| 
							- /*
 -  * principal component analysis (PCA)
 -  * Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at>
 -  *
 -  * This file is part of FFmpeg.
 -  *
 -  * FFmpeg is free software; you can redistribute it and/or
 -  * modify it under the terms of the GNU Lesser General Public
 -  * License as published by the Free Software Foundation; either
 -  * version 2.1 of the License, or (at your option) any later version.
 -  *
 -  * FFmpeg is distributed in the hope that it will be useful,
 -  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 -  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 -  * Lesser General Public License for more details.
 -  *
 -  * You should have received a copy of the GNU Lesser General Public
 -  * License along with FFmpeg; if not, write to the Free Software
 -  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 -  */
 - 
 - /**
 -  * @file
 -  * principal component analysis (PCA)
 -  */
 - 
 - #include "common.h"
 - #include "pca.h"
 - 
 - typedef struct PCA{
 -     int count;
 -     int n;
 -     double *covariance;
 -     double *mean;
 -     double *z;
 - }PCA;
 - 
 - PCA *ff_pca_init(int n){
 -     PCA *pca;
 -     if(n<=0)
 -         return NULL;
 - 
 -     pca= av_mallocz(sizeof(*pca));
 -     if (!pca)
 -         return NULL;
 - 
 -     pca->n= n;
 -     pca->z = av_malloc_array(n, sizeof(*pca->z));
 -     pca->count=0;
 -     pca->covariance= av_calloc(n*n, sizeof(double));
 -     pca->mean= av_calloc(n, sizeof(double));
 - 
 -     if (!pca->z || !pca->covariance || !pca->mean) {
 -         ff_pca_free(pca);
 -         return NULL;
 -     }
 - 
 -     return pca;
 - }
 - 
 - void ff_pca_free(PCA *pca){
 -     av_freep(&pca->covariance);
 -     av_freep(&pca->mean);
 -     av_freep(&pca->z);
 -     av_free(pca);
 - }
 - 
 - void ff_pca_add(PCA *pca, const double *v){
 -     int i, j;
 -     const int n= pca->n;
 - 
 -     for(i=0; i<n; i++){
 -         pca->mean[i] += v[i];
 -         for(j=i; j<n; j++)
 -             pca->covariance[j + i*n] += v[i]*v[j];
 -     }
 -     pca->count++;
 - }
 - 
 - int ff_pca(PCA *pca, double *eigenvector, double *eigenvalue){
 -     int i, j, pass;
 -     int k=0;
 -     const int n= pca->n;
 -     double *z = pca->z;
 - 
 -     memset(eigenvector, 0, sizeof(double)*n*n);
 - 
 -     for(j=0; j<n; j++){
 -         pca->mean[j] /= pca->count;
 -         eigenvector[j + j*n] = 1.0;
 -         for(i=0; i<=j; i++){
 -             pca->covariance[j + i*n] /= pca->count;
 -             pca->covariance[j + i*n] -= pca->mean[i] * pca->mean[j];
 -             pca->covariance[i + j*n] = pca->covariance[j + i*n];
 -         }
 -         eigenvalue[j]= pca->covariance[j + j*n];
 -         z[j]= 0;
 -     }
 - 
 -     for(pass=0; pass < 50; pass++){
 -         double sum=0;
 - 
 -         for(i=0; i<n; i++)
 -             for(j=i+1; j<n; j++)
 -                 sum += fabs(pca->covariance[j + i*n]);
 - 
 -         if(sum == 0){
 -             for(i=0; i<n; i++){
 -                 double maxvalue= -1;
 -                 for(j=i; j<n; j++){
 -                     if(eigenvalue[j] > maxvalue){
 -                         maxvalue= eigenvalue[j];
 -                         k= j;
 -                     }
 -                 }
 -                 eigenvalue[k]= eigenvalue[i];
 -                 eigenvalue[i]= maxvalue;
 -                 for(j=0; j<n; j++){
 -                     double tmp= eigenvector[k + j*n];
 -                     eigenvector[k + j*n]= eigenvector[i + j*n];
 -                     eigenvector[i + j*n]= tmp;
 -                 }
 -             }
 -             return pass;
 -         }
 - 
 -         for(i=0; i<n; i++){
 -             for(j=i+1; j<n; j++){
 -                 double covar= pca->covariance[j + i*n];
 -                 double t,c,s,tau,theta, h;
 - 
 -                 if(pass < 3 && fabs(covar) < sum / (5*n*n)) //FIXME why pass < 3
 -                     continue;
 -                 if(fabs(covar) == 0.0) //FIXME should not be needed
 -                     continue;
 -                 if(pass >=3 && fabs((eigenvalue[j]+z[j])/covar) > (1LL<<32) && fabs((eigenvalue[i]+z[i])/covar) > (1LL<<32)){
 -                     pca->covariance[j + i*n]=0.0;
 -                     continue;
 -                 }
 - 
 -                 h= (eigenvalue[j]+z[j]) - (eigenvalue[i]+z[i]);
 -                 theta=0.5*h/covar;
 -                 t=1.0/(fabs(theta)+sqrt(1.0+theta*theta));
 -                 if(theta < 0.0) t = -t;
 - 
 -                 c=1.0/sqrt(1+t*t);
 -                 s=t*c;
 -                 tau=s/(1.0+c);
 -                 z[i] -= t*covar;
 -                 z[j] += t*covar;
 - 
 - #define ROTATE(a,i,j,k,l) {\
 -     double g=a[j + i*n];\
 -     double h=a[l + k*n];\
 -     a[j + i*n]=g-s*(h+g*tau);\
 -     a[l + k*n]=h+s*(g-h*tau); }
 -                 for(k=0; k<n; k++) {
 -                     if(k!=i && k!=j){
 -                         ROTATE(pca->covariance,FFMIN(k,i),FFMAX(k,i),FFMIN(k,j),FFMAX(k,j))
 -                     }
 -                     ROTATE(eigenvector,k,i,k,j)
 -                 }
 -                 pca->covariance[j + i*n]=0.0;
 -             }
 -         }
 -         for (i=0; i<n; i++) {
 -             eigenvalue[i] += z[i];
 -             z[i]=0.0;
 -         }
 -     }
 - 
 -     return -1;
 - }
 
 
  |