         -2.2210262233306573296e-04,
 -          1.3067392038106924055e-02,
 -         -4.4700805721174453923e-01,
 -          5.5674518371240761397e+00,
 -         -2.3517945679239481621e+01,
 -          3.1611322818701131207e+01,
 -         -9.6090021968656180000e+00,
 -     };
 -     static const double q2[] = {
 -         -5.5194330231005480228e-04,
 -          3.2547697594819615062e-02,
 -         -1.1151759188741312645e+00,
 -          1.3982595353892851542e+01,
 -         -6.0228002066743340583e+01,
 -          8.5539563258012929600e+01,
 -         -3.1446690275135491500e+01,
 -         1.0,
 -     };
 -     double y, r, factor;
 -     if (x == 0)
 -         return 1.0;
 -     x = fabs(x);
 -     if (x <= 15) {
 -         y = x * x;
 -         return eval_poly(p1, FF_ARRAY_ELEMS(p1), y) / eval_poly(q1, FF_ARRAY_ELEMS(q1), y);
 -     }
 -     else {
 -         y = 1 / x - 1.0 / 15;
 -         r = eval_poly(p2, FF_ARRAY_ELEMS(p2), y) / eval_poly(q2, FF_ARRAY_ELEMS(q2), y);
 -         factor = exp(x) / sqrt(x);
 -         return factor * r;
 -     }
 - }
 - 
 - /**
 -  * builds a polyphase filterbank.
 -  * @param factor resampling factor
 -  * @param scale wanted sum of coefficients for each filter
 -  * @param filter_type  filter type
 -  * @param kaiser_beta  kaiser window beta
 -  * @return 0 on success, negative on error
 -  */
 - static int build_filter(ResampleContext *c, void *filter, double factor, int tap_count, int alloc, int phase_count, int scale,
 -                         int filter_type, double kaiser_beta){
 -     int ph, i;
 -     int ph_nb = phase_count % 2 ? phase_count : phase_count / 2 + 1;
 -     double x, y, w, t, s;
 -     double *tab = av_malloc_array(tap_count+1,  sizeof(*tab));
 -     double *sin_lut = av_malloc_array(ph_nb, sizeof(*sin_lut));
 -     const int center= (tap_count-1)/2;
 -     double norm = 0;
 -     int ret = AVERROR(ENOMEM);
 - 
 -     if (!tab || !sin_lut)
 -         goto fail;
 - 
 -     av_assert0(tap_count == 1 || tap_count % 2 == 0);
 - 
 -     /* if upsampling, only need to interpolate, no filter */
 -     if (factor > 1.0)
 -         factor = 1.0;
 - 
 -     if (factor == 1.0) {
 -         for (ph = 0; ph < ph_nb; ph++)
 -             sin_lut[ph] = sin(M_PI * ph / phase_count) * (center & 1 ? 1 : -1);
 -     }
 -     for(ph = 0; ph < ph_nb; ph++) {
 -         s = sin_lut[ph];
 -         for(i=0;i<tap_count;i++) {
 -             x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor;
 -             if (x == 0) y = 1.0;
 -             else if (factor == 1.0)
 -                 y = s / x;
 -             else
 -                 y = sin(x) / x;
 -             switch(filter_type){
 -             case SWR_FILTER_TYPE_CUBIC:{
 -                 const float d= -0.5; //first order derivative = -0.5
 -                 x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
 -                 if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*(            -x*x + x*x*x);
 -                 else      y=                       d*(-4 + 8*x - 5*x*x + x*x*x);
 -                 break;}
 -             case SWR_FILTER_TYPE_BLACKMAN_NUTTALL:
 -                 w = 2.0*x / (factor*tap_count);
 -                 t = -cos(w);
 -                 y *= 0.3635819 - 0.4891775 * t + 0.1365995 * (2*t*t-1) - 0.0106411 * (4*t*t*t - 3*t);
 -                 break;
 -             case SWR_FILTER_TYPE_KAISER:
 -                 w = 2.0*x / (factor*tap_count*M_PI);
 -                 y *= bessel(kaiser_beta*sqrt(FFMAX(1-w*w, 0)));
 -                 break;
 -             default:
 -                 av_assert0(0);
 -             }
 - 
 -             tab[i] = y;
 -             s = -s;
 -             if (!ph)
 -                 norm += y;
 -         }
 - 
 -         /* normalize so that an uniform color remains the same */
 -         switch(c->format){
 -         case AV_SAMPLE_FMT_S16P:
 -             for(i=0;i<tap_count;i++)
 -                 ((int16_t*)filter)[ph * alloc + i] = av_clip_int16(lrintf(tab[i] * scale / norm));
 -             if (phase_count % 2) break;
 -             for (i = 0; i < tap_count; i++)
 -                 ((int16_t*)filter)[(phase_count-ph) * alloc + tap_count-1-i] = ((int16_t*)filter)[ph * alloc + i];
 -             break;
 -         case AV_SAMPLE_FMT_S32P:
 -             for(i=0;i<tap_count;i++)
 -                 ((int32_t*)filter)[ph * alloc + i] = av_clipl_int32(llrint(tab[i] * scale / norm));
 -             if (phase_count % 2) break;
 -             for (i = 0; i < tap_count; i++)
 -                 ((int32_t*)filter)[(phase_count-ph) * alloc + tap_count-1-i] = ((int32_t*)filter)[ph * alloc + i];
 -             break;
 -         case AV_SAMPLE_FMT_FLTP:
 -             for(i=0;i<tap_count;i++)
 -                 ((float*)filter)[ph * alloc + i] = tab[i] * scale / norm;
 -             if (phase_count % 2) break;
 -             for (i = 0; i < tap_count; i++)
 -                 ((float*)filter)[(phase_count-ph) * alloc + tap_count-1-i] = ((float*)filter)[ph * alloc + i];
 -             break;
 -         case AV_SAMPLE_FMT_DBLP:
 -             for(i=0;i<tap_count;i++)
 -                 ((double*)filter)[ph * alloc + i] = tab[i] * scale / norm;
 -             if (phase_count % 2) break;
 -             for (i = 0; i < tap_count; i++)
 -                 ((double*)filter)[(phase_count-ph) * alloc + tap_count-1-i] = ((double*)filter)[ph * alloc + i];
 -             break;
 -         }
 -     }
 - #if 0
 -     {
 - #define LEN 1024
 -         int j,k;
 -         double sine[LEN + tap_count];
 -         double filtered[LEN];
 -         double maxff=-2, minff=2, maxsf=-2, minsf=2;
 -         for(i=0; i<LEN; i++){
 -             double ss=0, sf=0, ff=0;
 -             for(j=0; j<LEN+tap_count; j++)
 -                 sine[j]= cos(i*j*M_PI/LEN);
 -             for(j=0; j<LEN; j++){
 -                 double sum=0;
 -                 ph=0;
 -                 for(k=0; k<tap_count; k++)
 -                     sum += filter[ph * tap_count + k] * sine[k+j];
 -                 filtered[j]= sum / (1<<FILTER_SHIFT);
 -                 ss+= sine[j + center] * sine[j + center];
 -                 ff+= filtered[j] * filtered[j];
 -                 sf+= sine[j + center] * filtered[j];
 -             }
 -             ss= sqrt(2*ss/LEN);
 -             ff= sqrt(2*ff/LEN);
 -             sf= 2*sf/LEN;
 -             maxff= FFMAX(maxff, ff);
 -             minff= FFMIN(minff, ff);
 -             maxsf= FFMAX(maxsf, sf);
 -             minsf= FFMIN(minsf, sf);
 -             if(i%11==0){
 -                 av_log(NULL, AV_LOG_ERROR, "i:%4d ss:%f ff:%13.6e-%13.6e sf:%13.6e-%13.6e\n", i, ss, maxff, minff, maxsf, minsf);
 -                 minff=minsf= 2;
 -                 maxff=maxsf= -2;
 -             }
 -         }
 -     }
 - #endif
 - 
 -     ret = 0;
 - fail:
 -     av_free(tab);
 -     av_free(sin_lut);
 -     return ret;
 - }
 - 
 - static void resample_free(ResampleContext **cc){
 -     ResampleContext *c = *cc;
 -     if(!c)
 -         return;
 -     av_freep(&c->filter_bank);
 -     av_freep(cc);
 - }
 - 
 - static ResampleContext *resample_init(ResampleContext *c, int out_rate, int in_rate, int filter_size, int phase_shift, int linear,
 -                                     double cutoff0, enum AVSampleFormat format, enum SwrFilterType filter_type, double kaiser_beta,
 -                                     double precision, int cheby, int exact_rational)
 - {
 -     double cutoff = cutoff0? cutoff0 : 0.97;
 -     double factor= FFMIN(out_rate * cutoff / in_rate, 1.0);
 -     int phase_count= 1<<phase_shift;
 -     int phase_count_compensation = phase_count;
 -     int filter_length = FFMAX((int)ceil(filter_size/factor), 1);
 - 
 -     if (filter_length > 1)
 -         filter_length = FFALIGN(filter_length, 2);
 - 
 -     if (exact_rational) {
 -         int phase_count_exact, phase_count_exact_den;
 - 
 -         av_reduce(&phase_count_exact, &phase_count_exact_den, out_rate, in_rate, INT_MAX);
 -         if (phase_count_exact <= phase_count) {
 -             phase_count_compensation = phase_count_exact * (phase_count / phase_count_exact);
 -             phase_count = phase_count_exact;
 -         }
 -     }
 - 
 -     if (!c || c->phase_count != phase_count || c->linear!=linear || c->factor != factor
 -            || c->filter_length != filter_length || c->format != format
 -            || c->filter_type != filter_type || c->kaiser_beta != kaiser_beta) {
 -         resample_free(&c);
 -         c = av_mallocz(sizeof(*c));
 -         if (!c)
 -             return NULL;
 - 
 -         c->format= format;
 - 
 -         c->felem_size= av_get_bytes_per_sample(c->format);
 - 
 -         switch(c->format){
 -         case AV_SAMPLE_FMT_S16P:
 -             c->filter_shift = 15;
 -             break;
 -         case AV_SAMPLE_FMT_S32P:
 -             c->filter_shift = 30;
 -             break;
 -         case AV_SAMPLE_FMT_FLTP:
 -         case AV_SAMPLE_FMT_DBLP:
 -             c->filter_shift = 0;
 -             break;
 -         default:
 -             av_log(NULL, AV_LOG_ERROR, "Unsupported sample format\n");
 -             av_assert0(0);
 -         }
 - 
 -         if (filter_size/factor > INT32_MAX/256) {
 -             av_log(NULL, AV_LOG_ERROR, "Filter length too large\n");
 -             goto error;
 -         }
 - 
 -         c->phase_count   = phase_count;
 -         c->linear        = linear;
 -         c->factor        = factor;
 -         c->filter_length = filter_length;
 -         c->filter_alloc  = FFALIGN(c->filter_length, 8);
 -         c->filter_bank   = av_calloc(c->filter_alloc, (phase_count+1)*c->felem_size);
 -         c->filter_type   = filter_type;
 -         c->kaiser_beta   = kaiser_beta;
 -         c->phase_count_compensation = phase_count_compensation;
 -         if (!c->filter_bank)
 -             goto error;
 -         if (build_filter(c, (void*)c->filter_bank, factor, c->filter_length, c->filter_alloc, phase_count, 1<<c->filter_shift, filter_type, kaiser_beta))
 -             goto error;
 -         memcpy(c->filter_bank + (c->filter_alloc*phase_count+1)*c->felem_size, c->filter_bank, (c->filter_alloc-1)*c->felem_size);
 -         memcpy(c->filter_bank + (c->filter_alloc*phase_count  )*c->felem_size, c->filter_bank + (c->filter_alloc - 1)*c->felem_size, c->felem_size);
 -     }
 - 
 -     c->compensation_distance= 0;
 -     if(!av_reduce(&c->src_incr, &c->dst_incr, out_rate, in_rate * (int64_t)phase_count, INT32_MAX/2))
 -         goto error;
 -     while (c->dst_incr < (1<<20) && c->src_incr < (1<<20)) {
 -         c->dst_incr *= 2;
 -         c->src_incr *= 2;
 -     }
 -     c->ideal_dst_incr = c->dst_incr;
 -     c->dst_incr_div   = c->dst_incr / c->src_incr;
 -     c->dst_incr_mod   = c->dst_incr % c->src_incr;
 - 
 -     c->index= -phase_count*((c->filter_length-1)/2);
 -     c->frac= 0;
 - 
 -     swri_resample_dsp_init(c);
 - 
 -     return c;
 - error:
 -     av_freep(&c->filter_bank);
 -     av_free(c);
 -     return NULL;
 - }
 - 
 - static int rebuild_filter_bank_with_compensation(ResampleContext *c)
 - {
 -     uint8_t *new_filter_bank;
 -     int new_src_incr, new_dst_incr;
 -     int phase_count = c->phase_count_compensation;
 -     int ret;
 - 
 -     if (phase_count == c->phase_count)
 -         return 0;
 - 
 -     av_assert0(!c->frac && !c->dst_incr_mod);
 - 
 -     new_filter_bank = av_calloc(c->filter_alloc, (phase_count + 1) * c->felem_size);
 -     if (!new_filter_bank)
 -         return AVERROR(ENOMEM);
 - 
 -     ret = build_filter(c, new_filter_bank, c->factor, c->filter_length, c->filter_alloc,
 -                        phase_count, 1 << c->filter_shift, c->filter_type, c->kaiser_beta);
 -     if (ret < 0) {
 -         av_freep(&new_filter_bank);
 -         return ret;
 -     }
 -     memcpy(new_filter_bank + (c->filter_alloc*phase_count+1)*c->felem_size, new_filter_bank, (c->filter_alloc-1)*c->felem_size);
 -     memcpy(new_filter_bank + (c->filter_alloc*phase_count  )*c->felem_size, new_filter_bank + (c->filter_alloc - 1)*c->felem_size, c->felem_size);
 - 
 -     if (!av_reduce(&new_src_incr, &new_dst_incr, c->src_incr,
 -                    c->dst_incr * (int64_t)(phase_count/c->phase_count), INT32_MAX/2))
 -     {
 -         av_freep(&new_filter_bank);
 -         return AVERROR(EINVAL);
 -     }
 - 
 -     c->src_incr = new_src_incr;
 -     c->dst_incr = new_dst_incr;
 -     while (c->dst_incr < (1<<20) && c->src_incr < (1<<20)) {
 -         c->dst_incr *= 2;
 -         c->src_incr *= 2;
 -     }
 -     c->ideal_dst_incr = c->dst_incr;
 -     c->dst_incr_div   = c->dst_incr / c->src_incr;
 -     c->dst_incr_mod   = c->dst_incr % c->src_incr;
 -     c->index         *= phase_count / c->phase_count;
 -     c->phase_count    = phase_count;
 -     av_freep(&c->filter_bank);
 -     c->filter_bank = new_filter_bank;
 -     return 0;
 - }
 - 
 - static int set_compensation(ResampleContext *c, int sample_delta, int compensation_distance){
 -     int ret;
 - 
 -     if (compensation_distance && sample_delta) {
 -         ret = rebuild_filter_bank_with_compensation(c);
 -         if (ret < 0)
 -             return ret;
 -     }
 - 
 -     c->compensation_distance= compensation_distance;
 -     if (compensation_distance)
 -         c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr * (int64_t)sample_delta / compensation_distance;
 -     else
 -         c->dst_incr = c->ideal_dst_incr;
 - 
 -     c->dst_incr_div   = c->dst_incr / c->src_incr;
 -     c->dst_incr_mod   = c->dst_incr % c->src_incr;
 - 
 -     return 0;
 - }
 - 
 - static int multiple_resample(ResampleContext *c, AudioData *dst, int dst_size, AudioData *src, int src_size, int *consumed){
 -     int i;
 -     int av_unused mm_flags = av_get_cpu_flags();
 -     int need_emms = c->format == AV_SAMPLE_FMT_S16P && ARCH_X86_32 &&
 -                     (mm_flags & (AV_CPU_FLAG_MMX2 | AV_CPU_FLAG_SSE2)) == AV_CPU_FLAG_MMX2;
 -     int64_t max_src_size = (INT64_MAX/2 / c->phase_count) / c->src_incr;
 - 
 -     if (c->compensation_distance)
 -         dst_size = FFMIN(dst_size, c->compensation_distance);
 -     src_size = FFMIN(src_size, max_src_size);
 - 
 -     *consumed = 0;
 - 
 -     if (c->filter_length == 1 && c->phase_count == 1) {
 -         int64_t index2= (1LL<<32)*c->frac/c->src_incr + (1LL<<32)*c->index;
 -         int64_t incr= (1LL<<32) * c->dst_incr / c->src_incr;
 -         int new_size = (src_size * (int64_t)c->src_incr - c->frac + c->dst_incr - 1) / c->dst_incr;
 - 
 -         dst_size = FFMAX(FFMIN(dst_size, new_size), 0);
 -         if (dst_size > 0) {
 -             for (i = 0; i < dst->ch_count; i++) {
 -                 c->dsp.resample_one(dst->ch[i], src->ch[i], dst_size, index2, incr);
 -                 if (i+1 == dst->ch_count) {
 -                     c->index += dst_size * c->dst_incr_div;
 -                     c->index += (c->frac + dst_size * (int64_t)c->dst_incr_mod) / c->src_incr;
 -                     av_assert2(c->index >= 0);
 -                     *consumed = c->index;
 -                     c->frac   = (c->frac + dst_size * (int64_t)c->dst_incr_mod) % c->src_incr;
 -                     c->index = 0;
 -                 }
 -             }
 -         }
 -     } else {
 -         int64_t end_index = (1LL + src_size - c->filter_length) * c->phase_count;
 -         int64_t delta_frac = (end_index - c->index) * c->src_incr - c->frac;
 -         int delta_n = (delta_frac + c->dst_incr - 1) / c->dst_incr;
 -         int (*resample_func)(struct ResampleContext *c, void *dst,
 -                              const void *src, int n, int update_ctx);
 - 
 -         dst_size = FFMAX(FFMIN(dst_size, delta_n), 0);
 -         if (dst_size > 0) {
 -             /* resample_linear and resample_common should have same behavior
 -              * when frac and dst_incr_mod are zero */
 -             resample_func = (c->linear && (c->frac || c->dst_incr_mod)) ?
 -                             c->dsp.resample_linear : c->dsp.resample_common;
 -             for (i = 0; i < dst->ch_count; i++)
 -                 *consumed = resample_func(c, dst->ch[i], src->ch[i], dst_size, i+1 == dst->ch_count);
 -         }
 -     }
 - 
 -     if(need_emms)
 -         emms_c();
 - 
 -     if (c->compensation_distance) {
 -         c->compensation_distance -= dst_size;
 -         if (!c->compensation_distance) {
 -             c->dst_incr     = c->ideal_dst_incr;
 -             c->dst_incr_div = c->dst_incr / c->src_incr;
 -             c->dst_incr_mod = c->dst_incr % c->src_incr;
 -         }
 -     }
 - 
 -     return dst_size;
 - }
 - 
 - static int64_t get_delay(struct SwrContext *s, int64_t base){
 -     ResampleContext *c = s->resample;
 -     int64_t num = s->in_buffer_count - (c->filter_length-1)/2;
 -     num *= c->phase_count;
 -     num -= c->index;
 -     num *= c->src_incr;
 -     num -= c->frac;
 -     return av_rescale(num, base, s->in_sample_rate*(int64_t)c->src_incr * c->phase_count);
 - }
 - 
 - static int64_t get_out_samples(struct SwrContext *s, int in_samples) {
 -     ResampleContext *c = s->resample;
 -     // The + 2 are added to allow implementations to be slightly inaccurate, they should not be needed currently.
 -     // They also make it easier to proof that changes and optimizations do not
 -     // break the upper bound.
 -     int64_t num = s->in_buffer_count + 2LL + in_samples;
 -     num *= c->phase_count;
 -     num -= c->index;
 -     num = av_rescale_rnd(num, s->out_sample_rate, ((int64_t)s->in_sample_rate) * c->phase_count, AV_ROUND_UP) + 2;
 - 
 -     if (c->compensation_distance) {
 -         if (num > INT_MAX)
 -             return AVERROR(EINVAL);
 - 
 -         num = FFMAX(num, (num * c->ideal_dst_incr - 1) / c->dst_incr + 1);
 -     }
 -     return num;
 - }
 - 
 - static int resample_flush(struct SwrContext *s) {
 -     ResampleContext *c = s->resample;
 -     AudioData *a= &s->in_buffer;
 -     int i, j, ret;
 -     int reflection = (FFMIN(s->in_buffer_count, c->filter_length) + 1) / 2;
 - 
 -     if((ret = swri_realloc_audio(a, s->in_buffer_index + s->in_buffer_count + reflection)) < 0)
 -         return ret;
 -     av_assert0(a->planar);
 -     for(i=0; i<a->ch_count; i++){
 -         for(j=0; j<reflection; j++){
 -             memcpy(a->ch[i] + (s->in_buffer_index+s->in_buffer_count+j  )*a->bps,
 -                 a->ch[i] + (s->in_buffer_index+s->in_buffer_count-j-1)*a->bps, a->bps);
 -         }
 -     }
 -     s->in_buffer_count += reflection;
 -     return 0;
 - }
 - 
 - // in fact the whole handle multiple ridiculously small buffers might need more thinking...
 - static int invert_initial_buffer(ResampleContext *c, AudioData *dst, const AudioData *src,
 -                                  int in_count, int *out_idx, int *out_sz)
 - {
 -     int n, ch, num = FFMIN(in_count + *out_sz, c->filter_length + 1), res;
 - 
 -     if (c->index >= 0)
 -         return 0;
 - 
 -     if ((res = swri_realloc_audio(dst, c->filter_length * 2 + 1)) < 0)
 -         return res;
 - 
 -     // copy
 -     for (n = *out_sz; n < num; n++) {
 -         for (ch = 0; ch < src->ch_count; ch++) {
 -             memcpy(dst->ch[ch] + ((c->filter_length + n) * c->felem_size),
 -                    src->ch[ch] + ((n - *out_sz) * c->felem_size), c->felem_size);
 -         }
 -     }
 - 
 -     // if not enough data is in, return and wait for more
 -     if (num < c->filter_length + 1) {
 -         *out_sz = num;
 -         *out_idx = c->filter_length;
 -         return INT_MAX;
 -     }
 - 
 -     // else invert
 -     for (n = 1; n <= c->filter_length; n++) {
 -         for (ch = 0; ch < src->ch_count; ch++) {
 -             memcpy(dst->ch[ch] + ((c->filter_length - n) * c->felem_size),
 -                    dst->ch[ch] + ((c->filter_length + n) * c->felem_size),
 -                    c->felem_size);
 -         }
 -     }
 - 
 -     res = num - *out_sz;
 -     *out_idx = c->filter_length;
 -     while (c->index < 0) {
 -         --*out_idx;
 -         c->index += c->phase_count;
 -     }
 -     *out_sz = FFMAX(*out_sz + c->filter_length,
 -                     1 + c->filter_length * 2) - *out_idx;
 - 
 -     return FFMAX(res, 0);
 - }
 - 
 - struct Resampler const swri_resampler={
 -   resample_init,
 -   resample_free,
 -   multiple_resample,
 -   resample_flush,
 -   set_compensation,
 -   get_delay,
 -   invert_initial_buffer,
 -   get_out_samples,
 - };
 
 
  |