You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3566 lines
134KB

  1. /*
  2. * HEVC video Decoder
  3. *
  4. * Copyright (C) 2012 - 2013 Guillaume Martres
  5. * Copyright (C) 2012 - 2013 Mickael Raulet
  6. * Copyright (C) 2012 - 2013 Gildas Cocherel
  7. * Copyright (C) 2012 - 2013 Wassim Hamidouche
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. #include "libavutil/atomic.h"
  26. #include "libavutil/attributes.h"
  27. #include "libavutil/common.h"
  28. #include "libavutil/display.h"
  29. #include "libavutil/internal.h"
  30. #include "libavutil/md5.h"
  31. #include "libavutil/opt.h"
  32. #include "libavutil/pixdesc.h"
  33. #include "libavutil/stereo3d.h"
  34. #include "bswapdsp.h"
  35. #include "bytestream.h"
  36. #include "cabac_functions.h"
  37. #include "golomb.h"
  38. #include "hevc.h"
  39. const uint8_t ff_hevc_pel_weight[65] = { [2] = 0, [4] = 1, [6] = 2, [8] = 3, [12] = 4, [16] = 5, [24] = 6, [32] = 7, [48] = 8, [64] = 9 };
  40. /**
  41. * NOTE: Each function hls_foo correspond to the function foo in the
  42. * specification (HLS stands for High Level Syntax).
  43. */
  44. /**
  45. * Section 5.7
  46. */
  47. /* free everything allocated by pic_arrays_init() */
  48. static void pic_arrays_free(HEVCContext *s)
  49. {
  50. av_freep(&s->sao);
  51. av_freep(&s->deblock);
  52. av_freep(&s->skip_flag);
  53. av_freep(&s->tab_ct_depth);
  54. av_freep(&s->tab_ipm);
  55. av_freep(&s->cbf_luma);
  56. av_freep(&s->is_pcm);
  57. av_freep(&s->qp_y_tab);
  58. av_freep(&s->tab_slice_address);
  59. av_freep(&s->filter_slice_edges);
  60. av_freep(&s->horizontal_bs);
  61. av_freep(&s->vertical_bs);
  62. av_freep(&s->sh.entry_point_offset);
  63. av_freep(&s->sh.size);
  64. av_freep(&s->sh.offset);
  65. av_buffer_pool_uninit(&s->tab_mvf_pool);
  66. av_buffer_pool_uninit(&s->rpl_tab_pool);
  67. }
  68. /* allocate arrays that depend on frame dimensions */
  69. static int pic_arrays_init(HEVCContext *s, const HEVCSPS *sps)
  70. {
  71. int log2_min_cb_size = sps->log2_min_cb_size;
  72. int width = sps->width;
  73. int height = sps->height;
  74. int pic_size_in_ctb = ((width >> log2_min_cb_size) + 1) *
  75. ((height >> log2_min_cb_size) + 1);
  76. int ctb_count = sps->ctb_width * sps->ctb_height;
  77. int min_pu_size = sps->min_pu_width * sps->min_pu_height;
  78. s->bs_width = (width >> 2) + 1;
  79. s->bs_height = (height >> 2) + 1;
  80. s->sao = av_mallocz_array(ctb_count, sizeof(*s->sao));
  81. s->deblock = av_mallocz_array(ctb_count, sizeof(*s->deblock));
  82. if (!s->sao || !s->deblock)
  83. goto fail;
  84. s->skip_flag = av_malloc_array(sps->min_cb_height, sps->min_cb_width);
  85. s->tab_ct_depth = av_malloc_array(sps->min_cb_height, sps->min_cb_width);
  86. if (!s->skip_flag || !s->tab_ct_depth)
  87. goto fail;
  88. s->cbf_luma = av_malloc_array(sps->min_tb_width, sps->min_tb_height);
  89. s->tab_ipm = av_mallocz(min_pu_size);
  90. s->is_pcm = av_malloc_array(sps->min_pu_width + 1, sps->min_pu_height + 1);
  91. if (!s->tab_ipm || !s->cbf_luma || !s->is_pcm)
  92. goto fail;
  93. s->filter_slice_edges = av_mallocz(ctb_count);
  94. s->tab_slice_address = av_malloc_array(pic_size_in_ctb,
  95. sizeof(*s->tab_slice_address));
  96. s->qp_y_tab = av_malloc_array(pic_size_in_ctb,
  97. sizeof(*s->qp_y_tab));
  98. if (!s->qp_y_tab || !s->filter_slice_edges || !s->tab_slice_address)
  99. goto fail;
  100. s->horizontal_bs = av_mallocz_array(s->bs_width, s->bs_height);
  101. s->vertical_bs = av_mallocz_array(s->bs_width, s->bs_height);
  102. if (!s->horizontal_bs || !s->vertical_bs)
  103. goto fail;
  104. s->tab_mvf_pool = av_buffer_pool_init(min_pu_size * sizeof(MvField),
  105. av_buffer_allocz);
  106. s->rpl_tab_pool = av_buffer_pool_init(ctb_count * sizeof(RefPicListTab),
  107. av_buffer_allocz);
  108. if (!s->tab_mvf_pool || !s->rpl_tab_pool)
  109. goto fail;
  110. return 0;
  111. fail:
  112. pic_arrays_free(s);
  113. return AVERROR(ENOMEM);
  114. }
  115. static void pred_weight_table(HEVCContext *s, GetBitContext *gb)
  116. {
  117. int i = 0;
  118. int j = 0;
  119. uint8_t luma_weight_l0_flag[16];
  120. uint8_t chroma_weight_l0_flag[16];
  121. uint8_t luma_weight_l1_flag[16];
  122. uint8_t chroma_weight_l1_flag[16];
  123. int luma_log2_weight_denom;
  124. luma_log2_weight_denom = get_ue_golomb_long(gb);
  125. if (luma_log2_weight_denom < 0 || luma_log2_weight_denom > 7)
  126. av_log(s->avctx, AV_LOG_ERROR, "luma_log2_weight_denom %d is invalid\n", luma_log2_weight_denom);
  127. s->sh.luma_log2_weight_denom = av_clip_c(luma_log2_weight_denom, 0, 7);
  128. if (s->sps->chroma_format_idc != 0) {
  129. int delta = get_se_golomb(gb);
  130. s->sh.chroma_log2_weight_denom = av_clip(s->sh.luma_log2_weight_denom + delta, 0, 7);
  131. }
  132. for (i = 0; i < s->sh.nb_refs[L0]; i++) {
  133. luma_weight_l0_flag[i] = get_bits1(gb);
  134. if (!luma_weight_l0_flag[i]) {
  135. s->sh.luma_weight_l0[i] = 1 << s->sh.luma_log2_weight_denom;
  136. s->sh.luma_offset_l0[i] = 0;
  137. }
  138. }
  139. if (s->sps->chroma_format_idc != 0) {
  140. for (i = 0; i < s->sh.nb_refs[L0]; i++)
  141. chroma_weight_l0_flag[i] = get_bits1(gb);
  142. } else {
  143. for (i = 0; i < s->sh.nb_refs[L0]; i++)
  144. chroma_weight_l0_flag[i] = 0;
  145. }
  146. for (i = 0; i < s->sh.nb_refs[L0]; i++) {
  147. if (luma_weight_l0_flag[i]) {
  148. int delta_luma_weight_l0 = get_se_golomb(gb);
  149. s->sh.luma_weight_l0[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l0;
  150. s->sh.luma_offset_l0[i] = get_se_golomb(gb);
  151. }
  152. if (chroma_weight_l0_flag[i]) {
  153. for (j = 0; j < 2; j++) {
  154. int delta_chroma_weight_l0 = get_se_golomb(gb);
  155. int delta_chroma_offset_l0 = get_se_golomb(gb);
  156. s->sh.chroma_weight_l0[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l0;
  157. s->sh.chroma_offset_l0[i][j] = av_clip((delta_chroma_offset_l0 - ((128 * s->sh.chroma_weight_l0[i][j])
  158. >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
  159. }
  160. } else {
  161. s->sh.chroma_weight_l0[i][0] = 1 << s->sh.chroma_log2_weight_denom;
  162. s->sh.chroma_offset_l0[i][0] = 0;
  163. s->sh.chroma_weight_l0[i][1] = 1 << s->sh.chroma_log2_weight_denom;
  164. s->sh.chroma_offset_l0[i][1] = 0;
  165. }
  166. }
  167. if (s->sh.slice_type == B_SLICE) {
  168. for (i = 0; i < s->sh.nb_refs[L1]; i++) {
  169. luma_weight_l1_flag[i] = get_bits1(gb);
  170. if (!luma_weight_l1_flag[i]) {
  171. s->sh.luma_weight_l1[i] = 1 << s->sh.luma_log2_weight_denom;
  172. s->sh.luma_offset_l1[i] = 0;
  173. }
  174. }
  175. if (s->sps->chroma_format_idc != 0) {
  176. for (i = 0; i < s->sh.nb_refs[L1]; i++)
  177. chroma_weight_l1_flag[i] = get_bits1(gb);
  178. } else {
  179. for (i = 0; i < s->sh.nb_refs[L1]; i++)
  180. chroma_weight_l1_flag[i] = 0;
  181. }
  182. for (i = 0; i < s->sh.nb_refs[L1]; i++) {
  183. if (luma_weight_l1_flag[i]) {
  184. int delta_luma_weight_l1 = get_se_golomb(gb);
  185. s->sh.luma_weight_l1[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l1;
  186. s->sh.luma_offset_l1[i] = get_se_golomb(gb);
  187. }
  188. if (chroma_weight_l1_flag[i]) {
  189. for (j = 0; j < 2; j++) {
  190. int delta_chroma_weight_l1 = get_se_golomb(gb);
  191. int delta_chroma_offset_l1 = get_se_golomb(gb);
  192. s->sh.chroma_weight_l1[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l1;
  193. s->sh.chroma_offset_l1[i][j] = av_clip((delta_chroma_offset_l1 - ((128 * s->sh.chroma_weight_l1[i][j])
  194. >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
  195. }
  196. } else {
  197. s->sh.chroma_weight_l1[i][0] = 1 << s->sh.chroma_log2_weight_denom;
  198. s->sh.chroma_offset_l1[i][0] = 0;
  199. s->sh.chroma_weight_l1[i][1] = 1 << s->sh.chroma_log2_weight_denom;
  200. s->sh.chroma_offset_l1[i][1] = 0;
  201. }
  202. }
  203. }
  204. }
  205. static int decode_lt_rps(HEVCContext *s, LongTermRPS *rps, GetBitContext *gb)
  206. {
  207. const HEVCSPS *sps = s->sps;
  208. int max_poc_lsb = 1 << sps->log2_max_poc_lsb;
  209. int prev_delta_msb = 0;
  210. unsigned int nb_sps = 0, nb_sh;
  211. int i;
  212. rps->nb_refs = 0;
  213. if (!sps->long_term_ref_pics_present_flag)
  214. return 0;
  215. if (sps->num_long_term_ref_pics_sps > 0)
  216. nb_sps = get_ue_golomb_long(gb);
  217. nb_sh = get_ue_golomb_long(gb);
  218. if (nb_sh + (uint64_t)nb_sps > FF_ARRAY_ELEMS(rps->poc))
  219. return AVERROR_INVALIDDATA;
  220. rps->nb_refs = nb_sh + nb_sps;
  221. for (i = 0; i < rps->nb_refs; i++) {
  222. uint8_t delta_poc_msb_present;
  223. if (i < nb_sps) {
  224. uint8_t lt_idx_sps = 0;
  225. if (sps->num_long_term_ref_pics_sps > 1)
  226. lt_idx_sps = get_bits(gb, av_ceil_log2(sps->num_long_term_ref_pics_sps));
  227. rps->poc[i] = sps->lt_ref_pic_poc_lsb_sps[lt_idx_sps];
  228. rps->used[i] = sps->used_by_curr_pic_lt_sps_flag[lt_idx_sps];
  229. } else {
  230. rps->poc[i] = get_bits(gb, sps->log2_max_poc_lsb);
  231. rps->used[i] = get_bits1(gb);
  232. }
  233. delta_poc_msb_present = get_bits1(gb);
  234. if (delta_poc_msb_present) {
  235. int delta = get_ue_golomb_long(gb);
  236. if (i && i != nb_sps)
  237. delta += prev_delta_msb;
  238. rps->poc[i] += s->poc - delta * max_poc_lsb - s->sh.pic_order_cnt_lsb;
  239. prev_delta_msb = delta;
  240. }
  241. }
  242. return 0;
  243. }
  244. static int get_buffer_sao(HEVCContext *s, AVFrame *frame, const HEVCSPS *sps)
  245. {
  246. int ret, i;
  247. frame->width = FFALIGN(s->avctx->coded_width + 2, FF_INPUT_BUFFER_PADDING_SIZE);
  248. frame->height = s->avctx->coded_height + 3;
  249. if ((ret = ff_get_buffer(s->avctx, frame, AV_GET_BUFFER_FLAG_REF)) < 0)
  250. return ret;
  251. for (i = 0; frame->data[i]; i++) {
  252. int offset = frame->linesize[i] + FF_INPUT_BUFFER_PADDING_SIZE;
  253. frame->data[i] += offset;
  254. }
  255. frame->width = s->avctx->coded_width;
  256. frame->height = s->avctx->coded_height;
  257. return 0;
  258. }
  259. static int set_sps(HEVCContext *s, const HEVCSPS *sps)
  260. {
  261. #define HWACCEL_MAX (CONFIG_HEVC_DXVA2_HWACCEL)
  262. enum AVPixelFormat pix_fmts[HWACCEL_MAX + 2], *fmt = pix_fmts;
  263. int ret;
  264. unsigned int num = 0, den = 0;
  265. pic_arrays_free(s);
  266. ret = pic_arrays_init(s, sps);
  267. if (ret < 0)
  268. goto fail;
  269. s->avctx->coded_width = sps->width;
  270. s->avctx->coded_height = sps->height;
  271. s->avctx->width = sps->output_width;
  272. s->avctx->height = sps->output_height;
  273. s->avctx->has_b_frames = sps->temporal_layer[sps->max_sub_layers - 1].num_reorder_pics;
  274. if (sps->pix_fmt == AV_PIX_FMT_YUV420P || sps->pix_fmt == AV_PIX_FMT_YUVJ420P) {
  275. #if CONFIG_HEVC_DXVA2_HWACCEL
  276. *fmt++ = AV_PIX_FMT_DXVA2_VLD;
  277. #endif
  278. }
  279. *fmt++ = sps->pix_fmt;
  280. *fmt = AV_PIX_FMT_NONE;
  281. ret = ff_thread_get_format(s->avctx, pix_fmts);
  282. if (ret < 0)
  283. goto fail;
  284. s->avctx->pix_fmt = ret;
  285. ff_set_sar(s->avctx, sps->vui.sar);
  286. if (sps->vui.video_signal_type_present_flag)
  287. s->avctx->color_range = sps->vui.video_full_range_flag ? AVCOL_RANGE_JPEG
  288. : AVCOL_RANGE_MPEG;
  289. else
  290. s->avctx->color_range = AVCOL_RANGE_MPEG;
  291. if (sps->vui.colour_description_present_flag) {
  292. s->avctx->color_primaries = sps->vui.colour_primaries;
  293. s->avctx->color_trc = sps->vui.transfer_characteristic;
  294. s->avctx->colorspace = sps->vui.matrix_coeffs;
  295. } else {
  296. s->avctx->color_primaries = AVCOL_PRI_UNSPECIFIED;
  297. s->avctx->color_trc = AVCOL_TRC_UNSPECIFIED;
  298. s->avctx->colorspace = AVCOL_SPC_UNSPECIFIED;
  299. }
  300. ff_hevc_pred_init(&s->hpc, sps->bit_depth);
  301. ff_hevc_dsp_init (&s->hevcdsp, sps->bit_depth);
  302. ff_videodsp_init (&s->vdsp, sps->bit_depth);
  303. if (sps->sao_enabled && !s->avctx->hwaccel) {
  304. #ifdef USE_SAO_SMALL_BUFFER
  305. {
  306. int ctb_size = 1 << sps->log2_ctb_size;
  307. int c_count = (sps->chroma_format_idc != 0) ? 3 : 1;
  308. int c_idx, i;
  309. for (i = 0; i < s->threads_number ; i++) {
  310. HEVCLocalContext *lc = s->HEVClcList[i];
  311. lc->sao_pixel_buffer =
  312. av_malloc(((ctb_size + 2) * (ctb_size + 2)) <<
  313. sps->pixel_shift);
  314. }
  315. for(c_idx = 0; c_idx < c_count; c_idx++) {
  316. int w = sps->width >> sps->hshift[c_idx];
  317. int h = sps->height >> sps->vshift[c_idx];
  318. s->sao_pixel_buffer_h[c_idx] =
  319. av_malloc((w * 2 * sps->ctb_height) <<
  320. sps->pixel_shift);
  321. s->sao_pixel_buffer_v[c_idx] =
  322. av_malloc((h * 2 * sps->ctb_width) <<
  323. sps->pixel_shift);
  324. }
  325. }
  326. #else
  327. av_frame_unref(s->tmp_frame);
  328. ret = get_buffer_sao(s, s->tmp_frame, sps);
  329. s->sao_frame = s->tmp_frame;
  330. #endif
  331. }
  332. s->sps = sps;
  333. s->vps = (HEVCVPS*) s->vps_list[s->sps->vps_id]->data;
  334. if (s->vps->vps_timing_info_present_flag) {
  335. num = s->vps->vps_num_units_in_tick;
  336. den = s->vps->vps_time_scale;
  337. } else if (sps->vui.vui_timing_info_present_flag) {
  338. num = sps->vui.vui_num_units_in_tick;
  339. den = sps->vui.vui_time_scale;
  340. }
  341. if (num != 0 && den != 0)
  342. av_reduce(&s->avctx->framerate.den, &s->avctx->framerate.num,
  343. num, den, 1 << 30);
  344. return 0;
  345. fail:
  346. pic_arrays_free(s);
  347. s->sps = NULL;
  348. return ret;
  349. }
  350. static int hls_slice_header(HEVCContext *s)
  351. {
  352. GetBitContext *gb = &s->HEVClc->gb;
  353. SliceHeader *sh = &s->sh;
  354. int i, j, ret;
  355. // Coded parameters
  356. sh->first_slice_in_pic_flag = get_bits1(gb);
  357. if ((IS_IDR(s) || IS_BLA(s)) && sh->first_slice_in_pic_flag) {
  358. s->seq_decode = (s->seq_decode + 1) & 0xff;
  359. s->max_ra = INT_MAX;
  360. if (IS_IDR(s))
  361. ff_hevc_clear_refs(s);
  362. }
  363. sh->no_output_of_prior_pics_flag = 0;
  364. if (IS_IRAP(s))
  365. sh->no_output_of_prior_pics_flag = get_bits1(gb);
  366. sh->pps_id = get_ue_golomb_long(gb);
  367. if (sh->pps_id >= MAX_PPS_COUNT || !s->pps_list[sh->pps_id]) {
  368. av_log(s->avctx, AV_LOG_ERROR, "PPS id out of range: %d\n", sh->pps_id);
  369. return AVERROR_INVALIDDATA;
  370. }
  371. if (!sh->first_slice_in_pic_flag &&
  372. s->pps != (HEVCPPS*)s->pps_list[sh->pps_id]->data) {
  373. av_log(s->avctx, AV_LOG_ERROR, "PPS changed between slices.\n");
  374. return AVERROR_INVALIDDATA;
  375. }
  376. s->pps = (HEVCPPS*)s->pps_list[sh->pps_id]->data;
  377. if (s->nal_unit_type == NAL_CRA_NUT && s->last_eos == 1)
  378. sh->no_output_of_prior_pics_flag = 1;
  379. if (s->sps != (HEVCSPS*)s->sps_list[s->pps->sps_id]->data) {
  380. const HEVCSPS* last_sps = s->sps;
  381. s->sps = (HEVCSPS*)s->sps_list[s->pps->sps_id]->data;
  382. if (last_sps && IS_IRAP(s) && s->nal_unit_type != NAL_CRA_NUT) {
  383. if (s->sps->width != last_sps->width || s->sps->height != last_sps->height ||
  384. s->sps->temporal_layer[s->sps->max_sub_layers - 1].max_dec_pic_buffering !=
  385. last_sps->temporal_layer[last_sps->max_sub_layers - 1].max_dec_pic_buffering)
  386. sh->no_output_of_prior_pics_flag = 0;
  387. }
  388. ff_hevc_clear_refs(s);
  389. ret = set_sps(s, s->sps);
  390. if (ret < 0)
  391. return ret;
  392. s->seq_decode = (s->seq_decode + 1) & 0xff;
  393. s->max_ra = INT_MAX;
  394. }
  395. s->avctx->profile = s->sps->ptl.general_ptl.profile_idc;
  396. s->avctx->level = s->sps->ptl.general_ptl.level_idc;
  397. sh->dependent_slice_segment_flag = 0;
  398. if (!sh->first_slice_in_pic_flag) {
  399. int slice_address_length;
  400. if (s->pps->dependent_slice_segments_enabled_flag)
  401. sh->dependent_slice_segment_flag = get_bits1(gb);
  402. slice_address_length = av_ceil_log2(s->sps->ctb_width *
  403. s->sps->ctb_height);
  404. sh->slice_segment_addr = get_bits(gb, slice_address_length);
  405. if (sh->slice_segment_addr >= s->sps->ctb_width * s->sps->ctb_height) {
  406. av_log(s->avctx, AV_LOG_ERROR,
  407. "Invalid slice segment address: %u.\n",
  408. sh->slice_segment_addr);
  409. return AVERROR_INVALIDDATA;
  410. }
  411. if (!sh->dependent_slice_segment_flag) {
  412. sh->slice_addr = sh->slice_segment_addr;
  413. s->slice_idx++;
  414. }
  415. } else {
  416. sh->slice_segment_addr = sh->slice_addr = 0;
  417. s->slice_idx = 0;
  418. s->slice_initialized = 0;
  419. }
  420. if (!sh->dependent_slice_segment_flag) {
  421. s->slice_initialized = 0;
  422. for (i = 0; i < s->pps->num_extra_slice_header_bits; i++)
  423. skip_bits(gb, 1); // slice_reserved_undetermined_flag[]
  424. sh->slice_type = get_ue_golomb_long(gb);
  425. if (!(sh->slice_type == I_SLICE ||
  426. sh->slice_type == P_SLICE ||
  427. sh->slice_type == B_SLICE)) {
  428. av_log(s->avctx, AV_LOG_ERROR, "Unknown slice type: %d.\n",
  429. sh->slice_type);
  430. return AVERROR_INVALIDDATA;
  431. }
  432. if (IS_IRAP(s) && sh->slice_type != I_SLICE) {
  433. av_log(s->avctx, AV_LOG_ERROR, "Inter slices in an IRAP frame.\n");
  434. return AVERROR_INVALIDDATA;
  435. }
  436. // when flag is not present, picture is inferred to be output
  437. sh->pic_output_flag = 1;
  438. if (s->pps->output_flag_present_flag)
  439. sh->pic_output_flag = get_bits1(gb);
  440. if (s->sps->separate_colour_plane_flag)
  441. sh->colour_plane_id = get_bits(gb, 2);
  442. if (!IS_IDR(s)) {
  443. int poc;
  444. sh->pic_order_cnt_lsb = get_bits(gb, s->sps->log2_max_poc_lsb);
  445. poc = ff_hevc_compute_poc(s, sh->pic_order_cnt_lsb);
  446. if (!sh->first_slice_in_pic_flag && poc != s->poc) {
  447. av_log(s->avctx, AV_LOG_WARNING,
  448. "Ignoring POC change between slices: %d -> %d\n", s->poc, poc);
  449. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  450. return AVERROR_INVALIDDATA;
  451. poc = s->poc;
  452. }
  453. s->poc = poc;
  454. sh->short_term_ref_pic_set_sps_flag = get_bits1(gb);
  455. if (!sh->short_term_ref_pic_set_sps_flag) {
  456. int pos = get_bits_left(gb);
  457. ret = ff_hevc_decode_short_term_rps(s, &sh->slice_rps, s->sps, 1);
  458. if (ret < 0)
  459. return ret;
  460. sh->short_term_ref_pic_set_size = pos - get_bits_left(gb);
  461. sh->short_term_rps = &sh->slice_rps;
  462. } else {
  463. int numbits, rps_idx;
  464. if (!s->sps->nb_st_rps) {
  465. av_log(s->avctx, AV_LOG_ERROR, "No ref lists in the SPS.\n");
  466. return AVERROR_INVALIDDATA;
  467. }
  468. numbits = av_ceil_log2(s->sps->nb_st_rps);
  469. rps_idx = numbits > 0 ? get_bits(gb, numbits) : 0;
  470. sh->short_term_rps = &s->sps->st_rps[rps_idx];
  471. }
  472. ret = decode_lt_rps(s, &sh->long_term_rps, gb);
  473. if (ret < 0) {
  474. av_log(s->avctx, AV_LOG_WARNING, "Invalid long term RPS.\n");
  475. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  476. return AVERROR_INVALIDDATA;
  477. }
  478. if (s->sps->sps_temporal_mvp_enabled_flag)
  479. sh->slice_temporal_mvp_enabled_flag = get_bits1(gb);
  480. else
  481. sh->slice_temporal_mvp_enabled_flag = 0;
  482. } else {
  483. s->sh.short_term_rps = NULL;
  484. s->poc = 0;
  485. }
  486. /* 8.3.1 */
  487. if (s->temporal_id == 0 &&
  488. s->nal_unit_type != NAL_TRAIL_N &&
  489. s->nal_unit_type != NAL_TSA_N &&
  490. s->nal_unit_type != NAL_STSA_N &&
  491. s->nal_unit_type != NAL_RADL_N &&
  492. s->nal_unit_type != NAL_RADL_R &&
  493. s->nal_unit_type != NAL_RASL_N &&
  494. s->nal_unit_type != NAL_RASL_R)
  495. s->pocTid0 = s->poc;
  496. if (s->sps->sao_enabled) {
  497. sh->slice_sample_adaptive_offset_flag[0] = get_bits1(gb);
  498. if (s->sps->chroma_format_idc) {
  499. sh->slice_sample_adaptive_offset_flag[1] =
  500. sh->slice_sample_adaptive_offset_flag[2] = get_bits1(gb);
  501. }
  502. } else {
  503. sh->slice_sample_adaptive_offset_flag[0] = 0;
  504. sh->slice_sample_adaptive_offset_flag[1] = 0;
  505. sh->slice_sample_adaptive_offset_flag[2] = 0;
  506. }
  507. sh->nb_refs[L0] = sh->nb_refs[L1] = 0;
  508. if (sh->slice_type == P_SLICE || sh->slice_type == B_SLICE) {
  509. int nb_refs;
  510. sh->nb_refs[L0] = s->pps->num_ref_idx_l0_default_active;
  511. if (sh->slice_type == B_SLICE)
  512. sh->nb_refs[L1] = s->pps->num_ref_idx_l1_default_active;
  513. if (get_bits1(gb)) { // num_ref_idx_active_override_flag
  514. sh->nb_refs[L0] = get_ue_golomb_long(gb) + 1;
  515. if (sh->slice_type == B_SLICE)
  516. sh->nb_refs[L1] = get_ue_golomb_long(gb) + 1;
  517. }
  518. if (sh->nb_refs[L0] > MAX_REFS || sh->nb_refs[L1] > MAX_REFS) {
  519. av_log(s->avctx, AV_LOG_ERROR, "Too many refs: %d/%d.\n",
  520. sh->nb_refs[L0], sh->nb_refs[L1]);
  521. return AVERROR_INVALIDDATA;
  522. }
  523. sh->rpl_modification_flag[0] = 0;
  524. sh->rpl_modification_flag[1] = 0;
  525. nb_refs = ff_hevc_frame_nb_refs(s);
  526. if (!nb_refs) {
  527. av_log(s->avctx, AV_LOG_ERROR, "Zero refs for a frame with P or B slices.\n");
  528. return AVERROR_INVALIDDATA;
  529. }
  530. if (s->pps->lists_modification_present_flag && nb_refs > 1) {
  531. sh->rpl_modification_flag[0] = get_bits1(gb);
  532. if (sh->rpl_modification_flag[0]) {
  533. for (i = 0; i < sh->nb_refs[L0]; i++)
  534. sh->list_entry_lx[0][i] = get_bits(gb, av_ceil_log2(nb_refs));
  535. }
  536. if (sh->slice_type == B_SLICE) {
  537. sh->rpl_modification_flag[1] = get_bits1(gb);
  538. if (sh->rpl_modification_flag[1] == 1)
  539. for (i = 0; i < sh->nb_refs[L1]; i++)
  540. sh->list_entry_lx[1][i] = get_bits(gb, av_ceil_log2(nb_refs));
  541. }
  542. }
  543. if (sh->slice_type == B_SLICE)
  544. sh->mvd_l1_zero_flag = get_bits1(gb);
  545. if (s->pps->cabac_init_present_flag)
  546. sh->cabac_init_flag = get_bits1(gb);
  547. else
  548. sh->cabac_init_flag = 0;
  549. sh->collocated_ref_idx = 0;
  550. if (sh->slice_temporal_mvp_enabled_flag) {
  551. sh->collocated_list = L0;
  552. if (sh->slice_type == B_SLICE)
  553. sh->collocated_list = !get_bits1(gb);
  554. if (sh->nb_refs[sh->collocated_list] > 1) {
  555. sh->collocated_ref_idx = get_ue_golomb_long(gb);
  556. if (sh->collocated_ref_idx >= sh->nb_refs[sh->collocated_list]) {
  557. av_log(s->avctx, AV_LOG_ERROR,
  558. "Invalid collocated_ref_idx: %d.\n",
  559. sh->collocated_ref_idx);
  560. return AVERROR_INVALIDDATA;
  561. }
  562. }
  563. }
  564. if ((s->pps->weighted_pred_flag && sh->slice_type == P_SLICE) ||
  565. (s->pps->weighted_bipred_flag && sh->slice_type == B_SLICE)) {
  566. pred_weight_table(s, gb);
  567. }
  568. sh->max_num_merge_cand = 5 - get_ue_golomb_long(gb);
  569. if (sh->max_num_merge_cand < 1 || sh->max_num_merge_cand > 5) {
  570. av_log(s->avctx, AV_LOG_ERROR,
  571. "Invalid number of merging MVP candidates: %d.\n",
  572. sh->max_num_merge_cand);
  573. return AVERROR_INVALIDDATA;
  574. }
  575. }
  576. sh->slice_qp_delta = get_se_golomb(gb);
  577. if (s->pps->pic_slice_level_chroma_qp_offsets_present_flag) {
  578. sh->slice_cb_qp_offset = get_se_golomb(gb);
  579. sh->slice_cr_qp_offset = get_se_golomb(gb);
  580. } else {
  581. sh->slice_cb_qp_offset = 0;
  582. sh->slice_cr_qp_offset = 0;
  583. }
  584. if (s->pps->chroma_qp_offset_list_enabled_flag)
  585. sh->cu_chroma_qp_offset_enabled_flag = get_bits1(gb);
  586. else
  587. sh->cu_chroma_qp_offset_enabled_flag = 0;
  588. if (s->pps->deblocking_filter_control_present_flag) {
  589. int deblocking_filter_override_flag = 0;
  590. if (s->pps->deblocking_filter_override_enabled_flag)
  591. deblocking_filter_override_flag = get_bits1(gb);
  592. if (deblocking_filter_override_flag) {
  593. sh->disable_deblocking_filter_flag = get_bits1(gb);
  594. if (!sh->disable_deblocking_filter_flag) {
  595. sh->beta_offset = get_se_golomb(gb) * 2;
  596. sh->tc_offset = get_se_golomb(gb) * 2;
  597. }
  598. } else {
  599. sh->disable_deblocking_filter_flag = s->pps->disable_dbf;
  600. sh->beta_offset = s->pps->beta_offset;
  601. sh->tc_offset = s->pps->tc_offset;
  602. }
  603. } else {
  604. sh->disable_deblocking_filter_flag = 0;
  605. sh->beta_offset = 0;
  606. sh->tc_offset = 0;
  607. }
  608. if (s->pps->seq_loop_filter_across_slices_enabled_flag &&
  609. (sh->slice_sample_adaptive_offset_flag[0] ||
  610. sh->slice_sample_adaptive_offset_flag[1] ||
  611. !sh->disable_deblocking_filter_flag)) {
  612. sh->slice_loop_filter_across_slices_enabled_flag = get_bits1(gb);
  613. } else {
  614. sh->slice_loop_filter_across_slices_enabled_flag = s->pps->seq_loop_filter_across_slices_enabled_flag;
  615. }
  616. } else if (!s->slice_initialized) {
  617. av_log(s->avctx, AV_LOG_ERROR, "Independent slice segment missing.\n");
  618. return AVERROR_INVALIDDATA;
  619. }
  620. sh->num_entry_point_offsets = 0;
  621. if (s->pps->tiles_enabled_flag || s->pps->entropy_coding_sync_enabled_flag) {
  622. sh->num_entry_point_offsets = get_ue_golomb_long(gb);
  623. if (sh->num_entry_point_offsets > 0) {
  624. int offset_len = get_ue_golomb_long(gb) + 1;
  625. int segments = offset_len >> 4;
  626. int rest = (offset_len & 15);
  627. av_freep(&sh->entry_point_offset);
  628. av_freep(&sh->offset);
  629. av_freep(&sh->size);
  630. sh->entry_point_offset = av_malloc_array(sh->num_entry_point_offsets, sizeof(int));
  631. sh->offset = av_malloc_array(sh->num_entry_point_offsets, sizeof(int));
  632. sh->size = av_malloc_array(sh->num_entry_point_offsets, sizeof(int));
  633. if (!sh->entry_point_offset || !sh->offset || !sh->size) {
  634. sh->num_entry_point_offsets = 0;
  635. av_log(s->avctx, AV_LOG_ERROR, "Failed to allocate memory\n");
  636. return AVERROR(ENOMEM);
  637. }
  638. for (i = 0; i < sh->num_entry_point_offsets; i++) {
  639. int val = 0;
  640. for (j = 0; j < segments; j++) {
  641. val <<= 16;
  642. val += get_bits(gb, 16);
  643. }
  644. if (rest) {
  645. val <<= rest;
  646. val += get_bits(gb, rest);
  647. }
  648. sh->entry_point_offset[i] = val + 1; // +1; // +1 to get the size
  649. }
  650. if (s->threads_number > 1 && (s->pps->num_tile_rows > 1 || s->pps->num_tile_columns > 1)) {
  651. s->enable_parallel_tiles = 0; // TODO: you can enable tiles in parallel here
  652. s->threads_number = 1;
  653. } else
  654. s->enable_parallel_tiles = 0;
  655. } else
  656. s->enable_parallel_tiles = 0;
  657. }
  658. if (s->pps->slice_header_extension_present_flag) {
  659. unsigned int length = get_ue_golomb_long(gb);
  660. if (length*8LL > get_bits_left(gb)) {
  661. av_log(s->avctx, AV_LOG_ERROR, "too many slice_header_extension_data_bytes\n");
  662. return AVERROR_INVALIDDATA;
  663. }
  664. for (i = 0; i < length; i++)
  665. skip_bits(gb, 8); // slice_header_extension_data_byte
  666. }
  667. // Inferred parameters
  668. sh->slice_qp = 26U + s->pps->pic_init_qp_minus26 + sh->slice_qp_delta;
  669. if (sh->slice_qp > 51 ||
  670. sh->slice_qp < -s->sps->qp_bd_offset) {
  671. av_log(s->avctx, AV_LOG_ERROR,
  672. "The slice_qp %d is outside the valid range "
  673. "[%d, 51].\n",
  674. sh->slice_qp,
  675. -s->sps->qp_bd_offset);
  676. return AVERROR_INVALIDDATA;
  677. }
  678. sh->slice_ctb_addr_rs = sh->slice_segment_addr;
  679. if (!s->sh.slice_ctb_addr_rs && s->sh.dependent_slice_segment_flag) {
  680. av_log(s->avctx, AV_LOG_ERROR, "Impossible slice segment.\n");
  681. return AVERROR_INVALIDDATA;
  682. }
  683. if (get_bits_left(gb) < 0) {
  684. av_log(s->avctx, AV_LOG_ERROR,
  685. "Overread slice header by %d bits\n", -get_bits_left(gb));
  686. return AVERROR_INVALIDDATA;
  687. }
  688. s->HEVClc->first_qp_group = !s->sh.dependent_slice_segment_flag;
  689. if (!s->pps->cu_qp_delta_enabled_flag)
  690. s->HEVClc->qp_y = s->sh.slice_qp;
  691. s->slice_initialized = 1;
  692. s->HEVClc->tu.cu_qp_offset_cb = 0;
  693. s->HEVClc->tu.cu_qp_offset_cr = 0;
  694. return 0;
  695. }
  696. #define CTB(tab, x, y) ((tab)[(y) * s->sps->ctb_width + (x)])
  697. #define SET_SAO(elem, value) \
  698. do { \
  699. if (!sao_merge_up_flag && !sao_merge_left_flag) \
  700. sao->elem = value; \
  701. else if (sao_merge_left_flag) \
  702. sao->elem = CTB(s->sao, rx-1, ry).elem; \
  703. else if (sao_merge_up_flag) \
  704. sao->elem = CTB(s->sao, rx, ry-1).elem; \
  705. else \
  706. sao->elem = 0; \
  707. } while (0)
  708. static void hls_sao_param(HEVCContext *s, int rx, int ry)
  709. {
  710. HEVCLocalContext *lc = s->HEVClc;
  711. int sao_merge_left_flag = 0;
  712. int sao_merge_up_flag = 0;
  713. SAOParams *sao = &CTB(s->sao, rx, ry);
  714. int c_idx, i;
  715. if (s->sh.slice_sample_adaptive_offset_flag[0] ||
  716. s->sh.slice_sample_adaptive_offset_flag[1]) {
  717. if (rx > 0) {
  718. if (lc->ctb_left_flag)
  719. sao_merge_left_flag = ff_hevc_sao_merge_flag_decode(s);
  720. }
  721. if (ry > 0 && !sao_merge_left_flag) {
  722. if (lc->ctb_up_flag)
  723. sao_merge_up_flag = ff_hevc_sao_merge_flag_decode(s);
  724. }
  725. }
  726. for (c_idx = 0; c_idx < (s->sps->chroma_format_idc ? 3 : 1); c_idx++) {
  727. int log2_sao_offset_scale = c_idx == 0 ? s->pps->log2_sao_offset_scale_luma :
  728. s->pps->log2_sao_offset_scale_chroma;
  729. if (!s->sh.slice_sample_adaptive_offset_flag[c_idx]) {
  730. sao->type_idx[c_idx] = SAO_NOT_APPLIED;
  731. continue;
  732. }
  733. if (c_idx == 2) {
  734. sao->type_idx[2] = sao->type_idx[1];
  735. sao->eo_class[2] = sao->eo_class[1];
  736. } else {
  737. SET_SAO(type_idx[c_idx], ff_hevc_sao_type_idx_decode(s));
  738. }
  739. if (sao->type_idx[c_idx] == SAO_NOT_APPLIED)
  740. continue;
  741. for (i = 0; i < 4; i++)
  742. SET_SAO(offset_abs[c_idx][i], ff_hevc_sao_offset_abs_decode(s));
  743. if (sao->type_idx[c_idx] == SAO_BAND) {
  744. for (i = 0; i < 4; i++) {
  745. if (sao->offset_abs[c_idx][i]) {
  746. SET_SAO(offset_sign[c_idx][i],
  747. ff_hevc_sao_offset_sign_decode(s));
  748. } else {
  749. sao->offset_sign[c_idx][i] = 0;
  750. }
  751. }
  752. SET_SAO(band_position[c_idx], ff_hevc_sao_band_position_decode(s));
  753. } else if (c_idx != 2) {
  754. SET_SAO(eo_class[c_idx], ff_hevc_sao_eo_class_decode(s));
  755. }
  756. // Inferred parameters
  757. sao->offset_val[c_idx][0] = 0;
  758. for (i = 0; i < 4; i++) {
  759. sao->offset_val[c_idx][i + 1] = sao->offset_abs[c_idx][i];
  760. if (sao->type_idx[c_idx] == SAO_EDGE) {
  761. if (i > 1)
  762. sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
  763. } else if (sao->offset_sign[c_idx][i]) {
  764. sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
  765. }
  766. sao->offset_val[c_idx][i + 1] <<= log2_sao_offset_scale;
  767. }
  768. }
  769. }
  770. #undef SET_SAO
  771. #undef CTB
  772. static int hls_cross_component_pred(HEVCContext *s, int idx) {
  773. HEVCLocalContext *lc = s->HEVClc;
  774. int log2_res_scale_abs_plus1 = ff_hevc_log2_res_scale_abs(s, idx);
  775. if (log2_res_scale_abs_plus1 != 0) {
  776. int res_scale_sign_flag = ff_hevc_res_scale_sign_flag(s, idx);
  777. lc->tu.res_scale_val = (1 << (log2_res_scale_abs_plus1 - 1)) *
  778. (1 - 2 * res_scale_sign_flag);
  779. } else {
  780. lc->tu.res_scale_val = 0;
  781. }
  782. return 0;
  783. }
  784. static int hls_transform_unit(HEVCContext *s, int x0, int y0,
  785. int xBase, int yBase, int cb_xBase, int cb_yBase,
  786. int log2_cb_size, int log2_trafo_size,
  787. int blk_idx, int cbf_luma, int *cbf_cb, int *cbf_cr)
  788. {
  789. HEVCLocalContext *lc = s->HEVClc;
  790. const int log2_trafo_size_c = log2_trafo_size - s->sps->hshift[1];
  791. int i;
  792. if (lc->cu.pred_mode == MODE_INTRA) {
  793. int trafo_size = 1 << log2_trafo_size;
  794. ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size);
  795. s->hpc.intra_pred[log2_trafo_size - 2](s, x0, y0, 0);
  796. }
  797. if (cbf_luma || cbf_cb[0] || cbf_cr[0] ||
  798. (s->sps->chroma_format_idc == 2 && (cbf_cb[1] || cbf_cr[1]))) {
  799. int scan_idx = SCAN_DIAG;
  800. int scan_idx_c = SCAN_DIAG;
  801. int cbf_chroma = cbf_cb[0] || cbf_cr[0] ||
  802. (s->sps->chroma_format_idc == 2 &&
  803. (cbf_cb[1] || cbf_cr[1]));
  804. if (s->pps->cu_qp_delta_enabled_flag && !lc->tu.is_cu_qp_delta_coded) {
  805. lc->tu.cu_qp_delta = ff_hevc_cu_qp_delta_abs(s);
  806. if (lc->tu.cu_qp_delta != 0)
  807. if (ff_hevc_cu_qp_delta_sign_flag(s) == 1)
  808. lc->tu.cu_qp_delta = -lc->tu.cu_qp_delta;
  809. lc->tu.is_cu_qp_delta_coded = 1;
  810. if (lc->tu.cu_qp_delta < -(26 + s->sps->qp_bd_offset / 2) ||
  811. lc->tu.cu_qp_delta > (25 + s->sps->qp_bd_offset / 2)) {
  812. av_log(s->avctx, AV_LOG_ERROR,
  813. "The cu_qp_delta %d is outside the valid range "
  814. "[%d, %d].\n",
  815. lc->tu.cu_qp_delta,
  816. -(26 + s->sps->qp_bd_offset / 2),
  817. (25 + s->sps->qp_bd_offset / 2));
  818. return AVERROR_INVALIDDATA;
  819. }
  820. ff_hevc_set_qPy(s, cb_xBase, cb_yBase, log2_cb_size);
  821. }
  822. if (s->sh.cu_chroma_qp_offset_enabled_flag && cbf_chroma &&
  823. !lc->cu.cu_transquant_bypass_flag && !lc->tu.is_cu_chroma_qp_offset_coded) {
  824. int cu_chroma_qp_offset_flag = ff_hevc_cu_chroma_qp_offset_flag(s);
  825. if (cu_chroma_qp_offset_flag) {
  826. int cu_chroma_qp_offset_idx = 0;
  827. if (s->pps->chroma_qp_offset_list_len_minus1 > 0) {
  828. cu_chroma_qp_offset_idx = ff_hevc_cu_chroma_qp_offset_idx(s);
  829. av_log(s->avctx, AV_LOG_ERROR,
  830. "cu_chroma_qp_offset_idx not yet tested.\n");
  831. }
  832. lc->tu.cu_qp_offset_cb = s->pps->cb_qp_offset_list[cu_chroma_qp_offset_idx];
  833. lc->tu.cu_qp_offset_cr = s->pps->cr_qp_offset_list[cu_chroma_qp_offset_idx];
  834. } else {
  835. lc->tu.cu_qp_offset_cb = 0;
  836. lc->tu.cu_qp_offset_cr = 0;
  837. }
  838. lc->tu.is_cu_chroma_qp_offset_coded = 1;
  839. }
  840. if (lc->cu.pred_mode == MODE_INTRA && log2_trafo_size < 4) {
  841. if (lc->tu.intra_pred_mode >= 6 &&
  842. lc->tu.intra_pred_mode <= 14) {
  843. scan_idx = SCAN_VERT;
  844. } else if (lc->tu.intra_pred_mode >= 22 &&
  845. lc->tu.intra_pred_mode <= 30) {
  846. scan_idx = SCAN_HORIZ;
  847. }
  848. if (lc->tu.intra_pred_mode_c >= 6 &&
  849. lc->tu.intra_pred_mode_c <= 14) {
  850. scan_idx_c = SCAN_VERT;
  851. } else if (lc->tu.intra_pred_mode_c >= 22 &&
  852. lc->tu.intra_pred_mode_c <= 30) {
  853. scan_idx_c = SCAN_HORIZ;
  854. }
  855. }
  856. lc->tu.cross_pf = 0;
  857. if (cbf_luma)
  858. ff_hevc_hls_residual_coding(s, x0, y0, log2_trafo_size, scan_idx, 0);
  859. if (s->sps->chroma_format_idc && (log2_trafo_size > 2 || s->sps->chroma_format_idc == 3)) {
  860. int trafo_size_h = 1 << (log2_trafo_size_c + s->sps->hshift[1]);
  861. int trafo_size_v = 1 << (log2_trafo_size_c + s->sps->vshift[1]);
  862. lc->tu.cross_pf = (s->pps->cross_component_prediction_enabled_flag && cbf_luma &&
  863. (lc->cu.pred_mode == MODE_INTER ||
  864. (lc->tu.chroma_mode_c == 4)));
  865. if (lc->tu.cross_pf) {
  866. hls_cross_component_pred(s, 0);
  867. }
  868. for (i = 0; i < (s->sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  869. if (lc->cu.pred_mode == MODE_INTRA) {
  870. ff_hevc_set_neighbour_available(s, x0, y0 + (i << log2_trafo_size_c), trafo_size_h, trafo_size_v);
  871. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (i << log2_trafo_size_c), 1);
  872. }
  873. if (cbf_cb[i])
  874. ff_hevc_hls_residual_coding(s, x0, y0 + (i << log2_trafo_size_c),
  875. log2_trafo_size_c, scan_idx_c, 1);
  876. else
  877. if (lc->tu.cross_pf) {
  878. ptrdiff_t stride = s->frame->linesize[1];
  879. int hshift = s->sps->hshift[1];
  880. int vshift = s->sps->vshift[1];
  881. int16_t *coeffs_y = (int16_t*)lc->edge_emu_buffer;
  882. int16_t *coeffs = (int16_t*)lc->edge_emu_buffer2;
  883. int size = 1 << log2_trafo_size_c;
  884. uint8_t *dst = &s->frame->data[1][(y0 >> vshift) * stride +
  885. ((x0 >> hshift) << s->sps->pixel_shift)];
  886. for (i = 0; i < (size * size); i++) {
  887. coeffs[i] = ((lc->tu.res_scale_val * coeffs_y[i]) >> 3);
  888. }
  889. s->hevcdsp.transform_add[log2_trafo_size_c-2](dst, coeffs, stride);
  890. }
  891. }
  892. if (lc->tu.cross_pf) {
  893. hls_cross_component_pred(s, 1);
  894. }
  895. for (i = 0; i < (s->sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  896. if (lc->cu.pred_mode == MODE_INTRA) {
  897. ff_hevc_set_neighbour_available(s, x0, y0 + (i << log2_trafo_size_c), trafo_size_h, trafo_size_v);
  898. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (i << log2_trafo_size_c), 2);
  899. }
  900. if (cbf_cr[i])
  901. ff_hevc_hls_residual_coding(s, x0, y0 + (i << log2_trafo_size_c),
  902. log2_trafo_size_c, scan_idx_c, 2);
  903. else
  904. if (lc->tu.cross_pf) {
  905. ptrdiff_t stride = s->frame->linesize[2];
  906. int hshift = s->sps->hshift[2];
  907. int vshift = s->sps->vshift[2];
  908. int16_t *coeffs_y = (int16_t*)lc->edge_emu_buffer;
  909. int16_t *coeffs = (int16_t*)lc->edge_emu_buffer2;
  910. int size = 1 << log2_trafo_size_c;
  911. uint8_t *dst = &s->frame->data[2][(y0 >> vshift) * stride +
  912. ((x0 >> hshift) << s->sps->pixel_shift)];
  913. for (i = 0; i < (size * size); i++) {
  914. coeffs[i] = ((lc->tu.res_scale_val * coeffs_y[i]) >> 3);
  915. }
  916. s->hevcdsp.transform_add[log2_trafo_size_c-2](dst, coeffs, stride);
  917. }
  918. }
  919. } else if (s->sps->chroma_format_idc && blk_idx == 3) {
  920. int trafo_size_h = 1 << (log2_trafo_size + 1);
  921. int trafo_size_v = 1 << (log2_trafo_size + s->sps->vshift[1]);
  922. for (i = 0; i < (s->sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  923. if (lc->cu.pred_mode == MODE_INTRA) {
  924. ff_hevc_set_neighbour_available(s, xBase, yBase + (i << log2_trafo_size),
  925. trafo_size_h, trafo_size_v);
  926. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (i << log2_trafo_size), 1);
  927. }
  928. if (cbf_cb[i])
  929. ff_hevc_hls_residual_coding(s, xBase, yBase + (i << log2_trafo_size),
  930. log2_trafo_size, scan_idx_c, 1);
  931. }
  932. for (i = 0; i < (s->sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  933. if (lc->cu.pred_mode == MODE_INTRA) {
  934. ff_hevc_set_neighbour_available(s, xBase, yBase + (i << log2_trafo_size),
  935. trafo_size_h, trafo_size_v);
  936. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (i << log2_trafo_size), 2);
  937. }
  938. if (cbf_cr[i])
  939. ff_hevc_hls_residual_coding(s, xBase, yBase + (i << log2_trafo_size),
  940. log2_trafo_size, scan_idx_c, 2);
  941. }
  942. }
  943. } else if (s->sps->chroma_format_idc && lc->cu.pred_mode == MODE_INTRA) {
  944. if (log2_trafo_size > 2 || s->sps->chroma_format_idc == 3) {
  945. int trafo_size_h = 1 << (log2_trafo_size_c + s->sps->hshift[1]);
  946. int trafo_size_v = 1 << (log2_trafo_size_c + s->sps->vshift[1]);
  947. ff_hevc_set_neighbour_available(s, x0, y0, trafo_size_h, trafo_size_v);
  948. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0, 1);
  949. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0, 2);
  950. if (s->sps->chroma_format_idc == 2) {
  951. ff_hevc_set_neighbour_available(s, x0, y0 + (1 << log2_trafo_size_c),
  952. trafo_size_h, trafo_size_v);
  953. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (1 << log2_trafo_size_c), 1);
  954. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (1 << log2_trafo_size_c), 2);
  955. }
  956. } else if (blk_idx == 3) {
  957. int trafo_size_h = 1 << (log2_trafo_size + 1);
  958. int trafo_size_v = 1 << (log2_trafo_size + s->sps->vshift[1]);
  959. ff_hevc_set_neighbour_available(s, xBase, yBase,
  960. trafo_size_h, trafo_size_v);
  961. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 1);
  962. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 2);
  963. if (s->sps->chroma_format_idc == 2) {
  964. ff_hevc_set_neighbour_available(s, xBase, yBase + (1 << (log2_trafo_size)),
  965. trafo_size_h, trafo_size_v);
  966. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (1 << (log2_trafo_size)), 1);
  967. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (1 << (log2_trafo_size)), 2);
  968. }
  969. }
  970. }
  971. return 0;
  972. }
  973. static void set_deblocking_bypass(HEVCContext *s, int x0, int y0, int log2_cb_size)
  974. {
  975. int cb_size = 1 << log2_cb_size;
  976. int log2_min_pu_size = s->sps->log2_min_pu_size;
  977. int min_pu_width = s->sps->min_pu_width;
  978. int x_end = FFMIN(x0 + cb_size, s->sps->width);
  979. int y_end = FFMIN(y0 + cb_size, s->sps->height);
  980. int i, j;
  981. for (j = (y0 >> log2_min_pu_size); j < (y_end >> log2_min_pu_size); j++)
  982. for (i = (x0 >> log2_min_pu_size); i < (x_end >> log2_min_pu_size); i++)
  983. s->is_pcm[i + j * min_pu_width] = 2;
  984. }
  985. static int hls_transform_tree(HEVCContext *s, int x0, int y0,
  986. int xBase, int yBase, int cb_xBase, int cb_yBase,
  987. int log2_cb_size, int log2_trafo_size,
  988. int trafo_depth, int blk_idx,
  989. const int *base_cbf_cb, const int *base_cbf_cr)
  990. {
  991. HEVCLocalContext *lc = s->HEVClc;
  992. uint8_t split_transform_flag;
  993. int cbf_cb[2];
  994. int cbf_cr[2];
  995. int ret;
  996. cbf_cb[0] = base_cbf_cb[0];
  997. cbf_cb[1] = base_cbf_cb[1];
  998. cbf_cr[0] = base_cbf_cr[0];
  999. cbf_cr[1] = base_cbf_cr[1];
  1000. if (lc->cu.intra_split_flag) {
  1001. if (trafo_depth == 1) {
  1002. lc->tu.intra_pred_mode = lc->pu.intra_pred_mode[blk_idx];
  1003. if (s->sps->chroma_format_idc == 3) {
  1004. lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[blk_idx];
  1005. lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[blk_idx];
  1006. } else {
  1007. lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[0];
  1008. lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[0];
  1009. }
  1010. }
  1011. } else {
  1012. lc->tu.intra_pred_mode = lc->pu.intra_pred_mode[0];
  1013. lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[0];
  1014. lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[0];
  1015. }
  1016. if (log2_trafo_size <= s->sps->log2_max_trafo_size &&
  1017. log2_trafo_size > s->sps->log2_min_tb_size &&
  1018. trafo_depth < lc->cu.max_trafo_depth &&
  1019. !(lc->cu.intra_split_flag && trafo_depth == 0)) {
  1020. split_transform_flag = ff_hevc_split_transform_flag_decode(s, log2_trafo_size);
  1021. } else {
  1022. int inter_split = s->sps->max_transform_hierarchy_depth_inter == 0 &&
  1023. lc->cu.pred_mode == MODE_INTER &&
  1024. lc->cu.part_mode != PART_2Nx2N &&
  1025. trafo_depth == 0;
  1026. split_transform_flag = log2_trafo_size > s->sps->log2_max_trafo_size ||
  1027. (lc->cu.intra_split_flag && trafo_depth == 0) ||
  1028. inter_split;
  1029. }
  1030. if (s->sps->chroma_format_idc && (log2_trafo_size > 2 || s->sps->chroma_format_idc == 3)) {
  1031. if (trafo_depth == 0 || cbf_cb[0]) {
  1032. cbf_cb[0] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1033. if (s->sps->chroma_format_idc == 2 && (!split_transform_flag || log2_trafo_size == 3)) {
  1034. cbf_cb[1] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1035. }
  1036. }
  1037. if (trafo_depth == 0 || cbf_cr[0]) {
  1038. cbf_cr[0] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1039. if (s->sps->chroma_format_idc == 2 && (!split_transform_flag || log2_trafo_size == 3)) {
  1040. cbf_cr[1] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1041. }
  1042. }
  1043. }
  1044. if (split_transform_flag) {
  1045. const int trafo_size_split = 1 << (log2_trafo_size - 1);
  1046. const int x1 = x0 + trafo_size_split;
  1047. const int y1 = y0 + trafo_size_split;
  1048. #define SUBDIVIDE(x, y, idx) \
  1049. do { \
  1050. ret = hls_transform_tree(s, x, y, x0, y0, cb_xBase, cb_yBase, log2_cb_size, \
  1051. log2_trafo_size - 1, trafo_depth + 1, idx, \
  1052. cbf_cb, cbf_cr); \
  1053. if (ret < 0) \
  1054. return ret; \
  1055. } while (0)
  1056. SUBDIVIDE(x0, y0, 0);
  1057. SUBDIVIDE(x1, y0, 1);
  1058. SUBDIVIDE(x0, y1, 2);
  1059. SUBDIVIDE(x1, y1, 3);
  1060. #undef SUBDIVIDE
  1061. } else {
  1062. int min_tu_size = 1 << s->sps->log2_min_tb_size;
  1063. int log2_min_tu_size = s->sps->log2_min_tb_size;
  1064. int min_tu_width = s->sps->min_tb_width;
  1065. int cbf_luma = 1;
  1066. if (lc->cu.pred_mode == MODE_INTRA || trafo_depth != 0 ||
  1067. cbf_cb[0] || cbf_cr[0] ||
  1068. (s->sps->chroma_format_idc == 2 && (cbf_cb[1] || cbf_cr[1]))) {
  1069. cbf_luma = ff_hevc_cbf_luma_decode(s, trafo_depth);
  1070. }
  1071. ret = hls_transform_unit(s, x0, y0, xBase, yBase, cb_xBase, cb_yBase,
  1072. log2_cb_size, log2_trafo_size,
  1073. blk_idx, cbf_luma, cbf_cb, cbf_cr);
  1074. if (ret < 0)
  1075. return ret;
  1076. // TODO: store cbf_luma somewhere else
  1077. if (cbf_luma) {
  1078. int i, j;
  1079. for (i = 0; i < (1 << log2_trafo_size); i += min_tu_size)
  1080. for (j = 0; j < (1 << log2_trafo_size); j += min_tu_size) {
  1081. int x_tu = (x0 + j) >> log2_min_tu_size;
  1082. int y_tu = (y0 + i) >> log2_min_tu_size;
  1083. s->cbf_luma[y_tu * min_tu_width + x_tu] = 1;
  1084. }
  1085. }
  1086. if (!s->sh.disable_deblocking_filter_flag) {
  1087. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_trafo_size);
  1088. if (s->pps->transquant_bypass_enable_flag &&
  1089. lc->cu.cu_transquant_bypass_flag)
  1090. set_deblocking_bypass(s, x0, y0, log2_trafo_size);
  1091. }
  1092. }
  1093. return 0;
  1094. }
  1095. static int hls_pcm_sample(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1096. {
  1097. HEVCLocalContext *lc = s->HEVClc;
  1098. GetBitContext gb;
  1099. int cb_size = 1 << log2_cb_size;
  1100. int stride0 = s->frame->linesize[0];
  1101. uint8_t *dst0 = &s->frame->data[0][y0 * stride0 + (x0 << s->sps->pixel_shift)];
  1102. int stride1 = s->frame->linesize[1];
  1103. uint8_t *dst1 = &s->frame->data[1][(y0 >> s->sps->vshift[1]) * stride1 + ((x0 >> s->sps->hshift[1]) << s->sps->pixel_shift)];
  1104. int stride2 = s->frame->linesize[2];
  1105. uint8_t *dst2 = &s->frame->data[2][(y0 >> s->sps->vshift[2]) * stride2 + ((x0 >> s->sps->hshift[2]) << s->sps->pixel_shift)];
  1106. int length = cb_size * cb_size * s->sps->pcm.bit_depth +
  1107. (((cb_size >> s->sps->hshift[1]) * (cb_size >> s->sps->vshift[1])) +
  1108. ((cb_size >> s->sps->hshift[2]) * (cb_size >> s->sps->vshift[2]))) *
  1109. s->sps->pcm.bit_depth_chroma;
  1110. const uint8_t *pcm = skip_bytes(&lc->cc, (length + 7) >> 3);
  1111. int ret;
  1112. if (!s->sh.disable_deblocking_filter_flag)
  1113. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1114. ret = init_get_bits(&gb, pcm, length);
  1115. if (ret < 0)
  1116. return ret;
  1117. s->hevcdsp.put_pcm(dst0, stride0, cb_size, cb_size, &gb, s->sps->pcm.bit_depth);
  1118. if (s->sps->chroma_format_idc) {
  1119. s->hevcdsp.put_pcm(dst1, stride1,
  1120. cb_size >> s->sps->hshift[1],
  1121. cb_size >> s->sps->vshift[1],
  1122. &gb, s->sps->pcm.bit_depth_chroma);
  1123. s->hevcdsp.put_pcm(dst2, stride2,
  1124. cb_size >> s->sps->hshift[2],
  1125. cb_size >> s->sps->vshift[2],
  1126. &gb, s->sps->pcm.bit_depth_chroma);
  1127. }
  1128. return 0;
  1129. }
  1130. /**
  1131. * 8.5.3.2.2.1 Luma sample unidirectional interpolation process
  1132. *
  1133. * @param s HEVC decoding context
  1134. * @param dst target buffer for block data at block position
  1135. * @param dststride stride of the dst buffer
  1136. * @param ref reference picture buffer at origin (0, 0)
  1137. * @param mv motion vector (relative to block position) to get pixel data from
  1138. * @param x_off horizontal position of block from origin (0, 0)
  1139. * @param y_off vertical position of block from origin (0, 0)
  1140. * @param block_w width of block
  1141. * @param block_h height of block
  1142. * @param luma_weight weighting factor applied to the luma prediction
  1143. * @param luma_offset additive offset applied to the luma prediction value
  1144. */
  1145. static void luma_mc_uni(HEVCContext *s, uint8_t *dst, ptrdiff_t dststride,
  1146. AVFrame *ref, const Mv *mv, int x_off, int y_off,
  1147. int block_w, int block_h, int luma_weight, int luma_offset)
  1148. {
  1149. HEVCLocalContext *lc = s->HEVClc;
  1150. uint8_t *src = ref->data[0];
  1151. ptrdiff_t srcstride = ref->linesize[0];
  1152. int pic_width = s->sps->width;
  1153. int pic_height = s->sps->height;
  1154. int mx = mv->x & 3;
  1155. int my = mv->y & 3;
  1156. int weight_flag = (s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
  1157. (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag);
  1158. int idx = ff_hevc_pel_weight[block_w];
  1159. x_off += mv->x >> 2;
  1160. y_off += mv->y >> 2;
  1161. src += y_off * srcstride + (x_off << s->sps->pixel_shift);
  1162. if (x_off < QPEL_EXTRA_BEFORE || y_off < QPEL_EXTRA_AFTER ||
  1163. x_off >= pic_width - block_w - QPEL_EXTRA_AFTER ||
  1164. y_off >= pic_height - block_h - QPEL_EXTRA_AFTER) {
  1165. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift;
  1166. int offset = QPEL_EXTRA_BEFORE * srcstride + (QPEL_EXTRA_BEFORE << s->sps->pixel_shift);
  1167. int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->sps->pixel_shift);
  1168. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src - offset,
  1169. edge_emu_stride, srcstride,
  1170. block_w + QPEL_EXTRA,
  1171. block_h + QPEL_EXTRA,
  1172. x_off - QPEL_EXTRA_BEFORE, y_off - QPEL_EXTRA_BEFORE,
  1173. pic_width, pic_height);
  1174. src = lc->edge_emu_buffer + buf_offset;
  1175. srcstride = edge_emu_stride;
  1176. }
  1177. if (!weight_flag)
  1178. s->hevcdsp.put_hevc_qpel_uni[idx][!!my][!!mx](dst, dststride, src, srcstride,
  1179. block_h, mx, my, block_w);
  1180. else
  1181. s->hevcdsp.put_hevc_qpel_uni_w[idx][!!my][!!mx](dst, dststride, src, srcstride,
  1182. block_h, s->sh.luma_log2_weight_denom,
  1183. luma_weight, luma_offset, mx, my, block_w);
  1184. }
  1185. /**
  1186. * 8.5.3.2.2.1 Luma sample bidirectional interpolation process
  1187. *
  1188. * @param s HEVC decoding context
  1189. * @param dst target buffer for block data at block position
  1190. * @param dststride stride of the dst buffer
  1191. * @param ref0 reference picture0 buffer at origin (0, 0)
  1192. * @param mv0 motion vector0 (relative to block position) to get pixel data from
  1193. * @param x_off horizontal position of block from origin (0, 0)
  1194. * @param y_off vertical position of block from origin (0, 0)
  1195. * @param block_w width of block
  1196. * @param block_h height of block
  1197. * @param ref1 reference picture1 buffer at origin (0, 0)
  1198. * @param mv1 motion vector1 (relative to block position) to get pixel data from
  1199. * @param current_mv current motion vector structure
  1200. */
  1201. static void luma_mc_bi(HEVCContext *s, uint8_t *dst, ptrdiff_t dststride,
  1202. AVFrame *ref0, const Mv *mv0, int x_off, int y_off,
  1203. int block_w, int block_h, AVFrame *ref1, const Mv *mv1, struct MvField *current_mv)
  1204. {
  1205. HEVCLocalContext *lc = s->HEVClc;
  1206. ptrdiff_t src0stride = ref0->linesize[0];
  1207. ptrdiff_t src1stride = ref1->linesize[0];
  1208. int pic_width = s->sps->width;
  1209. int pic_height = s->sps->height;
  1210. int mx0 = mv0->x & 3;
  1211. int my0 = mv0->y & 3;
  1212. int mx1 = mv1->x & 3;
  1213. int my1 = mv1->y & 3;
  1214. int weight_flag = (s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
  1215. (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag);
  1216. int x_off0 = x_off + (mv0->x >> 2);
  1217. int y_off0 = y_off + (mv0->y >> 2);
  1218. int x_off1 = x_off + (mv1->x >> 2);
  1219. int y_off1 = y_off + (mv1->y >> 2);
  1220. int idx = ff_hevc_pel_weight[block_w];
  1221. uint8_t *src0 = ref0->data[0] + y_off0 * src0stride + (int)((unsigned)x_off0 << s->sps->pixel_shift);
  1222. uint8_t *src1 = ref1->data[0] + y_off1 * src1stride + (int)((unsigned)x_off1 << s->sps->pixel_shift);
  1223. if (x_off0 < QPEL_EXTRA_BEFORE || y_off0 < QPEL_EXTRA_AFTER ||
  1224. x_off0 >= pic_width - block_w - QPEL_EXTRA_AFTER ||
  1225. y_off0 >= pic_height - block_h - QPEL_EXTRA_AFTER) {
  1226. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift;
  1227. int offset = QPEL_EXTRA_BEFORE * src0stride + (QPEL_EXTRA_BEFORE << s->sps->pixel_shift);
  1228. int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->sps->pixel_shift);
  1229. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset,
  1230. edge_emu_stride, src0stride,
  1231. block_w + QPEL_EXTRA,
  1232. block_h + QPEL_EXTRA,
  1233. x_off0 - QPEL_EXTRA_BEFORE, y_off0 - QPEL_EXTRA_BEFORE,
  1234. pic_width, pic_height);
  1235. src0 = lc->edge_emu_buffer + buf_offset;
  1236. src0stride = edge_emu_stride;
  1237. }
  1238. if (x_off1 < QPEL_EXTRA_BEFORE || y_off1 < QPEL_EXTRA_AFTER ||
  1239. x_off1 >= pic_width - block_w - QPEL_EXTRA_AFTER ||
  1240. y_off1 >= pic_height - block_h - QPEL_EXTRA_AFTER) {
  1241. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift;
  1242. int offset = QPEL_EXTRA_BEFORE * src1stride + (QPEL_EXTRA_BEFORE << s->sps->pixel_shift);
  1243. int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->sps->pixel_shift);
  1244. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src1 - offset,
  1245. edge_emu_stride, src1stride,
  1246. block_w + QPEL_EXTRA,
  1247. block_h + QPEL_EXTRA,
  1248. x_off1 - QPEL_EXTRA_BEFORE, y_off1 - QPEL_EXTRA_BEFORE,
  1249. pic_width, pic_height);
  1250. src1 = lc->edge_emu_buffer2 + buf_offset;
  1251. src1stride = edge_emu_stride;
  1252. }
  1253. s->hevcdsp.put_hevc_qpel[idx][!!my0][!!mx0](lc->tmp, src0, src0stride,
  1254. block_h, mx0, my0, block_w);
  1255. if (!weight_flag)
  1256. s->hevcdsp.put_hevc_qpel_bi[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, lc->tmp,
  1257. block_h, mx1, my1, block_w);
  1258. else
  1259. s->hevcdsp.put_hevc_qpel_bi_w[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, lc->tmp,
  1260. block_h, s->sh.luma_log2_weight_denom,
  1261. s->sh.luma_weight_l0[current_mv->ref_idx[0]],
  1262. s->sh.luma_weight_l1[current_mv->ref_idx[1]],
  1263. s->sh.luma_offset_l0[current_mv->ref_idx[0]],
  1264. s->sh.luma_offset_l1[current_mv->ref_idx[1]],
  1265. mx1, my1, block_w);
  1266. }
  1267. /**
  1268. * 8.5.3.2.2.2 Chroma sample uniprediction interpolation process
  1269. *
  1270. * @param s HEVC decoding context
  1271. * @param dst1 target buffer for block data at block position (U plane)
  1272. * @param dst2 target buffer for block data at block position (V plane)
  1273. * @param dststride stride of the dst1 and dst2 buffers
  1274. * @param ref reference picture buffer at origin (0, 0)
  1275. * @param mv motion vector (relative to block position) to get pixel data from
  1276. * @param x_off horizontal position of block from origin (0, 0)
  1277. * @param y_off vertical position of block from origin (0, 0)
  1278. * @param block_w width of block
  1279. * @param block_h height of block
  1280. * @param chroma_weight weighting factor applied to the chroma prediction
  1281. * @param chroma_offset additive offset applied to the chroma prediction value
  1282. */
  1283. static void chroma_mc_uni(HEVCContext *s, uint8_t *dst0,
  1284. ptrdiff_t dststride, uint8_t *src0, ptrdiff_t srcstride, int reflist,
  1285. int x_off, int y_off, int block_w, int block_h, struct MvField *current_mv, int chroma_weight, int chroma_offset)
  1286. {
  1287. HEVCLocalContext *lc = s->HEVClc;
  1288. int pic_width = s->sps->width >> s->sps->hshift[1];
  1289. int pic_height = s->sps->height >> s->sps->vshift[1];
  1290. const Mv *mv = &current_mv->mv[reflist];
  1291. int weight_flag = (s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
  1292. (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag);
  1293. int idx = ff_hevc_pel_weight[block_w];
  1294. int hshift = s->sps->hshift[1];
  1295. int vshift = s->sps->vshift[1];
  1296. intptr_t mx = mv->x & ((1 << (2 + hshift)) - 1);
  1297. intptr_t my = mv->y & ((1 << (2 + vshift)) - 1);
  1298. intptr_t _mx = mx << (1 - hshift);
  1299. intptr_t _my = my << (1 - vshift);
  1300. x_off += mv->x >> (2 + hshift);
  1301. y_off += mv->y >> (2 + vshift);
  1302. src0 += y_off * srcstride + (x_off << s->sps->pixel_shift);
  1303. if (x_off < EPEL_EXTRA_BEFORE || y_off < EPEL_EXTRA_AFTER ||
  1304. x_off >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1305. y_off >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1306. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift;
  1307. int offset0 = EPEL_EXTRA_BEFORE * (srcstride + (1 << s->sps->pixel_shift));
  1308. int buf_offset0 = EPEL_EXTRA_BEFORE *
  1309. (edge_emu_stride + (1 << s->sps->pixel_shift));
  1310. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset0,
  1311. edge_emu_stride, srcstride,
  1312. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1313. x_off - EPEL_EXTRA_BEFORE,
  1314. y_off - EPEL_EXTRA_BEFORE,
  1315. pic_width, pic_height);
  1316. src0 = lc->edge_emu_buffer + buf_offset0;
  1317. srcstride = edge_emu_stride;
  1318. }
  1319. if (!weight_flag)
  1320. s->hevcdsp.put_hevc_epel_uni[idx][!!my][!!mx](dst0, dststride, src0, srcstride,
  1321. block_h, _mx, _my, block_w);
  1322. else
  1323. s->hevcdsp.put_hevc_epel_uni_w[idx][!!my][!!mx](dst0, dststride, src0, srcstride,
  1324. block_h, s->sh.chroma_log2_weight_denom,
  1325. chroma_weight, chroma_offset, _mx, _my, block_w);
  1326. }
  1327. /**
  1328. * 8.5.3.2.2.2 Chroma sample bidirectional interpolation process
  1329. *
  1330. * @param s HEVC decoding context
  1331. * @param dst target buffer for block data at block position
  1332. * @param dststride stride of the dst buffer
  1333. * @param ref0 reference picture0 buffer at origin (0, 0)
  1334. * @param mv0 motion vector0 (relative to block position) to get pixel data from
  1335. * @param x_off horizontal position of block from origin (0, 0)
  1336. * @param y_off vertical position of block from origin (0, 0)
  1337. * @param block_w width of block
  1338. * @param block_h height of block
  1339. * @param ref1 reference picture1 buffer at origin (0, 0)
  1340. * @param mv1 motion vector1 (relative to block position) to get pixel data from
  1341. * @param current_mv current motion vector structure
  1342. * @param cidx chroma component(cb, cr)
  1343. */
  1344. static void chroma_mc_bi(HEVCContext *s, uint8_t *dst0, ptrdiff_t dststride, AVFrame *ref0, AVFrame *ref1,
  1345. int x_off, int y_off, int block_w, int block_h, struct MvField *current_mv, int cidx)
  1346. {
  1347. HEVCLocalContext *lc = s->HEVClc;
  1348. uint8_t *src1 = ref0->data[cidx+1];
  1349. uint8_t *src2 = ref1->data[cidx+1];
  1350. ptrdiff_t src1stride = ref0->linesize[cidx+1];
  1351. ptrdiff_t src2stride = ref1->linesize[cidx+1];
  1352. int weight_flag = (s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
  1353. (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag);
  1354. int pic_width = s->sps->width >> s->sps->hshift[1];
  1355. int pic_height = s->sps->height >> s->sps->vshift[1];
  1356. Mv *mv0 = &current_mv->mv[0];
  1357. Mv *mv1 = &current_mv->mv[1];
  1358. int hshift = s->sps->hshift[1];
  1359. int vshift = s->sps->vshift[1];
  1360. intptr_t mx0 = mv0->x & ((1 << (2 + hshift)) - 1);
  1361. intptr_t my0 = mv0->y & ((1 << (2 + vshift)) - 1);
  1362. intptr_t mx1 = mv1->x & ((1 << (2 + hshift)) - 1);
  1363. intptr_t my1 = mv1->y & ((1 << (2 + vshift)) - 1);
  1364. intptr_t _mx0 = mx0 << (1 - hshift);
  1365. intptr_t _my0 = my0 << (1 - vshift);
  1366. intptr_t _mx1 = mx1 << (1 - hshift);
  1367. intptr_t _my1 = my1 << (1 - vshift);
  1368. int x_off0 = x_off + (mv0->x >> (2 + hshift));
  1369. int y_off0 = y_off + (mv0->y >> (2 + vshift));
  1370. int x_off1 = x_off + (mv1->x >> (2 + hshift));
  1371. int y_off1 = y_off + (mv1->y >> (2 + vshift));
  1372. int idx = ff_hevc_pel_weight[block_w];
  1373. src1 += y_off0 * src1stride + (int)((unsigned)x_off0 << s->sps->pixel_shift);
  1374. src2 += y_off1 * src2stride + (int)((unsigned)x_off1 << s->sps->pixel_shift);
  1375. if (x_off0 < EPEL_EXTRA_BEFORE || y_off0 < EPEL_EXTRA_AFTER ||
  1376. x_off0 >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1377. y_off0 >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1378. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift;
  1379. int offset1 = EPEL_EXTRA_BEFORE * (src1stride + (1 << s->sps->pixel_shift));
  1380. int buf_offset1 = EPEL_EXTRA_BEFORE *
  1381. (edge_emu_stride + (1 << s->sps->pixel_shift));
  1382. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src1 - offset1,
  1383. edge_emu_stride, src1stride,
  1384. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1385. x_off0 - EPEL_EXTRA_BEFORE,
  1386. y_off0 - EPEL_EXTRA_BEFORE,
  1387. pic_width, pic_height);
  1388. src1 = lc->edge_emu_buffer + buf_offset1;
  1389. src1stride = edge_emu_stride;
  1390. }
  1391. if (x_off1 < EPEL_EXTRA_BEFORE || y_off1 < EPEL_EXTRA_AFTER ||
  1392. x_off1 >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1393. y_off1 >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1394. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift;
  1395. int offset1 = EPEL_EXTRA_BEFORE * (src2stride + (1 << s->sps->pixel_shift));
  1396. int buf_offset1 = EPEL_EXTRA_BEFORE *
  1397. (edge_emu_stride + (1 << s->sps->pixel_shift));
  1398. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src2 - offset1,
  1399. edge_emu_stride, src2stride,
  1400. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1401. x_off1 - EPEL_EXTRA_BEFORE,
  1402. y_off1 - EPEL_EXTRA_BEFORE,
  1403. pic_width, pic_height);
  1404. src2 = lc->edge_emu_buffer2 + buf_offset1;
  1405. src2stride = edge_emu_stride;
  1406. }
  1407. s->hevcdsp.put_hevc_epel[idx][!!my0][!!mx0](lc->tmp, src1, src1stride,
  1408. block_h, _mx0, _my0, block_w);
  1409. if (!weight_flag)
  1410. s->hevcdsp.put_hevc_epel_bi[idx][!!my1][!!mx1](dst0, s->frame->linesize[cidx+1],
  1411. src2, src2stride, lc->tmp,
  1412. block_h, _mx1, _my1, block_w);
  1413. else
  1414. s->hevcdsp.put_hevc_epel_bi_w[idx][!!my1][!!mx1](dst0, s->frame->linesize[cidx+1],
  1415. src2, src2stride, lc->tmp,
  1416. block_h,
  1417. s->sh.chroma_log2_weight_denom,
  1418. s->sh.chroma_weight_l0[current_mv->ref_idx[0]][cidx],
  1419. s->sh.chroma_weight_l1[current_mv->ref_idx[1]][cidx],
  1420. s->sh.chroma_offset_l0[current_mv->ref_idx[0]][cidx],
  1421. s->sh.chroma_offset_l1[current_mv->ref_idx[1]][cidx],
  1422. _mx1, _my1, block_w);
  1423. }
  1424. static void hevc_await_progress(HEVCContext *s, HEVCFrame *ref,
  1425. const Mv *mv, int y0, int height)
  1426. {
  1427. int y = FFMAX(0, (mv->y >> 2) + y0 + height + 9);
  1428. if (s->threads_type == FF_THREAD_FRAME )
  1429. ff_thread_await_progress(&ref->tf, y, 0);
  1430. }
  1431. static void hevc_luma_mv_mpv_mode(HEVCContext *s, int x0, int y0, int nPbW,
  1432. int nPbH, int log2_cb_size, int part_idx,
  1433. int merge_idx, MvField *mv)
  1434. {
  1435. HEVCLocalContext *lc = s->HEVClc;
  1436. enum InterPredIdc inter_pred_idc = PRED_L0;
  1437. int mvp_flag;
  1438. ff_hevc_set_neighbour_available(s, x0, y0, nPbW, nPbH);
  1439. mv->pred_flag = 0;
  1440. if (s->sh.slice_type == B_SLICE)
  1441. inter_pred_idc = ff_hevc_inter_pred_idc_decode(s, nPbW, nPbH);
  1442. if (inter_pred_idc != PRED_L1) {
  1443. if (s->sh.nb_refs[L0])
  1444. mv->ref_idx[0]= ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L0]);
  1445. mv->pred_flag = PF_L0;
  1446. ff_hevc_hls_mvd_coding(s, x0, y0, 0);
  1447. mvp_flag = ff_hevc_mvp_lx_flag_decode(s);
  1448. ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1449. part_idx, merge_idx, mv, mvp_flag, 0);
  1450. mv->mv[0].x += lc->pu.mvd.x;
  1451. mv->mv[0].y += lc->pu.mvd.y;
  1452. }
  1453. if (inter_pred_idc != PRED_L0) {
  1454. if (s->sh.nb_refs[L1])
  1455. mv->ref_idx[1]= ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L1]);
  1456. if (s->sh.mvd_l1_zero_flag == 1 && inter_pred_idc == PRED_BI) {
  1457. AV_ZERO32(&lc->pu.mvd);
  1458. } else {
  1459. ff_hevc_hls_mvd_coding(s, x0, y0, 1);
  1460. }
  1461. mv->pred_flag += PF_L1;
  1462. mvp_flag = ff_hevc_mvp_lx_flag_decode(s);
  1463. ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1464. part_idx, merge_idx, mv, mvp_flag, 1);
  1465. mv->mv[1].x += lc->pu.mvd.x;
  1466. mv->mv[1].y += lc->pu.mvd.y;
  1467. }
  1468. }
  1469. static void hls_prediction_unit(HEVCContext *s, int x0, int y0,
  1470. int nPbW, int nPbH,
  1471. int log2_cb_size, int partIdx, int idx)
  1472. {
  1473. #define POS(c_idx, x, y) \
  1474. &s->frame->data[c_idx][((y) >> s->sps->vshift[c_idx]) * s->frame->linesize[c_idx] + \
  1475. (((x) >> s->sps->hshift[c_idx]) << s->sps->pixel_shift)]
  1476. HEVCLocalContext *lc = s->HEVClc;
  1477. int merge_idx = 0;
  1478. struct MvField current_mv = {{{ 0 }}};
  1479. int min_pu_width = s->sps->min_pu_width;
  1480. MvField *tab_mvf = s->ref->tab_mvf;
  1481. RefPicList *refPicList = s->ref->refPicList;
  1482. HEVCFrame *ref0 = NULL, *ref1 = NULL;
  1483. uint8_t *dst0 = POS(0, x0, y0);
  1484. uint8_t *dst1 = POS(1, x0, y0);
  1485. uint8_t *dst2 = POS(2, x0, y0);
  1486. int log2_min_cb_size = s->sps->log2_min_cb_size;
  1487. int min_cb_width = s->sps->min_cb_width;
  1488. int x_cb = x0 >> log2_min_cb_size;
  1489. int y_cb = y0 >> log2_min_cb_size;
  1490. int x_pu, y_pu;
  1491. int i, j;
  1492. int skip_flag = SAMPLE_CTB(s->skip_flag, x_cb, y_cb);
  1493. if (!skip_flag)
  1494. lc->pu.merge_flag = ff_hevc_merge_flag_decode(s);
  1495. if (skip_flag || lc->pu.merge_flag) {
  1496. if (s->sh.max_num_merge_cand > 1)
  1497. merge_idx = ff_hevc_merge_idx_decode(s);
  1498. else
  1499. merge_idx = 0;
  1500. ff_hevc_luma_mv_merge_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1501. partIdx, merge_idx, &current_mv);
  1502. } else {
  1503. hevc_luma_mv_mpv_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1504. partIdx, merge_idx, &current_mv);
  1505. }
  1506. x_pu = x0 >> s->sps->log2_min_pu_size;
  1507. y_pu = y0 >> s->sps->log2_min_pu_size;
  1508. for (j = 0; j < nPbH >> s->sps->log2_min_pu_size; j++)
  1509. for (i = 0; i < nPbW >> s->sps->log2_min_pu_size; i++)
  1510. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
  1511. if (current_mv.pred_flag & PF_L0) {
  1512. ref0 = refPicList[0].ref[current_mv.ref_idx[0]];
  1513. if (!ref0)
  1514. return;
  1515. hevc_await_progress(s, ref0, &current_mv.mv[0], y0, nPbH);
  1516. }
  1517. if (current_mv.pred_flag & PF_L1) {
  1518. ref1 = refPicList[1].ref[current_mv.ref_idx[1]];
  1519. if (!ref1)
  1520. return;
  1521. hevc_await_progress(s, ref1, &current_mv.mv[1], y0, nPbH);
  1522. }
  1523. if (current_mv.pred_flag == PF_L0) {
  1524. int x0_c = x0 >> s->sps->hshift[1];
  1525. int y0_c = y0 >> s->sps->vshift[1];
  1526. int nPbW_c = nPbW >> s->sps->hshift[1];
  1527. int nPbH_c = nPbH >> s->sps->vshift[1];
  1528. luma_mc_uni(s, dst0, s->frame->linesize[0], ref0->frame,
  1529. &current_mv.mv[0], x0, y0, nPbW, nPbH,
  1530. s->sh.luma_weight_l0[current_mv.ref_idx[0]],
  1531. s->sh.luma_offset_l0[current_mv.ref_idx[0]]);
  1532. if (s->sps->chroma_format_idc) {
  1533. chroma_mc_uni(s, dst1, s->frame->linesize[1], ref0->frame->data[1], ref0->frame->linesize[1],
  1534. 0, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1535. s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0]);
  1536. chroma_mc_uni(s, dst2, s->frame->linesize[2], ref0->frame->data[2], ref0->frame->linesize[2],
  1537. 0, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1538. s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1]);
  1539. }
  1540. } else if (current_mv.pred_flag == PF_L1) {
  1541. int x0_c = x0 >> s->sps->hshift[1];
  1542. int y0_c = y0 >> s->sps->vshift[1];
  1543. int nPbW_c = nPbW >> s->sps->hshift[1];
  1544. int nPbH_c = nPbH >> s->sps->vshift[1];
  1545. luma_mc_uni(s, dst0, s->frame->linesize[0], ref1->frame,
  1546. &current_mv.mv[1], x0, y0, nPbW, nPbH,
  1547. s->sh.luma_weight_l1[current_mv.ref_idx[1]],
  1548. s->sh.luma_offset_l1[current_mv.ref_idx[1]]);
  1549. if (s->sps->chroma_format_idc) {
  1550. chroma_mc_uni(s, dst1, s->frame->linesize[1], ref1->frame->data[1], ref1->frame->linesize[1],
  1551. 1, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1552. s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0]);
  1553. chroma_mc_uni(s, dst2, s->frame->linesize[2], ref1->frame->data[2], ref1->frame->linesize[2],
  1554. 1, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1555. s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1]);
  1556. }
  1557. } else if (current_mv.pred_flag == PF_BI) {
  1558. int x0_c = x0 >> s->sps->hshift[1];
  1559. int y0_c = y0 >> s->sps->vshift[1];
  1560. int nPbW_c = nPbW >> s->sps->hshift[1];
  1561. int nPbH_c = nPbH >> s->sps->vshift[1];
  1562. luma_mc_bi(s, dst0, s->frame->linesize[0], ref0->frame,
  1563. &current_mv.mv[0], x0, y0, nPbW, nPbH,
  1564. ref1->frame, &current_mv.mv[1], &current_mv);
  1565. if (s->sps->chroma_format_idc) {
  1566. chroma_mc_bi(s, dst1, s->frame->linesize[1], ref0->frame, ref1->frame,
  1567. x0_c, y0_c, nPbW_c, nPbH_c, &current_mv, 0);
  1568. chroma_mc_bi(s, dst2, s->frame->linesize[2], ref0->frame, ref1->frame,
  1569. x0_c, y0_c, nPbW_c, nPbH_c, &current_mv, 1);
  1570. }
  1571. }
  1572. }
  1573. /**
  1574. * 8.4.1
  1575. */
  1576. static int luma_intra_pred_mode(HEVCContext *s, int x0, int y0, int pu_size,
  1577. int prev_intra_luma_pred_flag)
  1578. {
  1579. HEVCLocalContext *lc = s->HEVClc;
  1580. int x_pu = x0 >> s->sps->log2_min_pu_size;
  1581. int y_pu = y0 >> s->sps->log2_min_pu_size;
  1582. int min_pu_width = s->sps->min_pu_width;
  1583. int size_in_pus = pu_size >> s->sps->log2_min_pu_size;
  1584. int x0b = x0 & ((1 << s->sps->log2_ctb_size) - 1);
  1585. int y0b = y0 & ((1 << s->sps->log2_ctb_size) - 1);
  1586. int cand_up = (lc->ctb_up_flag || y0b) ?
  1587. s->tab_ipm[(y_pu - 1) * min_pu_width + x_pu] : INTRA_DC;
  1588. int cand_left = (lc->ctb_left_flag || x0b) ?
  1589. s->tab_ipm[y_pu * min_pu_width + x_pu - 1] : INTRA_DC;
  1590. int y_ctb = (y0 >> (s->sps->log2_ctb_size)) << (s->sps->log2_ctb_size);
  1591. MvField *tab_mvf = s->ref->tab_mvf;
  1592. int intra_pred_mode;
  1593. int candidate[3];
  1594. int i, j;
  1595. // intra_pred_mode prediction does not cross vertical CTB boundaries
  1596. if ((y0 - 1) < y_ctb)
  1597. cand_up = INTRA_DC;
  1598. if (cand_left == cand_up) {
  1599. if (cand_left < 2) {
  1600. candidate[0] = INTRA_PLANAR;
  1601. candidate[1] = INTRA_DC;
  1602. candidate[2] = INTRA_ANGULAR_26;
  1603. } else {
  1604. candidate[0] = cand_left;
  1605. candidate[1] = 2 + ((cand_left - 2 - 1 + 32) & 31);
  1606. candidate[2] = 2 + ((cand_left - 2 + 1) & 31);
  1607. }
  1608. } else {
  1609. candidate[0] = cand_left;
  1610. candidate[1] = cand_up;
  1611. if (candidate[0] != INTRA_PLANAR && candidate[1] != INTRA_PLANAR) {
  1612. candidate[2] = INTRA_PLANAR;
  1613. } else if (candidate[0] != INTRA_DC && candidate[1] != INTRA_DC) {
  1614. candidate[2] = INTRA_DC;
  1615. } else {
  1616. candidate[2] = INTRA_ANGULAR_26;
  1617. }
  1618. }
  1619. if (prev_intra_luma_pred_flag) {
  1620. intra_pred_mode = candidate[lc->pu.mpm_idx];
  1621. } else {
  1622. if (candidate[0] > candidate[1])
  1623. FFSWAP(uint8_t, candidate[0], candidate[1]);
  1624. if (candidate[0] > candidate[2])
  1625. FFSWAP(uint8_t, candidate[0], candidate[2]);
  1626. if (candidate[1] > candidate[2])
  1627. FFSWAP(uint8_t, candidate[1], candidate[2]);
  1628. intra_pred_mode = lc->pu.rem_intra_luma_pred_mode;
  1629. for (i = 0; i < 3; i++)
  1630. if (intra_pred_mode >= candidate[i])
  1631. intra_pred_mode++;
  1632. }
  1633. /* write the intra prediction units into the mv array */
  1634. if (!size_in_pus)
  1635. size_in_pus = 1;
  1636. for (i = 0; i < size_in_pus; i++) {
  1637. memset(&s->tab_ipm[(y_pu + i) * min_pu_width + x_pu],
  1638. intra_pred_mode, size_in_pus);
  1639. for (j = 0; j < size_in_pus; j++) {
  1640. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag = PF_INTRA;
  1641. }
  1642. }
  1643. return intra_pred_mode;
  1644. }
  1645. static av_always_inline void set_ct_depth(HEVCContext *s, int x0, int y0,
  1646. int log2_cb_size, int ct_depth)
  1647. {
  1648. int length = (1 << log2_cb_size) >> s->sps->log2_min_cb_size;
  1649. int x_cb = x0 >> s->sps->log2_min_cb_size;
  1650. int y_cb = y0 >> s->sps->log2_min_cb_size;
  1651. int y;
  1652. for (y = 0; y < length; y++)
  1653. memset(&s->tab_ct_depth[(y_cb + y) * s->sps->min_cb_width + x_cb],
  1654. ct_depth, length);
  1655. }
  1656. static const uint8_t tab_mode_idx[] = {
  1657. 0, 1, 2, 2, 2, 2, 3, 5, 7, 8, 10, 12, 13, 15, 17, 18, 19, 20,
  1658. 21, 22, 23, 23, 24, 24, 25, 25, 26, 27, 27, 28, 28, 29, 29, 30, 31};
  1659. static void intra_prediction_unit(HEVCContext *s, int x0, int y0,
  1660. int log2_cb_size)
  1661. {
  1662. HEVCLocalContext *lc = s->HEVClc;
  1663. static const uint8_t intra_chroma_table[4] = { 0, 26, 10, 1 };
  1664. uint8_t prev_intra_luma_pred_flag[4];
  1665. int split = lc->cu.part_mode == PART_NxN;
  1666. int pb_size = (1 << log2_cb_size) >> split;
  1667. int side = split + 1;
  1668. int chroma_mode;
  1669. int i, j;
  1670. for (i = 0; i < side; i++)
  1671. for (j = 0; j < side; j++)
  1672. prev_intra_luma_pred_flag[2 * i + j] = ff_hevc_prev_intra_luma_pred_flag_decode(s);
  1673. for (i = 0; i < side; i++) {
  1674. for (j = 0; j < side; j++) {
  1675. if (prev_intra_luma_pred_flag[2 * i + j])
  1676. lc->pu.mpm_idx = ff_hevc_mpm_idx_decode(s);
  1677. else
  1678. lc->pu.rem_intra_luma_pred_mode = ff_hevc_rem_intra_luma_pred_mode_decode(s);
  1679. lc->pu.intra_pred_mode[2 * i + j] =
  1680. luma_intra_pred_mode(s, x0 + pb_size * j, y0 + pb_size * i, pb_size,
  1681. prev_intra_luma_pred_flag[2 * i + j]);
  1682. }
  1683. }
  1684. if (s->sps->chroma_format_idc == 3) {
  1685. for (i = 0; i < side; i++) {
  1686. for (j = 0; j < side; j++) {
  1687. lc->pu.chroma_mode_c[2 * i + j] = chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1688. if (chroma_mode != 4) {
  1689. if (lc->pu.intra_pred_mode[2 * i + j] == intra_chroma_table[chroma_mode])
  1690. lc->pu.intra_pred_mode_c[2 * i + j] = 34;
  1691. else
  1692. lc->pu.intra_pred_mode_c[2 * i + j] = intra_chroma_table[chroma_mode];
  1693. } else {
  1694. lc->pu.intra_pred_mode_c[2 * i + j] = lc->pu.intra_pred_mode[2 * i + j];
  1695. }
  1696. }
  1697. }
  1698. } else if (s->sps->chroma_format_idc == 2) {
  1699. int mode_idx;
  1700. lc->pu.chroma_mode_c[0] = chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1701. if (chroma_mode != 4) {
  1702. if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
  1703. mode_idx = 34;
  1704. else
  1705. mode_idx = intra_chroma_table[chroma_mode];
  1706. } else {
  1707. mode_idx = lc->pu.intra_pred_mode[0];
  1708. }
  1709. lc->pu.intra_pred_mode_c[0] = tab_mode_idx[mode_idx];
  1710. } else if (s->sps->chroma_format_idc != 0) {
  1711. chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1712. if (chroma_mode != 4) {
  1713. if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
  1714. lc->pu.intra_pred_mode_c[0] = 34;
  1715. else
  1716. lc->pu.intra_pred_mode_c[0] = intra_chroma_table[chroma_mode];
  1717. } else {
  1718. lc->pu.intra_pred_mode_c[0] = lc->pu.intra_pred_mode[0];
  1719. }
  1720. }
  1721. }
  1722. static void intra_prediction_unit_default_value(HEVCContext *s,
  1723. int x0, int y0,
  1724. int log2_cb_size)
  1725. {
  1726. HEVCLocalContext *lc = s->HEVClc;
  1727. int pb_size = 1 << log2_cb_size;
  1728. int size_in_pus = pb_size >> s->sps->log2_min_pu_size;
  1729. int min_pu_width = s->sps->min_pu_width;
  1730. MvField *tab_mvf = s->ref->tab_mvf;
  1731. int x_pu = x0 >> s->sps->log2_min_pu_size;
  1732. int y_pu = y0 >> s->sps->log2_min_pu_size;
  1733. int j, k;
  1734. if (size_in_pus == 0)
  1735. size_in_pus = 1;
  1736. for (j = 0; j < size_in_pus; j++)
  1737. memset(&s->tab_ipm[(y_pu + j) * min_pu_width + x_pu], INTRA_DC, size_in_pus);
  1738. if (lc->cu.pred_mode == MODE_INTRA)
  1739. for (j = 0; j < size_in_pus; j++)
  1740. for (k = 0; k < size_in_pus; k++)
  1741. tab_mvf[(y_pu + j) * min_pu_width + x_pu + k].pred_flag = PF_INTRA;
  1742. }
  1743. static int hls_coding_unit(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1744. {
  1745. int cb_size = 1 << log2_cb_size;
  1746. HEVCLocalContext *lc = s->HEVClc;
  1747. int log2_min_cb_size = s->sps->log2_min_cb_size;
  1748. int length = cb_size >> log2_min_cb_size;
  1749. int min_cb_width = s->sps->min_cb_width;
  1750. int x_cb = x0 >> log2_min_cb_size;
  1751. int y_cb = y0 >> log2_min_cb_size;
  1752. int idx = log2_cb_size - 2;
  1753. int qp_block_mask = (1<<(s->sps->log2_ctb_size - s->pps->diff_cu_qp_delta_depth)) - 1;
  1754. int x, y, ret;
  1755. lc->cu.x = x0;
  1756. lc->cu.y = y0;
  1757. lc->cu.pred_mode = MODE_INTRA;
  1758. lc->cu.part_mode = PART_2Nx2N;
  1759. lc->cu.intra_split_flag = 0;
  1760. SAMPLE_CTB(s->skip_flag, x_cb, y_cb) = 0;
  1761. for (x = 0; x < 4; x++)
  1762. lc->pu.intra_pred_mode[x] = 1;
  1763. if (s->pps->transquant_bypass_enable_flag) {
  1764. lc->cu.cu_transquant_bypass_flag = ff_hevc_cu_transquant_bypass_flag_decode(s);
  1765. if (lc->cu.cu_transquant_bypass_flag)
  1766. set_deblocking_bypass(s, x0, y0, log2_cb_size);
  1767. } else
  1768. lc->cu.cu_transquant_bypass_flag = 0;
  1769. if (s->sh.slice_type != I_SLICE) {
  1770. uint8_t skip_flag = ff_hevc_skip_flag_decode(s, x0, y0, x_cb, y_cb);
  1771. x = y_cb * min_cb_width + x_cb;
  1772. for (y = 0; y < length; y++) {
  1773. memset(&s->skip_flag[x], skip_flag, length);
  1774. x += min_cb_width;
  1775. }
  1776. lc->cu.pred_mode = skip_flag ? MODE_SKIP : MODE_INTER;
  1777. } else {
  1778. x = y_cb * min_cb_width + x_cb;
  1779. for (y = 0; y < length; y++) {
  1780. memset(&s->skip_flag[x], 0, length);
  1781. x += min_cb_width;
  1782. }
  1783. }
  1784. if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) {
  1785. hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0, idx);
  1786. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1787. if (!s->sh.disable_deblocking_filter_flag)
  1788. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1789. } else {
  1790. int pcm_flag = 0;
  1791. if (s->sh.slice_type != I_SLICE)
  1792. lc->cu.pred_mode = ff_hevc_pred_mode_decode(s);
  1793. if (lc->cu.pred_mode != MODE_INTRA ||
  1794. log2_cb_size == s->sps->log2_min_cb_size) {
  1795. lc->cu.part_mode = ff_hevc_part_mode_decode(s, log2_cb_size);
  1796. lc->cu.intra_split_flag = lc->cu.part_mode == PART_NxN &&
  1797. lc->cu.pred_mode == MODE_INTRA;
  1798. }
  1799. if (lc->cu.pred_mode == MODE_INTRA) {
  1800. if (lc->cu.part_mode == PART_2Nx2N && s->sps->pcm_enabled_flag &&
  1801. log2_cb_size >= s->sps->pcm.log2_min_pcm_cb_size &&
  1802. log2_cb_size <= s->sps->pcm.log2_max_pcm_cb_size) {
  1803. pcm_flag = ff_hevc_pcm_flag_decode(s);
  1804. }
  1805. if (pcm_flag) {
  1806. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1807. ret = hls_pcm_sample(s, x0, y0, log2_cb_size);
  1808. if (s->sps->pcm.loop_filter_disable_flag)
  1809. set_deblocking_bypass(s, x0, y0, log2_cb_size);
  1810. if (ret < 0)
  1811. return ret;
  1812. } else {
  1813. intra_prediction_unit(s, x0, y0, log2_cb_size);
  1814. }
  1815. } else {
  1816. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1817. switch (lc->cu.part_mode) {
  1818. case PART_2Nx2N:
  1819. hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0, idx);
  1820. break;
  1821. case PART_2NxN:
  1822. hls_prediction_unit(s, x0, y0, cb_size, cb_size / 2, log2_cb_size, 0, idx);
  1823. hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size, cb_size / 2, log2_cb_size, 1, idx);
  1824. break;
  1825. case PART_Nx2N:
  1826. hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size, log2_cb_size, 0, idx - 1);
  1827. hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size, log2_cb_size, 1, idx - 1);
  1828. break;
  1829. case PART_2NxnU:
  1830. hls_prediction_unit(s, x0, y0, cb_size, cb_size / 4, log2_cb_size, 0, idx);
  1831. hls_prediction_unit(s, x0, y0 + cb_size / 4, cb_size, cb_size * 3 / 4, log2_cb_size, 1, idx);
  1832. break;
  1833. case PART_2NxnD:
  1834. hls_prediction_unit(s, x0, y0, cb_size, cb_size * 3 / 4, log2_cb_size, 0, idx);
  1835. hls_prediction_unit(s, x0, y0 + cb_size * 3 / 4, cb_size, cb_size / 4, log2_cb_size, 1, idx);
  1836. break;
  1837. case PART_nLx2N:
  1838. hls_prediction_unit(s, x0, y0, cb_size / 4, cb_size, log2_cb_size, 0, idx - 2);
  1839. hls_prediction_unit(s, x0 + cb_size / 4, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 1, idx - 2);
  1840. break;
  1841. case PART_nRx2N:
  1842. hls_prediction_unit(s, x0, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 0, idx - 2);
  1843. hls_prediction_unit(s, x0 + cb_size * 3 / 4, y0, cb_size / 4, cb_size, log2_cb_size, 1, idx - 2);
  1844. break;
  1845. case PART_NxN:
  1846. hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size / 2, log2_cb_size, 0, idx - 1);
  1847. hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size / 2, log2_cb_size, 1, idx - 1);
  1848. hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 2, idx - 1);
  1849. hls_prediction_unit(s, x0 + cb_size / 2, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 3, idx - 1);
  1850. break;
  1851. }
  1852. }
  1853. if (!pcm_flag) {
  1854. int rqt_root_cbf = 1;
  1855. if (lc->cu.pred_mode != MODE_INTRA &&
  1856. !(lc->cu.part_mode == PART_2Nx2N && lc->pu.merge_flag)) {
  1857. rqt_root_cbf = ff_hevc_no_residual_syntax_flag_decode(s);
  1858. }
  1859. if (rqt_root_cbf) {
  1860. const static int cbf[2] = { 0 };
  1861. lc->cu.max_trafo_depth = lc->cu.pred_mode == MODE_INTRA ?
  1862. s->sps->max_transform_hierarchy_depth_intra + lc->cu.intra_split_flag :
  1863. s->sps->max_transform_hierarchy_depth_inter;
  1864. ret = hls_transform_tree(s, x0, y0, x0, y0, x0, y0,
  1865. log2_cb_size,
  1866. log2_cb_size, 0, 0, cbf, cbf);
  1867. if (ret < 0)
  1868. return ret;
  1869. } else {
  1870. if (!s->sh.disable_deblocking_filter_flag)
  1871. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1872. }
  1873. }
  1874. }
  1875. if (s->pps->cu_qp_delta_enabled_flag && lc->tu.is_cu_qp_delta_coded == 0)
  1876. ff_hevc_set_qPy(s, x0, y0, log2_cb_size);
  1877. x = y_cb * min_cb_width + x_cb;
  1878. for (y = 0; y < length; y++) {
  1879. memset(&s->qp_y_tab[x], lc->qp_y, length);
  1880. x += min_cb_width;
  1881. }
  1882. if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 &&
  1883. ((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0) {
  1884. lc->qPy_pred = lc->qp_y;
  1885. }
  1886. set_ct_depth(s, x0, y0, log2_cb_size, lc->ct_depth);
  1887. return 0;
  1888. }
  1889. static int hls_coding_quadtree(HEVCContext *s, int x0, int y0,
  1890. int log2_cb_size, int cb_depth)
  1891. {
  1892. HEVCLocalContext *lc = s->HEVClc;
  1893. const int cb_size = 1 << log2_cb_size;
  1894. int ret;
  1895. int split_cu;
  1896. lc->ct_depth = cb_depth;
  1897. if (x0 + cb_size <= s->sps->width &&
  1898. y0 + cb_size <= s->sps->height &&
  1899. log2_cb_size > s->sps->log2_min_cb_size) {
  1900. split_cu = ff_hevc_split_coding_unit_flag_decode(s, cb_depth, x0, y0);
  1901. } else {
  1902. split_cu = (log2_cb_size > s->sps->log2_min_cb_size);
  1903. }
  1904. if (s->pps->cu_qp_delta_enabled_flag &&
  1905. log2_cb_size >= s->sps->log2_ctb_size - s->pps->diff_cu_qp_delta_depth) {
  1906. lc->tu.is_cu_qp_delta_coded = 0;
  1907. lc->tu.cu_qp_delta = 0;
  1908. }
  1909. if (s->sh.cu_chroma_qp_offset_enabled_flag &&
  1910. log2_cb_size >= s->sps->log2_ctb_size - s->pps->diff_cu_chroma_qp_offset_depth) {
  1911. lc->tu.is_cu_chroma_qp_offset_coded = 0;
  1912. }
  1913. if (split_cu) {
  1914. int qp_block_mask = (1<<(s->sps->log2_ctb_size - s->pps->diff_cu_qp_delta_depth)) - 1;
  1915. const int cb_size_split = cb_size >> 1;
  1916. const int x1 = x0 + cb_size_split;
  1917. const int y1 = y0 + cb_size_split;
  1918. int more_data = 0;
  1919. more_data = hls_coding_quadtree(s, x0, y0, log2_cb_size - 1, cb_depth + 1);
  1920. if (more_data < 0)
  1921. return more_data;
  1922. if (more_data && x1 < s->sps->width) {
  1923. more_data = hls_coding_quadtree(s, x1, y0, log2_cb_size - 1, cb_depth + 1);
  1924. if (more_data < 0)
  1925. return more_data;
  1926. }
  1927. if (more_data && y1 < s->sps->height) {
  1928. more_data = hls_coding_quadtree(s, x0, y1, log2_cb_size - 1, cb_depth + 1);
  1929. if (more_data < 0)
  1930. return more_data;
  1931. }
  1932. if (more_data && x1 < s->sps->width &&
  1933. y1 < s->sps->height) {
  1934. more_data = hls_coding_quadtree(s, x1, y1, log2_cb_size - 1, cb_depth + 1);
  1935. if (more_data < 0)
  1936. return more_data;
  1937. }
  1938. if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 &&
  1939. ((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0)
  1940. lc->qPy_pred = lc->qp_y;
  1941. if (more_data)
  1942. return ((x1 + cb_size_split) < s->sps->width ||
  1943. (y1 + cb_size_split) < s->sps->height);
  1944. else
  1945. return 0;
  1946. } else {
  1947. ret = hls_coding_unit(s, x0, y0, log2_cb_size);
  1948. if (ret < 0)
  1949. return ret;
  1950. if ((!((x0 + cb_size) %
  1951. (1 << (s->sps->log2_ctb_size))) ||
  1952. (x0 + cb_size >= s->sps->width)) &&
  1953. (!((y0 + cb_size) %
  1954. (1 << (s->sps->log2_ctb_size))) ||
  1955. (y0 + cb_size >= s->sps->height))) {
  1956. int end_of_slice_flag = ff_hevc_end_of_slice_flag_decode(s);
  1957. return !end_of_slice_flag;
  1958. } else {
  1959. return 1;
  1960. }
  1961. }
  1962. return 0;
  1963. }
  1964. static void hls_decode_neighbour(HEVCContext *s, int x_ctb, int y_ctb,
  1965. int ctb_addr_ts)
  1966. {
  1967. HEVCLocalContext *lc = s->HEVClc;
  1968. int ctb_size = 1 << s->sps->log2_ctb_size;
  1969. int ctb_addr_rs = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  1970. int ctb_addr_in_slice = ctb_addr_rs - s->sh.slice_addr;
  1971. s->tab_slice_address[ctb_addr_rs] = s->sh.slice_addr;
  1972. if (s->pps->entropy_coding_sync_enabled_flag) {
  1973. if (x_ctb == 0 && (y_ctb & (ctb_size - 1)) == 0)
  1974. lc->first_qp_group = 1;
  1975. lc->end_of_tiles_x = s->sps->width;
  1976. } else if (s->pps->tiles_enabled_flag) {
  1977. if (ctb_addr_ts && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[ctb_addr_ts - 1]) {
  1978. int idxX = s->pps->col_idxX[x_ctb >> s->sps->log2_ctb_size];
  1979. lc->end_of_tiles_x = x_ctb + (s->pps->column_width[idxX] << s->sps->log2_ctb_size);
  1980. lc->first_qp_group = 1;
  1981. }
  1982. } else {
  1983. lc->end_of_tiles_x = s->sps->width;
  1984. }
  1985. lc->end_of_tiles_y = FFMIN(y_ctb + ctb_size, s->sps->height);
  1986. lc->boundary_flags = 0;
  1987. if (s->pps->tiles_enabled_flag) {
  1988. if (x_ctb > 0 && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs - 1]])
  1989. lc->boundary_flags |= BOUNDARY_LEFT_TILE;
  1990. if (x_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - 1])
  1991. lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
  1992. if (y_ctb > 0 && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->sps->ctb_width]])
  1993. lc->boundary_flags |= BOUNDARY_UPPER_TILE;
  1994. if (y_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - s->sps->ctb_width])
  1995. lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
  1996. } else {
  1997. if (!ctb_addr_in_slice > 0)
  1998. lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
  1999. if (ctb_addr_in_slice < s->sps->ctb_width)
  2000. lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
  2001. }
  2002. lc->ctb_left_flag = ((x_ctb > 0) && (ctb_addr_in_slice > 0) && !(lc->boundary_flags & BOUNDARY_LEFT_TILE));
  2003. lc->ctb_up_flag = ((y_ctb > 0) && (ctb_addr_in_slice >= s->sps->ctb_width) && !(lc->boundary_flags & BOUNDARY_UPPER_TILE));
  2004. lc->ctb_up_right_flag = ((y_ctb > 0) && (ctb_addr_in_slice+1 >= s->sps->ctb_width) && (s->pps->tile_id[ctb_addr_ts] == s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs+1 - s->sps->ctb_width]]));
  2005. lc->ctb_up_left_flag = ((x_ctb > 0) && (y_ctb > 0) && (ctb_addr_in_slice-1 >= s->sps->ctb_width) && (s->pps->tile_id[ctb_addr_ts] == s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs-1 - s->sps->ctb_width]]));
  2006. }
  2007. static int hls_decode_entry(AVCodecContext *avctxt, void *isFilterThread)
  2008. {
  2009. HEVCContext *s = avctxt->priv_data;
  2010. int ctb_size = 1 << s->sps->log2_ctb_size;
  2011. int more_data = 1;
  2012. int x_ctb = 0;
  2013. int y_ctb = 0;
  2014. int ctb_addr_ts = s->pps->ctb_addr_rs_to_ts[s->sh.slice_ctb_addr_rs];
  2015. if (!ctb_addr_ts && s->sh.dependent_slice_segment_flag) {
  2016. av_log(s->avctx, AV_LOG_ERROR, "Impossible initial tile.\n");
  2017. return AVERROR_INVALIDDATA;
  2018. }
  2019. if (s->sh.dependent_slice_segment_flag) {
  2020. int prev_rs = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts - 1];
  2021. if (s->tab_slice_address[prev_rs] != s->sh.slice_addr) {
  2022. av_log(s->avctx, AV_LOG_ERROR, "Previous slice segment missing\n");
  2023. return AVERROR_INVALIDDATA;
  2024. }
  2025. }
  2026. while (more_data && ctb_addr_ts < s->sps->ctb_size) {
  2027. int ctb_addr_rs = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  2028. x_ctb = (ctb_addr_rs % ((s->sps->width + ctb_size - 1) >> s->sps->log2_ctb_size)) << s->sps->log2_ctb_size;
  2029. y_ctb = (ctb_addr_rs / ((s->sps->width + ctb_size - 1) >> s->sps->log2_ctb_size)) << s->sps->log2_ctb_size;
  2030. hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
  2031. ff_hevc_cabac_init(s, ctb_addr_ts);
  2032. hls_sao_param(s, x_ctb >> s->sps->log2_ctb_size, y_ctb >> s->sps->log2_ctb_size);
  2033. s->deblock[ctb_addr_rs].beta_offset = s->sh.beta_offset;
  2034. s->deblock[ctb_addr_rs].tc_offset = s->sh.tc_offset;
  2035. s->filter_slice_edges[ctb_addr_rs] = s->sh.slice_loop_filter_across_slices_enabled_flag;
  2036. more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->sps->log2_ctb_size, 0);
  2037. if (more_data < 0) {
  2038. s->tab_slice_address[ctb_addr_rs] = -1;
  2039. return more_data;
  2040. }
  2041. ctb_addr_ts++;
  2042. ff_hevc_save_states(s, ctb_addr_ts);
  2043. ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
  2044. }
  2045. if (x_ctb + ctb_size >= s->sps->width &&
  2046. y_ctb + ctb_size >= s->sps->height)
  2047. ff_hevc_hls_filter(s, x_ctb, y_ctb, ctb_size);
  2048. return ctb_addr_ts;
  2049. }
  2050. static int hls_slice_data(HEVCContext *s)
  2051. {
  2052. int arg[2];
  2053. int ret[2];
  2054. arg[0] = 0;
  2055. arg[1] = 1;
  2056. s->avctx->execute(s->avctx, hls_decode_entry, arg, ret , 1, sizeof(int));
  2057. return ret[0];
  2058. }
  2059. static int hls_decode_entry_wpp(AVCodecContext *avctxt, void *input_ctb_row, int job, int self_id)
  2060. {
  2061. HEVCContext *s1 = avctxt->priv_data, *s;
  2062. HEVCLocalContext *lc;
  2063. int ctb_size = 1<< s1->sps->log2_ctb_size;
  2064. int more_data = 1;
  2065. int *ctb_row_p = input_ctb_row;
  2066. int ctb_row = ctb_row_p[job];
  2067. int ctb_addr_rs = s1->sh.slice_ctb_addr_rs + ctb_row * ((s1->sps->width + ctb_size - 1) >> s1->sps->log2_ctb_size);
  2068. int ctb_addr_ts = s1->pps->ctb_addr_rs_to_ts[ctb_addr_rs];
  2069. int thread = ctb_row % s1->threads_number;
  2070. int ret;
  2071. s = s1->sList[self_id];
  2072. lc = s->HEVClc;
  2073. if(ctb_row) {
  2074. ret = init_get_bits8(&lc->gb, s->data + s->sh.offset[ctb_row - 1], s->sh.size[ctb_row - 1]);
  2075. if (ret < 0)
  2076. return ret;
  2077. ff_init_cabac_decoder(&lc->cc, s->data + s->sh.offset[(ctb_row)-1], s->sh.size[ctb_row - 1]);
  2078. }
  2079. while(more_data && ctb_addr_ts < s->sps->ctb_size) {
  2080. int x_ctb = (ctb_addr_rs % s->sps->ctb_width) << s->sps->log2_ctb_size;
  2081. int y_ctb = (ctb_addr_rs / s->sps->ctb_width) << s->sps->log2_ctb_size;
  2082. hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
  2083. ff_thread_await_progress2(s->avctx, ctb_row, thread, SHIFT_CTB_WPP);
  2084. if (avpriv_atomic_int_get(&s1->wpp_err)){
  2085. ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP);
  2086. return 0;
  2087. }
  2088. ff_hevc_cabac_init(s, ctb_addr_ts);
  2089. hls_sao_param(s, x_ctb >> s->sps->log2_ctb_size, y_ctb >> s->sps->log2_ctb_size);
  2090. more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->sps->log2_ctb_size, 0);
  2091. if (more_data < 0) {
  2092. s->tab_slice_address[ctb_addr_rs] = -1;
  2093. return more_data;
  2094. }
  2095. ctb_addr_ts++;
  2096. ff_hevc_save_states(s, ctb_addr_ts);
  2097. ff_thread_report_progress2(s->avctx, ctb_row, thread, 1);
  2098. ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
  2099. if (!more_data && (x_ctb+ctb_size) < s->sps->width && ctb_row != s->sh.num_entry_point_offsets) {
  2100. avpriv_atomic_int_set(&s1->wpp_err, 1);
  2101. ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
  2102. return 0;
  2103. }
  2104. if ((x_ctb+ctb_size) >= s->sps->width && (y_ctb+ctb_size) >= s->sps->height ) {
  2105. ff_hevc_hls_filter(s, x_ctb, y_ctb, ctb_size);
  2106. ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP);
  2107. return ctb_addr_ts;
  2108. }
  2109. ctb_addr_rs = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  2110. x_ctb+=ctb_size;
  2111. if(x_ctb >= s->sps->width) {
  2112. break;
  2113. }
  2114. }
  2115. ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
  2116. return 0;
  2117. }
  2118. static int hls_slice_data_wpp(HEVCContext *s, const uint8_t *nal, int length)
  2119. {
  2120. HEVCLocalContext *lc = s->HEVClc;
  2121. int *ret = av_malloc_array(s->sh.num_entry_point_offsets + 1, sizeof(int));
  2122. int *arg = av_malloc_array(s->sh.num_entry_point_offsets + 1, sizeof(int));
  2123. int offset;
  2124. int startheader, cmpt = 0;
  2125. int i, j, res = 0;
  2126. if (!ret || !arg) {
  2127. av_free(ret);
  2128. av_free(arg);
  2129. return AVERROR(ENOMEM);
  2130. }
  2131. if (!s->sList[1]) {
  2132. ff_alloc_entries(s->avctx, s->sh.num_entry_point_offsets + 1);
  2133. for (i = 1; i < s->threads_number; i++) {
  2134. s->sList[i] = av_malloc(sizeof(HEVCContext));
  2135. memcpy(s->sList[i], s, sizeof(HEVCContext));
  2136. s->HEVClcList[i] = av_mallocz(sizeof(HEVCLocalContext));
  2137. s->sList[i]->HEVClc = s->HEVClcList[i];
  2138. }
  2139. }
  2140. offset = (lc->gb.index >> 3);
  2141. for (j = 0, cmpt = 0, startheader = offset + s->sh.entry_point_offset[0]; j < s->skipped_bytes; j++) {
  2142. if (s->skipped_bytes_pos[j] >= offset && s->skipped_bytes_pos[j] < startheader) {
  2143. startheader--;
  2144. cmpt++;
  2145. }
  2146. }
  2147. for (i = 1; i < s->sh.num_entry_point_offsets; i++) {
  2148. offset += (s->sh.entry_point_offset[i - 1] - cmpt);
  2149. for (j = 0, cmpt = 0, startheader = offset
  2150. + s->sh.entry_point_offset[i]; j < s->skipped_bytes; j++) {
  2151. if (s->skipped_bytes_pos[j] >= offset && s->skipped_bytes_pos[j] < startheader) {
  2152. startheader--;
  2153. cmpt++;
  2154. }
  2155. }
  2156. s->sh.size[i - 1] = s->sh.entry_point_offset[i] - cmpt;
  2157. s->sh.offset[i - 1] = offset;
  2158. }
  2159. if (s->sh.num_entry_point_offsets != 0) {
  2160. offset += s->sh.entry_point_offset[s->sh.num_entry_point_offsets - 1] - cmpt;
  2161. s->sh.size[s->sh.num_entry_point_offsets - 1] = length - offset;
  2162. s->sh.offset[s->sh.num_entry_point_offsets - 1] = offset;
  2163. }
  2164. s->data = nal;
  2165. for (i = 1; i < s->threads_number; i++) {
  2166. s->sList[i]->HEVClc->first_qp_group = 1;
  2167. s->sList[i]->HEVClc->qp_y = s->sList[0]->HEVClc->qp_y;
  2168. memcpy(s->sList[i], s, sizeof(HEVCContext));
  2169. s->sList[i]->HEVClc = s->HEVClcList[i];
  2170. }
  2171. avpriv_atomic_int_set(&s->wpp_err, 0);
  2172. ff_reset_entries(s->avctx);
  2173. for (i = 0; i <= s->sh.num_entry_point_offsets; i++) {
  2174. arg[i] = i;
  2175. ret[i] = 0;
  2176. }
  2177. if (s->pps->entropy_coding_sync_enabled_flag)
  2178. s->avctx->execute2(s->avctx, (void *) hls_decode_entry_wpp, arg, ret, s->sh.num_entry_point_offsets + 1);
  2179. for (i = 0; i <= s->sh.num_entry_point_offsets; i++)
  2180. res += ret[i];
  2181. av_free(ret);
  2182. av_free(arg);
  2183. return res;
  2184. }
  2185. /**
  2186. * @return AVERROR_INVALIDDATA if the packet is not a valid NAL unit,
  2187. * 0 if the unit should be skipped, 1 otherwise
  2188. */
  2189. static int hls_nal_unit(HEVCContext *s)
  2190. {
  2191. GetBitContext *gb = &s->HEVClc->gb;
  2192. int nuh_layer_id;
  2193. if (get_bits1(gb) != 0)
  2194. return AVERROR_INVALIDDATA;
  2195. s->nal_unit_type = get_bits(gb, 6);
  2196. nuh_layer_id = get_bits(gb, 6);
  2197. s->temporal_id = get_bits(gb, 3) - 1;
  2198. if (s->temporal_id < 0)
  2199. return AVERROR_INVALIDDATA;
  2200. av_log(s->avctx, AV_LOG_DEBUG,
  2201. "nal_unit_type: %d, nuh_layer_id: %d, temporal_id: %d\n",
  2202. s->nal_unit_type, nuh_layer_id, s->temporal_id);
  2203. return nuh_layer_id == 0;
  2204. }
  2205. static int set_side_data(HEVCContext *s)
  2206. {
  2207. AVFrame *out = s->ref->frame;
  2208. if (s->sei_frame_packing_present &&
  2209. s->frame_packing_arrangement_type >= 3 &&
  2210. s->frame_packing_arrangement_type <= 5 &&
  2211. s->content_interpretation_type > 0 &&
  2212. s->content_interpretation_type < 3) {
  2213. AVStereo3D *stereo = av_stereo3d_create_side_data(out);
  2214. if (!stereo)
  2215. return AVERROR(ENOMEM);
  2216. switch (s->frame_packing_arrangement_type) {
  2217. case 3:
  2218. if (s->quincunx_subsampling)
  2219. stereo->type = AV_STEREO3D_SIDEBYSIDE_QUINCUNX;
  2220. else
  2221. stereo->type = AV_STEREO3D_SIDEBYSIDE;
  2222. break;
  2223. case 4:
  2224. stereo->type = AV_STEREO3D_TOPBOTTOM;
  2225. break;
  2226. case 5:
  2227. stereo->type = AV_STEREO3D_FRAMESEQUENCE;
  2228. break;
  2229. }
  2230. if (s->content_interpretation_type == 2)
  2231. stereo->flags = AV_STEREO3D_FLAG_INVERT;
  2232. }
  2233. if (s->sei_display_orientation_present &&
  2234. (s->sei_anticlockwise_rotation || s->sei_hflip || s->sei_vflip)) {
  2235. double angle = s->sei_anticlockwise_rotation * 360 / (double) (1 << 16);
  2236. AVFrameSideData *rotation = av_frame_new_side_data(out,
  2237. AV_FRAME_DATA_DISPLAYMATRIX,
  2238. sizeof(int32_t) * 9);
  2239. if (!rotation)
  2240. return AVERROR(ENOMEM);
  2241. av_display_rotation_set((int32_t *)rotation->data, angle);
  2242. av_display_matrix_flip((int32_t *)rotation->data,
  2243. s->sei_hflip, s->sei_vflip);
  2244. }
  2245. return 0;
  2246. }
  2247. static int hevc_frame_start(HEVCContext *s)
  2248. {
  2249. HEVCLocalContext *lc = s->HEVClc;
  2250. int pic_size_in_ctb = ((s->sps->width >> s->sps->log2_min_cb_size) + 1) *
  2251. ((s->sps->height >> s->sps->log2_min_cb_size) + 1);
  2252. int ret;
  2253. memset(s->horizontal_bs, 0, s->bs_width * s->bs_height);
  2254. memset(s->vertical_bs, 0, s->bs_width * s->bs_height);
  2255. memset(s->cbf_luma, 0, s->sps->min_tb_width * s->sps->min_tb_height);
  2256. memset(s->is_pcm, 0, (s->sps->min_pu_width + 1) * (s->sps->min_pu_height + 1));
  2257. memset(s->tab_slice_address, -1, pic_size_in_ctb * sizeof(*s->tab_slice_address));
  2258. s->is_decoded = 0;
  2259. s->first_nal_type = s->nal_unit_type;
  2260. if (s->pps->tiles_enabled_flag)
  2261. lc->end_of_tiles_x = s->pps->column_width[0] << s->sps->log2_ctb_size;
  2262. ret = ff_hevc_set_new_ref(s, &s->frame, s->poc);
  2263. if (ret < 0)
  2264. goto fail;
  2265. ret = ff_hevc_frame_rps(s);
  2266. if (ret < 0) {
  2267. av_log(s->avctx, AV_LOG_ERROR, "Error constructing the frame RPS.\n");
  2268. goto fail;
  2269. }
  2270. s->ref->frame->key_frame = IS_IRAP(s);
  2271. ret = set_side_data(s);
  2272. if (ret < 0)
  2273. goto fail;
  2274. s->frame->pict_type = 3 - s->sh.slice_type;
  2275. if (!IS_IRAP(s))
  2276. ff_hevc_bump_frame(s);
  2277. av_frame_unref(s->output_frame);
  2278. ret = ff_hevc_output_frame(s, s->output_frame, 0);
  2279. if (ret < 0)
  2280. goto fail;
  2281. ff_thread_finish_setup(s->avctx);
  2282. return 0;
  2283. fail:
  2284. if (s->ref)
  2285. ff_hevc_unref_frame(s, s->ref, ~0);
  2286. s->ref = NULL;
  2287. return ret;
  2288. }
  2289. static int decode_nal_unit(HEVCContext *s, const HEVCNAL *nal)
  2290. {
  2291. HEVCLocalContext *lc = s->HEVClc;
  2292. GetBitContext *gb = &lc->gb;
  2293. int ctb_addr_ts, ret;
  2294. ret = init_get_bits8(gb, nal->data, nal->size);
  2295. if (ret < 0)
  2296. return ret;
  2297. ret = hls_nal_unit(s);
  2298. if (ret < 0) {
  2299. av_log(s->avctx, AV_LOG_ERROR, "Invalid NAL unit %d, skipping.\n",
  2300. s->nal_unit_type);
  2301. goto fail;
  2302. } else if (!ret)
  2303. return 0;
  2304. switch (s->nal_unit_type) {
  2305. case NAL_VPS:
  2306. ret = ff_hevc_decode_nal_vps(s);
  2307. if (ret < 0)
  2308. goto fail;
  2309. break;
  2310. case NAL_SPS:
  2311. ret = ff_hevc_decode_nal_sps(s);
  2312. if (ret < 0)
  2313. goto fail;
  2314. break;
  2315. case NAL_PPS:
  2316. ret = ff_hevc_decode_nal_pps(s);
  2317. if (ret < 0)
  2318. goto fail;
  2319. break;
  2320. case NAL_SEI_PREFIX:
  2321. case NAL_SEI_SUFFIX:
  2322. ret = ff_hevc_decode_nal_sei(s);
  2323. if (ret < 0)
  2324. goto fail;
  2325. break;
  2326. case NAL_TRAIL_R:
  2327. case NAL_TRAIL_N:
  2328. case NAL_TSA_N:
  2329. case NAL_TSA_R:
  2330. case NAL_STSA_N:
  2331. case NAL_STSA_R:
  2332. case NAL_BLA_W_LP:
  2333. case NAL_BLA_W_RADL:
  2334. case NAL_BLA_N_LP:
  2335. case NAL_IDR_W_RADL:
  2336. case NAL_IDR_N_LP:
  2337. case NAL_CRA_NUT:
  2338. case NAL_RADL_N:
  2339. case NAL_RADL_R:
  2340. case NAL_RASL_N:
  2341. case NAL_RASL_R:
  2342. ret = hls_slice_header(s);
  2343. if (ret < 0)
  2344. return ret;
  2345. if (s->max_ra == INT_MAX) {
  2346. if (s->nal_unit_type == NAL_CRA_NUT || IS_BLA(s)) {
  2347. s->max_ra = s->poc;
  2348. } else {
  2349. if (IS_IDR(s))
  2350. s->max_ra = INT_MIN;
  2351. }
  2352. }
  2353. if ((s->nal_unit_type == NAL_RASL_R || s->nal_unit_type == NAL_RASL_N) &&
  2354. s->poc <= s->max_ra) {
  2355. s->is_decoded = 0;
  2356. break;
  2357. } else {
  2358. if (s->nal_unit_type == NAL_RASL_R && s->poc > s->max_ra)
  2359. s->max_ra = INT_MIN;
  2360. }
  2361. if (s->sh.first_slice_in_pic_flag) {
  2362. ret = hevc_frame_start(s);
  2363. if (ret < 0)
  2364. return ret;
  2365. } else if (!s->ref) {
  2366. av_log(s->avctx, AV_LOG_ERROR, "First slice in a frame missing.\n");
  2367. goto fail;
  2368. }
  2369. if (s->nal_unit_type != s->first_nal_type) {
  2370. av_log(s->avctx, AV_LOG_ERROR,
  2371. "Non-matching NAL types of the VCL NALUs: %d %d\n",
  2372. s->first_nal_type, s->nal_unit_type);
  2373. return AVERROR_INVALIDDATA;
  2374. }
  2375. if (!s->sh.dependent_slice_segment_flag &&
  2376. s->sh.slice_type != I_SLICE) {
  2377. ret = ff_hevc_slice_rpl(s);
  2378. if (ret < 0) {
  2379. av_log(s->avctx, AV_LOG_WARNING,
  2380. "Error constructing the reference lists for the current slice.\n");
  2381. goto fail;
  2382. }
  2383. }
  2384. if (s->sh.first_slice_in_pic_flag && s->avctx->hwaccel) {
  2385. ret = s->avctx->hwaccel->start_frame(s->avctx, NULL, 0);
  2386. if (ret < 0)
  2387. goto fail;
  2388. }
  2389. if (s->avctx->hwaccel) {
  2390. ret = s->avctx->hwaccel->decode_slice(s->avctx, nal->raw_data, nal->raw_size);
  2391. if (ret < 0)
  2392. goto fail;
  2393. } else {
  2394. if (s->threads_number > 1 && s->sh.num_entry_point_offsets > 0)
  2395. ctb_addr_ts = hls_slice_data_wpp(s, nal->data, nal->size);
  2396. else
  2397. ctb_addr_ts = hls_slice_data(s);
  2398. if (ctb_addr_ts >= (s->sps->ctb_width * s->sps->ctb_height)) {
  2399. s->is_decoded = 1;
  2400. }
  2401. if (ctb_addr_ts < 0) {
  2402. ret = ctb_addr_ts;
  2403. goto fail;
  2404. }
  2405. }
  2406. break;
  2407. case NAL_EOS_NUT:
  2408. case NAL_EOB_NUT:
  2409. s->seq_decode = (s->seq_decode + 1) & 0xff;
  2410. s->max_ra = INT_MAX;
  2411. break;
  2412. case NAL_AUD:
  2413. case NAL_FD_NUT:
  2414. break;
  2415. default:
  2416. av_log(s->avctx, AV_LOG_INFO,
  2417. "Skipping NAL unit %d\n", s->nal_unit_type);
  2418. }
  2419. return 0;
  2420. fail:
  2421. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  2422. return ret;
  2423. return 0;
  2424. }
  2425. /* FIXME: This is adapted from ff_h264_decode_nal, avoiding duplication
  2426. * between these functions would be nice. */
  2427. int ff_hevc_extract_rbsp(HEVCContext *s, const uint8_t *src, int length,
  2428. HEVCNAL *nal)
  2429. {
  2430. int i, si, di;
  2431. uint8_t *dst;
  2432. s->skipped_bytes = 0;
  2433. #define STARTCODE_TEST \
  2434. if (i + 2 < length && src[i + 1] == 0 && src[i + 2] <= 3) { \
  2435. if (src[i + 2] != 3) { \
  2436. /* startcode, so we must be past the end */ \
  2437. length = i; \
  2438. } \
  2439. break; \
  2440. }
  2441. #if HAVE_FAST_UNALIGNED
  2442. #define FIND_FIRST_ZERO \
  2443. if (i > 0 && !src[i]) \
  2444. i--; \
  2445. while (src[i]) \
  2446. i++
  2447. #if HAVE_FAST_64BIT
  2448. for (i = 0; i + 1 < length; i += 9) {
  2449. if (!((~AV_RN64A(src + i) &
  2450. (AV_RN64A(src + i) - 0x0100010001000101ULL)) &
  2451. 0x8000800080008080ULL))
  2452. continue;
  2453. FIND_FIRST_ZERO;
  2454. STARTCODE_TEST;
  2455. i -= 7;
  2456. }
  2457. #else
  2458. for (i = 0; i + 1 < length; i += 5) {
  2459. if (!((~AV_RN32A(src + i) &
  2460. (AV_RN32A(src + i) - 0x01000101U)) &
  2461. 0x80008080U))
  2462. continue;
  2463. FIND_FIRST_ZERO;
  2464. STARTCODE_TEST;
  2465. i -= 3;
  2466. }
  2467. #endif /* HAVE_FAST_64BIT */
  2468. #else
  2469. for (i = 0; i + 1 < length; i += 2) {
  2470. if (src[i])
  2471. continue;
  2472. if (i > 0 && src[i - 1] == 0)
  2473. i--;
  2474. STARTCODE_TEST;
  2475. }
  2476. #endif /* HAVE_FAST_UNALIGNED */
  2477. if (i >= length - 1) { // no escaped 0
  2478. nal->data =
  2479. nal->raw_data = src;
  2480. nal->size =
  2481. nal->raw_size = length;
  2482. return length;
  2483. }
  2484. av_fast_malloc(&nal->rbsp_buffer, &nal->rbsp_buffer_size,
  2485. length + FF_INPUT_BUFFER_PADDING_SIZE);
  2486. if (!nal->rbsp_buffer)
  2487. return AVERROR(ENOMEM);
  2488. dst = nal->rbsp_buffer;
  2489. memcpy(dst, src, i);
  2490. si = di = i;
  2491. while (si + 2 < length) {
  2492. // remove escapes (very rare 1:2^22)
  2493. if (src[si + 2] > 3) {
  2494. dst[di++] = src[si++];
  2495. dst[di++] = src[si++];
  2496. } else if (src[si] == 0 && src[si + 1] == 0) {
  2497. if (src[si + 2] == 3) { // escape
  2498. dst[di++] = 0;
  2499. dst[di++] = 0;
  2500. si += 3;
  2501. s->skipped_bytes++;
  2502. if (s->skipped_bytes_pos_size < s->skipped_bytes) {
  2503. s->skipped_bytes_pos_size *= 2;
  2504. av_reallocp_array(&s->skipped_bytes_pos,
  2505. s->skipped_bytes_pos_size,
  2506. sizeof(*s->skipped_bytes_pos));
  2507. if (!s->skipped_bytes_pos)
  2508. return AVERROR(ENOMEM);
  2509. }
  2510. if (s->skipped_bytes_pos)
  2511. s->skipped_bytes_pos[s->skipped_bytes-1] = di - 1;
  2512. continue;
  2513. } else // next start code
  2514. goto nsc;
  2515. }
  2516. dst[di++] = src[si++];
  2517. }
  2518. while (si < length)
  2519. dst[di++] = src[si++];
  2520. nsc:
  2521. memset(dst + di, 0, FF_INPUT_BUFFER_PADDING_SIZE);
  2522. nal->data = dst;
  2523. nal->size = di;
  2524. nal->raw_data = src;
  2525. nal->raw_size = si;
  2526. return si;
  2527. }
  2528. static int decode_nal_units(HEVCContext *s, const uint8_t *buf, int length)
  2529. {
  2530. int i, consumed, ret = 0;
  2531. s->ref = NULL;
  2532. s->last_eos = s->eos;
  2533. s->eos = 0;
  2534. /* split the input packet into NAL units, so we know the upper bound on the
  2535. * number of slices in the frame */
  2536. s->nb_nals = 0;
  2537. while (length >= 4) {
  2538. HEVCNAL *nal;
  2539. int extract_length = 0;
  2540. if (s->is_nalff) {
  2541. int i;
  2542. for (i = 0; i < s->nal_length_size; i++)
  2543. extract_length = (extract_length << 8) | buf[i];
  2544. buf += s->nal_length_size;
  2545. length -= s->nal_length_size;
  2546. if (extract_length > length) {
  2547. av_log(s->avctx, AV_LOG_ERROR, "Invalid NAL unit size.\n");
  2548. ret = AVERROR_INVALIDDATA;
  2549. goto fail;
  2550. }
  2551. } else {
  2552. /* search start code */
  2553. while (buf[0] != 0 || buf[1] != 0 || buf[2] != 1) {
  2554. ++buf;
  2555. --length;
  2556. if (length < 4) {
  2557. av_log(s->avctx, AV_LOG_ERROR, "No start code is found.\n");
  2558. ret = AVERROR_INVALIDDATA;
  2559. goto fail;
  2560. }
  2561. }
  2562. buf += 3;
  2563. length -= 3;
  2564. }
  2565. if (!s->is_nalff)
  2566. extract_length = length;
  2567. if (s->nals_allocated < s->nb_nals + 1) {
  2568. int new_size = s->nals_allocated + 1;
  2569. void *tmp = av_realloc_array(s->nals, new_size, sizeof(*s->nals));
  2570. ret = AVERROR(ENOMEM);
  2571. if (!tmp) {
  2572. goto fail;
  2573. }
  2574. s->nals = tmp;
  2575. memset(s->nals + s->nals_allocated, 0,
  2576. (new_size - s->nals_allocated) * sizeof(*s->nals));
  2577. tmp = av_realloc_array(s->skipped_bytes_nal, new_size, sizeof(*s->skipped_bytes_nal));
  2578. if (!tmp)
  2579. goto fail;
  2580. s->skipped_bytes_nal = tmp;
  2581. tmp = av_realloc_array(s->skipped_bytes_pos_size_nal, new_size, sizeof(*s->skipped_bytes_pos_size_nal));
  2582. if (!tmp)
  2583. goto fail;
  2584. s->skipped_bytes_pos_size_nal = tmp;
  2585. tmp = av_realloc_array(s->skipped_bytes_pos_nal, new_size, sizeof(*s->skipped_bytes_pos_nal));
  2586. if (!tmp)
  2587. goto fail;
  2588. s->skipped_bytes_pos_nal = tmp;
  2589. s->skipped_bytes_pos_size_nal[s->nals_allocated] = 1024; // initial buffer size
  2590. s->skipped_bytes_pos_nal[s->nals_allocated] = av_malloc_array(s->skipped_bytes_pos_size_nal[s->nals_allocated], sizeof(*s->skipped_bytes_pos));
  2591. if (!s->skipped_bytes_pos_nal[s->nals_allocated])
  2592. goto fail;
  2593. s->nals_allocated = new_size;
  2594. }
  2595. s->skipped_bytes_pos_size = s->skipped_bytes_pos_size_nal[s->nb_nals];
  2596. s->skipped_bytes_pos = s->skipped_bytes_pos_nal[s->nb_nals];
  2597. nal = &s->nals[s->nb_nals];
  2598. consumed = ff_hevc_extract_rbsp(s, buf, extract_length, nal);
  2599. s->skipped_bytes_nal[s->nb_nals] = s->skipped_bytes;
  2600. s->skipped_bytes_pos_size_nal[s->nb_nals] = s->skipped_bytes_pos_size;
  2601. s->skipped_bytes_pos_nal[s->nb_nals++] = s->skipped_bytes_pos;
  2602. if (consumed < 0) {
  2603. ret = consumed;
  2604. goto fail;
  2605. }
  2606. ret = init_get_bits8(&s->HEVClc->gb, nal->data, nal->size);
  2607. if (ret < 0)
  2608. goto fail;
  2609. hls_nal_unit(s);
  2610. if (s->nal_unit_type == NAL_EOB_NUT ||
  2611. s->nal_unit_type == NAL_EOS_NUT)
  2612. s->eos = 1;
  2613. buf += consumed;
  2614. length -= consumed;
  2615. }
  2616. /* parse the NAL units */
  2617. for (i = 0; i < s->nb_nals; i++) {
  2618. int ret;
  2619. s->skipped_bytes = s->skipped_bytes_nal[i];
  2620. s->skipped_bytes_pos = s->skipped_bytes_pos_nal[i];
  2621. ret = decode_nal_unit(s, &s->nals[i]);
  2622. if (ret < 0) {
  2623. av_log(s->avctx, AV_LOG_WARNING,
  2624. "Error parsing NAL unit #%d.\n", i);
  2625. goto fail;
  2626. }
  2627. }
  2628. fail:
  2629. if (s->ref && s->threads_type == FF_THREAD_FRAME)
  2630. ff_thread_report_progress(&s->ref->tf, INT_MAX, 0);
  2631. return ret;
  2632. }
  2633. static void print_md5(void *log_ctx, int level, uint8_t md5[16])
  2634. {
  2635. int i;
  2636. for (i = 0; i < 16; i++)
  2637. av_log(log_ctx, level, "%02"PRIx8, md5[i]);
  2638. }
  2639. static int verify_md5(HEVCContext *s, AVFrame *frame)
  2640. {
  2641. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(frame->format);
  2642. int pixel_shift;
  2643. int i, j;
  2644. if (!desc)
  2645. return AVERROR(EINVAL);
  2646. pixel_shift = desc->comp[0].depth_minus1 > 7;
  2647. av_log(s->avctx, AV_LOG_DEBUG, "Verifying checksum for frame with POC %d: ",
  2648. s->poc);
  2649. /* the checksums are LE, so we have to byteswap for >8bpp formats
  2650. * on BE arches */
  2651. #if HAVE_BIGENDIAN
  2652. if (pixel_shift && !s->checksum_buf) {
  2653. av_fast_malloc(&s->checksum_buf, &s->checksum_buf_size,
  2654. FFMAX3(frame->linesize[0], frame->linesize[1],
  2655. frame->linesize[2]));
  2656. if (!s->checksum_buf)
  2657. return AVERROR(ENOMEM);
  2658. }
  2659. #endif
  2660. for (i = 0; frame->data[i]; i++) {
  2661. int width = s->avctx->coded_width;
  2662. int height = s->avctx->coded_height;
  2663. int w = (i == 1 || i == 2) ? (width >> desc->log2_chroma_w) : width;
  2664. int h = (i == 1 || i == 2) ? (height >> desc->log2_chroma_h) : height;
  2665. uint8_t md5[16];
  2666. av_md5_init(s->md5_ctx);
  2667. for (j = 0; j < h; j++) {
  2668. const uint8_t *src = frame->data[i] + j * frame->linesize[i];
  2669. #if HAVE_BIGENDIAN
  2670. if (pixel_shift) {
  2671. s->bdsp.bswap16_buf((uint16_t *) s->checksum_buf,
  2672. (const uint16_t *) src, w);
  2673. src = s->checksum_buf;
  2674. }
  2675. #endif
  2676. av_md5_update(s->md5_ctx, src, w << pixel_shift);
  2677. }
  2678. av_md5_final(s->md5_ctx, md5);
  2679. if (!memcmp(md5, s->md5[i], 16)) {
  2680. av_log (s->avctx, AV_LOG_DEBUG, "plane %d - correct ", i);
  2681. print_md5(s->avctx, AV_LOG_DEBUG, md5);
  2682. av_log (s->avctx, AV_LOG_DEBUG, "; ");
  2683. } else {
  2684. av_log (s->avctx, AV_LOG_ERROR, "mismatching checksum of plane %d - ", i);
  2685. print_md5(s->avctx, AV_LOG_ERROR, md5);
  2686. av_log (s->avctx, AV_LOG_ERROR, " != ");
  2687. print_md5(s->avctx, AV_LOG_ERROR, s->md5[i]);
  2688. av_log (s->avctx, AV_LOG_ERROR, "\n");
  2689. return AVERROR_INVALIDDATA;
  2690. }
  2691. }
  2692. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  2693. return 0;
  2694. }
  2695. static int hevc_decode_frame(AVCodecContext *avctx, void *data, int *got_output,
  2696. AVPacket *avpkt)
  2697. {
  2698. int ret;
  2699. HEVCContext *s = avctx->priv_data;
  2700. if (!avpkt->size) {
  2701. ret = ff_hevc_output_frame(s, data, 1);
  2702. if (ret < 0)
  2703. return ret;
  2704. *got_output = ret;
  2705. return 0;
  2706. }
  2707. s->ref = NULL;
  2708. ret = decode_nal_units(s, avpkt->data, avpkt->size);
  2709. if (ret < 0)
  2710. return ret;
  2711. if (avctx->hwaccel) {
  2712. if (s->ref && avctx->hwaccel->end_frame(avctx) < 0)
  2713. av_log(avctx, AV_LOG_ERROR,
  2714. "hardware accelerator failed to decode picture\n");
  2715. } else {
  2716. /* verify the SEI checksum */
  2717. if (avctx->err_recognition & AV_EF_CRCCHECK && s->is_decoded &&
  2718. s->is_md5) {
  2719. ret = verify_md5(s, s->ref->frame);
  2720. if (ret < 0 && avctx->err_recognition & AV_EF_EXPLODE) {
  2721. ff_hevc_unref_frame(s, s->ref, ~0);
  2722. return ret;
  2723. }
  2724. }
  2725. }
  2726. s->is_md5 = 0;
  2727. if (s->is_decoded) {
  2728. av_log(avctx, AV_LOG_DEBUG, "Decoded frame with POC %d.\n", s->poc);
  2729. s->is_decoded = 0;
  2730. }
  2731. if (s->output_frame->buf[0]) {
  2732. av_frame_move_ref(data, s->output_frame);
  2733. *got_output = 1;
  2734. }
  2735. return avpkt->size;
  2736. }
  2737. static int hevc_ref_frame(HEVCContext *s, HEVCFrame *dst, HEVCFrame *src)
  2738. {
  2739. int ret;
  2740. ret = ff_thread_ref_frame(&dst->tf, &src->tf);
  2741. if (ret < 0)
  2742. return ret;
  2743. dst->tab_mvf_buf = av_buffer_ref(src->tab_mvf_buf);
  2744. if (!dst->tab_mvf_buf)
  2745. goto fail;
  2746. dst->tab_mvf = src->tab_mvf;
  2747. dst->rpl_tab_buf = av_buffer_ref(src->rpl_tab_buf);
  2748. if (!dst->rpl_tab_buf)
  2749. goto fail;
  2750. dst->rpl_tab = src->rpl_tab;
  2751. dst->rpl_buf = av_buffer_ref(src->rpl_buf);
  2752. if (!dst->rpl_buf)
  2753. goto fail;
  2754. dst->poc = src->poc;
  2755. dst->ctb_count = src->ctb_count;
  2756. dst->window = src->window;
  2757. dst->flags = src->flags;
  2758. dst->sequence = src->sequence;
  2759. if (src->hwaccel_picture_private) {
  2760. dst->hwaccel_priv_buf = av_buffer_ref(src->hwaccel_priv_buf);
  2761. if (!dst->hwaccel_priv_buf)
  2762. goto fail;
  2763. dst->hwaccel_picture_private = dst->hwaccel_priv_buf->data;
  2764. }
  2765. return 0;
  2766. fail:
  2767. ff_hevc_unref_frame(s, dst, ~0);
  2768. return AVERROR(ENOMEM);
  2769. }
  2770. static av_cold int hevc_decode_free(AVCodecContext *avctx)
  2771. {
  2772. HEVCContext *s = avctx->priv_data;
  2773. int i;
  2774. pic_arrays_free(s);
  2775. av_freep(&s->md5_ctx);
  2776. for(i=0; i < s->nals_allocated; i++) {
  2777. av_freep(&s->skipped_bytes_pos_nal[i]);
  2778. }
  2779. av_freep(&s->skipped_bytes_pos_size_nal);
  2780. av_freep(&s->skipped_bytes_nal);
  2781. av_freep(&s->skipped_bytes_pos_nal);
  2782. av_freep(&s->cabac_state);
  2783. #ifdef USE_SAO_SMALL_BUFFER
  2784. for (i = 0; i < s->threads_number; i++) {
  2785. av_freep(&s->HEVClcList[i]->sao_pixel_buffer);
  2786. }
  2787. for (i = 0; i < 3; i++) {
  2788. av_freep(&s->sao_pixel_buffer_h[i]);
  2789. av_freep(&s->sao_pixel_buffer_v[i]);
  2790. }
  2791. #else
  2792. av_frame_free(&s->tmp_frame);
  2793. #endif
  2794. av_frame_free(&s->output_frame);
  2795. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2796. ff_hevc_unref_frame(s, &s->DPB[i], ~0);
  2797. av_frame_free(&s->DPB[i].frame);
  2798. }
  2799. for (i = 0; i < FF_ARRAY_ELEMS(s->vps_list); i++)
  2800. av_buffer_unref(&s->vps_list[i]);
  2801. for (i = 0; i < FF_ARRAY_ELEMS(s->sps_list); i++)
  2802. av_buffer_unref(&s->sps_list[i]);
  2803. for (i = 0; i < FF_ARRAY_ELEMS(s->pps_list); i++)
  2804. av_buffer_unref(&s->pps_list[i]);
  2805. s->sps = NULL;
  2806. s->pps = NULL;
  2807. s->vps = NULL;
  2808. av_buffer_unref(&s->current_sps);
  2809. av_freep(&s->sh.entry_point_offset);
  2810. av_freep(&s->sh.offset);
  2811. av_freep(&s->sh.size);
  2812. for (i = 1; i < s->threads_number; i++) {
  2813. HEVCLocalContext *lc = s->HEVClcList[i];
  2814. if (lc) {
  2815. av_freep(&s->HEVClcList[i]);
  2816. av_freep(&s->sList[i]);
  2817. }
  2818. }
  2819. if (s->HEVClc == s->HEVClcList[0])
  2820. s->HEVClc = NULL;
  2821. av_freep(&s->HEVClcList[0]);
  2822. for (i = 0; i < s->nals_allocated; i++)
  2823. av_freep(&s->nals[i].rbsp_buffer);
  2824. av_freep(&s->nals);
  2825. s->nals_allocated = 0;
  2826. return 0;
  2827. }
  2828. static av_cold int hevc_init_context(AVCodecContext *avctx)
  2829. {
  2830. HEVCContext *s = avctx->priv_data;
  2831. int i;
  2832. s->avctx = avctx;
  2833. s->HEVClc = av_mallocz(sizeof(HEVCLocalContext));
  2834. if (!s->HEVClc)
  2835. goto fail;
  2836. s->HEVClcList[0] = s->HEVClc;
  2837. s->sList[0] = s;
  2838. s->cabac_state = av_malloc(HEVC_CONTEXTS);
  2839. if (!s->cabac_state)
  2840. goto fail;
  2841. #ifndef USE_SAO_SMALL_BUFFER
  2842. s->tmp_frame = av_frame_alloc();
  2843. if (!s->tmp_frame)
  2844. goto fail;
  2845. #endif
  2846. s->output_frame = av_frame_alloc();
  2847. if (!s->output_frame)
  2848. goto fail;
  2849. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2850. s->DPB[i].frame = av_frame_alloc();
  2851. if (!s->DPB[i].frame)
  2852. goto fail;
  2853. s->DPB[i].tf.f = s->DPB[i].frame;
  2854. }
  2855. s->max_ra = INT_MAX;
  2856. s->md5_ctx = av_md5_alloc();
  2857. if (!s->md5_ctx)
  2858. goto fail;
  2859. ff_bswapdsp_init(&s->bdsp);
  2860. s->context_initialized = 1;
  2861. s->eos = 0;
  2862. return 0;
  2863. fail:
  2864. hevc_decode_free(avctx);
  2865. return AVERROR(ENOMEM);
  2866. }
  2867. static int hevc_update_thread_context(AVCodecContext *dst,
  2868. const AVCodecContext *src)
  2869. {
  2870. HEVCContext *s = dst->priv_data;
  2871. HEVCContext *s0 = src->priv_data;
  2872. int i, ret;
  2873. if (!s->context_initialized) {
  2874. ret = hevc_init_context(dst);
  2875. if (ret < 0)
  2876. return ret;
  2877. }
  2878. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2879. ff_hevc_unref_frame(s, &s->DPB[i], ~0);
  2880. if (s0->DPB[i].frame->buf[0]) {
  2881. ret = hevc_ref_frame(s, &s->DPB[i], &s0->DPB[i]);
  2882. if (ret < 0)
  2883. return ret;
  2884. }
  2885. }
  2886. if (s->sps != s0->sps)
  2887. s->sps = NULL;
  2888. for (i = 0; i < FF_ARRAY_ELEMS(s->vps_list); i++) {
  2889. av_buffer_unref(&s->vps_list[i]);
  2890. if (s0->vps_list[i]) {
  2891. s->vps_list[i] = av_buffer_ref(s0->vps_list[i]);
  2892. if (!s->vps_list[i])
  2893. return AVERROR(ENOMEM);
  2894. }
  2895. }
  2896. for (i = 0; i < FF_ARRAY_ELEMS(s->sps_list); i++) {
  2897. av_buffer_unref(&s->sps_list[i]);
  2898. if (s0->sps_list[i]) {
  2899. s->sps_list[i] = av_buffer_ref(s0->sps_list[i]);
  2900. if (!s->sps_list[i])
  2901. return AVERROR(ENOMEM);
  2902. }
  2903. }
  2904. for (i = 0; i < FF_ARRAY_ELEMS(s->pps_list); i++) {
  2905. av_buffer_unref(&s->pps_list[i]);
  2906. if (s0->pps_list[i]) {
  2907. s->pps_list[i] = av_buffer_ref(s0->pps_list[i]);
  2908. if (!s->pps_list[i])
  2909. return AVERROR(ENOMEM);
  2910. }
  2911. }
  2912. av_buffer_unref(&s->current_sps);
  2913. if (s0->current_sps) {
  2914. s->current_sps = av_buffer_ref(s0->current_sps);
  2915. if (!s->current_sps)
  2916. return AVERROR(ENOMEM);
  2917. }
  2918. if (s->sps != s0->sps)
  2919. if ((ret = set_sps(s, s0->sps)) < 0)
  2920. return ret;
  2921. s->seq_decode = s0->seq_decode;
  2922. s->seq_output = s0->seq_output;
  2923. s->pocTid0 = s0->pocTid0;
  2924. s->max_ra = s0->max_ra;
  2925. s->eos = s0->eos;
  2926. s->is_nalff = s0->is_nalff;
  2927. s->nal_length_size = s0->nal_length_size;
  2928. s->threads_number = s0->threads_number;
  2929. s->threads_type = s0->threads_type;
  2930. if (s0->eos) {
  2931. s->seq_decode = (s->seq_decode + 1) & 0xff;
  2932. s->max_ra = INT_MAX;
  2933. }
  2934. return 0;
  2935. }
  2936. static int hevc_decode_extradata(HEVCContext *s)
  2937. {
  2938. AVCodecContext *avctx = s->avctx;
  2939. GetByteContext gb;
  2940. int ret;
  2941. bytestream2_init(&gb, avctx->extradata, avctx->extradata_size);
  2942. if (avctx->extradata_size > 3 &&
  2943. (avctx->extradata[0] || avctx->extradata[1] ||
  2944. avctx->extradata[2] > 1)) {
  2945. /* It seems the extradata is encoded as hvcC format.
  2946. * Temporarily, we support configurationVersion==0 until 14496-15 3rd
  2947. * is finalized. When finalized, configurationVersion will be 1 and we
  2948. * can recognize hvcC by checking if avctx->extradata[0]==1 or not. */
  2949. int i, j, num_arrays, nal_len_size;
  2950. s->is_nalff = 1;
  2951. bytestream2_skip(&gb, 21);
  2952. nal_len_size = (bytestream2_get_byte(&gb) & 3) + 1;
  2953. num_arrays = bytestream2_get_byte(&gb);
  2954. /* nal units in the hvcC always have length coded with 2 bytes,
  2955. * so put a fake nal_length_size = 2 while parsing them */
  2956. s->nal_length_size = 2;
  2957. /* Decode nal units from hvcC. */
  2958. for (i = 0; i < num_arrays; i++) {
  2959. int type = bytestream2_get_byte(&gb) & 0x3f;
  2960. int cnt = bytestream2_get_be16(&gb);
  2961. for (j = 0; j < cnt; j++) {
  2962. // +2 for the nal size field
  2963. int nalsize = bytestream2_peek_be16(&gb) + 2;
  2964. if (bytestream2_get_bytes_left(&gb) < nalsize) {
  2965. av_log(s->avctx, AV_LOG_ERROR,
  2966. "Invalid NAL unit size in extradata.\n");
  2967. return AVERROR_INVALIDDATA;
  2968. }
  2969. ret = decode_nal_units(s, gb.buffer, nalsize);
  2970. if (ret < 0) {
  2971. av_log(avctx, AV_LOG_ERROR,
  2972. "Decoding nal unit %d %d from hvcC failed\n",
  2973. type, i);
  2974. return ret;
  2975. }
  2976. bytestream2_skip(&gb, nalsize);
  2977. }
  2978. }
  2979. /* Now store right nal length size, that will be used to parse
  2980. * all other nals */
  2981. s->nal_length_size = nal_len_size;
  2982. } else {
  2983. s->is_nalff = 0;
  2984. ret = decode_nal_units(s, avctx->extradata, avctx->extradata_size);
  2985. if (ret < 0)
  2986. return ret;
  2987. }
  2988. return 0;
  2989. }
  2990. static av_cold int hevc_decode_init(AVCodecContext *avctx)
  2991. {
  2992. HEVCContext *s = avctx->priv_data;
  2993. int ret;
  2994. ff_init_cabac_states();
  2995. avctx->internal->allocate_progress = 1;
  2996. ret = hevc_init_context(avctx);
  2997. if (ret < 0)
  2998. return ret;
  2999. s->enable_parallel_tiles = 0;
  3000. s->picture_struct = 0;
  3001. if(avctx->active_thread_type & FF_THREAD_SLICE)
  3002. s->threads_number = avctx->thread_count;
  3003. else
  3004. s->threads_number = 1;
  3005. if (avctx->extradata_size > 0 && avctx->extradata) {
  3006. ret = hevc_decode_extradata(s);
  3007. if (ret < 0) {
  3008. hevc_decode_free(avctx);
  3009. return ret;
  3010. }
  3011. }
  3012. if((avctx->active_thread_type & FF_THREAD_FRAME) && avctx->thread_count > 1)
  3013. s->threads_type = FF_THREAD_FRAME;
  3014. else
  3015. s->threads_type = FF_THREAD_SLICE;
  3016. return 0;
  3017. }
  3018. static av_cold int hevc_init_thread_copy(AVCodecContext *avctx)
  3019. {
  3020. HEVCContext *s = avctx->priv_data;
  3021. int ret;
  3022. memset(s, 0, sizeof(*s));
  3023. ret = hevc_init_context(avctx);
  3024. if (ret < 0)
  3025. return ret;
  3026. return 0;
  3027. }
  3028. static void hevc_decode_flush(AVCodecContext *avctx)
  3029. {
  3030. HEVCContext *s = avctx->priv_data;
  3031. ff_hevc_flush_dpb(s);
  3032. s->max_ra = INT_MAX;
  3033. }
  3034. #define OFFSET(x) offsetof(HEVCContext, x)
  3035. #define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
  3036. static const AVProfile profiles[] = {
  3037. { FF_PROFILE_HEVC_MAIN, "Main" },
  3038. { FF_PROFILE_HEVC_MAIN_10, "Main 10" },
  3039. { FF_PROFILE_HEVC_MAIN_STILL_PICTURE, "Main Still Picture" },
  3040. { FF_PROFILE_HEVC_REXT, "Rext" },
  3041. { FF_PROFILE_UNKNOWN },
  3042. };
  3043. static const AVOption options[] = {
  3044. { "apply_defdispwin", "Apply default display window from VUI", OFFSET(apply_defdispwin),
  3045. AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, PAR },
  3046. { "strict-displaywin", "stricly apply default display window size", OFFSET(apply_defdispwin),
  3047. AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, PAR },
  3048. { NULL },
  3049. };
  3050. static const AVClass hevc_decoder_class = {
  3051. .class_name = "HEVC decoder",
  3052. .item_name = av_default_item_name,
  3053. .option = options,
  3054. .version = LIBAVUTIL_VERSION_INT,
  3055. };
  3056. AVCodec ff_hevc_decoder = {
  3057. .name = "hevc",
  3058. .long_name = NULL_IF_CONFIG_SMALL("HEVC (High Efficiency Video Coding)"),
  3059. .type = AVMEDIA_TYPE_VIDEO,
  3060. .id = AV_CODEC_ID_HEVC,
  3061. .priv_data_size = sizeof(HEVCContext),
  3062. .priv_class = &hevc_decoder_class,
  3063. .init = hevc_decode_init,
  3064. .close = hevc_decode_free,
  3065. .decode = hevc_decode_frame,
  3066. .flush = hevc_decode_flush,
  3067. .update_thread_context = hevc_update_thread_context,
  3068. .init_thread_copy = hevc_init_thread_copy,
  3069. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY |
  3070. CODEC_CAP_SLICE_THREADS | CODEC_CAP_FRAME_THREADS,
  3071. .profiles = NULL_IF_CONFIG_SMALL(profiles),
  3072. };