You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2347 lines
66KB

  1. @chapter Filtergraph description
  2. @c man begin FILTERGRAPH DESCRIPTION
  3. A filtergraph is a directed graph of connected filters. It can contain
  4. cycles, and there can be multiple links between a pair of
  5. filters. Each link has one input pad on one side connecting it to one
  6. filter from which it takes its input, and one output pad on the other
  7. side connecting it to the one filter accepting its output.
  8. Each filter in a filtergraph is an instance of a filter class
  9. registered in the application, which defines the features and the
  10. number of input and output pads of the filter.
  11. A filter with no input pads is called a "source", a filter with no
  12. output pads is called a "sink".
  13. @anchor{Filtergraph syntax}
  14. @section Filtergraph syntax
  15. A filtergraph can be represented using a textual representation, which is
  16. recognized by the @option{-filter}/@option{-vf} and @option{-filter_complex}
  17. options in @command{avconv} and @option{-vf} in @command{avplay}, and by the
  18. @code{avfilter_graph_parse()}/@code{avfilter_graph_parse2()} function defined in
  19. @file{libavfilter/avfiltergraph.h}.
  20. A filterchain consists of a sequence of connected filters, each one
  21. connected to the previous one in the sequence. A filterchain is
  22. represented by a list of ","-separated filter descriptions.
  23. A filtergraph consists of a sequence of filterchains. A sequence of
  24. filterchains is represented by a list of ";"-separated filterchain
  25. descriptions.
  26. A filter is represented by a string of the form:
  27. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  28. @var{filter_name} is the name of the filter class of which the
  29. described filter is an instance of, and has to be the name of one of
  30. the filter classes registered in the program.
  31. The name of the filter class is optionally followed by a string
  32. "=@var{arguments}".
  33. @var{arguments} is a string which contains the parameters used to
  34. initialize the filter instance, and are described in the filter
  35. descriptions below.
  36. The list of arguments can be quoted using the character "'" as initial
  37. and ending mark, and the character '\' for escaping the characters
  38. within the quoted text; otherwise the argument string is considered
  39. terminated when the next special character (belonging to the set
  40. "[]=;,") is encountered.
  41. The name and arguments of the filter are optionally preceded and
  42. followed by a list of link labels.
  43. A link label allows to name a link and associate it to a filter output
  44. or input pad. The preceding labels @var{in_link_1}
  45. ... @var{in_link_N}, are associated to the filter input pads,
  46. the following labels @var{out_link_1} ... @var{out_link_M}, are
  47. associated to the output pads.
  48. When two link labels with the same name are found in the
  49. filtergraph, a link between the corresponding input and output pad is
  50. created.
  51. If an output pad is not labelled, it is linked by default to the first
  52. unlabelled input pad of the next filter in the filterchain.
  53. For example in the filterchain:
  54. @example
  55. nullsrc, split[L1], [L2]overlay, nullsink
  56. @end example
  57. the split filter instance has two output pads, and the overlay filter
  58. instance two input pads. The first output pad of split is labelled
  59. "L1", the first input pad of overlay is labelled "L2", and the second
  60. output pad of split is linked to the second input pad of overlay,
  61. which are both unlabelled.
  62. In a complete filterchain all the unlabelled filter input and output
  63. pads must be connected. A filtergraph is considered valid if all the
  64. filter input and output pads of all the filterchains are connected.
  65. Libavfilter will automatically insert scale filters where format
  66. conversion is required. It is possible to specify swscale flags
  67. for those automatically inserted scalers by prepending
  68. @code{sws_flags=@var{flags};}
  69. to the filtergraph description.
  70. Follows a BNF description for the filtergraph syntax:
  71. @example
  72. @var{NAME} ::= sequence of alphanumeric characters and '_'
  73. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  74. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  75. @var{FILTER_ARGUMENTS} ::= sequence of chars (eventually quoted)
  76. @var{FILTER} ::= [@var{LINKNAMES}] @var{NAME} ["=" @var{ARGUMENTS}] [@var{LINKNAMES}]
  77. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  78. @var{FILTERGRAPH} ::= [sws_flags=@var{flags};] @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  79. @end example
  80. @c man end FILTERGRAPH DESCRIPTION
  81. @chapter Audio Filters
  82. @c man begin AUDIO FILTERS
  83. When you configure your Libav build, you can disable any of the
  84. existing filters using --disable-filters.
  85. The configure output will show the audio filters included in your
  86. build.
  87. Below is a description of the currently available audio filters.
  88. @section aformat
  89. Convert the input audio to one of the specified formats. The framework will
  90. negotiate the most appropriate format to minimize conversions.
  91. The filter accepts the following named parameters:
  92. @table @option
  93. @item sample_fmts
  94. A comma-separated list of requested sample formats.
  95. @item sample_rates
  96. A comma-separated list of requested sample rates.
  97. @item channel_layouts
  98. A comma-separated list of requested channel layouts.
  99. @end table
  100. If a parameter is omitted, all values are allowed.
  101. For example to force the output to either unsigned 8-bit or signed 16-bit stereo:
  102. @example
  103. aformat=sample_fmts\=u8\,s16:channel_layouts\=stereo
  104. @end example
  105. @section amix
  106. Mixes multiple audio inputs into a single output.
  107. For example
  108. @example
  109. avconv -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex amix=inputs=3:duration=first:dropout_transition=3 OUTPUT
  110. @end example
  111. will mix 3 input audio streams to a single output with the same duration as the
  112. first input and a dropout transition time of 3 seconds.
  113. The filter accepts the following named parameters:
  114. @table @option
  115. @item inputs
  116. Number of inputs. If unspecified, it defaults to 2.
  117. @item duration
  118. How to determine the end-of-stream.
  119. @table @option
  120. @item longest
  121. Duration of longest input. (default)
  122. @item shortest
  123. Duration of shortest input.
  124. @item first
  125. Duration of first input.
  126. @end table
  127. @item dropout_transition
  128. Transition time, in seconds, for volume renormalization when an input
  129. stream ends. The default value is 2 seconds.
  130. @end table
  131. @section anull
  132. Pass the audio source unchanged to the output.
  133. @section asplit
  134. Split input audio into several identical outputs.
  135. The filter accepts a single parameter which specifies the number of outputs. If
  136. unspecified, it defaults to 2.
  137. For example
  138. @example
  139. avconv -i INPUT -filter_complex asplit=5 OUTPUT
  140. @end example
  141. will create 5 copies of the input audio.
  142. @section asyncts
  143. Synchronize audio data with timestamps by squeezing/stretching it and/or
  144. dropping samples/adding silence when needed.
  145. The filter accepts the following named parameters:
  146. @table @option
  147. @item compensate
  148. Enable stretching/squeezing the data to make it match the timestamps.
  149. @item min_delta
  150. Minimum difference between timestamps and audio data (in seconds) to trigger
  151. adding/dropping samples.
  152. @item max_comp
  153. Maximum compensation in samples per second.
  154. @item first_pts
  155. Assume the first pts should be this value.
  156. This allows for padding/trimming at the start of stream. By default, no
  157. assumption is made about the first frame's expected pts, so no padding or
  158. trimming is done. For example, this could be set to 0 to pad the beginning with
  159. silence if an audio stream starts after the video stream.
  160. @end table
  161. @section channelsplit
  162. Split each channel in input audio stream into a separate output stream.
  163. This filter accepts the following named parameters:
  164. @table @option
  165. @item channel_layout
  166. Channel layout of the input stream. Default is "stereo".
  167. @end table
  168. For example, assuming a stereo input MP3 file
  169. @example
  170. avconv -i in.mp3 -filter_complex channelsplit out.mkv
  171. @end example
  172. will create an output Matroska file with two audio streams, one containing only
  173. the left channel and the other the right channel.
  174. To split a 5.1 WAV file into per-channel files
  175. @example
  176. avconv -i in.wav -filter_complex
  177. 'channelsplit=channel_layout=5.1[FL][FR][FC][LFE][SL][SR]'
  178. -map '[FL]' front_left.wav -map '[FR]' front_right.wav -map '[FC]'
  179. front_center.wav -map '[LFE]' lfe.wav -map '[SL]' side_left.wav -map '[SR]'
  180. side_right.wav
  181. @end example
  182. @section channelmap
  183. Remap input channels to new locations.
  184. This filter accepts the following named parameters:
  185. @table @option
  186. @item channel_layout
  187. Channel layout of the output stream.
  188. @item map
  189. Map channels from input to output. The argument is a comma-separated list of
  190. mappings, each in the @code{@var{in_channel}-@var{out_channel}} or
  191. @var{in_channel} form. @var{in_channel} can be either the name of the input
  192. channel (e.g. FL for front left) or its index in the input channel layout.
  193. @var{out_channel} is the name of the output channel or its index in the output
  194. channel layout. If @var{out_channel} is not given then it is implicitly an
  195. index, starting with zero and increasing by one for each mapping.
  196. @end table
  197. If no mapping is present, the filter will implicitly map input channels to
  198. output channels preserving index.
  199. For example, assuming a 5.1+downmix input MOV file
  200. @example
  201. avconv -i in.mov -filter 'channelmap=map=DL-FL\,DR-FR' out.wav
  202. @end example
  203. will create an output WAV file tagged as stereo from the downmix channels of
  204. the input.
  205. To fix a 5.1 WAV improperly encoded in AAC's native channel order
  206. @example
  207. avconv -i in.wav -filter 'channelmap=1\,2\,0\,5\,3\,4:channel_layout=5.1' out.wav
  208. @end example
  209. @section join
  210. Join multiple input streams into one multi-channel stream.
  211. The filter accepts the following named parameters:
  212. @table @option
  213. @item inputs
  214. Number of input streams. Defaults to 2.
  215. @item channel_layout
  216. Desired output channel layout. Defaults to stereo.
  217. @item map
  218. Map channels from inputs to output. The argument is a comma-separated list of
  219. mappings, each in the @code{@var{input_idx}.@var{in_channel}-@var{out_channel}}
  220. form. @var{input_idx} is the 0-based index of the input stream. @var{in_channel}
  221. can be either the name of the input channel (e.g. FL for front left) or its
  222. index in the specified input stream. @var{out_channel} is the name of the output
  223. channel.
  224. @end table
  225. The filter will attempt to guess the mappings when those are not specified
  226. explicitly. It does so by first trying to find an unused matching input channel
  227. and if that fails it picks the first unused input channel.
  228. E.g. to join 3 inputs (with properly set channel layouts)
  229. @example
  230. avconv -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex join=inputs=3 OUTPUT
  231. @end example
  232. To build a 5.1 output from 6 single-channel streams:
  233. @example
  234. avconv -i fl -i fr -i fc -i sl -i sr -i lfe -filter_complex
  235. 'join=inputs=6:channel_layout=5.1:map=0.0-FL\,1.0-FR\,2.0-FC\,3.0-SL\,4.0-SR\,5.0-LFE'
  236. out
  237. @end example
  238. @section resample
  239. Convert the audio sample format, sample rate and channel layout. This filter is
  240. not meant to be used directly, it is inserted automatically by libavfilter
  241. whenever conversion is needed. Use the @var{aformat} filter to force a specific
  242. conversion.
  243. @c man end AUDIO FILTERS
  244. @chapter Audio Sources
  245. @c man begin AUDIO SOURCES
  246. Below is a description of the currently available audio sources.
  247. @section anullsrc
  248. Null audio source, never return audio frames. It is mainly useful as a
  249. template and to be employed in analysis / debugging tools.
  250. It accepts as optional parameter a string of the form
  251. @var{sample_rate}:@var{channel_layout}.
  252. @var{sample_rate} specify the sample rate, and defaults to 44100.
  253. @var{channel_layout} specify the channel layout, and can be either an
  254. integer or a string representing a channel layout. The default value
  255. of @var{channel_layout} is 3, which corresponds to CH_LAYOUT_STEREO.
  256. Check the channel_layout_map definition in
  257. @file{libavcodec/audioconvert.c} for the mapping between strings and
  258. channel layout values.
  259. Follow some examples:
  260. @example
  261. # set the sample rate to 48000 Hz and the channel layout to CH_LAYOUT_MONO.
  262. anullsrc=48000:4
  263. # same as
  264. anullsrc=48000:mono
  265. @end example
  266. @section abuffer
  267. Buffer audio frames, and make them available to the filter chain.
  268. This source is not intended to be part of user-supplied graph descriptions but
  269. for insertion by calling programs through the interface defined in
  270. @file{libavfilter/buffersrc.h}.
  271. It accepts the following named parameters:
  272. @table @option
  273. @item time_base
  274. Timebase which will be used for timestamps of submitted frames. It must be
  275. either a floating-point number or in @var{numerator}/@var{denominator} form.
  276. @item sample_rate
  277. Audio sample rate.
  278. @item sample_fmt
  279. Name of the sample format, as returned by @code{av_get_sample_fmt_name()}.
  280. @item channel_layout
  281. Channel layout of the audio data, in the form that can be accepted by
  282. @code{av_get_channel_layout()}.
  283. @end table
  284. All the parameters need to be explicitly defined.
  285. @c man end AUDIO SOURCES
  286. @chapter Audio Sinks
  287. @c man begin AUDIO SINKS
  288. Below is a description of the currently available audio sinks.
  289. @section anullsink
  290. Null audio sink, do absolutely nothing with the input audio. It is
  291. mainly useful as a template and to be employed in analysis / debugging
  292. tools.
  293. @section abuffersink
  294. This sink is intended for programmatic use. Frames that arrive on this sink can
  295. be retrieved by the calling program using the interface defined in
  296. @file{libavfilter/buffersink.h}.
  297. This filter accepts no parameters.
  298. @c man end AUDIO SINKS
  299. @chapter Video Filters
  300. @c man begin VIDEO FILTERS
  301. When you configure your Libav build, you can disable any of the
  302. existing filters using --disable-filters.
  303. The configure output will show the video filters included in your
  304. build.
  305. Below is a description of the currently available video filters.
  306. @section blackframe
  307. Detect frames that are (almost) completely black. Can be useful to
  308. detect chapter transitions or commercials. Output lines consist of
  309. the frame number of the detected frame, the percentage of blackness,
  310. the position in the file if known or -1 and the timestamp in seconds.
  311. In order to display the output lines, you need to set the loglevel at
  312. least to the AV_LOG_INFO value.
  313. The filter accepts the syntax:
  314. @example
  315. blackframe[=@var{amount}:[@var{threshold}]]
  316. @end example
  317. @var{amount} is the percentage of the pixels that have to be below the
  318. threshold, and defaults to 98.
  319. @var{threshold} is the threshold below which a pixel value is
  320. considered black, and defaults to 32.
  321. @section boxblur
  322. Apply boxblur algorithm to the input video.
  323. This filter accepts the parameters:
  324. @var{luma_power}:@var{luma_radius}:@var{chroma_radius}:@var{chroma_power}:@var{alpha_radius}:@var{alpha_power}
  325. Chroma and alpha parameters are optional, if not specified they default
  326. to the corresponding values set for @var{luma_radius} and
  327. @var{luma_power}.
  328. @var{luma_radius}, @var{chroma_radius}, and @var{alpha_radius} represent
  329. the radius in pixels of the box used for blurring the corresponding
  330. input plane. They are expressions, and can contain the following
  331. constants:
  332. @table @option
  333. @item w, h
  334. the input width and height in pixels
  335. @item cw, ch
  336. the input chroma image width and height in pixels
  337. @item hsub, vsub
  338. horizontal and vertical chroma subsample values. For example for the
  339. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  340. @end table
  341. The radius must be a non-negative number, and must not be greater than
  342. the value of the expression @code{min(w,h)/2} for the luma and alpha planes,
  343. and of @code{min(cw,ch)/2} for the chroma planes.
  344. @var{luma_power}, @var{chroma_power}, and @var{alpha_power} represent
  345. how many times the boxblur filter is applied to the corresponding
  346. plane.
  347. Some examples follow:
  348. @itemize
  349. @item
  350. Apply a boxblur filter with luma, chroma, and alpha radius
  351. set to 2:
  352. @example
  353. boxblur=2:1
  354. @end example
  355. @item
  356. Set luma radius to 2, alpha and chroma radius to 0
  357. @example
  358. boxblur=2:1:0:0:0:0
  359. @end example
  360. @item
  361. Set luma and chroma radius to a fraction of the video dimension
  362. @example
  363. boxblur=min(h\,w)/10:1:min(cw\,ch)/10:1
  364. @end example
  365. @end itemize
  366. @section copy
  367. Copy the input source unchanged to the output. Mainly useful for
  368. testing purposes.
  369. @section crop
  370. Crop the input video to @var{out_w}:@var{out_h}:@var{x}:@var{y}.
  371. The parameters are expressions containing the following constants:
  372. @table @option
  373. @item E, PI, PHI
  374. the corresponding mathematical approximated values for e
  375. (euler number), pi (greek PI), PHI (golden ratio)
  376. @item x, y
  377. the computed values for @var{x} and @var{y}. They are evaluated for
  378. each new frame.
  379. @item in_w, in_h
  380. the input width and height
  381. @item iw, ih
  382. same as @var{in_w} and @var{in_h}
  383. @item out_w, out_h
  384. the output (cropped) width and height
  385. @item ow, oh
  386. same as @var{out_w} and @var{out_h}
  387. @item n
  388. the number of input frame, starting from 0
  389. @item pos
  390. the position in the file of the input frame, NAN if unknown
  391. @item t
  392. timestamp expressed in seconds, NAN if the input timestamp is unknown
  393. @end table
  394. The @var{out_w} and @var{out_h} parameters specify the expressions for
  395. the width and height of the output (cropped) video. They are
  396. evaluated just at the configuration of the filter.
  397. The default value of @var{out_w} is "in_w", and the default value of
  398. @var{out_h} is "in_h".
  399. The expression for @var{out_w} may depend on the value of @var{out_h},
  400. and the expression for @var{out_h} may depend on @var{out_w}, but they
  401. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  402. evaluated after @var{out_w} and @var{out_h}.
  403. The @var{x} and @var{y} parameters specify the expressions for the
  404. position of the top-left corner of the output (non-cropped) area. They
  405. are evaluated for each frame. If the evaluated value is not valid, it
  406. is approximated to the nearest valid value.
  407. The default value of @var{x} is "(in_w-out_w)/2", and the default
  408. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  409. the center of the input image.
  410. The expression for @var{x} may depend on @var{y}, and the expression
  411. for @var{y} may depend on @var{x}.
  412. Follow some examples:
  413. @example
  414. # crop the central input area with size 100x100
  415. crop=100:100
  416. # crop the central input area with size 2/3 of the input video
  417. "crop=2/3*in_w:2/3*in_h"
  418. # crop the input video central square
  419. crop=in_h
  420. # delimit the rectangle with the top-left corner placed at position
  421. # 100:100 and the right-bottom corner corresponding to the right-bottom
  422. # corner of the input image.
  423. crop=in_w-100:in_h-100:100:100
  424. # crop 10 pixels from the left and right borders, and 20 pixels from
  425. # the top and bottom borders
  426. "crop=in_w-2*10:in_h-2*20"
  427. # keep only the bottom right quarter of the input image
  428. "crop=in_w/2:in_h/2:in_w/2:in_h/2"
  429. # crop height for getting Greek harmony
  430. "crop=in_w:1/PHI*in_w"
  431. # trembling effect
  432. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  433. # erratic camera effect depending on timestamp
  434. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  435. # set x depending on the value of y
  436. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  437. @end example
  438. @section cropdetect
  439. Auto-detect crop size.
  440. Calculate necessary cropping parameters and prints the recommended
  441. parameters through the logging system. The detected dimensions
  442. correspond to the non-black area of the input video.
  443. It accepts the syntax:
  444. @example
  445. cropdetect[=@var{limit}[:@var{round}[:@var{reset}]]]
  446. @end example
  447. @table @option
  448. @item limit
  449. Threshold, which can be optionally specified from nothing (0) to
  450. everything (255), defaults to 24.
  451. @item round
  452. Value which the width/height should be divisible by, defaults to
  453. 16. The offset is automatically adjusted to center the video. Use 2 to
  454. get only even dimensions (needed for 4:2:2 video). 16 is best when
  455. encoding to most video codecs.
  456. @item reset
  457. Counter that determines after how many frames cropdetect will reset
  458. the previously detected largest video area and start over to detect
  459. the current optimal crop area. Defaults to 0.
  460. This can be useful when channel logos distort the video area. 0
  461. indicates never reset and return the largest area encountered during
  462. playback.
  463. @end table
  464. @section delogo
  465. Suppress a TV station logo by a simple interpolation of the surrounding
  466. pixels. Just set a rectangle covering the logo and watch it disappear
  467. (and sometimes something even uglier appear - your mileage may vary).
  468. The filter accepts parameters as a string of the form
  469. "@var{x}:@var{y}:@var{w}:@var{h}:@var{band}", or as a list of
  470. @var{key}=@var{value} pairs, separated by ":".
  471. The description of the accepted parameters follows.
  472. @table @option
  473. @item x, y
  474. Specify the top left corner coordinates of the logo. They must be
  475. specified.
  476. @item w, h
  477. Specify the width and height of the logo to clear. They must be
  478. specified.
  479. @item band, t
  480. Specify the thickness of the fuzzy edge of the rectangle (added to
  481. @var{w} and @var{h}). The default value is 4.
  482. @item show
  483. When set to 1, a green rectangle is drawn on the screen to simplify
  484. finding the right @var{x}, @var{y}, @var{w}, @var{h} parameters, and
  485. @var{band} is set to 4. The default value is 0.
  486. @end table
  487. Some examples follow.
  488. @itemize
  489. @item
  490. Set a rectangle covering the area with top left corner coordinates 0,0
  491. and size 100x77, setting a band of size 10:
  492. @example
  493. delogo=0:0:100:77:10
  494. @end example
  495. @item
  496. As the previous example, but use named options:
  497. @example
  498. delogo=x=0:y=0:w=100:h=77:band=10
  499. @end example
  500. @end itemize
  501. @section drawbox
  502. Draw a colored box on the input image.
  503. It accepts the syntax:
  504. @example
  505. drawbox=@var{x}:@var{y}:@var{width}:@var{height}:@var{color}
  506. @end example
  507. @table @option
  508. @item x, y
  509. Specify the top left corner coordinates of the box. Default to 0.
  510. @item width, height
  511. Specify the width and height of the box, if 0 they are interpreted as
  512. the input width and height. Default to 0.
  513. @item color
  514. Specify the color of the box to write, it can be the name of a color
  515. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  516. @end table
  517. Follow some examples:
  518. @example
  519. # draw a black box around the edge of the input image
  520. drawbox
  521. # draw a box with color red and an opacity of 50%
  522. drawbox=10:20:200:60:red@@0.5"
  523. @end example
  524. @section drawtext
  525. Draw text string or text from specified file on top of video using the
  526. libfreetype library.
  527. To enable compilation of this filter you need to configure Libav with
  528. @code{--enable-libfreetype}.
  529. The filter also recognizes strftime() sequences in the provided text
  530. and expands them accordingly. Check the documentation of strftime().
  531. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  532. separated by ":".
  533. The description of the accepted parameters follows.
  534. @table @option
  535. @item fontfile
  536. The font file to be used for drawing text. Path must be included.
  537. This parameter is mandatory.
  538. @item text
  539. The text string to be drawn. The text must be a sequence of UTF-8
  540. encoded characters.
  541. This parameter is mandatory if no file is specified with the parameter
  542. @var{textfile}.
  543. @item textfile
  544. A text file containing text to be drawn. The text must be a sequence
  545. of UTF-8 encoded characters.
  546. This parameter is mandatory if no text string is specified with the
  547. parameter @var{text}.
  548. If both text and textfile are specified, an error is thrown.
  549. @item x, y
  550. The offsets where text will be drawn within the video frame.
  551. Relative to the top/left border of the output image.
  552. They accept expressions similar to the @ref{overlay} filter:
  553. @table @option
  554. @item x, y
  555. the computed values for @var{x} and @var{y}. They are evaluated for
  556. each new frame.
  557. @item main_w, main_h
  558. main input width and height
  559. @item W, H
  560. same as @var{main_w} and @var{main_h}
  561. @item text_w, text_h
  562. rendered text width and height
  563. @item w, h
  564. same as @var{text_w} and @var{text_h}
  565. @item n
  566. the number of frames processed, starting from 0
  567. @item t
  568. timestamp expressed in seconds, NAN if the input timestamp is unknown
  569. @end table
  570. The default value of @var{x} and @var{y} is 0.
  571. @item fontsize
  572. The font size to be used for drawing text.
  573. The default value of @var{fontsize} is 16.
  574. @item fontcolor
  575. The color to be used for drawing fonts.
  576. Either a string (e.g. "red") or in 0xRRGGBB[AA] format
  577. (e.g. "0xff000033"), possibly followed by an alpha specifier.
  578. The default value of @var{fontcolor} is "black".
  579. @item boxcolor
  580. The color to be used for drawing box around text.
  581. Either a string (e.g. "yellow") or in 0xRRGGBB[AA] format
  582. (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  583. The default value of @var{boxcolor} is "white".
  584. @item box
  585. Used to draw a box around text using background color.
  586. Value should be either 1 (enable) or 0 (disable).
  587. The default value of @var{box} is 0.
  588. @item shadowx, shadowy
  589. The x and y offsets for the text shadow position with respect to the
  590. position of the text. They can be either positive or negative
  591. values. Default value for both is "0".
  592. @item shadowcolor
  593. The color to be used for drawing a shadow behind the drawn text. It
  594. can be a color name (e.g. "yellow") or a string in the 0xRRGGBB[AA]
  595. form (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  596. The default value of @var{shadowcolor} is "black".
  597. @item ft_load_flags
  598. Flags to be used for loading the fonts.
  599. The flags map the corresponding flags supported by libfreetype, and are
  600. a combination of the following values:
  601. @table @var
  602. @item default
  603. @item no_scale
  604. @item no_hinting
  605. @item render
  606. @item no_bitmap
  607. @item vertical_layout
  608. @item force_autohint
  609. @item crop_bitmap
  610. @item pedantic
  611. @item ignore_global_advance_width
  612. @item no_recurse
  613. @item ignore_transform
  614. @item monochrome
  615. @item linear_design
  616. @item no_autohint
  617. @item end table
  618. @end table
  619. Default value is "render".
  620. For more information consult the documentation for the FT_LOAD_*
  621. libfreetype flags.
  622. @item tabsize
  623. The size in number of spaces to use for rendering the tab.
  624. Default value is 4.
  625. @item fix_bounds
  626. If true, check and fix text coords to avoid clipping.
  627. @end table
  628. For example the command:
  629. @example
  630. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"
  631. @end example
  632. will draw "Test Text" with font FreeSerif, using the default values
  633. for the optional parameters.
  634. The command:
  635. @example
  636. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
  637. x=100: y=50: fontsize=24: fontcolor=yellow@@0.2: box=1: boxcolor=red@@0.2"
  638. @end example
  639. will draw 'Test Text' with font FreeSerif of size 24 at position x=100
  640. and y=50 (counting from the top-left corner of the screen), text is
  641. yellow with a red box around it. Both the text and the box have an
  642. opacity of 20%.
  643. Note that the double quotes are not necessary if spaces are not used
  644. within the parameter list.
  645. For more information about libfreetype, check:
  646. @url{http://www.freetype.org/}.
  647. @section fade
  648. Apply fade-in/out effect to input video.
  649. It accepts the parameters:
  650. @var{type}:@var{start_frame}:@var{nb_frames}
  651. @var{type} specifies if the effect type, can be either "in" for
  652. fade-in, or "out" for a fade-out effect.
  653. @var{start_frame} specifies the number of the start frame for starting
  654. to apply the fade effect.
  655. @var{nb_frames} specifies the number of frames for which the fade
  656. effect has to last. At the end of the fade-in effect the output video
  657. will have the same intensity as the input video, at the end of the
  658. fade-out transition the output video will be completely black.
  659. A few usage examples follow, usable too as test scenarios.
  660. @example
  661. # fade in first 30 frames of video
  662. fade=in:0:30
  663. # fade out last 45 frames of a 200-frame video
  664. fade=out:155:45
  665. # fade in first 25 frames and fade out last 25 frames of a 1000-frame video
  666. fade=in:0:25, fade=out:975:25
  667. # make first 5 frames black, then fade in from frame 5-24
  668. fade=in:5:20
  669. @end example
  670. @section fieldorder
  671. Transform the field order of the input video.
  672. It accepts one parameter which specifies the required field order that
  673. the input interlaced video will be transformed to. The parameter can
  674. assume one of the following values:
  675. @table @option
  676. @item 0 or bff
  677. output bottom field first
  678. @item 1 or tff
  679. output top field first
  680. @end table
  681. Default value is "tff".
  682. Transformation is achieved by shifting the picture content up or down
  683. by one line, and filling the remaining line with appropriate picture content.
  684. This method is consistent with most broadcast field order converters.
  685. If the input video is not flagged as being interlaced, or it is already
  686. flagged as being of the required output field order then this filter does
  687. not alter the incoming video.
  688. This filter is very useful when converting to or from PAL DV material,
  689. which is bottom field first.
  690. For example:
  691. @example
  692. ./avconv -i in.vob -vf "fieldorder=bff" out.dv
  693. @end example
  694. @section fifo
  695. Buffer input images and send them when they are requested.
  696. This filter is mainly useful when auto-inserted by the libavfilter
  697. framework.
  698. The filter does not take parameters.
  699. @section format
  700. Convert the input video to one of the specified pixel formats.
  701. Libavfilter will try to pick one that is supported for the input to
  702. the next filter.
  703. The filter accepts a list of pixel format names, separated by ":",
  704. for example "yuv420p:monow:rgb24".
  705. Some examples follow:
  706. @example
  707. # convert the input video to the format "yuv420p"
  708. format=yuv420p
  709. # convert the input video to any of the formats in the list
  710. format=yuv420p:yuv444p:yuv410p
  711. @end example
  712. @section fps
  713. Convert the video to specified constant framerate by duplicating or dropping
  714. frames as necessary.
  715. This filter accepts the following named parameters:
  716. @table @option
  717. @item fps
  718. Desired output framerate.
  719. @end table
  720. @anchor{frei0r}
  721. @section frei0r
  722. Apply a frei0r effect to the input video.
  723. To enable compilation of this filter you need to install the frei0r
  724. header and configure Libav with --enable-frei0r.
  725. The filter supports the syntax:
  726. @example
  727. @var{filter_name}[@{:|=@}@var{param1}:@var{param2}:...:@var{paramN}]
  728. @end example
  729. @var{filter_name} is the name to the frei0r effect to load. If the
  730. environment variable @env{FREI0R_PATH} is defined, the frei0r effect
  731. is searched in each one of the directories specified by the colon
  732. separated list in @env{FREIOR_PATH}, otherwise in the standard frei0r
  733. paths, which are in this order: @file{HOME/.frei0r-1/lib/},
  734. @file{/usr/local/lib/frei0r-1/}, @file{/usr/lib/frei0r-1/}.
  735. @var{param1}, @var{param2}, ... , @var{paramN} specify the parameters
  736. for the frei0r effect.
  737. A frei0r effect parameter can be a boolean (whose values are specified
  738. with "y" and "n"), a double, a color (specified by the syntax
  739. @var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float
  740. numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color
  741. description), a position (specified by the syntax @var{X}/@var{Y},
  742. @var{X} and @var{Y} being float numbers) and a string.
  743. The number and kind of parameters depend on the loaded effect. If an
  744. effect parameter is not specified the default value is set.
  745. Some examples follow:
  746. @example
  747. # apply the distort0r effect, set the first two double parameters
  748. frei0r=distort0r:0.5:0.01
  749. # apply the colordistance effect, takes a color as first parameter
  750. frei0r=colordistance:0.2/0.3/0.4
  751. frei0r=colordistance:violet
  752. frei0r=colordistance:0x112233
  753. # apply the perspective effect, specify the top left and top right
  754. # image positions
  755. frei0r=perspective:0.2/0.2:0.8/0.2
  756. @end example
  757. For more information see:
  758. @url{http://piksel.org/frei0r}
  759. @section gradfun
  760. Fix the banding artifacts that are sometimes introduced into nearly flat
  761. regions by truncation to 8bit colordepth.
  762. Interpolate the gradients that should go where the bands are, and
  763. dither them.
  764. This filter is designed for playback only. Do not use it prior to
  765. lossy compression, because compression tends to lose the dither and
  766. bring back the bands.
  767. The filter takes two optional parameters, separated by ':':
  768. @var{strength}:@var{radius}
  769. @var{strength} is the maximum amount by which the filter will change
  770. any one pixel. Also the threshold for detecting nearly flat
  771. regions. Acceptable values range from .51 to 255, default value is
  772. 1.2, out-of-range values will be clipped to the valid range.
  773. @var{radius} is the neighborhood to fit the gradient to. A larger
  774. radius makes for smoother gradients, but also prevents the filter from
  775. modifying the pixels near detailed regions. Acceptable values are
  776. 8-32, default value is 16, out-of-range values will be clipped to the
  777. valid range.
  778. @example
  779. # default parameters
  780. gradfun=1.2:16
  781. # omitting radius
  782. gradfun=1.2
  783. @end example
  784. @section hflip
  785. Flip the input video horizontally.
  786. For example to horizontally flip the input video with @command{avconv}:
  787. @example
  788. avconv -i in.avi -vf "hflip" out.avi
  789. @end example
  790. @section hqdn3d
  791. High precision/quality 3d denoise filter. This filter aims to reduce
  792. image noise producing smooth images and making still images really
  793. still. It should enhance compressibility.
  794. It accepts the following optional parameters:
  795. @var{luma_spatial}:@var{chroma_spatial}:@var{luma_tmp}:@var{chroma_tmp}
  796. @table @option
  797. @item luma_spatial
  798. a non-negative float number which specifies spatial luma strength,
  799. defaults to 4.0
  800. @item chroma_spatial
  801. a non-negative float number which specifies spatial chroma strength,
  802. defaults to 3.0*@var{luma_spatial}/4.0
  803. @item luma_tmp
  804. a float number which specifies luma temporal strength, defaults to
  805. 6.0*@var{luma_spatial}/4.0
  806. @item chroma_tmp
  807. a float number which specifies chroma temporal strength, defaults to
  808. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}
  809. @end table
  810. @section lut, lutrgb, lutyuv
  811. Compute a look-up table for binding each pixel component input value
  812. to an output value, and apply it to input video.
  813. @var{lutyuv} applies a lookup table to a YUV input video, @var{lutrgb}
  814. to an RGB input video.
  815. These filters accept in input a ":"-separated list of options, which
  816. specify the expressions used for computing the lookup table for the
  817. corresponding pixel component values.
  818. The @var{lut} filter requires either YUV or RGB pixel formats in
  819. input, and accepts the options:
  820. @table @option
  821. @var{c0} (first pixel component)
  822. @var{c1} (second pixel component)
  823. @var{c2} (third pixel component)
  824. @var{c3} (fourth pixel component, corresponds to the alpha component)
  825. @end table
  826. The exact component associated to each option depends on the format in
  827. input.
  828. The @var{lutrgb} filter requires RGB pixel formats in input, and
  829. accepts the options:
  830. @table @option
  831. @var{r} (red component)
  832. @var{g} (green component)
  833. @var{b} (blue component)
  834. @var{a} (alpha component)
  835. @end table
  836. The @var{lutyuv} filter requires YUV pixel formats in input, and
  837. accepts the options:
  838. @table @option
  839. @var{y} (Y/luminance component)
  840. @var{u} (U/Cb component)
  841. @var{v} (V/Cr component)
  842. @var{a} (alpha component)
  843. @end table
  844. The expressions can contain the following constants and functions:
  845. @table @option
  846. @item E, PI, PHI
  847. the corresponding mathematical approximated values for e
  848. (euler number), pi (greek PI), PHI (golden ratio)
  849. @item w, h
  850. the input width and height
  851. @item val
  852. input value for the pixel component
  853. @item clipval
  854. the input value clipped in the @var{minval}-@var{maxval} range
  855. @item maxval
  856. maximum value for the pixel component
  857. @item minval
  858. minimum value for the pixel component
  859. @item negval
  860. the negated value for the pixel component value clipped in the
  861. @var{minval}-@var{maxval} range , it corresponds to the expression
  862. "maxval-clipval+minval"
  863. @item clip(val)
  864. the computed value in @var{val} clipped in the
  865. @var{minval}-@var{maxval} range
  866. @item gammaval(gamma)
  867. the computed gamma correction value of the pixel component value
  868. clipped in the @var{minval}-@var{maxval} range, corresponds to the
  869. expression
  870. "pow((clipval-minval)/(maxval-minval)\,@var{gamma})*(maxval-minval)+minval"
  871. @end table
  872. All expressions default to "val".
  873. Some examples follow:
  874. @example
  875. # negate input video
  876. lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
  877. lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"
  878. # the above is the same as
  879. lutrgb="r=negval:g=negval:b=negval"
  880. lutyuv="y=negval:u=negval:v=negval"
  881. # negate luminance
  882. lutyuv=negval
  883. # remove chroma components, turns the video into a graytone image
  884. lutyuv="u=128:v=128"
  885. # apply a luma burning effect
  886. lutyuv="y=2*val"
  887. # remove green and blue components
  888. lutrgb="g=0:b=0"
  889. # set a constant alpha channel value on input
  890. format=rgba,lutrgb=a="maxval-minval/2"
  891. # correct luminance gamma by a 0.5 factor
  892. lutyuv=y=gammaval(0.5)
  893. @end example
  894. @section negate
  895. Negate input video.
  896. This filter accepts an integer in input, if non-zero it negates the
  897. alpha component (if available). The default value in input is 0.
  898. Force libavfilter not to use any of the specified pixel formats for the
  899. input to the next filter.
  900. The filter accepts a list of pixel format names, separated by ":",
  901. for example "yuv420p:monow:rgb24".
  902. Some examples follow:
  903. @example
  904. # force libavfilter to use a format different from "yuv420p" for the
  905. # input to the vflip filter
  906. noformat=yuv420p,vflip
  907. # convert the input video to any of the formats not contained in the list
  908. noformat=yuv420p:yuv444p:yuv410p
  909. @end example
  910. @section null
  911. Pass the video source unchanged to the output.
  912. @section ocv
  913. Apply video transform using libopencv.
  914. To enable this filter install libopencv library and headers and
  915. configure Libav with --enable-libopencv.
  916. The filter takes the parameters: @var{filter_name}@{:=@}@var{filter_params}.
  917. @var{filter_name} is the name of the libopencv filter to apply.
  918. @var{filter_params} specifies the parameters to pass to the libopencv
  919. filter. If not specified the default values are assumed.
  920. Refer to the official libopencv documentation for more precise
  921. information:
  922. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  923. Follows the list of supported libopencv filters.
  924. @anchor{dilate}
  925. @subsection dilate
  926. Dilate an image by using a specific structuring element.
  927. This filter corresponds to the libopencv function @code{cvDilate}.
  928. It accepts the parameters: @var{struct_el}:@var{nb_iterations}.
  929. @var{struct_el} represents a structuring element, and has the syntax:
  930. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  931. @var{cols} and @var{rows} represent the number of columns and rows of
  932. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  933. point, and @var{shape} the shape for the structuring element, and
  934. can be one of the values "rect", "cross", "ellipse", "custom".
  935. If the value for @var{shape} is "custom", it must be followed by a
  936. string of the form "=@var{filename}". The file with name
  937. @var{filename} is assumed to represent a binary image, with each
  938. printable character corresponding to a bright pixel. When a custom
  939. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  940. or columns and rows of the read file are assumed instead.
  941. The default value for @var{struct_el} is "3x3+0x0/rect".
  942. @var{nb_iterations} specifies the number of times the transform is
  943. applied to the image, and defaults to 1.
  944. Follow some example:
  945. @example
  946. # use the default values
  947. ocv=dilate
  948. # dilate using a structuring element with a 5x5 cross, iterate two times
  949. ocv=dilate=5x5+2x2/cross:2
  950. # read the shape from the file diamond.shape, iterate two times
  951. # the file diamond.shape may contain a pattern of characters like this:
  952. # *
  953. # ***
  954. # *****
  955. # ***
  956. # *
  957. # the specified cols and rows are ignored (but not the anchor point coordinates)
  958. ocv=0x0+2x2/custom=diamond.shape:2
  959. @end example
  960. @subsection erode
  961. Erode an image by using a specific structuring element.
  962. This filter corresponds to the libopencv function @code{cvErode}.
  963. The filter accepts the parameters: @var{struct_el}:@var{nb_iterations},
  964. with the same syntax and semantics as the @ref{dilate} filter.
  965. @subsection smooth
  966. Smooth the input video.
  967. The filter takes the following parameters:
  968. @var{type}:@var{param1}:@var{param2}:@var{param3}:@var{param4}.
  969. @var{type} is the type of smooth filter to apply, and can be one of
  970. the following values: "blur", "blur_no_scale", "median", "gaussian",
  971. "bilateral". The default value is "gaussian".
  972. @var{param1}, @var{param2}, @var{param3}, and @var{param4} are
  973. parameters whose meanings depend on smooth type. @var{param1} and
  974. @var{param2} accept integer positive values or 0, @var{param3} and
  975. @var{param4} accept float values.
  976. The default value for @var{param1} is 3, the default value for the
  977. other parameters is 0.
  978. These parameters correspond to the parameters assigned to the
  979. libopencv function @code{cvSmooth}.
  980. @anchor{overlay}
  981. @section overlay
  982. Overlay one video on top of another.
  983. It takes two inputs and one output, the first input is the "main"
  984. video on which the second input is overlayed.
  985. It accepts the parameters: @var{x}:@var{y}.
  986. @var{x} is the x coordinate of the overlayed video on the main video,
  987. @var{y} is the y coordinate. The parameters are expressions containing
  988. the following parameters:
  989. @table @option
  990. @item main_w, main_h
  991. main input width and height
  992. @item W, H
  993. same as @var{main_w} and @var{main_h}
  994. @item overlay_w, overlay_h
  995. overlay input width and height
  996. @item w, h
  997. same as @var{overlay_w} and @var{overlay_h}
  998. @end table
  999. Be aware that frames are taken from each input video in timestamp
  1000. order, hence, if their initial timestamps differ, it is a a good idea
  1001. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  1002. have them begin in the same zero timestamp, as it does the example for
  1003. the @var{movie} filter.
  1004. Follow some examples:
  1005. @example
  1006. # draw the overlay at 10 pixels from the bottom right
  1007. # corner of the main video.
  1008. overlay=main_w-overlay_w-10:main_h-overlay_h-10
  1009. # insert a transparent PNG logo in the bottom left corner of the input
  1010. avconv -i input -i logo -filter_complex 'overlay=10:main_h-overlay_h-10' output
  1011. # insert 2 different transparent PNG logos (second logo on bottom
  1012. # right corner):
  1013. avconv -i input -i logo1 -i logo2 -filter_complex
  1014. 'overlay=10:H-h-10,overlay=W-w-10:H-h-10' output
  1015. # add a transparent color layer on top of the main video,
  1016. # WxH specifies the size of the main input to the overlay filter
  1017. color=red@.3:WxH [over]; [in][over] overlay [out]
  1018. @end example
  1019. You can chain together more overlays but the efficiency of such
  1020. approach is yet to be tested.
  1021. @section pad
  1022. Add paddings to the input image, and places the original input at the
  1023. given coordinates @var{x}, @var{y}.
  1024. It accepts the following parameters:
  1025. @var{width}:@var{height}:@var{x}:@var{y}:@var{color}.
  1026. The parameters @var{width}, @var{height}, @var{x}, and @var{y} are
  1027. expressions containing the following constants:
  1028. @table @option
  1029. @item E, PI, PHI
  1030. the corresponding mathematical approximated values for e
  1031. (euler number), pi (greek PI), phi (golden ratio)
  1032. @item in_w, in_h
  1033. the input video width and height
  1034. @item iw, ih
  1035. same as @var{in_w} and @var{in_h}
  1036. @item out_w, out_h
  1037. the output width and height, that is the size of the padded area as
  1038. specified by the @var{width} and @var{height} expressions
  1039. @item ow, oh
  1040. same as @var{out_w} and @var{out_h}
  1041. @item x, y
  1042. x and y offsets as specified by the @var{x} and @var{y}
  1043. expressions, or NAN if not yet specified
  1044. @item a
  1045. input display aspect ratio, same as @var{iw} / @var{ih}
  1046. @item hsub, vsub
  1047. horizontal and vertical chroma subsample values. For example for the
  1048. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1049. @end table
  1050. Follows the description of the accepted parameters.
  1051. @table @option
  1052. @item width, height
  1053. Specify the size of the output image with the paddings added. If the
  1054. value for @var{width} or @var{height} is 0, the corresponding input size
  1055. is used for the output.
  1056. The @var{width} expression can reference the value set by the
  1057. @var{height} expression, and vice versa.
  1058. The default value of @var{width} and @var{height} is 0.
  1059. @item x, y
  1060. Specify the offsets where to place the input image in the padded area
  1061. with respect to the top/left border of the output image.
  1062. The @var{x} expression can reference the value set by the @var{y}
  1063. expression, and vice versa.
  1064. The default value of @var{x} and @var{y} is 0.
  1065. @item color
  1066. Specify the color of the padded area, it can be the name of a color
  1067. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  1068. The default value of @var{color} is "black".
  1069. @end table
  1070. Some examples follow:
  1071. @example
  1072. # Add paddings with color "violet" to the input video. Output video
  1073. # size is 640x480, the top-left corner of the input video is placed at
  1074. # column 0, row 40.
  1075. pad=640:480:0:40:violet
  1076. # pad the input to get an output with dimensions increased bt 3/2,
  1077. # and put the input video at the center of the padded area
  1078. pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"
  1079. # pad the input to get a squared output with size equal to the maximum
  1080. # value between the input width and height, and put the input video at
  1081. # the center of the padded area
  1082. pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"
  1083. # pad the input to get a final w/h ratio of 16:9
  1084. pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"
  1085. # double output size and put the input video in the bottom-right
  1086. # corner of the output padded area
  1087. pad="2*iw:2*ih:ow-iw:oh-ih"
  1088. @end example
  1089. @section pixdesctest
  1090. Pixel format descriptor test filter, mainly useful for internal
  1091. testing. The output video should be equal to the input video.
  1092. For example:
  1093. @example
  1094. format=monow, pixdesctest
  1095. @end example
  1096. can be used to test the monowhite pixel format descriptor definition.
  1097. @section scale
  1098. Scale the input video to @var{width}:@var{height} and/or convert the image format.
  1099. The parameters @var{width} and @var{height} are expressions containing
  1100. the following constants:
  1101. @table @option
  1102. @item E, PI, PHI
  1103. the corresponding mathematical approximated values for e
  1104. (euler number), pi (greek PI), phi (golden ratio)
  1105. @item in_w, in_h
  1106. the input width and height
  1107. @item iw, ih
  1108. same as @var{in_w} and @var{in_h}
  1109. @item out_w, out_h
  1110. the output (cropped) width and height
  1111. @item ow, oh
  1112. same as @var{out_w} and @var{out_h}
  1113. @item dar, a
  1114. input display aspect ratio, same as @var{iw} / @var{ih}
  1115. @item sar
  1116. input sample aspect ratio
  1117. @item hsub, vsub
  1118. horizontal and vertical chroma subsample values. For example for the
  1119. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1120. @end table
  1121. If the input image format is different from the format requested by
  1122. the next filter, the scale filter will convert the input to the
  1123. requested format.
  1124. If the value for @var{width} or @var{height} is 0, the respective input
  1125. size is used for the output.
  1126. If the value for @var{width} or @var{height} is -1, the scale filter will
  1127. use, for the respective output size, a value that maintains the aspect
  1128. ratio of the input image.
  1129. The default value of @var{width} and @var{height} is 0.
  1130. Some examples follow:
  1131. @example
  1132. # scale the input video to a size of 200x100.
  1133. scale=200:100
  1134. # scale the input to 2x
  1135. scale=2*iw:2*ih
  1136. # the above is the same as
  1137. scale=2*in_w:2*in_h
  1138. # scale the input to half size
  1139. scale=iw/2:ih/2
  1140. # increase the width, and set the height to the same size
  1141. scale=3/2*iw:ow
  1142. # seek for Greek harmony
  1143. scale=iw:1/PHI*iw
  1144. scale=ih*PHI:ih
  1145. # increase the height, and set the width to 3/2 of the height
  1146. scale=3/2*oh:3/5*ih
  1147. # increase the size, but make the size a multiple of the chroma
  1148. scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"
  1149. # increase the width to a maximum of 500 pixels, keep the same input aspect ratio
  1150. scale='min(500\, iw*3/2):-1'
  1151. @end example
  1152. @section select
  1153. Select frames to pass in output.
  1154. It accepts in input an expression, which is evaluated for each input
  1155. frame. If the expression is evaluated to a non-zero value, the frame
  1156. is selected and passed to the output, otherwise it is discarded.
  1157. The expression can contain the following constants:
  1158. @table @option
  1159. @item PI
  1160. Greek PI
  1161. @item PHI
  1162. golden ratio
  1163. @item E
  1164. Euler number
  1165. @item n
  1166. the sequential number of the filtered frame, starting from 0
  1167. @item selected_n
  1168. the sequential number of the selected frame, starting from 0
  1169. @item prev_selected_n
  1170. the sequential number of the last selected frame, NAN if undefined
  1171. @item TB
  1172. timebase of the input timestamps
  1173. @item pts
  1174. the PTS (Presentation TimeStamp) of the filtered video frame,
  1175. expressed in @var{TB} units, NAN if undefined
  1176. @item t
  1177. the PTS (Presentation TimeStamp) of the filtered video frame,
  1178. expressed in seconds, NAN if undefined
  1179. @item prev_pts
  1180. the PTS of the previously filtered video frame, NAN if undefined
  1181. @item prev_selected_pts
  1182. the PTS of the last previously filtered video frame, NAN if undefined
  1183. @item prev_selected_t
  1184. the PTS of the last previously selected video frame, NAN if undefined
  1185. @item start_pts
  1186. the PTS of the first video frame in the video, NAN if undefined
  1187. @item start_t
  1188. the time of the first video frame in the video, NAN if undefined
  1189. @item pict_type
  1190. the type of the filtered frame, can assume one of the following
  1191. values:
  1192. @table @option
  1193. @item I
  1194. @item P
  1195. @item B
  1196. @item S
  1197. @item SI
  1198. @item SP
  1199. @item BI
  1200. @end table
  1201. @item interlace_type
  1202. the frame interlace type, can assume one of the following values:
  1203. @table @option
  1204. @item PROGRESSIVE
  1205. the frame is progressive (not interlaced)
  1206. @item TOPFIRST
  1207. the frame is top-field-first
  1208. @item BOTTOMFIRST
  1209. the frame is bottom-field-first
  1210. @end table
  1211. @item key
  1212. 1 if the filtered frame is a key-frame, 0 otherwise
  1213. @item pos
  1214. the position in the file of the filtered frame, -1 if the information
  1215. is not available (e.g. for synthetic video)
  1216. @end table
  1217. The default value of the select expression is "1".
  1218. Some examples follow:
  1219. @example
  1220. # select all frames in input
  1221. select
  1222. # the above is the same as:
  1223. select=1
  1224. # skip all frames:
  1225. select=0
  1226. # select only I-frames
  1227. select='eq(pict_type\,I)'
  1228. # select one frame every 100
  1229. select='not(mod(n\,100))'
  1230. # select only frames contained in the 10-20 time interval
  1231. select='gte(t\,10)*lte(t\,20)'
  1232. # select only I frames contained in the 10-20 time interval
  1233. select='gte(t\,10)*lte(t\,20)*eq(pict_type\,I)'
  1234. # select frames with a minimum distance of 10 seconds
  1235. select='isnan(prev_selected_t)+gte(t-prev_selected_t\,10)'
  1236. @end example
  1237. @anchor{setdar}
  1238. @section setdar
  1239. Set the Display Aspect Ratio for the filter output video.
  1240. This is done by changing the specified Sample (aka Pixel) Aspect
  1241. Ratio, according to the following equation:
  1242. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1243. Keep in mind that this filter does not modify the pixel dimensions of
  1244. the video frame. Also the display aspect ratio set by this filter may
  1245. be changed by later filters in the filterchain, e.g. in case of
  1246. scaling or if another "setdar" or a "setsar" filter is applied.
  1247. The filter accepts a parameter string which represents the wanted
  1248. display aspect ratio.
  1249. The parameter can be a floating point number string, or an expression
  1250. of the form @var{num}:@var{den}, where @var{num} and @var{den} are the
  1251. numerator and denominator of the aspect ratio.
  1252. If the parameter is not specified, it is assumed the value "0:1".
  1253. For example to change the display aspect ratio to 16:9, specify:
  1254. @example
  1255. setdar=16:9
  1256. # the above is equivalent to
  1257. setdar=1.77777
  1258. @end example
  1259. See also the @ref{setsar} filter documentation.
  1260. @section setpts
  1261. Change the PTS (presentation timestamp) of the input video frames.
  1262. Accept in input an expression evaluated through the eval API, which
  1263. can contain the following constants:
  1264. @table @option
  1265. @item PTS
  1266. the presentation timestamp in input
  1267. @item PI
  1268. Greek PI
  1269. @item PHI
  1270. golden ratio
  1271. @item E
  1272. Euler number
  1273. @item N
  1274. the count of the input frame, starting from 0.
  1275. @item STARTPTS
  1276. the PTS of the first video frame
  1277. @item INTERLACED
  1278. tell if the current frame is interlaced
  1279. @item POS
  1280. original position in the file of the frame, or undefined if undefined
  1281. for the current frame
  1282. @item PREV_INPTS
  1283. previous input PTS
  1284. @item PREV_OUTPTS
  1285. previous output PTS
  1286. @end table
  1287. Some examples follow:
  1288. @example
  1289. # start counting PTS from zero
  1290. setpts=PTS-STARTPTS
  1291. # fast motion
  1292. setpts=0.5*PTS
  1293. # slow motion
  1294. setpts=2.0*PTS
  1295. # fixed rate 25 fps
  1296. setpts=N/(25*TB)
  1297. # fixed rate 25 fps with some jitter
  1298. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  1299. @end example
  1300. @anchor{setsar}
  1301. @section setsar
  1302. Set the Sample (aka Pixel) Aspect Ratio for the filter output video.
  1303. Note that as a consequence of the application of this filter, the
  1304. output display aspect ratio will change according to the following
  1305. equation:
  1306. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1307. Keep in mind that the sample aspect ratio set by this filter may be
  1308. changed by later filters in the filterchain, e.g. if another "setsar"
  1309. or a "setdar" filter is applied.
  1310. The filter accepts a parameter string which represents the wanted
  1311. sample aspect ratio.
  1312. The parameter can be a floating point number string, or an expression
  1313. of the form @var{num}:@var{den}, where @var{num} and @var{den} are the
  1314. numerator and denominator of the aspect ratio.
  1315. If the parameter is not specified, it is assumed the value "0:1".
  1316. For example to change the sample aspect ratio to 10:11, specify:
  1317. @example
  1318. setsar=10:11
  1319. @end example
  1320. @section settb
  1321. Set the timebase to use for the output frames timestamps.
  1322. It is mainly useful for testing timebase configuration.
  1323. It accepts in input an arithmetic expression representing a rational.
  1324. The expression can contain the constants "PI", "E", "PHI", "AVTB" (the
  1325. default timebase), and "intb" (the input timebase).
  1326. The default value for the input is "intb".
  1327. Follow some examples.
  1328. @example
  1329. # set the timebase to 1/25
  1330. settb=1/25
  1331. # set the timebase to 1/10
  1332. settb=0.1
  1333. #set the timebase to 1001/1000
  1334. settb=1+0.001
  1335. #set the timebase to 2*intb
  1336. settb=2*intb
  1337. #set the default timebase value
  1338. settb=AVTB
  1339. @end example
  1340. @section showinfo
  1341. Show a line containing various information for each input video frame.
  1342. The input video is not modified.
  1343. The shown line contains a sequence of key/value pairs of the form
  1344. @var{key}:@var{value}.
  1345. A description of each shown parameter follows:
  1346. @table @option
  1347. @item n
  1348. sequential number of the input frame, starting from 0
  1349. @item pts
  1350. Presentation TimeStamp of the input frame, expressed as a number of
  1351. time base units. The time base unit depends on the filter input pad.
  1352. @item pts_time
  1353. Presentation TimeStamp of the input frame, expressed as a number of
  1354. seconds
  1355. @item pos
  1356. position of the frame in the input stream, -1 if this information in
  1357. unavailable and/or meaningless (for example in case of synthetic video)
  1358. @item fmt
  1359. pixel format name
  1360. @item sar
  1361. sample aspect ratio of the input frame, expressed in the form
  1362. @var{num}/@var{den}
  1363. @item s
  1364. size of the input frame, expressed in the form
  1365. @var{width}x@var{height}
  1366. @item i
  1367. interlaced mode ("P" for "progressive", "T" for top field first, "B"
  1368. for bottom field first)
  1369. @item iskey
  1370. 1 if the frame is a key frame, 0 otherwise
  1371. @item type
  1372. picture type of the input frame ("I" for an I-frame, "P" for a
  1373. P-frame, "B" for a B-frame, "?" for unknown type).
  1374. Check also the documentation of the @code{AVPictureType} enum and of
  1375. the @code{av_get_picture_type_char} function defined in
  1376. @file{libavutil/avutil.h}.
  1377. @item checksum
  1378. Adler-32 checksum of all the planes of the input frame
  1379. @item plane_checksum
  1380. Adler-32 checksum of each plane of the input frame, expressed in the form
  1381. "[@var{c0} @var{c1} @var{c2} @var{c3}]"
  1382. @end table
  1383. @section slicify
  1384. Pass the images of input video on to next video filter as multiple
  1385. slices.
  1386. @example
  1387. ./avconv -i in.avi -vf "slicify=32" out.avi
  1388. @end example
  1389. The filter accepts the slice height as parameter. If the parameter is
  1390. not specified it will use the default value of 16.
  1391. Adding this in the beginning of filter chains should make filtering
  1392. faster due to better use of the memory cache.
  1393. @section split
  1394. Split input video into several identical outputs.
  1395. The filter accepts a single parameter which specifies the number of outputs. If
  1396. unspecified, it defaults to 2.
  1397. For example
  1398. @example
  1399. avconv -i INPUT -filter_complex split=5 OUTPUT
  1400. @end example
  1401. will create 5 copies of the input video.
  1402. @section transpose
  1403. Transpose rows with columns in the input video and optionally flip it.
  1404. It accepts a parameter representing an integer, which can assume the
  1405. values:
  1406. @table @samp
  1407. @item 0
  1408. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  1409. @example
  1410. L.R L.l
  1411. . . -> . .
  1412. l.r R.r
  1413. @end example
  1414. @item 1
  1415. Rotate by 90 degrees clockwise, that is:
  1416. @example
  1417. L.R l.L
  1418. . . -> . .
  1419. l.r r.R
  1420. @end example
  1421. @item 2
  1422. Rotate by 90 degrees counterclockwise, that is:
  1423. @example
  1424. L.R R.r
  1425. . . -> . .
  1426. l.r L.l
  1427. @end example
  1428. @item 3
  1429. Rotate by 90 degrees clockwise and vertically flip, that is:
  1430. @example
  1431. L.R r.R
  1432. . . -> . .
  1433. l.r l.L
  1434. @end example
  1435. @end table
  1436. @section unsharp
  1437. Sharpen or blur the input video.
  1438. It accepts the following parameters:
  1439. @var{luma_msize_x}:@var{luma_msize_y}:@var{luma_amount}:@var{chroma_msize_x}:@var{chroma_msize_y}:@var{chroma_amount}
  1440. Negative values for the amount will blur the input video, while positive
  1441. values will sharpen. All parameters are optional and default to the
  1442. equivalent of the string '5:5:1.0:5:5:0.0'.
  1443. @table @option
  1444. @item luma_msize_x
  1445. Set the luma matrix horizontal size. It can be an integer between 3
  1446. and 13, default value is 5.
  1447. @item luma_msize_y
  1448. Set the luma matrix vertical size. It can be an integer between 3
  1449. and 13, default value is 5.
  1450. @item luma_amount
  1451. Set the luma effect strength. It can be a float number between -2.0
  1452. and 5.0, default value is 1.0.
  1453. @item chroma_msize_x
  1454. Set the chroma matrix horizontal size. It can be an integer between 3
  1455. and 13, default value is 5.
  1456. @item chroma_msize_y
  1457. Set the chroma matrix vertical size. It can be an integer between 3
  1458. and 13, default value is 5.
  1459. @item luma_amount
  1460. Set the chroma effect strength. It can be a float number between -2.0
  1461. and 5.0, default value is 0.0.
  1462. @end table
  1463. @example
  1464. # Strong luma sharpen effect parameters
  1465. unsharp=7:7:2.5
  1466. # Strong blur of both luma and chroma parameters
  1467. unsharp=7:7:-2:7:7:-2
  1468. # Use the default values with @command{avconv}
  1469. ./avconv -i in.avi -vf "unsharp" out.mp4
  1470. @end example
  1471. @section vflip
  1472. Flip the input video vertically.
  1473. @example
  1474. ./avconv -i in.avi -vf "vflip" out.avi
  1475. @end example
  1476. @section yadif
  1477. Deinterlace the input video ("yadif" means "yet another deinterlacing
  1478. filter").
  1479. It accepts the optional parameters: @var{mode}:@var{parity}:@var{auto}.
  1480. @var{mode} specifies the interlacing mode to adopt, accepts one of the
  1481. following values:
  1482. @table @option
  1483. @item 0
  1484. output 1 frame for each frame
  1485. @item 1
  1486. output 1 frame for each field
  1487. @item 2
  1488. like 0 but skips spatial interlacing check
  1489. @item 3
  1490. like 1 but skips spatial interlacing check
  1491. @end table
  1492. Default value is 0.
  1493. @var{parity} specifies the picture field parity assumed for the input
  1494. interlaced video, accepts one of the following values:
  1495. @table @option
  1496. @item 0
  1497. assume top field first
  1498. @item 1
  1499. assume bottom field first
  1500. @item -1
  1501. enable automatic detection
  1502. @end table
  1503. Default value is -1.
  1504. If interlacing is unknown or decoder does not export this information,
  1505. top field first will be assumed.
  1506. @var{auto} specifies if deinterlacer should trust the interlaced flag
  1507. and only deinterlace frames marked as interlaced
  1508. @table @option
  1509. @item 0
  1510. deinterlace all frames
  1511. @item 1
  1512. only deinterlace frames marked as interlaced
  1513. @end table
  1514. Default value is 0.
  1515. @c man end VIDEO FILTERS
  1516. @chapter Video Sources
  1517. @c man begin VIDEO SOURCES
  1518. Below is a description of the currently available video sources.
  1519. @section buffer
  1520. Buffer video frames, and make them available to the filter chain.
  1521. This source is mainly intended for a programmatic use, in particular
  1522. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  1523. It accepts the following parameters:
  1524. @var{width}:@var{height}:@var{pix_fmt_string}:@var{timebase_num}:@var{timebase_den}:@var{sample_aspect_ratio_num}:@var{sample_aspect_ratio.den}
  1525. All the parameters need to be explicitly defined.
  1526. Follows the list of the accepted parameters.
  1527. @table @option
  1528. @item width, height
  1529. Specify the width and height of the buffered video frames.
  1530. @item pix_fmt_string
  1531. A string representing the pixel format of the buffered video frames.
  1532. It may be a number corresponding to a pixel format, or a pixel format
  1533. name.
  1534. @item timebase_num, timebase_den
  1535. Specify numerator and denomitor of the timebase assumed by the
  1536. timestamps of the buffered frames.
  1537. @item sample_aspect_ratio.num, sample_aspect_ratio.den
  1538. Specify numerator and denominator of the sample aspect ratio assumed
  1539. by the video frames.
  1540. @end table
  1541. For example:
  1542. @example
  1543. buffer=320:240:yuv410p:1:24:1:1
  1544. @end example
  1545. will instruct the source to accept video frames with size 320x240 and
  1546. with format "yuv410p", assuming 1/24 as the timestamps timebase and
  1547. square pixels (1:1 sample aspect ratio).
  1548. Since the pixel format with name "yuv410p" corresponds to the number 6
  1549. (check the enum PixelFormat definition in @file{libavutil/pixfmt.h}),
  1550. this example corresponds to:
  1551. @example
  1552. buffer=320:240:6:1:24
  1553. @end example
  1554. @section color
  1555. Provide an uniformly colored input.
  1556. It accepts the following parameters:
  1557. @var{color}:@var{frame_size}:@var{frame_rate}
  1558. Follows the description of the accepted parameters.
  1559. @table @option
  1560. @item color
  1561. Specify the color of the source. It can be the name of a color (case
  1562. insensitive match) or a 0xRRGGBB[AA] sequence, possibly followed by an
  1563. alpha specifier. The default value is "black".
  1564. @item frame_size
  1565. Specify the size of the sourced video, it may be a string of the form
  1566. @var{width}x@var{height}, or the name of a size abbreviation. The
  1567. default value is "320x240".
  1568. @item frame_rate
  1569. Specify the frame rate of the sourced video, as the number of frames
  1570. generated per second. It has to be a string in the format
  1571. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  1572. number or a valid video frame rate abbreviation. The default value is
  1573. "25".
  1574. @end table
  1575. For example the following graph description will generate a red source
  1576. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  1577. frames per second, which will be overlayed over the source connected
  1578. to the pad with identifier "in".
  1579. @example
  1580. "color=red@@0.2:qcif:10 [color]; [in][color] overlay [out]"
  1581. @end example
  1582. @section movie
  1583. Read a video stream from a movie container.
  1584. It accepts the syntax: @var{movie_name}[:@var{options}] where
  1585. @var{movie_name} is the name of the resource to read (not necessarily
  1586. a file but also a device or a stream accessed through some protocol),
  1587. and @var{options} is an optional sequence of @var{key}=@var{value}
  1588. pairs, separated by ":".
  1589. The description of the accepted options follows.
  1590. @table @option
  1591. @item format_name, f
  1592. Specifies the format assumed for the movie to read, and can be either
  1593. the name of a container or an input device. If not specified the
  1594. format is guessed from @var{movie_name} or by probing.
  1595. @item seek_point, sp
  1596. Specifies the seek point in seconds, the frames will be output
  1597. starting from this seek point, the parameter is evaluated with
  1598. @code{av_strtod} so the numerical value may be suffixed by an IS
  1599. postfix. Default value is "0".
  1600. @item stream_index, si
  1601. Specifies the index of the video stream to read. If the value is -1,
  1602. the best suited video stream will be automatically selected. Default
  1603. value is "-1".
  1604. @end table
  1605. This filter allows to overlay a second video on top of main input of
  1606. a filtergraph as shown in this graph:
  1607. @example
  1608. input -----------> deltapts0 --> overlay --> output
  1609. ^
  1610. |
  1611. movie --> scale--> deltapts1 -------+
  1612. @end example
  1613. Some examples follow:
  1614. @example
  1615. # skip 3.2 seconds from the start of the avi file in.avi, and overlay it
  1616. # on top of the input labelled as "in".
  1617. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  1618. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  1619. # read from a video4linux2 device, and overlay it on top of the input
  1620. # labelled as "in"
  1621. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  1622. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  1623. @end example
  1624. @section nullsrc
  1625. Null video source, never return images. It is mainly useful as a
  1626. template and to be employed in analysis / debugging tools.
  1627. It accepts as optional parameter a string of the form
  1628. @var{width}:@var{height}:@var{timebase}.
  1629. @var{width} and @var{height} specify the size of the configured
  1630. source. The default values of @var{width} and @var{height} are
  1631. respectively 352 and 288 (corresponding to the CIF size format).
  1632. @var{timebase} specifies an arithmetic expression representing a
  1633. timebase. The expression can contain the constants "PI", "E", "PHI",
  1634. "AVTB" (the default timebase), and defaults to the value "AVTB".
  1635. @section frei0r_src
  1636. Provide a frei0r source.
  1637. To enable compilation of this filter you need to install the frei0r
  1638. header and configure Libav with --enable-frei0r.
  1639. The source supports the syntax:
  1640. @example
  1641. @var{size}:@var{rate}:@var{src_name}[@{=|:@}@var{param1}:@var{param2}:...:@var{paramN}]
  1642. @end example
  1643. @var{size} is the size of the video to generate, may be a string of the
  1644. form @var{width}x@var{height} or a frame size abbreviation.
  1645. @var{rate} is the rate of the video to generate, may be a string of
  1646. the form @var{num}/@var{den} or a frame rate abbreviation.
  1647. @var{src_name} is the name to the frei0r source to load. For more
  1648. information regarding frei0r and how to set the parameters read the
  1649. section @ref{frei0r} in the description of the video filters.
  1650. Some examples follow:
  1651. @example
  1652. # generate a frei0r partik0l source with size 200x200 and framerate 10
  1653. # which is overlayed on the overlay filter main input
  1654. frei0r_src=200x200:10:partik0l=1234 [overlay]; [in][overlay] overlay
  1655. @end example
  1656. @section rgbtestsrc, testsrc
  1657. The @code{rgbtestsrc} source generates an RGB test pattern useful for
  1658. detecting RGB vs BGR issues. You should see a red, green and blue
  1659. stripe from top to bottom.
  1660. The @code{testsrc} source generates a test video pattern, showing a
  1661. color pattern, a scrolling gradient and a timestamp. This is mainly
  1662. intended for testing purposes.
  1663. Both sources accept an optional sequence of @var{key}=@var{value} pairs,
  1664. separated by ":". The description of the accepted options follows.
  1665. @table @option
  1666. @item size, s
  1667. Specify the size of the sourced video, it may be a string of the form
  1668. @var{width}x@var{height}, or the name of a size abbreviation. The
  1669. default value is "320x240".
  1670. @item rate, r
  1671. Specify the frame rate of the sourced video, as the number of frames
  1672. generated per second. It has to be a string in the format
  1673. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  1674. number or a valid video frame rate abbreviation. The default value is
  1675. "25".
  1676. @item sar
  1677. Set the sample aspect ratio of the sourced video.
  1678. @item duration
  1679. Set the video duration of the sourced video. The accepted syntax is:
  1680. @example
  1681. [-]HH[:MM[:SS[.m...]]]
  1682. [-]S+[.m...]
  1683. @end example
  1684. See also the function @code{av_parse_time()}.
  1685. If not specified, or the expressed duration is negative, the video is
  1686. supposed to be generated forever.
  1687. @end table
  1688. For example the following:
  1689. @example
  1690. testsrc=duration=5.3:size=qcif:rate=10
  1691. @end example
  1692. will generate a video with a duration of 5.3 seconds, with size
  1693. 176x144 and a framerate of 10 frames per second.
  1694. @c man end VIDEO SOURCES
  1695. @chapter Video Sinks
  1696. @c man begin VIDEO SINKS
  1697. Below is a description of the currently available video sinks.
  1698. @section buffersink
  1699. Buffer video frames, and make them available to the end of the filter
  1700. graph.
  1701. This sink is intended for a programmatic use through the interface defined in
  1702. @file{libavfilter/buffersink.h}.
  1703. @section nullsink
  1704. Null video sink, do absolutely nothing with the input video. It is
  1705. mainly useful as a template and to be employed in analysis / debugging
  1706. tools.
  1707. @c man end VIDEO SINKS