You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

8179 lines
315KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file h264.c
  23. * H.264 / AVC / MPEG4 part10 codec.
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #include "dsputil.h"
  27. #include "avcodec.h"
  28. #include "mpegvideo.h"
  29. #include "h264.h"
  30. #include "h264data.h"
  31. #include "h264_parser.h"
  32. #include "golomb.h"
  33. #include "rectangle.h"
  34. #include "cabac.h"
  35. #ifdef ARCH_X86
  36. #include "i386/h264_i386.h"
  37. #endif
  38. //#undef NDEBUG
  39. #include <assert.h>
  40. /**
  41. * Value of Picture.reference when Picture is not a reference picture, but
  42. * is held for delayed output.
  43. */
  44. #define DELAYED_PIC_REF 4
  45. static VLC coeff_token_vlc[4];
  46. static VLC chroma_dc_coeff_token_vlc;
  47. static VLC total_zeros_vlc[15];
  48. static VLC chroma_dc_total_zeros_vlc[3];
  49. static VLC run_vlc[6];
  50. static VLC run7_vlc;
  51. static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
  52. static void svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
  53. static void filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
  54. static void filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
  55. static av_always_inline uint32_t pack16to32(int a, int b){
  56. #ifdef WORDS_BIGENDIAN
  57. return (b&0xFFFF) + (a<<16);
  58. #else
  59. return (a&0xFFFF) + (b<<16);
  60. #endif
  61. }
  62. const uint8_t ff_rem6[52]={
  63. 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
  64. };
  65. const uint8_t ff_div6[52]={
  66. 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8,
  67. };
  68. static void fill_caches(H264Context *h, int mb_type, int for_deblock){
  69. MpegEncContext * const s = &h->s;
  70. const int mb_xy= h->mb_xy;
  71. int topleft_xy, top_xy, topright_xy, left_xy[2];
  72. int topleft_type, top_type, topright_type, left_type[2];
  73. int left_block[8];
  74. int topleft_partition= -1;
  75. int i;
  76. top_xy = mb_xy - (s->mb_stride << FIELD_PICTURE);
  77. //FIXME deblocking could skip the intra and nnz parts.
  78. if(for_deblock && (h->slice_num == 1 || h->slice_table[mb_xy] == h->slice_table[top_xy]) && !FRAME_MBAFF)
  79. return;
  80. /* Wow, what a mess, why didn't they simplify the interlacing & intra
  81. * stuff, I can't imagine that these complex rules are worth it. */
  82. topleft_xy = top_xy - 1;
  83. topright_xy= top_xy + 1;
  84. left_xy[1] = left_xy[0] = mb_xy-1;
  85. left_block[0]= 0;
  86. left_block[1]= 1;
  87. left_block[2]= 2;
  88. left_block[3]= 3;
  89. left_block[4]= 7;
  90. left_block[5]= 10;
  91. left_block[6]= 8;
  92. left_block[7]= 11;
  93. if(FRAME_MBAFF){
  94. const int pair_xy = s->mb_x + (s->mb_y & ~1)*s->mb_stride;
  95. const int top_pair_xy = pair_xy - s->mb_stride;
  96. const int topleft_pair_xy = top_pair_xy - 1;
  97. const int topright_pair_xy = top_pair_xy + 1;
  98. const int topleft_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topleft_pair_xy]);
  99. const int top_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]);
  100. const int topright_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topright_pair_xy]);
  101. const int left_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]);
  102. const int curr_mb_frame_flag = !IS_INTERLACED(mb_type);
  103. const int bottom = (s->mb_y & 1);
  104. tprintf(s->avctx, "fill_caches: curr_mb_frame_flag:%d, left_mb_frame_flag:%d, topleft_mb_frame_flag:%d, top_mb_frame_flag:%d, topright_mb_frame_flag:%d\n", curr_mb_frame_flag, left_mb_frame_flag, topleft_mb_frame_flag, top_mb_frame_flag, topright_mb_frame_flag);
  105. if (bottom
  106. ? !curr_mb_frame_flag // bottom macroblock
  107. : (!curr_mb_frame_flag && !top_mb_frame_flag) // top macroblock
  108. ) {
  109. top_xy -= s->mb_stride;
  110. }
  111. if (bottom
  112. ? !curr_mb_frame_flag // bottom macroblock
  113. : (!curr_mb_frame_flag && !topleft_mb_frame_flag) // top macroblock
  114. ) {
  115. topleft_xy -= s->mb_stride;
  116. } else if(bottom && curr_mb_frame_flag && !left_mb_frame_flag) {
  117. topleft_xy += s->mb_stride;
  118. // take topleft mv from the middle of the mb, as opposed to all other modes which use the bottom-right partition
  119. topleft_partition = 0;
  120. }
  121. if (bottom
  122. ? !curr_mb_frame_flag // bottom macroblock
  123. : (!curr_mb_frame_flag && !topright_mb_frame_flag) // top macroblock
  124. ) {
  125. topright_xy -= s->mb_stride;
  126. }
  127. if (left_mb_frame_flag != curr_mb_frame_flag) {
  128. left_xy[1] = left_xy[0] = pair_xy - 1;
  129. if (curr_mb_frame_flag) {
  130. if (bottom) {
  131. left_block[0]= 2;
  132. left_block[1]= 2;
  133. left_block[2]= 3;
  134. left_block[3]= 3;
  135. left_block[4]= 8;
  136. left_block[5]= 11;
  137. left_block[6]= 8;
  138. left_block[7]= 11;
  139. } else {
  140. left_block[0]= 0;
  141. left_block[1]= 0;
  142. left_block[2]= 1;
  143. left_block[3]= 1;
  144. left_block[4]= 7;
  145. left_block[5]= 10;
  146. left_block[6]= 7;
  147. left_block[7]= 10;
  148. }
  149. } else {
  150. left_xy[1] += s->mb_stride;
  151. //left_block[0]= 0;
  152. left_block[1]= 2;
  153. left_block[2]= 0;
  154. left_block[3]= 2;
  155. //left_block[4]= 7;
  156. left_block[5]= 10;
  157. left_block[6]= 7;
  158. left_block[7]= 10;
  159. }
  160. }
  161. }
  162. h->top_mb_xy = top_xy;
  163. h->left_mb_xy[0] = left_xy[0];
  164. h->left_mb_xy[1] = left_xy[1];
  165. if(for_deblock){
  166. topleft_type = 0;
  167. topright_type = 0;
  168. top_type = h->slice_table[top_xy ] < 255 ? s->current_picture.mb_type[top_xy] : 0;
  169. left_type[0] = h->slice_table[left_xy[0] ] < 255 ? s->current_picture.mb_type[left_xy[0]] : 0;
  170. left_type[1] = h->slice_table[left_xy[1] ] < 255 ? s->current_picture.mb_type[left_xy[1]] : 0;
  171. if(FRAME_MBAFF && !IS_INTRA(mb_type)){
  172. int list;
  173. int v = *(uint16_t*)&h->non_zero_count[mb_xy][14];
  174. for(i=0; i<16; i++)
  175. h->non_zero_count_cache[scan8[i]] = (v>>i)&1;
  176. for(list=0; list<h->list_count; list++){
  177. if(USES_LIST(mb_type,list)){
  178. uint32_t *src = (uint32_t*)s->current_picture.motion_val[list][h->mb2b_xy[mb_xy]];
  179. uint32_t *dst = (uint32_t*)h->mv_cache[list][scan8[0]];
  180. int8_t *ref = &s->current_picture.ref_index[list][h->mb2b8_xy[mb_xy]];
  181. for(i=0; i<4; i++, dst+=8, src+=h->b_stride){
  182. dst[0] = src[0];
  183. dst[1] = src[1];
  184. dst[2] = src[2];
  185. dst[3] = src[3];
  186. }
  187. *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
  188. *(uint32_t*)&h->ref_cache[list][scan8[ 2]] = pack16to32(ref[0],ref[1])*0x0101;
  189. ref += h->b8_stride;
  190. *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
  191. *(uint32_t*)&h->ref_cache[list][scan8[10]] = pack16to32(ref[0],ref[1])*0x0101;
  192. }else{
  193. fill_rectangle(&h-> mv_cache[list][scan8[ 0]], 4, 4, 8, 0, 4);
  194. fill_rectangle(&h->ref_cache[list][scan8[ 0]], 4, 4, 8, (uint8_t)LIST_NOT_USED, 1);
  195. }
  196. }
  197. }
  198. }else{
  199. topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
  200. top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0;
  201. topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
  202. left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
  203. left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
  204. }
  205. if(IS_INTRA(mb_type)){
  206. h->topleft_samples_available=
  207. h->top_samples_available=
  208. h->left_samples_available= 0xFFFF;
  209. h->topright_samples_available= 0xEEEA;
  210. if(!IS_INTRA(top_type) && (top_type==0 || h->pps.constrained_intra_pred)){
  211. h->topleft_samples_available= 0xB3FF;
  212. h->top_samples_available= 0x33FF;
  213. h->topright_samples_available= 0x26EA;
  214. }
  215. for(i=0; i<2; i++){
  216. if(!IS_INTRA(left_type[i]) && (left_type[i]==0 || h->pps.constrained_intra_pred)){
  217. h->topleft_samples_available&= 0xDF5F;
  218. h->left_samples_available&= 0x5F5F;
  219. }
  220. }
  221. if(!IS_INTRA(topleft_type) && (topleft_type==0 || h->pps.constrained_intra_pred))
  222. h->topleft_samples_available&= 0x7FFF;
  223. if(!IS_INTRA(topright_type) && (topright_type==0 || h->pps.constrained_intra_pred))
  224. h->topright_samples_available&= 0xFBFF;
  225. if(IS_INTRA4x4(mb_type)){
  226. if(IS_INTRA4x4(top_type)){
  227. h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
  228. h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
  229. h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
  230. h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
  231. }else{
  232. int pred;
  233. if(!top_type || (IS_INTER(top_type) && h->pps.constrained_intra_pred))
  234. pred= -1;
  235. else{
  236. pred= 2;
  237. }
  238. h->intra4x4_pred_mode_cache[4+8*0]=
  239. h->intra4x4_pred_mode_cache[5+8*0]=
  240. h->intra4x4_pred_mode_cache[6+8*0]=
  241. h->intra4x4_pred_mode_cache[7+8*0]= pred;
  242. }
  243. for(i=0; i<2; i++){
  244. if(IS_INTRA4x4(left_type[i])){
  245. h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
  246. h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
  247. }else{
  248. int pred;
  249. if(!left_type[i] || (IS_INTER(left_type[i]) && h->pps.constrained_intra_pred))
  250. pred= -1;
  251. else{
  252. pred= 2;
  253. }
  254. h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
  255. h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
  256. }
  257. }
  258. }
  259. }
  260. /*
  261. 0 . T T. T T T T
  262. 1 L . .L . . . .
  263. 2 L . .L . . . .
  264. 3 . T TL . . . .
  265. 4 L . .L . . . .
  266. 5 L . .. . . . .
  267. */
  268. //FIXME constraint_intra_pred & partitioning & nnz (lets hope this is just a typo in the spec)
  269. if(top_type){
  270. h->non_zero_count_cache[4+8*0]= h->non_zero_count[top_xy][4];
  271. h->non_zero_count_cache[5+8*0]= h->non_zero_count[top_xy][5];
  272. h->non_zero_count_cache[6+8*0]= h->non_zero_count[top_xy][6];
  273. h->non_zero_count_cache[7+8*0]= h->non_zero_count[top_xy][3];
  274. h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][9];
  275. h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][8];
  276. h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][12];
  277. h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][11];
  278. }else{
  279. h->non_zero_count_cache[4+8*0]=
  280. h->non_zero_count_cache[5+8*0]=
  281. h->non_zero_count_cache[6+8*0]=
  282. h->non_zero_count_cache[7+8*0]=
  283. h->non_zero_count_cache[1+8*0]=
  284. h->non_zero_count_cache[2+8*0]=
  285. h->non_zero_count_cache[1+8*3]=
  286. h->non_zero_count_cache[2+8*3]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
  287. }
  288. for (i=0; i<2; i++) {
  289. if(left_type[i]){
  290. h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[0+2*i]];
  291. h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[1+2*i]];
  292. h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[4+2*i]];
  293. h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[5+2*i]];
  294. }else{
  295. h->non_zero_count_cache[3+8*1 + 2*8*i]=
  296. h->non_zero_count_cache[3+8*2 + 2*8*i]=
  297. h->non_zero_count_cache[0+8*1 + 8*i]=
  298. h->non_zero_count_cache[0+8*4 + 8*i]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
  299. }
  300. }
  301. if( h->pps.cabac ) {
  302. // top_cbp
  303. if(top_type) {
  304. h->top_cbp = h->cbp_table[top_xy];
  305. } else if(IS_INTRA(mb_type)) {
  306. h->top_cbp = 0x1C0;
  307. } else {
  308. h->top_cbp = 0;
  309. }
  310. // left_cbp
  311. if (left_type[0]) {
  312. h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0;
  313. } else if(IS_INTRA(mb_type)) {
  314. h->left_cbp = 0x1C0;
  315. } else {
  316. h->left_cbp = 0;
  317. }
  318. if (left_type[0]) {
  319. h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1;
  320. }
  321. if (left_type[1]) {
  322. h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3;
  323. }
  324. }
  325. #if 1
  326. if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
  327. int list;
  328. for(list=0; list<h->list_count; list++){
  329. if(!USES_LIST(mb_type, list) && !IS_DIRECT(mb_type) && !h->deblocking_filter){
  330. /*if(!h->mv_cache_clean[list]){
  331. memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
  332. memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
  333. h->mv_cache_clean[list]= 1;
  334. }*/
  335. continue;
  336. }
  337. h->mv_cache_clean[list]= 0;
  338. if(USES_LIST(top_type, list)){
  339. const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
  340. const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
  341. *(uint32_t*)h->mv_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 0];
  342. *(uint32_t*)h->mv_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 1];
  343. *(uint32_t*)h->mv_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 2];
  344. *(uint32_t*)h->mv_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 3];
  345. h->ref_cache[list][scan8[0] + 0 - 1*8]=
  346. h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
  347. h->ref_cache[list][scan8[0] + 2 - 1*8]=
  348. h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
  349. }else{
  350. *(uint32_t*)h->mv_cache [list][scan8[0] + 0 - 1*8]=
  351. *(uint32_t*)h->mv_cache [list][scan8[0] + 1 - 1*8]=
  352. *(uint32_t*)h->mv_cache [list][scan8[0] + 2 - 1*8]=
  353. *(uint32_t*)h->mv_cache [list][scan8[0] + 3 - 1*8]= 0;
  354. *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
  355. }
  356. for(i=0; i<2; i++){
  357. int cache_idx = scan8[0] - 1 + i*2*8;
  358. if(USES_LIST(left_type[i], list)){
  359. const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
  360. const int b8_xy= h->mb2b8_xy[left_xy[i]] + 1;
  361. *(uint32_t*)h->mv_cache[list][cache_idx ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]];
  362. *(uint32_t*)h->mv_cache[list][cache_idx+8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]];
  363. h->ref_cache[list][cache_idx ]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0+i*2]>>1)];
  364. h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1+i*2]>>1)];
  365. }else{
  366. *(uint32_t*)h->mv_cache [list][cache_idx ]=
  367. *(uint32_t*)h->mv_cache [list][cache_idx+8]= 0;
  368. h->ref_cache[list][cache_idx ]=
  369. h->ref_cache[list][cache_idx+8]= left_type[i] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  370. }
  371. }
  372. if((for_deblock || (IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred)) && !FRAME_MBAFF)
  373. continue;
  374. if(USES_LIST(topleft_type, list)){
  375. const int b_xy = h->mb2b_xy[topleft_xy] + 3 + h->b_stride + (topleft_partition & 2*h->b_stride);
  376. const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + (topleft_partition & h->b8_stride);
  377. *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
  378. h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
  379. }else{
  380. *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
  381. h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  382. }
  383. if(USES_LIST(topright_type, list)){
  384. const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
  385. const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
  386. *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
  387. h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
  388. }else{
  389. *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
  390. h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  391. }
  392. if((IS_SKIP(mb_type) || IS_DIRECT(mb_type)) && !FRAME_MBAFF)
  393. continue;
  394. h->ref_cache[list][scan8[5 ]+1] =
  395. h->ref_cache[list][scan8[7 ]+1] =
  396. h->ref_cache[list][scan8[13]+1] = //FIXME remove past 3 (init somewhere else)
  397. h->ref_cache[list][scan8[4 ]] =
  398. h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
  399. *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
  400. *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
  401. *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
  402. *(uint32_t*)h->mv_cache [list][scan8[4 ]]=
  403. *(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
  404. if( h->pps.cabac ) {
  405. /* XXX beurk, Load mvd */
  406. if(USES_LIST(top_type, list)){
  407. const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
  408. *(uint32_t*)h->mvd_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 0];
  409. *(uint32_t*)h->mvd_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 1];
  410. *(uint32_t*)h->mvd_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 2];
  411. *(uint32_t*)h->mvd_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 3];
  412. }else{
  413. *(uint32_t*)h->mvd_cache [list][scan8[0] + 0 - 1*8]=
  414. *(uint32_t*)h->mvd_cache [list][scan8[0] + 1 - 1*8]=
  415. *(uint32_t*)h->mvd_cache [list][scan8[0] + 2 - 1*8]=
  416. *(uint32_t*)h->mvd_cache [list][scan8[0] + 3 - 1*8]= 0;
  417. }
  418. if(USES_LIST(left_type[0], list)){
  419. const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
  420. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]];
  421. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]];
  422. }else{
  423. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]=
  424. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0;
  425. }
  426. if(USES_LIST(left_type[1], list)){
  427. const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
  428. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]];
  429. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]];
  430. }else{
  431. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]=
  432. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0;
  433. }
  434. *(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]=
  435. *(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]=
  436. *(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
  437. *(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
  438. *(uint32_t*)h->mvd_cache [list][scan8[12]]= 0;
  439. if(h->slice_type_nos == FF_B_TYPE){
  440. fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, 0, 1);
  441. if(IS_DIRECT(top_type)){
  442. *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101;
  443. }else if(IS_8X8(top_type)){
  444. int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
  445. h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy];
  446. h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1];
  447. }else{
  448. *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0;
  449. }
  450. if(IS_DIRECT(left_type[0]))
  451. h->direct_cache[scan8[0] - 1 + 0*8]= 1;
  452. else if(IS_8X8(left_type[0]))
  453. h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[h->mb2b8_xy[left_xy[0]] + 1 + h->b8_stride*(left_block[0]>>1)];
  454. else
  455. h->direct_cache[scan8[0] - 1 + 0*8]= 0;
  456. if(IS_DIRECT(left_type[1]))
  457. h->direct_cache[scan8[0] - 1 + 2*8]= 1;
  458. else if(IS_8X8(left_type[1]))
  459. h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[h->mb2b8_xy[left_xy[1]] + 1 + h->b8_stride*(left_block[2]>>1)];
  460. else
  461. h->direct_cache[scan8[0] - 1 + 2*8]= 0;
  462. }
  463. }
  464. if(FRAME_MBAFF){
  465. #define MAP_MVS\
  466. MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
  467. MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
  468. MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
  469. MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
  470. MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
  471. MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
  472. MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
  473. MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
  474. MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
  475. MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
  476. if(MB_FIELD){
  477. #define MAP_F2F(idx, mb_type)\
  478. if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
  479. h->ref_cache[list][idx] <<= 1;\
  480. h->mv_cache[list][idx][1] /= 2;\
  481. h->mvd_cache[list][idx][1] /= 2;\
  482. }
  483. MAP_MVS
  484. #undef MAP_F2F
  485. }else{
  486. #define MAP_F2F(idx, mb_type)\
  487. if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
  488. h->ref_cache[list][idx] >>= 1;\
  489. h->mv_cache[list][idx][1] <<= 1;\
  490. h->mvd_cache[list][idx][1] <<= 1;\
  491. }
  492. MAP_MVS
  493. #undef MAP_F2F
  494. }
  495. }
  496. }
  497. }
  498. #endif
  499. h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
  500. }
  501. static inline void write_back_intra_pred_mode(H264Context *h){
  502. const int mb_xy= h->mb_xy;
  503. h->intra4x4_pred_mode[mb_xy][0]= h->intra4x4_pred_mode_cache[7+8*1];
  504. h->intra4x4_pred_mode[mb_xy][1]= h->intra4x4_pred_mode_cache[7+8*2];
  505. h->intra4x4_pred_mode[mb_xy][2]= h->intra4x4_pred_mode_cache[7+8*3];
  506. h->intra4x4_pred_mode[mb_xy][3]= h->intra4x4_pred_mode_cache[7+8*4];
  507. h->intra4x4_pred_mode[mb_xy][4]= h->intra4x4_pred_mode_cache[4+8*4];
  508. h->intra4x4_pred_mode[mb_xy][5]= h->intra4x4_pred_mode_cache[5+8*4];
  509. h->intra4x4_pred_mode[mb_xy][6]= h->intra4x4_pred_mode_cache[6+8*4];
  510. }
  511. /**
  512. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  513. */
  514. static inline int check_intra4x4_pred_mode(H264Context *h){
  515. MpegEncContext * const s = &h->s;
  516. static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0};
  517. static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED};
  518. int i;
  519. if(!(h->top_samples_available&0x8000)){
  520. for(i=0; i<4; i++){
  521. int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ];
  522. if(status<0){
  523. av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
  524. return -1;
  525. } else if(status){
  526. h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
  527. }
  528. }
  529. }
  530. if(!(h->left_samples_available&0x8000)){
  531. for(i=0; i<4; i++){
  532. int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ];
  533. if(status<0){
  534. av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
  535. return -1;
  536. } else if(status){
  537. h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status;
  538. }
  539. }
  540. }
  541. return 0;
  542. } //FIXME cleanup like next
  543. /**
  544. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  545. */
  546. static inline int check_intra_pred_mode(H264Context *h, int mode){
  547. MpegEncContext * const s = &h->s;
  548. static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1};
  549. static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8};
  550. if(mode > 6U) {
  551. av_log(h->s.avctx, AV_LOG_ERROR, "out of range intra chroma pred mode at %d %d\n", s->mb_x, s->mb_y);
  552. return -1;
  553. }
  554. if(!(h->top_samples_available&0x8000)){
  555. mode= top[ mode ];
  556. if(mode<0){
  557. av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
  558. return -1;
  559. }
  560. }
  561. if(!(h->left_samples_available&0x8000)){
  562. mode= left[ mode ];
  563. if(mode<0){
  564. av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
  565. return -1;
  566. }
  567. }
  568. return mode;
  569. }
  570. /**
  571. * gets the predicted intra4x4 prediction mode.
  572. */
  573. static inline int pred_intra_mode(H264Context *h, int n){
  574. const int index8= scan8[n];
  575. const int left= h->intra4x4_pred_mode_cache[index8 - 1];
  576. const int top = h->intra4x4_pred_mode_cache[index8 - 8];
  577. const int min= FFMIN(left, top);
  578. tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
  579. if(min<0) return DC_PRED;
  580. else return min;
  581. }
  582. static inline void write_back_non_zero_count(H264Context *h){
  583. const int mb_xy= h->mb_xy;
  584. h->non_zero_count[mb_xy][0]= h->non_zero_count_cache[7+8*1];
  585. h->non_zero_count[mb_xy][1]= h->non_zero_count_cache[7+8*2];
  586. h->non_zero_count[mb_xy][2]= h->non_zero_count_cache[7+8*3];
  587. h->non_zero_count[mb_xy][3]= h->non_zero_count_cache[7+8*4];
  588. h->non_zero_count[mb_xy][4]= h->non_zero_count_cache[4+8*4];
  589. h->non_zero_count[mb_xy][5]= h->non_zero_count_cache[5+8*4];
  590. h->non_zero_count[mb_xy][6]= h->non_zero_count_cache[6+8*4];
  591. h->non_zero_count[mb_xy][9]= h->non_zero_count_cache[1+8*2];
  592. h->non_zero_count[mb_xy][8]= h->non_zero_count_cache[2+8*2];
  593. h->non_zero_count[mb_xy][7]= h->non_zero_count_cache[2+8*1];
  594. h->non_zero_count[mb_xy][12]=h->non_zero_count_cache[1+8*5];
  595. h->non_zero_count[mb_xy][11]=h->non_zero_count_cache[2+8*5];
  596. h->non_zero_count[mb_xy][10]=h->non_zero_count_cache[2+8*4];
  597. if(FRAME_MBAFF){
  598. // store all luma nnzs, for deblocking
  599. int v = 0, i;
  600. for(i=0; i<16; i++)
  601. v += (!!h->non_zero_count_cache[scan8[i]]) << i;
  602. *(uint16_t*)&h->non_zero_count[mb_xy][14] = v;
  603. }
  604. }
  605. /**
  606. * gets the predicted number of non zero coefficients.
  607. * @param n block index
  608. */
  609. static inline int pred_non_zero_count(H264Context *h, int n){
  610. const int index8= scan8[n];
  611. const int left= h->non_zero_count_cache[index8 - 1];
  612. const int top = h->non_zero_count_cache[index8 - 8];
  613. int i= left + top;
  614. if(i<64) i= (i+1)>>1;
  615. tprintf(h->s.avctx, "pred_nnz L%X T%X n%d s%d P%X\n", left, top, n, scan8[n], i&31);
  616. return i&31;
  617. }
  618. static inline int fetch_diagonal_mv(H264Context *h, const int16_t **C, int i, int list, int part_width){
  619. const int topright_ref= h->ref_cache[list][ i - 8 + part_width ];
  620. MpegEncContext *s = &h->s;
  621. /* there is no consistent mapping of mvs to neighboring locations that will
  622. * make mbaff happy, so we can't move all this logic to fill_caches */
  623. if(FRAME_MBAFF){
  624. const uint32_t *mb_types = s->current_picture_ptr->mb_type;
  625. const int16_t *mv;
  626. *(uint32_t*)h->mv_cache[list][scan8[0]-2] = 0;
  627. *C = h->mv_cache[list][scan8[0]-2];
  628. if(!MB_FIELD
  629. && (s->mb_y&1) && i < scan8[0]+8 && topright_ref != PART_NOT_AVAILABLE){
  630. int topright_xy = s->mb_x + (s->mb_y-1)*s->mb_stride + (i == scan8[0]+3);
  631. if(IS_INTERLACED(mb_types[topright_xy])){
  632. #define SET_DIAG_MV(MV_OP, REF_OP, X4, Y4)\
  633. const int x4 = X4, y4 = Y4;\
  634. const int mb_type = mb_types[(x4>>2)+(y4>>2)*s->mb_stride];\
  635. if(!USES_LIST(mb_type,list))\
  636. return LIST_NOT_USED;\
  637. mv = s->current_picture_ptr->motion_val[list][x4 + y4*h->b_stride];\
  638. h->mv_cache[list][scan8[0]-2][0] = mv[0];\
  639. h->mv_cache[list][scan8[0]-2][1] = mv[1] MV_OP;\
  640. return s->current_picture_ptr->ref_index[list][(x4>>1) + (y4>>1)*h->b8_stride] REF_OP;
  641. SET_DIAG_MV(*2, >>1, s->mb_x*4+(i&7)-4+part_width, s->mb_y*4-1);
  642. }
  643. }
  644. if(topright_ref == PART_NOT_AVAILABLE
  645. && ((s->mb_y&1) || i >= scan8[0]+8) && (i&7)==4
  646. && h->ref_cache[list][scan8[0]-1] != PART_NOT_AVAILABLE){
  647. if(!MB_FIELD
  648. && IS_INTERLACED(mb_types[h->left_mb_xy[0]])){
  649. SET_DIAG_MV(*2, >>1, s->mb_x*4-1, (s->mb_y|1)*4+(s->mb_y&1)*2+(i>>4)-1);
  650. }
  651. if(MB_FIELD
  652. && !IS_INTERLACED(mb_types[h->left_mb_xy[0]])
  653. && i >= scan8[0]+8){
  654. // leftshift will turn LIST_NOT_USED into PART_NOT_AVAILABLE, but that's ok.
  655. SET_DIAG_MV(/2, <<1, s->mb_x*4-1, (s->mb_y&~1)*4 - 1 + ((i-scan8[0])>>3)*2);
  656. }
  657. }
  658. #undef SET_DIAG_MV
  659. }
  660. if(topright_ref != PART_NOT_AVAILABLE){
  661. *C= h->mv_cache[list][ i - 8 + part_width ];
  662. return topright_ref;
  663. }else{
  664. tprintf(s->avctx, "topright MV not available\n");
  665. *C= h->mv_cache[list][ i - 8 - 1 ];
  666. return h->ref_cache[list][ i - 8 - 1 ];
  667. }
  668. }
  669. /**
  670. * gets the predicted MV.
  671. * @param n the block index
  672. * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
  673. * @param mx the x component of the predicted motion vector
  674. * @param my the y component of the predicted motion vector
  675. */
  676. static inline void pred_motion(H264Context * const h, int n, int part_width, int list, int ref, int * const mx, int * const my){
  677. const int index8= scan8[n];
  678. const int top_ref= h->ref_cache[list][ index8 - 8 ];
  679. const int left_ref= h->ref_cache[list][ index8 - 1 ];
  680. const int16_t * const A= h->mv_cache[list][ index8 - 1 ];
  681. const int16_t * const B= h->mv_cache[list][ index8 - 8 ];
  682. const int16_t * C;
  683. int diagonal_ref, match_count;
  684. assert(part_width==1 || part_width==2 || part_width==4);
  685. /* mv_cache
  686. B . . A T T T T
  687. U . . L . . , .
  688. U . . L . . . .
  689. U . . L . . , .
  690. . . . L . . . .
  691. */
  692. diagonal_ref= fetch_diagonal_mv(h, &C, index8, list, part_width);
  693. match_count= (diagonal_ref==ref) + (top_ref==ref) + (left_ref==ref);
  694. tprintf(h->s.avctx, "pred_motion match_count=%d\n", match_count);
  695. if(match_count > 1){ //most common
  696. *mx= mid_pred(A[0], B[0], C[0]);
  697. *my= mid_pred(A[1], B[1], C[1]);
  698. }else if(match_count==1){
  699. if(left_ref==ref){
  700. *mx= A[0];
  701. *my= A[1];
  702. }else if(top_ref==ref){
  703. *mx= B[0];
  704. *my= B[1];
  705. }else{
  706. *mx= C[0];
  707. *my= C[1];
  708. }
  709. }else{
  710. if(top_ref == PART_NOT_AVAILABLE && diagonal_ref == PART_NOT_AVAILABLE && left_ref != PART_NOT_AVAILABLE){
  711. *mx= A[0];
  712. *my= A[1];
  713. }else{
  714. *mx= mid_pred(A[0], B[0], C[0]);
  715. *my= mid_pred(A[1], B[1], C[1]);
  716. }
  717. }
  718. tprintf(h->s.avctx, "pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], diagonal_ref, C[0], C[1], left_ref, A[0], A[1], ref, *mx, *my, h->s.mb_x, h->s.mb_y, n, list);
  719. }
  720. /**
  721. * gets the directionally predicted 16x8 MV.
  722. * @param n the block index
  723. * @param mx the x component of the predicted motion vector
  724. * @param my the y component of the predicted motion vector
  725. */
  726. static inline void pred_16x8_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
  727. if(n==0){
  728. const int top_ref= h->ref_cache[list][ scan8[0] - 8 ];
  729. const int16_t * const B= h->mv_cache[list][ scan8[0] - 8 ];
  730. tprintf(h->s.avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], h->s.mb_x, h->s.mb_y, n, list);
  731. if(top_ref == ref){
  732. *mx= B[0];
  733. *my= B[1];
  734. return;
  735. }
  736. }else{
  737. const int left_ref= h->ref_cache[list][ scan8[8] - 1 ];
  738. const int16_t * const A= h->mv_cache[list][ scan8[8] - 1 ];
  739. tprintf(h->s.avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
  740. if(left_ref == ref){
  741. *mx= A[0];
  742. *my= A[1];
  743. return;
  744. }
  745. }
  746. //RARE
  747. pred_motion(h, n, 4, list, ref, mx, my);
  748. }
  749. /**
  750. * gets the directionally predicted 8x16 MV.
  751. * @param n the block index
  752. * @param mx the x component of the predicted motion vector
  753. * @param my the y component of the predicted motion vector
  754. */
  755. static inline void pred_8x16_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
  756. if(n==0){
  757. const int left_ref= h->ref_cache[list][ scan8[0] - 1 ];
  758. const int16_t * const A= h->mv_cache[list][ scan8[0] - 1 ];
  759. tprintf(h->s.avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
  760. if(left_ref == ref){
  761. *mx= A[0];
  762. *my= A[1];
  763. return;
  764. }
  765. }else{
  766. const int16_t * C;
  767. int diagonal_ref;
  768. diagonal_ref= fetch_diagonal_mv(h, &C, scan8[4], list, 2);
  769. tprintf(h->s.avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", diagonal_ref, C[0], C[1], h->s.mb_x, h->s.mb_y, n, list);
  770. if(diagonal_ref == ref){
  771. *mx= C[0];
  772. *my= C[1];
  773. return;
  774. }
  775. }
  776. //RARE
  777. pred_motion(h, n, 2, list, ref, mx, my);
  778. }
  779. static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my){
  780. const int top_ref = h->ref_cache[0][ scan8[0] - 8 ];
  781. const int left_ref= h->ref_cache[0][ scan8[0] - 1 ];
  782. tprintf(h->s.avctx, "pred_pskip: (%d) (%d) at %2d %2d\n", top_ref, left_ref, h->s.mb_x, h->s.mb_y);
  783. if(top_ref == PART_NOT_AVAILABLE || left_ref == PART_NOT_AVAILABLE
  784. || (top_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 8 ] == 0)
  785. || (left_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 1 ] == 0)){
  786. *mx = *my = 0;
  787. return;
  788. }
  789. pred_motion(h, 0, 4, 0, 0, mx, my);
  790. return;
  791. }
  792. static inline void direct_dist_scale_factor(H264Context * const h){
  793. const int poc = h->s.current_picture_ptr->poc;
  794. const int poc1 = h->ref_list[1][0].poc;
  795. int i;
  796. for(i=0; i<h->ref_count[0]; i++){
  797. int poc0 = h->ref_list[0][i].poc;
  798. int td = av_clip(poc1 - poc0, -128, 127);
  799. if(td == 0 /* FIXME || pic0 is a long-term ref */){
  800. h->dist_scale_factor[i] = 256;
  801. }else{
  802. int tb = av_clip(poc - poc0, -128, 127);
  803. int tx = (16384 + (FFABS(td) >> 1)) / td;
  804. h->dist_scale_factor[i] = av_clip((tb*tx + 32) >> 6, -1024, 1023);
  805. }
  806. }
  807. if(FRAME_MBAFF){
  808. for(i=0; i<h->ref_count[0]; i++){
  809. h->dist_scale_factor_field[2*i] =
  810. h->dist_scale_factor_field[2*i+1] = h->dist_scale_factor[i];
  811. }
  812. }
  813. }
  814. static inline void direct_ref_list_init(H264Context * const h){
  815. MpegEncContext * const s = &h->s;
  816. Picture * const ref1 = &h->ref_list[1][0];
  817. Picture * const cur = s->current_picture_ptr;
  818. int list, i, j;
  819. if(cur->pict_type == FF_I_TYPE)
  820. cur->ref_count[0] = 0;
  821. if(cur->pict_type != FF_B_TYPE)
  822. cur->ref_count[1] = 0;
  823. for(list=0; list<2; list++){
  824. cur->ref_count[list] = h->ref_count[list];
  825. for(j=0; j<h->ref_count[list]; j++)
  826. cur->ref_poc[list][j] = h->ref_list[list][j].poc;
  827. }
  828. if(cur->pict_type != FF_B_TYPE || h->direct_spatial_mv_pred)
  829. return;
  830. for(list=0; list<2; list++){
  831. for(i=0; i<ref1->ref_count[list]; i++){
  832. const int poc = ref1->ref_poc[list][i];
  833. h->map_col_to_list0[list][i] = 0; /* bogus; fills in for missing frames */
  834. for(j=0; j<h->ref_count[list]; j++)
  835. if(h->ref_list[list][j].poc == poc){
  836. h->map_col_to_list0[list][i] = j;
  837. break;
  838. }
  839. }
  840. }
  841. if(FRAME_MBAFF){
  842. for(list=0; list<2; list++){
  843. for(i=0; i<ref1->ref_count[list]; i++){
  844. j = h->map_col_to_list0[list][i];
  845. h->map_col_to_list0_field[list][2*i] = 2*j;
  846. h->map_col_to_list0_field[list][2*i+1] = 2*j+1;
  847. }
  848. }
  849. }
  850. }
  851. static inline void pred_direct_motion(H264Context * const h, int *mb_type){
  852. MpegEncContext * const s = &h->s;
  853. const int mb_xy = h->mb_xy;
  854. const int b8_xy = 2*s->mb_x + 2*s->mb_y*h->b8_stride;
  855. const int b4_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
  856. const int mb_type_col = h->ref_list[1][0].mb_type[mb_xy];
  857. const int16_t (*l1mv0)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[0][b4_xy];
  858. const int16_t (*l1mv1)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[1][b4_xy];
  859. const int8_t *l1ref0 = &h->ref_list[1][0].ref_index[0][b8_xy];
  860. const int8_t *l1ref1 = &h->ref_list[1][0].ref_index[1][b8_xy];
  861. const int is_b8x8 = IS_8X8(*mb_type);
  862. unsigned int sub_mb_type;
  863. int i8, i4;
  864. #define MB_TYPE_16x16_OR_INTRA (MB_TYPE_16x16|MB_TYPE_INTRA4x4|MB_TYPE_INTRA16x16|MB_TYPE_INTRA_PCM)
  865. if(IS_8X8(mb_type_col) && !h->sps.direct_8x8_inference_flag){
  866. /* FIXME save sub mb types from previous frames (or derive from MVs)
  867. * so we know exactly what block size to use */
  868. sub_mb_type = MB_TYPE_8x8|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_4x4 */
  869. *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1;
  870. }else if(!is_b8x8 && (mb_type_col & MB_TYPE_16x16_OR_INTRA)){
  871. sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
  872. *mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_16x16 */
  873. }else{
  874. sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
  875. *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1;
  876. }
  877. if(!is_b8x8)
  878. *mb_type |= MB_TYPE_DIRECT2;
  879. if(MB_FIELD)
  880. *mb_type |= MB_TYPE_INTERLACED;
  881. tprintf(s->avctx, "mb_type = %08x, sub_mb_type = %08x, is_b8x8 = %d, mb_type_col = %08x\n", *mb_type, sub_mb_type, is_b8x8, mb_type_col);
  882. if(h->direct_spatial_mv_pred){
  883. int ref[2];
  884. int mv[2][2];
  885. int list;
  886. /* FIXME interlacing + spatial direct uses wrong colocated block positions */
  887. /* ref = min(neighbors) */
  888. for(list=0; list<2; list++){
  889. int refa = h->ref_cache[list][scan8[0] - 1];
  890. int refb = h->ref_cache[list][scan8[0] - 8];
  891. int refc = h->ref_cache[list][scan8[0] - 8 + 4];
  892. if(refc == -2)
  893. refc = h->ref_cache[list][scan8[0] - 8 - 1];
  894. ref[list] = FFMIN3((unsigned)refa, (unsigned)refb, (unsigned)refc);
  895. if(ref[list] < 0)
  896. ref[list] = -1;
  897. }
  898. if(ref[0] < 0 && ref[1] < 0){
  899. ref[0] = ref[1] = 0;
  900. mv[0][0] = mv[0][1] =
  901. mv[1][0] = mv[1][1] = 0;
  902. }else{
  903. for(list=0; list<2; list++){
  904. if(ref[list] >= 0)
  905. pred_motion(h, 0, 4, list, ref[list], &mv[list][0], &mv[list][1]);
  906. else
  907. mv[list][0] = mv[list][1] = 0;
  908. }
  909. }
  910. if(ref[1] < 0){
  911. if(!is_b8x8)
  912. *mb_type &= ~MB_TYPE_L1;
  913. sub_mb_type &= ~MB_TYPE_L1;
  914. }else if(ref[0] < 0){
  915. if(!is_b8x8)
  916. *mb_type &= ~MB_TYPE_L0;
  917. sub_mb_type &= ~MB_TYPE_L0;
  918. }
  919. if(IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col)){
  920. int pair_xy = s->mb_x + (s->mb_y&~1)*s->mb_stride;
  921. int mb_types_col[2];
  922. int b8_stride = h->b8_stride;
  923. int b4_stride = h->b_stride;
  924. *mb_type = (*mb_type & ~MB_TYPE_16x16) | MB_TYPE_8x8;
  925. if(IS_INTERLACED(*mb_type)){
  926. mb_types_col[0] = h->ref_list[1][0].mb_type[pair_xy];
  927. mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy+s->mb_stride];
  928. if(s->mb_y&1){
  929. l1ref0 -= 2*b8_stride;
  930. l1ref1 -= 2*b8_stride;
  931. l1mv0 -= 4*b4_stride;
  932. l1mv1 -= 4*b4_stride;
  933. }
  934. b8_stride *= 3;
  935. b4_stride *= 6;
  936. }else{
  937. int cur_poc = s->current_picture_ptr->poc;
  938. int *col_poc = h->ref_list[1]->field_poc;
  939. int col_parity = FFABS(col_poc[0] - cur_poc) >= FFABS(col_poc[1] - cur_poc);
  940. int dy = 2*col_parity - (s->mb_y&1);
  941. mb_types_col[0] =
  942. mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy + col_parity*s->mb_stride];
  943. l1ref0 += dy*b8_stride;
  944. l1ref1 += dy*b8_stride;
  945. l1mv0 += 2*dy*b4_stride;
  946. l1mv1 += 2*dy*b4_stride;
  947. b8_stride = 0;
  948. }
  949. for(i8=0; i8<4; i8++){
  950. int x8 = i8&1;
  951. int y8 = i8>>1;
  952. int xy8 = x8+y8*b8_stride;
  953. int xy4 = 3*x8+y8*b4_stride;
  954. int a=0, b=0;
  955. if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
  956. continue;
  957. h->sub_mb_type[i8] = sub_mb_type;
  958. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[0], 1);
  959. fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[1], 1);
  960. if(!IS_INTRA(mb_types_col[y8])
  961. && ( (l1ref0[xy8] == 0 && FFABS(l1mv0[xy4][0]) <= 1 && FFABS(l1mv0[xy4][1]) <= 1)
  962. || (l1ref0[xy8] < 0 && l1ref1[xy8] == 0 && FFABS(l1mv1[xy4][0]) <= 1 && FFABS(l1mv1[xy4][1]) <= 1))){
  963. if(ref[0] > 0)
  964. a= pack16to32(mv[0][0],mv[0][1]);
  965. if(ref[1] > 0)
  966. b= pack16to32(mv[1][0],mv[1][1]);
  967. }else{
  968. a= pack16to32(mv[0][0],mv[0][1]);
  969. b= pack16to32(mv[1][0],mv[1][1]);
  970. }
  971. fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, a, 4);
  972. fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, b, 4);
  973. }
  974. }else if(IS_16X16(*mb_type)){
  975. int a=0, b=0;
  976. fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, (uint8_t)ref[0], 1);
  977. fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, (uint8_t)ref[1], 1);
  978. if(!IS_INTRA(mb_type_col)
  979. && ( (l1ref0[0] == 0 && FFABS(l1mv0[0][0]) <= 1 && FFABS(l1mv0[0][1]) <= 1)
  980. || (l1ref0[0] < 0 && l1ref1[0] == 0 && FFABS(l1mv1[0][0]) <= 1 && FFABS(l1mv1[0][1]) <= 1
  981. && (h->x264_build>33 || !h->x264_build)))){
  982. if(ref[0] > 0)
  983. a= pack16to32(mv[0][0],mv[0][1]);
  984. if(ref[1] > 0)
  985. b= pack16to32(mv[1][0],mv[1][1]);
  986. }else{
  987. a= pack16to32(mv[0][0],mv[0][1]);
  988. b= pack16to32(mv[1][0],mv[1][1]);
  989. }
  990. fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, a, 4);
  991. fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, b, 4);
  992. }else{
  993. for(i8=0; i8<4; i8++){
  994. const int x8 = i8&1;
  995. const int y8 = i8>>1;
  996. if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
  997. continue;
  998. h->sub_mb_type[i8] = sub_mb_type;
  999. fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mv[0][0],mv[0][1]), 4);
  1000. fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mv[1][0],mv[1][1]), 4);
  1001. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[0], 1);
  1002. fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[1], 1);
  1003. /* col_zero_flag */
  1004. if(!IS_INTRA(mb_type_col) && ( l1ref0[x8 + y8*h->b8_stride] == 0
  1005. || (l1ref0[x8 + y8*h->b8_stride] < 0 && l1ref1[x8 + y8*h->b8_stride] == 0
  1006. && (h->x264_build>33 || !h->x264_build)))){
  1007. const int16_t (*l1mv)[2]= l1ref0[x8 + y8*h->b8_stride] == 0 ? l1mv0 : l1mv1;
  1008. if(IS_SUB_8X8(sub_mb_type)){
  1009. const int16_t *mv_col = l1mv[x8*3 + y8*3*h->b_stride];
  1010. if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){
  1011. if(ref[0] == 0)
  1012. fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
  1013. if(ref[1] == 0)
  1014. fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
  1015. }
  1016. }else
  1017. for(i4=0; i4<4; i4++){
  1018. const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
  1019. if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){
  1020. if(ref[0] == 0)
  1021. *(uint32_t*)h->mv_cache[0][scan8[i8*4+i4]] = 0;
  1022. if(ref[1] == 0)
  1023. *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] = 0;
  1024. }
  1025. }
  1026. }
  1027. }
  1028. }
  1029. }else{ /* direct temporal mv pred */
  1030. const int *map_col_to_list0[2] = {h->map_col_to_list0[0], h->map_col_to_list0[1]};
  1031. const int *dist_scale_factor = h->dist_scale_factor;
  1032. if(FRAME_MBAFF){
  1033. if(IS_INTERLACED(*mb_type)){
  1034. map_col_to_list0[0] = h->map_col_to_list0_field[0];
  1035. map_col_to_list0[1] = h->map_col_to_list0_field[1];
  1036. dist_scale_factor = h->dist_scale_factor_field;
  1037. }
  1038. if(IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col)){
  1039. /* FIXME assumes direct_8x8_inference == 1 */
  1040. const int pair_xy = s->mb_x + (s->mb_y&~1)*s->mb_stride;
  1041. int mb_types_col[2];
  1042. int y_shift;
  1043. *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1
  1044. | (is_b8x8 ? 0 : MB_TYPE_DIRECT2)
  1045. | (*mb_type & MB_TYPE_INTERLACED);
  1046. sub_mb_type = MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_16x16;
  1047. if(IS_INTERLACED(*mb_type)){
  1048. /* frame to field scaling */
  1049. mb_types_col[0] = h->ref_list[1][0].mb_type[pair_xy];
  1050. mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy+s->mb_stride];
  1051. if(s->mb_y&1){
  1052. l1ref0 -= 2*h->b8_stride;
  1053. l1ref1 -= 2*h->b8_stride;
  1054. l1mv0 -= 4*h->b_stride;
  1055. l1mv1 -= 4*h->b_stride;
  1056. }
  1057. y_shift = 0;
  1058. if( (mb_types_col[0] & MB_TYPE_16x16_OR_INTRA)
  1059. && (mb_types_col[1] & MB_TYPE_16x16_OR_INTRA)
  1060. && !is_b8x8)
  1061. *mb_type |= MB_TYPE_16x8;
  1062. else
  1063. *mb_type |= MB_TYPE_8x8;
  1064. }else{
  1065. /* field to frame scaling */
  1066. /* col_mb_y = (mb_y&~1) + (topAbsDiffPOC < bottomAbsDiffPOC ? 0 : 1)
  1067. * but in MBAFF, top and bottom POC are equal */
  1068. int dy = (s->mb_y&1) ? 1 : 2;
  1069. mb_types_col[0] =
  1070. mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy+s->mb_stride];
  1071. l1ref0 += dy*h->b8_stride;
  1072. l1ref1 += dy*h->b8_stride;
  1073. l1mv0 += 2*dy*h->b_stride;
  1074. l1mv1 += 2*dy*h->b_stride;
  1075. y_shift = 2;
  1076. if((mb_types_col[0] & (MB_TYPE_16x16_OR_INTRA|MB_TYPE_16x8))
  1077. && !is_b8x8)
  1078. *mb_type |= MB_TYPE_16x16;
  1079. else
  1080. *mb_type |= MB_TYPE_8x8;
  1081. }
  1082. for(i8=0; i8<4; i8++){
  1083. const int x8 = i8&1;
  1084. const int y8 = i8>>1;
  1085. int ref0, scale;
  1086. const int16_t (*l1mv)[2]= l1mv0;
  1087. if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
  1088. continue;
  1089. h->sub_mb_type[i8] = sub_mb_type;
  1090. fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
  1091. if(IS_INTRA(mb_types_col[y8])){
  1092. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
  1093. fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
  1094. fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
  1095. continue;
  1096. }
  1097. ref0 = l1ref0[x8 + (y8*2>>y_shift)*h->b8_stride];
  1098. if(ref0 >= 0)
  1099. ref0 = map_col_to_list0[0][ref0*2>>y_shift];
  1100. else{
  1101. ref0 = map_col_to_list0[1][l1ref1[x8 + (y8*2>>y_shift)*h->b8_stride]*2>>y_shift];
  1102. l1mv= l1mv1;
  1103. }
  1104. scale = dist_scale_factor[ref0];
  1105. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
  1106. {
  1107. const int16_t *mv_col = l1mv[x8*3 + (y8*6>>y_shift)*h->b_stride];
  1108. int my_col = (mv_col[1]<<y_shift)/2;
  1109. int mx = (scale * mv_col[0] + 128) >> 8;
  1110. int my = (scale * my_col + 128) >> 8;
  1111. fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
  1112. fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-my_col), 4);
  1113. }
  1114. }
  1115. return;
  1116. }
  1117. }
  1118. /* one-to-one mv scaling */
  1119. if(IS_16X16(*mb_type)){
  1120. int ref, mv0, mv1;
  1121. fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, 0, 1);
  1122. if(IS_INTRA(mb_type_col)){
  1123. ref=mv0=mv1=0;
  1124. }else{
  1125. const int ref0 = l1ref0[0] >= 0 ? map_col_to_list0[0][l1ref0[0]]
  1126. : map_col_to_list0[1][l1ref1[0]];
  1127. const int scale = dist_scale_factor[ref0];
  1128. const int16_t *mv_col = l1ref0[0] >= 0 ? l1mv0[0] : l1mv1[0];
  1129. int mv_l0[2];
  1130. mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
  1131. mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
  1132. ref= ref0;
  1133. mv0= pack16to32(mv_l0[0],mv_l0[1]);
  1134. mv1= pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
  1135. }
  1136. fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref, 1);
  1137. fill_rectangle(&h-> mv_cache[0][scan8[0]], 4, 4, 8, mv0, 4);
  1138. fill_rectangle(&h-> mv_cache[1][scan8[0]], 4, 4, 8, mv1, 4);
  1139. }else{
  1140. for(i8=0; i8<4; i8++){
  1141. const int x8 = i8&1;
  1142. const int y8 = i8>>1;
  1143. int ref0, scale;
  1144. const int16_t (*l1mv)[2]= l1mv0;
  1145. if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
  1146. continue;
  1147. h->sub_mb_type[i8] = sub_mb_type;
  1148. fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
  1149. if(IS_INTRA(mb_type_col)){
  1150. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
  1151. fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
  1152. fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
  1153. continue;
  1154. }
  1155. ref0 = l1ref0[x8 + y8*h->b8_stride];
  1156. if(ref0 >= 0)
  1157. ref0 = map_col_to_list0[0][ref0];
  1158. else{
  1159. ref0 = map_col_to_list0[1][l1ref1[x8 + y8*h->b8_stride]];
  1160. l1mv= l1mv1;
  1161. }
  1162. scale = dist_scale_factor[ref0];
  1163. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
  1164. if(IS_SUB_8X8(sub_mb_type)){
  1165. const int16_t *mv_col = l1mv[x8*3 + y8*3*h->b_stride];
  1166. int mx = (scale * mv_col[0] + 128) >> 8;
  1167. int my = (scale * mv_col[1] + 128) >> 8;
  1168. fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
  1169. fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-mv_col[1]), 4);
  1170. }else
  1171. for(i4=0; i4<4; i4++){
  1172. const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
  1173. int16_t *mv_l0 = h->mv_cache[0][scan8[i8*4+i4]];
  1174. mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
  1175. mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
  1176. *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] =
  1177. pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
  1178. }
  1179. }
  1180. }
  1181. }
  1182. }
  1183. static inline void write_back_motion(H264Context *h, int mb_type){
  1184. MpegEncContext * const s = &h->s;
  1185. const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
  1186. const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
  1187. int list;
  1188. if(!USES_LIST(mb_type, 0))
  1189. fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, h->b8_stride, (uint8_t)LIST_NOT_USED, 1);
  1190. for(list=0; list<h->list_count; list++){
  1191. int y;
  1192. if(!USES_LIST(mb_type, list))
  1193. continue;
  1194. for(y=0; y<4; y++){
  1195. *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y];
  1196. *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y];
  1197. }
  1198. if( h->pps.cabac ) {
  1199. if(IS_SKIP(mb_type))
  1200. fill_rectangle(h->mvd_table[list][b_xy], 4, 4, h->b_stride, 0, 4);
  1201. else
  1202. for(y=0; y<4; y++){
  1203. *(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+0 + 8*y];
  1204. *(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+2 + 8*y];
  1205. }
  1206. }
  1207. {
  1208. int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
  1209. ref_index[0+0*h->b8_stride]= h->ref_cache[list][scan8[0]];
  1210. ref_index[1+0*h->b8_stride]= h->ref_cache[list][scan8[4]];
  1211. ref_index[0+1*h->b8_stride]= h->ref_cache[list][scan8[8]];
  1212. ref_index[1+1*h->b8_stride]= h->ref_cache[list][scan8[12]];
  1213. }
  1214. }
  1215. if(h->slice_type_nos == FF_B_TYPE && h->pps.cabac){
  1216. if(IS_8X8(mb_type)){
  1217. uint8_t *direct_table = &h->direct_table[b8_xy];
  1218. direct_table[1+0*h->b8_stride] = IS_DIRECT(h->sub_mb_type[1]) ? 1 : 0;
  1219. direct_table[0+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[2]) ? 1 : 0;
  1220. direct_table[1+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[3]) ? 1 : 0;
  1221. }
  1222. }
  1223. }
  1224. /**
  1225. * Decodes a network abstraction layer unit.
  1226. * @param consumed is the number of bytes used as input
  1227. * @param length is the length of the array
  1228. * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
  1229. * @returns decoded bytes, might be src+1 if no escapes
  1230. */
  1231. static const uint8_t *decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length){
  1232. int i, si, di;
  1233. uint8_t *dst;
  1234. int bufidx;
  1235. // src[0]&0x80; //forbidden bit
  1236. h->nal_ref_idc= src[0]>>5;
  1237. h->nal_unit_type= src[0]&0x1F;
  1238. src++; length--;
  1239. #if 0
  1240. for(i=0; i<length; i++)
  1241. printf("%2X ", src[i]);
  1242. #endif
  1243. for(i=0; i+1<length; i+=2){
  1244. if(src[i]) continue;
  1245. if(i>0 && src[i-1]==0) i--;
  1246. if(i+2<length && src[i+1]==0 && src[i+2]<=3){
  1247. if(src[i+2]!=3){
  1248. /* startcode, so we must be past the end */
  1249. length=i;
  1250. }
  1251. break;
  1252. }
  1253. }
  1254. if(i>=length-1){ //no escaped 0
  1255. *dst_length= length;
  1256. *consumed= length+1; //+1 for the header
  1257. return src;
  1258. }
  1259. bufidx = h->nal_unit_type == NAL_DPC ? 1 : 0; // use second escape buffer for inter data
  1260. h->rbsp_buffer[bufidx]= av_fast_realloc(h->rbsp_buffer[bufidx], &h->rbsp_buffer_size[bufidx], length);
  1261. dst= h->rbsp_buffer[bufidx];
  1262. if (dst == NULL){
  1263. return NULL;
  1264. }
  1265. //printf("decoding esc\n");
  1266. si=di=0;
  1267. while(si<length){
  1268. //remove escapes (very rare 1:2^22)
  1269. if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
  1270. if(src[si+2]==3){ //escape
  1271. dst[di++]= 0;
  1272. dst[di++]= 0;
  1273. si+=3;
  1274. continue;
  1275. }else //next start code
  1276. break;
  1277. }
  1278. dst[di++]= src[si++];
  1279. }
  1280. *dst_length= di;
  1281. *consumed= si + 1;//+1 for the header
  1282. //FIXME store exact number of bits in the getbitcontext (it is needed for decoding)
  1283. return dst;
  1284. }
  1285. /**
  1286. * identifies the exact end of the bitstream
  1287. * @return the length of the trailing, or 0 if damaged
  1288. */
  1289. static int decode_rbsp_trailing(H264Context *h, const uint8_t *src){
  1290. int v= *src;
  1291. int r;
  1292. tprintf(h->s.avctx, "rbsp trailing %X\n", v);
  1293. for(r=1; r<9; r++){
  1294. if(v&1) return r;
  1295. v>>=1;
  1296. }
  1297. return 0;
  1298. }
  1299. /**
  1300. * idct tranforms the 16 dc values and dequantize them.
  1301. * @param qp quantization parameter
  1302. */
  1303. static void h264_luma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
  1304. #define stride 16
  1305. int i;
  1306. int temp[16]; //FIXME check if this is a good idea
  1307. static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
  1308. static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
  1309. //memset(block, 64, 2*256);
  1310. //return;
  1311. for(i=0; i<4; i++){
  1312. const int offset= y_offset[i];
  1313. const int z0= block[offset+stride*0] + block[offset+stride*4];
  1314. const int z1= block[offset+stride*0] - block[offset+stride*4];
  1315. const int z2= block[offset+stride*1] - block[offset+stride*5];
  1316. const int z3= block[offset+stride*1] + block[offset+stride*5];
  1317. temp[4*i+0]= z0+z3;
  1318. temp[4*i+1]= z1+z2;
  1319. temp[4*i+2]= z1-z2;
  1320. temp[4*i+3]= z0-z3;
  1321. }
  1322. for(i=0; i<4; i++){
  1323. const int offset= x_offset[i];
  1324. const int z0= temp[4*0+i] + temp[4*2+i];
  1325. const int z1= temp[4*0+i] - temp[4*2+i];
  1326. const int z2= temp[4*1+i] - temp[4*3+i];
  1327. const int z3= temp[4*1+i] + temp[4*3+i];
  1328. block[stride*0 +offset]= ((((z0 + z3)*qmul + 128 ) >> 8)); //FIXME think about merging this into decode_resdual
  1329. block[stride*2 +offset]= ((((z1 + z2)*qmul + 128 ) >> 8));
  1330. block[stride*8 +offset]= ((((z1 - z2)*qmul + 128 ) >> 8));
  1331. block[stride*10+offset]= ((((z0 - z3)*qmul + 128 ) >> 8));
  1332. }
  1333. }
  1334. #if 0
  1335. /**
  1336. * dct tranforms the 16 dc values.
  1337. * @param qp quantization parameter ??? FIXME
  1338. */
  1339. static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){
  1340. // const int qmul= dequant_coeff[qp][0];
  1341. int i;
  1342. int temp[16]; //FIXME check if this is a good idea
  1343. static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
  1344. static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
  1345. for(i=0; i<4; i++){
  1346. const int offset= y_offset[i];
  1347. const int z0= block[offset+stride*0] + block[offset+stride*4];
  1348. const int z1= block[offset+stride*0] - block[offset+stride*4];
  1349. const int z2= block[offset+stride*1] - block[offset+stride*5];
  1350. const int z3= block[offset+stride*1] + block[offset+stride*5];
  1351. temp[4*i+0]= z0+z3;
  1352. temp[4*i+1]= z1+z2;
  1353. temp[4*i+2]= z1-z2;
  1354. temp[4*i+3]= z0-z3;
  1355. }
  1356. for(i=0; i<4; i++){
  1357. const int offset= x_offset[i];
  1358. const int z0= temp[4*0+i] + temp[4*2+i];
  1359. const int z1= temp[4*0+i] - temp[4*2+i];
  1360. const int z2= temp[4*1+i] - temp[4*3+i];
  1361. const int z3= temp[4*1+i] + temp[4*3+i];
  1362. block[stride*0 +offset]= (z0 + z3)>>1;
  1363. block[stride*2 +offset]= (z1 + z2)>>1;
  1364. block[stride*8 +offset]= (z1 - z2)>>1;
  1365. block[stride*10+offset]= (z0 - z3)>>1;
  1366. }
  1367. }
  1368. #endif
  1369. #undef xStride
  1370. #undef stride
  1371. static void chroma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
  1372. const int stride= 16*2;
  1373. const int xStride= 16;
  1374. int a,b,c,d,e;
  1375. a= block[stride*0 + xStride*0];
  1376. b= block[stride*0 + xStride*1];
  1377. c= block[stride*1 + xStride*0];
  1378. d= block[stride*1 + xStride*1];
  1379. e= a-b;
  1380. a= a+b;
  1381. b= c-d;
  1382. c= c+d;
  1383. block[stride*0 + xStride*0]= ((a+c)*qmul) >> 7;
  1384. block[stride*0 + xStride*1]= ((e+b)*qmul) >> 7;
  1385. block[stride*1 + xStride*0]= ((a-c)*qmul) >> 7;
  1386. block[stride*1 + xStride*1]= ((e-b)*qmul) >> 7;
  1387. }
  1388. #if 0
  1389. static void chroma_dc_dct_c(DCTELEM *block){
  1390. const int stride= 16*2;
  1391. const int xStride= 16;
  1392. int a,b,c,d,e;
  1393. a= block[stride*0 + xStride*0];
  1394. b= block[stride*0 + xStride*1];
  1395. c= block[stride*1 + xStride*0];
  1396. d= block[stride*1 + xStride*1];
  1397. e= a-b;
  1398. a= a+b;
  1399. b= c-d;
  1400. c= c+d;
  1401. block[stride*0 + xStride*0]= (a+c);
  1402. block[stride*0 + xStride*1]= (e+b);
  1403. block[stride*1 + xStride*0]= (a-c);
  1404. block[stride*1 + xStride*1]= (e-b);
  1405. }
  1406. #endif
  1407. /**
  1408. * gets the chroma qp.
  1409. */
  1410. static inline int get_chroma_qp(H264Context *h, int t, int qscale){
  1411. return h->pps.chroma_qp_table[t][qscale];
  1412. }
  1413. //FIXME need to check that this does not overflow signed 32 bit for low qp, I am not sure, it's very close
  1414. //FIXME check that gcc inlines this (and optimizes intra & separate_dc stuff away)
  1415. static inline int quantize_c(DCTELEM *block, uint8_t *scantable, int qscale, int intra, int separate_dc){
  1416. int i;
  1417. const int * const quant_table= quant_coeff[qscale];
  1418. const int bias= intra ? (1<<QUANT_SHIFT)/3 : (1<<QUANT_SHIFT)/6;
  1419. const unsigned int threshold1= (1<<QUANT_SHIFT) - bias - 1;
  1420. const unsigned int threshold2= (threshold1<<1);
  1421. int last_non_zero;
  1422. if(separate_dc){
  1423. if(qscale<=18){
  1424. //avoid overflows
  1425. const int dc_bias= intra ? (1<<(QUANT_SHIFT-2))/3 : (1<<(QUANT_SHIFT-2))/6;
  1426. const unsigned int dc_threshold1= (1<<(QUANT_SHIFT-2)) - dc_bias - 1;
  1427. const unsigned int dc_threshold2= (dc_threshold1<<1);
  1428. int level= block[0]*quant_coeff[qscale+18][0];
  1429. if(((unsigned)(level+dc_threshold1))>dc_threshold2){
  1430. if(level>0){
  1431. level= (dc_bias + level)>>(QUANT_SHIFT-2);
  1432. block[0]= level;
  1433. }else{
  1434. level= (dc_bias - level)>>(QUANT_SHIFT-2);
  1435. block[0]= -level;
  1436. }
  1437. // last_non_zero = i;
  1438. }else{
  1439. block[0]=0;
  1440. }
  1441. }else{
  1442. const int dc_bias= intra ? (1<<(QUANT_SHIFT+1))/3 : (1<<(QUANT_SHIFT+1))/6;
  1443. const unsigned int dc_threshold1= (1<<(QUANT_SHIFT+1)) - dc_bias - 1;
  1444. const unsigned int dc_threshold2= (dc_threshold1<<1);
  1445. int level= block[0]*quant_table[0];
  1446. if(((unsigned)(level+dc_threshold1))>dc_threshold2){
  1447. if(level>0){
  1448. level= (dc_bias + level)>>(QUANT_SHIFT+1);
  1449. block[0]= level;
  1450. }else{
  1451. level= (dc_bias - level)>>(QUANT_SHIFT+1);
  1452. block[0]= -level;
  1453. }
  1454. // last_non_zero = i;
  1455. }else{
  1456. block[0]=0;
  1457. }
  1458. }
  1459. last_non_zero= 0;
  1460. i=1;
  1461. }else{
  1462. last_non_zero= -1;
  1463. i=0;
  1464. }
  1465. for(; i<16; i++){
  1466. const int j= scantable[i];
  1467. int level= block[j]*quant_table[j];
  1468. // if( bias+level >= (1<<(QMAT_SHIFT - 3))
  1469. // || bias-level >= (1<<(QMAT_SHIFT - 3))){
  1470. if(((unsigned)(level+threshold1))>threshold2){
  1471. if(level>0){
  1472. level= (bias + level)>>QUANT_SHIFT;
  1473. block[j]= level;
  1474. }else{
  1475. level= (bias - level)>>QUANT_SHIFT;
  1476. block[j]= -level;
  1477. }
  1478. last_non_zero = i;
  1479. }else{
  1480. block[j]=0;
  1481. }
  1482. }
  1483. return last_non_zero;
  1484. }
  1485. static inline void mc_dir_part(H264Context *h, Picture *pic, int n, int square, int chroma_height, int delta, int list,
  1486. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  1487. int src_x_offset, int src_y_offset,
  1488. qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op){
  1489. MpegEncContext * const s = &h->s;
  1490. const int mx= h->mv_cache[list][ scan8[n] ][0] + src_x_offset*8;
  1491. int my= h->mv_cache[list][ scan8[n] ][1] + src_y_offset*8;
  1492. const int luma_xy= (mx&3) + ((my&3)<<2);
  1493. uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*h->mb_linesize;
  1494. uint8_t * src_cb, * src_cr;
  1495. int extra_width= h->emu_edge_width;
  1496. int extra_height= h->emu_edge_height;
  1497. int emu=0;
  1498. const int full_mx= mx>>2;
  1499. const int full_my= my>>2;
  1500. const int pic_width = 16*s->mb_width;
  1501. const int pic_height = 16*s->mb_height >> MB_FIELD;
  1502. if(!pic->data[0]) //FIXME this is unacceptable, some senseable error concealment must be done for missing reference frames
  1503. return;
  1504. if(mx&7) extra_width -= 3;
  1505. if(my&7) extra_height -= 3;
  1506. if( full_mx < 0-extra_width
  1507. || full_my < 0-extra_height
  1508. || full_mx + 16/*FIXME*/ > pic_width + extra_width
  1509. || full_my + 16/*FIXME*/ > pic_height + extra_height){
  1510. ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*h->mb_linesize, h->mb_linesize, 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
  1511. src_y= s->edge_emu_buffer + 2 + 2*h->mb_linesize;
  1512. emu=1;
  1513. }
  1514. qpix_op[luma_xy](dest_y, src_y, h->mb_linesize); //FIXME try variable height perhaps?
  1515. if(!square){
  1516. qpix_op[luma_xy](dest_y + delta, src_y + delta, h->mb_linesize);
  1517. }
  1518. if(ENABLE_GRAY && s->flags&CODEC_FLAG_GRAY) return;
  1519. if(MB_FIELD){
  1520. // chroma offset when predicting from a field of opposite parity
  1521. my += 2 * ((s->mb_y & 1) - (pic->reference - 1));
  1522. emu |= (my>>3) < 0 || (my>>3) + 8 >= (pic_height>>1);
  1523. }
  1524. src_cb= pic->data[1] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
  1525. src_cr= pic->data[2] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
  1526. if(emu){
  1527. ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
  1528. src_cb= s->edge_emu_buffer;
  1529. }
  1530. chroma_op(dest_cb, src_cb, h->mb_uvlinesize, chroma_height, mx&7, my&7);
  1531. if(emu){
  1532. ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
  1533. src_cr= s->edge_emu_buffer;
  1534. }
  1535. chroma_op(dest_cr, src_cr, h->mb_uvlinesize, chroma_height, mx&7, my&7);
  1536. }
  1537. static inline void mc_part_std(H264Context *h, int n, int square, int chroma_height, int delta,
  1538. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  1539. int x_offset, int y_offset,
  1540. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  1541. qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
  1542. int list0, int list1){
  1543. MpegEncContext * const s = &h->s;
  1544. qpel_mc_func *qpix_op= qpix_put;
  1545. h264_chroma_mc_func chroma_op= chroma_put;
  1546. dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
  1547. dest_cb += x_offset + y_offset*h->mb_uvlinesize;
  1548. dest_cr += x_offset + y_offset*h->mb_uvlinesize;
  1549. x_offset += 8*s->mb_x;
  1550. y_offset += 8*(s->mb_y >> MB_FIELD);
  1551. if(list0){
  1552. Picture *ref= &h->ref_list[0][ h->ref_cache[0][ scan8[n] ] ];
  1553. mc_dir_part(h, ref, n, square, chroma_height, delta, 0,
  1554. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  1555. qpix_op, chroma_op);
  1556. qpix_op= qpix_avg;
  1557. chroma_op= chroma_avg;
  1558. }
  1559. if(list1){
  1560. Picture *ref= &h->ref_list[1][ h->ref_cache[1][ scan8[n] ] ];
  1561. mc_dir_part(h, ref, n, square, chroma_height, delta, 1,
  1562. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  1563. qpix_op, chroma_op);
  1564. }
  1565. }
  1566. static inline void mc_part_weighted(H264Context *h, int n, int square, int chroma_height, int delta,
  1567. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  1568. int x_offset, int y_offset,
  1569. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  1570. h264_weight_func luma_weight_op, h264_weight_func chroma_weight_op,
  1571. h264_biweight_func luma_weight_avg, h264_biweight_func chroma_weight_avg,
  1572. int list0, int list1){
  1573. MpegEncContext * const s = &h->s;
  1574. dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
  1575. dest_cb += x_offset + y_offset*h->mb_uvlinesize;
  1576. dest_cr += x_offset + y_offset*h->mb_uvlinesize;
  1577. x_offset += 8*s->mb_x;
  1578. y_offset += 8*(s->mb_y >> MB_FIELD);
  1579. if(list0 && list1){
  1580. /* don't optimize for luma-only case, since B-frames usually
  1581. * use implicit weights => chroma too. */
  1582. uint8_t *tmp_cb = s->obmc_scratchpad;
  1583. uint8_t *tmp_cr = s->obmc_scratchpad + 8;
  1584. uint8_t *tmp_y = s->obmc_scratchpad + 8*h->mb_uvlinesize;
  1585. int refn0 = h->ref_cache[0][ scan8[n] ];
  1586. int refn1 = h->ref_cache[1][ scan8[n] ];
  1587. mc_dir_part(h, &h->ref_list[0][refn0], n, square, chroma_height, delta, 0,
  1588. dest_y, dest_cb, dest_cr,
  1589. x_offset, y_offset, qpix_put, chroma_put);
  1590. mc_dir_part(h, &h->ref_list[1][refn1], n, square, chroma_height, delta, 1,
  1591. tmp_y, tmp_cb, tmp_cr,
  1592. x_offset, y_offset, qpix_put, chroma_put);
  1593. if(h->use_weight == 2){
  1594. int weight0 = h->implicit_weight[refn0][refn1];
  1595. int weight1 = 64 - weight0;
  1596. luma_weight_avg( dest_y, tmp_y, h-> mb_linesize, 5, weight0, weight1, 0);
  1597. chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, 5, weight0, weight1, 0);
  1598. chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, 5, weight0, weight1, 0);
  1599. }else{
  1600. luma_weight_avg(dest_y, tmp_y, h->mb_linesize, h->luma_log2_weight_denom,
  1601. h->luma_weight[0][refn0], h->luma_weight[1][refn1],
  1602. h->luma_offset[0][refn0] + h->luma_offset[1][refn1]);
  1603. chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  1604. h->chroma_weight[0][refn0][0], h->chroma_weight[1][refn1][0],
  1605. h->chroma_offset[0][refn0][0] + h->chroma_offset[1][refn1][0]);
  1606. chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  1607. h->chroma_weight[0][refn0][1], h->chroma_weight[1][refn1][1],
  1608. h->chroma_offset[0][refn0][1] + h->chroma_offset[1][refn1][1]);
  1609. }
  1610. }else{
  1611. int list = list1 ? 1 : 0;
  1612. int refn = h->ref_cache[list][ scan8[n] ];
  1613. Picture *ref= &h->ref_list[list][refn];
  1614. mc_dir_part(h, ref, n, square, chroma_height, delta, list,
  1615. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  1616. qpix_put, chroma_put);
  1617. luma_weight_op(dest_y, h->mb_linesize, h->luma_log2_weight_denom,
  1618. h->luma_weight[list][refn], h->luma_offset[list][refn]);
  1619. if(h->use_weight_chroma){
  1620. chroma_weight_op(dest_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  1621. h->chroma_weight[list][refn][0], h->chroma_offset[list][refn][0]);
  1622. chroma_weight_op(dest_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  1623. h->chroma_weight[list][refn][1], h->chroma_offset[list][refn][1]);
  1624. }
  1625. }
  1626. }
  1627. static inline void mc_part(H264Context *h, int n, int square, int chroma_height, int delta,
  1628. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  1629. int x_offset, int y_offset,
  1630. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  1631. qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
  1632. h264_weight_func *weight_op, h264_biweight_func *weight_avg,
  1633. int list0, int list1){
  1634. if((h->use_weight==2 && list0 && list1
  1635. && (h->implicit_weight[ h->ref_cache[0][scan8[n]] ][ h->ref_cache[1][scan8[n]] ] != 32))
  1636. || h->use_weight==1)
  1637. mc_part_weighted(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
  1638. x_offset, y_offset, qpix_put, chroma_put,
  1639. weight_op[0], weight_op[3], weight_avg[0], weight_avg[3], list0, list1);
  1640. else
  1641. mc_part_std(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
  1642. x_offset, y_offset, qpix_put, chroma_put, qpix_avg, chroma_avg, list0, list1);
  1643. }
  1644. static inline void prefetch_motion(H264Context *h, int list){
  1645. /* fetch pixels for estimated mv 4 macroblocks ahead
  1646. * optimized for 64byte cache lines */
  1647. MpegEncContext * const s = &h->s;
  1648. const int refn = h->ref_cache[list][scan8[0]];
  1649. if(refn >= 0){
  1650. const int mx= (h->mv_cache[list][scan8[0]][0]>>2) + 16*s->mb_x + 8;
  1651. const int my= (h->mv_cache[list][scan8[0]][1]>>2) + 16*s->mb_y;
  1652. uint8_t **src= h->ref_list[list][refn].data;
  1653. int off= mx + (my + (s->mb_x&3)*4)*h->mb_linesize + 64;
  1654. s->dsp.prefetch(src[0]+off, s->linesize, 4);
  1655. off= (mx>>1) + ((my>>1) + (s->mb_x&7))*s->uvlinesize + 64;
  1656. s->dsp.prefetch(src[1]+off, src[2]-src[1], 2);
  1657. }
  1658. }
  1659. static void hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  1660. qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
  1661. qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg),
  1662. h264_weight_func *weight_op, h264_biweight_func *weight_avg){
  1663. MpegEncContext * const s = &h->s;
  1664. const int mb_xy= h->mb_xy;
  1665. const int mb_type= s->current_picture.mb_type[mb_xy];
  1666. assert(IS_INTER(mb_type));
  1667. prefetch_motion(h, 0);
  1668. if(IS_16X16(mb_type)){
  1669. mc_part(h, 0, 1, 8, 0, dest_y, dest_cb, dest_cr, 0, 0,
  1670. qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0],
  1671. &weight_op[0], &weight_avg[0],
  1672. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
  1673. }else if(IS_16X8(mb_type)){
  1674. mc_part(h, 0, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 0,
  1675. qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
  1676. &weight_op[1], &weight_avg[1],
  1677. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
  1678. mc_part(h, 8, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 4,
  1679. qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
  1680. &weight_op[1], &weight_avg[1],
  1681. IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
  1682. }else if(IS_8X16(mb_type)){
  1683. mc_part(h, 0, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 0, 0,
  1684. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  1685. &weight_op[2], &weight_avg[2],
  1686. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
  1687. mc_part(h, 4, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 4, 0,
  1688. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  1689. &weight_op[2], &weight_avg[2],
  1690. IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
  1691. }else{
  1692. int i;
  1693. assert(IS_8X8(mb_type));
  1694. for(i=0; i<4; i++){
  1695. const int sub_mb_type= h->sub_mb_type[i];
  1696. const int n= 4*i;
  1697. int x_offset= (i&1)<<2;
  1698. int y_offset= (i&2)<<1;
  1699. if(IS_SUB_8X8(sub_mb_type)){
  1700. mc_part(h, n, 1, 4, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  1701. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  1702. &weight_op[3], &weight_avg[3],
  1703. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  1704. }else if(IS_SUB_8X4(sub_mb_type)){
  1705. mc_part(h, n , 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  1706. qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
  1707. &weight_op[4], &weight_avg[4],
  1708. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  1709. mc_part(h, n+2, 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset+2,
  1710. qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
  1711. &weight_op[4], &weight_avg[4],
  1712. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  1713. }else if(IS_SUB_4X8(sub_mb_type)){
  1714. mc_part(h, n , 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  1715. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  1716. &weight_op[5], &weight_avg[5],
  1717. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  1718. mc_part(h, n+1, 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset+2, y_offset,
  1719. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  1720. &weight_op[5], &weight_avg[5],
  1721. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  1722. }else{
  1723. int j;
  1724. assert(IS_SUB_4X4(sub_mb_type));
  1725. for(j=0; j<4; j++){
  1726. int sub_x_offset= x_offset + 2*(j&1);
  1727. int sub_y_offset= y_offset + (j&2);
  1728. mc_part(h, n+j, 1, 2, 0, dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset,
  1729. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  1730. &weight_op[6], &weight_avg[6],
  1731. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  1732. }
  1733. }
  1734. }
  1735. }
  1736. prefetch_motion(h, 1);
  1737. }
  1738. static av_cold void decode_init_vlc(void){
  1739. static int done = 0;
  1740. if (!done) {
  1741. int i;
  1742. done = 1;
  1743. init_vlc(&chroma_dc_coeff_token_vlc, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 4*5,
  1744. &chroma_dc_coeff_token_len [0], 1, 1,
  1745. &chroma_dc_coeff_token_bits[0], 1, 1, 1);
  1746. for(i=0; i<4; i++){
  1747. init_vlc(&coeff_token_vlc[i], COEFF_TOKEN_VLC_BITS, 4*17,
  1748. &coeff_token_len [i][0], 1, 1,
  1749. &coeff_token_bits[i][0], 1, 1, 1);
  1750. }
  1751. for(i=0; i<3; i++){
  1752. init_vlc(&chroma_dc_total_zeros_vlc[i], CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 4,
  1753. &chroma_dc_total_zeros_len [i][0], 1, 1,
  1754. &chroma_dc_total_zeros_bits[i][0], 1, 1, 1);
  1755. }
  1756. for(i=0; i<15; i++){
  1757. init_vlc(&total_zeros_vlc[i], TOTAL_ZEROS_VLC_BITS, 16,
  1758. &total_zeros_len [i][0], 1, 1,
  1759. &total_zeros_bits[i][0], 1, 1, 1);
  1760. }
  1761. for(i=0; i<6; i++){
  1762. init_vlc(&run_vlc[i], RUN_VLC_BITS, 7,
  1763. &run_len [i][0], 1, 1,
  1764. &run_bits[i][0], 1, 1, 1);
  1765. }
  1766. init_vlc(&run7_vlc, RUN7_VLC_BITS, 16,
  1767. &run_len [6][0], 1, 1,
  1768. &run_bits[6][0], 1, 1, 1);
  1769. }
  1770. }
  1771. static void free_tables(H264Context *h){
  1772. int i;
  1773. H264Context *hx;
  1774. av_freep(&h->intra4x4_pred_mode);
  1775. av_freep(&h->chroma_pred_mode_table);
  1776. av_freep(&h->cbp_table);
  1777. av_freep(&h->mvd_table[0]);
  1778. av_freep(&h->mvd_table[1]);
  1779. av_freep(&h->direct_table);
  1780. av_freep(&h->non_zero_count);
  1781. av_freep(&h->slice_table_base);
  1782. h->slice_table= NULL;
  1783. av_freep(&h->mb2b_xy);
  1784. av_freep(&h->mb2b8_xy);
  1785. for(i = 0; i < MAX_SPS_COUNT; i++)
  1786. av_freep(h->sps_buffers + i);
  1787. for(i = 0; i < MAX_PPS_COUNT; i++)
  1788. av_freep(h->pps_buffers + i);
  1789. for(i = 0; i < h->s.avctx->thread_count; i++) {
  1790. hx = h->thread_context[i];
  1791. if(!hx) continue;
  1792. av_freep(&hx->top_borders[1]);
  1793. av_freep(&hx->top_borders[0]);
  1794. av_freep(&hx->s.obmc_scratchpad);
  1795. }
  1796. }
  1797. static void init_dequant8_coeff_table(H264Context *h){
  1798. int i,q,x;
  1799. const int transpose = (h->s.dsp.h264_idct8_add != ff_h264_idct8_add_c); //FIXME ugly
  1800. h->dequant8_coeff[0] = h->dequant8_buffer[0];
  1801. h->dequant8_coeff[1] = h->dequant8_buffer[1];
  1802. for(i=0; i<2; i++ ){
  1803. if(i && !memcmp(h->pps.scaling_matrix8[0], h->pps.scaling_matrix8[1], 64*sizeof(uint8_t))){
  1804. h->dequant8_coeff[1] = h->dequant8_buffer[0];
  1805. break;
  1806. }
  1807. for(q=0; q<52; q++){
  1808. int shift = ff_div6[q];
  1809. int idx = ff_rem6[q];
  1810. for(x=0; x<64; x++)
  1811. h->dequant8_coeff[i][q][transpose ? (x>>3)|((x&7)<<3) : x] =
  1812. ((uint32_t)dequant8_coeff_init[idx][ dequant8_coeff_init_scan[((x>>1)&12) | (x&3)] ] *
  1813. h->pps.scaling_matrix8[i][x]) << shift;
  1814. }
  1815. }
  1816. }
  1817. static void init_dequant4_coeff_table(H264Context *h){
  1818. int i,j,q,x;
  1819. const int transpose = (h->s.dsp.h264_idct_add != ff_h264_idct_add_c); //FIXME ugly
  1820. for(i=0; i<6; i++ ){
  1821. h->dequant4_coeff[i] = h->dequant4_buffer[i];
  1822. for(j=0; j<i; j++){
  1823. if(!memcmp(h->pps.scaling_matrix4[j], h->pps.scaling_matrix4[i], 16*sizeof(uint8_t))){
  1824. h->dequant4_coeff[i] = h->dequant4_buffer[j];
  1825. break;
  1826. }
  1827. }
  1828. if(j<i)
  1829. continue;
  1830. for(q=0; q<52; q++){
  1831. int shift = ff_div6[q] + 2;
  1832. int idx = ff_rem6[q];
  1833. for(x=0; x<16; x++)
  1834. h->dequant4_coeff[i][q][transpose ? (x>>2)|((x<<2)&0xF) : x] =
  1835. ((uint32_t)dequant4_coeff_init[idx][(x&1) + ((x>>2)&1)] *
  1836. h->pps.scaling_matrix4[i][x]) << shift;
  1837. }
  1838. }
  1839. }
  1840. static void init_dequant_tables(H264Context *h){
  1841. int i,x;
  1842. init_dequant4_coeff_table(h);
  1843. if(h->pps.transform_8x8_mode)
  1844. init_dequant8_coeff_table(h);
  1845. if(h->sps.transform_bypass){
  1846. for(i=0; i<6; i++)
  1847. for(x=0; x<16; x++)
  1848. h->dequant4_coeff[i][0][x] = 1<<6;
  1849. if(h->pps.transform_8x8_mode)
  1850. for(i=0; i<2; i++)
  1851. for(x=0; x<64; x++)
  1852. h->dequant8_coeff[i][0][x] = 1<<6;
  1853. }
  1854. }
  1855. /**
  1856. * allocates tables.
  1857. * needs width/height
  1858. */
  1859. static int alloc_tables(H264Context *h){
  1860. MpegEncContext * const s = &h->s;
  1861. const int big_mb_num= s->mb_stride * (s->mb_height+1);
  1862. int x,y;
  1863. CHECKED_ALLOCZ(h->intra4x4_pred_mode, big_mb_num * 8 * sizeof(uint8_t))
  1864. CHECKED_ALLOCZ(h->non_zero_count , big_mb_num * 16 * sizeof(uint8_t))
  1865. CHECKED_ALLOCZ(h->slice_table_base , (big_mb_num+s->mb_stride) * sizeof(uint8_t))
  1866. CHECKED_ALLOCZ(h->cbp_table, big_mb_num * sizeof(uint16_t))
  1867. CHECKED_ALLOCZ(h->chroma_pred_mode_table, big_mb_num * sizeof(uint8_t))
  1868. CHECKED_ALLOCZ(h->mvd_table[0], 32*big_mb_num * sizeof(uint16_t));
  1869. CHECKED_ALLOCZ(h->mvd_table[1], 32*big_mb_num * sizeof(uint16_t));
  1870. CHECKED_ALLOCZ(h->direct_table, 32*big_mb_num * sizeof(uint8_t));
  1871. memset(h->slice_table_base, -1, (big_mb_num+s->mb_stride) * sizeof(uint8_t));
  1872. h->slice_table= h->slice_table_base + s->mb_stride*2 + 1;
  1873. CHECKED_ALLOCZ(h->mb2b_xy , big_mb_num * sizeof(uint32_t));
  1874. CHECKED_ALLOCZ(h->mb2b8_xy , big_mb_num * sizeof(uint32_t));
  1875. for(y=0; y<s->mb_height; y++){
  1876. for(x=0; x<s->mb_width; x++){
  1877. const int mb_xy= x + y*s->mb_stride;
  1878. const int b_xy = 4*x + 4*y*h->b_stride;
  1879. const int b8_xy= 2*x + 2*y*h->b8_stride;
  1880. h->mb2b_xy [mb_xy]= b_xy;
  1881. h->mb2b8_xy[mb_xy]= b8_xy;
  1882. }
  1883. }
  1884. s->obmc_scratchpad = NULL;
  1885. if(!h->dequant4_coeff[0])
  1886. init_dequant_tables(h);
  1887. return 0;
  1888. fail:
  1889. free_tables(h);
  1890. return -1;
  1891. }
  1892. /**
  1893. * Mimic alloc_tables(), but for every context thread.
  1894. */
  1895. static void clone_tables(H264Context *dst, H264Context *src){
  1896. dst->intra4x4_pred_mode = src->intra4x4_pred_mode;
  1897. dst->non_zero_count = src->non_zero_count;
  1898. dst->slice_table = src->slice_table;
  1899. dst->cbp_table = src->cbp_table;
  1900. dst->mb2b_xy = src->mb2b_xy;
  1901. dst->mb2b8_xy = src->mb2b8_xy;
  1902. dst->chroma_pred_mode_table = src->chroma_pred_mode_table;
  1903. dst->mvd_table[0] = src->mvd_table[0];
  1904. dst->mvd_table[1] = src->mvd_table[1];
  1905. dst->direct_table = src->direct_table;
  1906. dst->s.obmc_scratchpad = NULL;
  1907. ff_h264_pred_init(&dst->hpc, src->s.codec_id);
  1908. }
  1909. /**
  1910. * Init context
  1911. * Allocate buffers which are not shared amongst multiple threads.
  1912. */
  1913. static int context_init(H264Context *h){
  1914. CHECKED_ALLOCZ(h->top_borders[0], h->s.mb_width * (16+8+8) * sizeof(uint8_t))
  1915. CHECKED_ALLOCZ(h->top_borders[1], h->s.mb_width * (16+8+8) * sizeof(uint8_t))
  1916. return 0;
  1917. fail:
  1918. return -1; // free_tables will clean up for us
  1919. }
  1920. static av_cold void common_init(H264Context *h){
  1921. MpegEncContext * const s = &h->s;
  1922. s->width = s->avctx->width;
  1923. s->height = s->avctx->height;
  1924. s->codec_id= s->avctx->codec->id;
  1925. ff_h264_pred_init(&h->hpc, s->codec_id);
  1926. h->dequant_coeff_pps= -1;
  1927. s->unrestricted_mv=1;
  1928. s->decode=1; //FIXME
  1929. memset(h->pps.scaling_matrix4, 16, 6*16*sizeof(uint8_t));
  1930. memset(h->pps.scaling_matrix8, 16, 2*64*sizeof(uint8_t));
  1931. }
  1932. static av_cold int decode_init(AVCodecContext *avctx){
  1933. H264Context *h= avctx->priv_data;
  1934. MpegEncContext * const s = &h->s;
  1935. MPV_decode_defaults(s);
  1936. s->avctx = avctx;
  1937. common_init(h);
  1938. s->out_format = FMT_H264;
  1939. s->workaround_bugs= avctx->workaround_bugs;
  1940. // set defaults
  1941. // s->decode_mb= ff_h263_decode_mb;
  1942. s->quarter_sample = 1;
  1943. s->low_delay= 1;
  1944. if(avctx->codec_id == CODEC_ID_SVQ3)
  1945. avctx->pix_fmt= PIX_FMT_YUVJ420P;
  1946. else
  1947. avctx->pix_fmt= PIX_FMT_YUV420P;
  1948. decode_init_vlc();
  1949. if(avctx->extradata_size > 0 && avctx->extradata &&
  1950. *(char *)avctx->extradata == 1){
  1951. h->is_avc = 1;
  1952. h->got_avcC = 0;
  1953. } else {
  1954. h->is_avc = 0;
  1955. }
  1956. h->thread_context[0] = h;
  1957. return 0;
  1958. }
  1959. static int frame_start(H264Context *h){
  1960. MpegEncContext * const s = &h->s;
  1961. int i;
  1962. if(MPV_frame_start(s, s->avctx) < 0)
  1963. return -1;
  1964. ff_er_frame_start(s);
  1965. /*
  1966. * MPV_frame_start uses pict_type to derive key_frame.
  1967. * This is incorrect for H.264; IDR markings must be used.
  1968. * Zero here; IDR markings per slice in frame or fields are OR'd in later.
  1969. * See decode_nal_units().
  1970. */
  1971. s->current_picture_ptr->key_frame= 0;
  1972. assert(s->linesize && s->uvlinesize);
  1973. for(i=0; i<16; i++){
  1974. h->block_offset[i]= 4*((scan8[i] - scan8[0])&7) + 4*s->linesize*((scan8[i] - scan8[0])>>3);
  1975. h->block_offset[24+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->linesize*((scan8[i] - scan8[0])>>3);
  1976. }
  1977. for(i=0; i<4; i++){
  1978. h->block_offset[16+i]=
  1979. h->block_offset[20+i]= 4*((scan8[i] - scan8[0])&7) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3);
  1980. h->block_offset[24+16+i]=
  1981. h->block_offset[24+20+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->uvlinesize*((scan8[i] - scan8[0])>>3);
  1982. }
  1983. /* can't be in alloc_tables because linesize isn't known there.
  1984. * FIXME: redo bipred weight to not require extra buffer? */
  1985. for(i = 0; i < s->avctx->thread_count; i++)
  1986. if(!h->thread_context[i]->s.obmc_scratchpad)
  1987. h->thread_context[i]->s.obmc_scratchpad = av_malloc(16*2*s->linesize + 8*2*s->uvlinesize);
  1988. /* some macroblocks will be accessed before they're available */
  1989. if(FRAME_MBAFF || s->avctx->thread_count > 1)
  1990. memset(h->slice_table, -1, (s->mb_height*s->mb_stride-1) * sizeof(uint8_t));
  1991. // s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1;
  1992. // We mark the current picture as non reference after allocating it, so
  1993. // that if we break out due to an error it can be released automatically
  1994. // in the next MPV_frame_start().
  1995. // SVQ3 as well as most other codecs have only last/next/current and thus
  1996. // get released even with set reference, besides SVQ3 and others do not
  1997. // mark frames as reference later "naturally".
  1998. if(s->codec_id != CODEC_ID_SVQ3)
  1999. s->current_picture_ptr->reference= 0;
  2000. return 0;
  2001. }
  2002. static inline void backup_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int simple){
  2003. MpegEncContext * const s = &h->s;
  2004. int i;
  2005. src_y -= linesize;
  2006. src_cb -= uvlinesize;
  2007. src_cr -= uvlinesize;
  2008. // There are two lines saved, the line above the the top macroblock of a pair,
  2009. // and the line above the bottom macroblock
  2010. h->left_border[0]= h->top_borders[0][s->mb_x][15];
  2011. for(i=1; i<17; i++){
  2012. h->left_border[i]= src_y[15+i* linesize];
  2013. }
  2014. *(uint64_t*)(h->top_borders[0][s->mb_x]+0)= *(uint64_t*)(src_y + 16*linesize);
  2015. *(uint64_t*)(h->top_borders[0][s->mb_x]+8)= *(uint64_t*)(src_y +8+16*linesize);
  2016. if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  2017. h->left_border[17 ]= h->top_borders[0][s->mb_x][16+7];
  2018. h->left_border[17+9]= h->top_borders[0][s->mb_x][24+7];
  2019. for(i=1; i<9; i++){
  2020. h->left_border[i+17 ]= src_cb[7+i*uvlinesize];
  2021. h->left_border[i+17+9]= src_cr[7+i*uvlinesize];
  2022. }
  2023. *(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+8*uvlinesize);
  2024. *(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+8*uvlinesize);
  2025. }
  2026. }
  2027. static inline void xchg_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg, int simple){
  2028. MpegEncContext * const s = &h->s;
  2029. int temp8, i;
  2030. uint64_t temp64;
  2031. int deblock_left;
  2032. int deblock_top;
  2033. int mb_xy;
  2034. if(h->deblocking_filter == 2) {
  2035. mb_xy = h->mb_xy;
  2036. deblock_left = h->slice_table[mb_xy] == h->slice_table[mb_xy - 1];
  2037. deblock_top = h->slice_table[mb_xy] == h->slice_table[h->top_mb_xy];
  2038. } else {
  2039. deblock_left = (s->mb_x > 0);
  2040. deblock_top = (s->mb_y > 0);
  2041. }
  2042. src_y -= linesize + 1;
  2043. src_cb -= uvlinesize + 1;
  2044. src_cr -= uvlinesize + 1;
  2045. #define XCHG(a,b,t,xchg)\
  2046. t= a;\
  2047. if(xchg)\
  2048. a= b;\
  2049. b= t;
  2050. if(deblock_left){
  2051. for(i = !deblock_top; i<17; i++){
  2052. XCHG(h->left_border[i ], src_y [i* linesize], temp8, xchg);
  2053. }
  2054. }
  2055. if(deblock_top){
  2056. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
  2057. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
  2058. if(s->mb_x+1 < s->mb_width){
  2059. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x+1]), *(uint64_t*)(src_y +17), temp64, 1);
  2060. }
  2061. }
  2062. if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  2063. if(deblock_left){
  2064. for(i = !deblock_top; i<9; i++){
  2065. XCHG(h->left_border[i+17 ], src_cb[i*uvlinesize], temp8, xchg);
  2066. XCHG(h->left_border[i+17+9], src_cr[i*uvlinesize], temp8, xchg);
  2067. }
  2068. }
  2069. if(deblock_top){
  2070. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
  2071. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
  2072. }
  2073. }
  2074. }
  2075. static inline void backup_pair_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize){
  2076. MpegEncContext * const s = &h->s;
  2077. int i;
  2078. src_y -= 2 * linesize;
  2079. src_cb -= 2 * uvlinesize;
  2080. src_cr -= 2 * uvlinesize;
  2081. // There are two lines saved, the line above the the top macroblock of a pair,
  2082. // and the line above the bottom macroblock
  2083. h->left_border[0]= h->top_borders[0][s->mb_x][15];
  2084. h->left_border[1]= h->top_borders[1][s->mb_x][15];
  2085. for(i=2; i<34; i++){
  2086. h->left_border[i]= src_y[15+i* linesize];
  2087. }
  2088. *(uint64_t*)(h->top_borders[0][s->mb_x]+0)= *(uint64_t*)(src_y + 32*linesize);
  2089. *(uint64_t*)(h->top_borders[0][s->mb_x]+8)= *(uint64_t*)(src_y +8+32*linesize);
  2090. *(uint64_t*)(h->top_borders[1][s->mb_x]+0)= *(uint64_t*)(src_y + 33*linesize);
  2091. *(uint64_t*)(h->top_borders[1][s->mb_x]+8)= *(uint64_t*)(src_y +8+33*linesize);
  2092. if(!ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  2093. h->left_border[34 ]= h->top_borders[0][s->mb_x][16+7];
  2094. h->left_border[34+ 1]= h->top_borders[1][s->mb_x][16+7];
  2095. h->left_border[34+18 ]= h->top_borders[0][s->mb_x][24+7];
  2096. h->left_border[34+18+1]= h->top_borders[1][s->mb_x][24+7];
  2097. for(i=2; i<18; i++){
  2098. h->left_border[i+34 ]= src_cb[7+i*uvlinesize];
  2099. h->left_border[i+34+18]= src_cr[7+i*uvlinesize];
  2100. }
  2101. *(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+16*uvlinesize);
  2102. *(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+16*uvlinesize);
  2103. *(uint64_t*)(h->top_borders[1][s->mb_x]+16)= *(uint64_t*)(src_cb+17*uvlinesize);
  2104. *(uint64_t*)(h->top_borders[1][s->mb_x]+24)= *(uint64_t*)(src_cr+17*uvlinesize);
  2105. }
  2106. }
  2107. static inline void xchg_pair_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg){
  2108. MpegEncContext * const s = &h->s;
  2109. int temp8, i;
  2110. uint64_t temp64;
  2111. int deblock_left = (s->mb_x > 0);
  2112. int deblock_top = (s->mb_y > 1);
  2113. tprintf(s->avctx, "xchg_pair_border: src_y:%p src_cb:%p src_cr:%p ls:%d uvls:%d\n", src_y, src_cb, src_cr, linesize, uvlinesize);
  2114. src_y -= 2 * linesize + 1;
  2115. src_cb -= 2 * uvlinesize + 1;
  2116. src_cr -= 2 * uvlinesize + 1;
  2117. #define XCHG(a,b,t,xchg)\
  2118. t= a;\
  2119. if(xchg)\
  2120. a= b;\
  2121. b= t;
  2122. if(deblock_left){
  2123. for(i = (!deblock_top)<<1; i<34; i++){
  2124. XCHG(h->left_border[i ], src_y [i* linesize], temp8, xchg);
  2125. }
  2126. }
  2127. if(deblock_top){
  2128. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
  2129. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
  2130. XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+0), *(uint64_t*)(src_y +1 +linesize), temp64, xchg);
  2131. XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+8), *(uint64_t*)(src_y +9 +linesize), temp64, 1);
  2132. if(s->mb_x+1 < s->mb_width){
  2133. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x+1]), *(uint64_t*)(src_y +17), temp64, 1);
  2134. XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x+1]), *(uint64_t*)(src_y +17 +linesize), temp64, 1);
  2135. }
  2136. }
  2137. if(!ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  2138. if(deblock_left){
  2139. for(i = (!deblock_top) << 1; i<18; i++){
  2140. XCHG(h->left_border[i+34 ], src_cb[i*uvlinesize], temp8, xchg);
  2141. XCHG(h->left_border[i+34+18], src_cr[i*uvlinesize], temp8, xchg);
  2142. }
  2143. }
  2144. if(deblock_top){
  2145. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
  2146. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
  2147. XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+16), *(uint64_t*)(src_cb+1 +uvlinesize), temp64, 1);
  2148. XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+24), *(uint64_t*)(src_cr+1 +uvlinesize), temp64, 1);
  2149. }
  2150. }
  2151. }
  2152. static av_always_inline void hl_decode_mb_internal(H264Context *h, int simple){
  2153. MpegEncContext * const s = &h->s;
  2154. const int mb_x= s->mb_x;
  2155. const int mb_y= s->mb_y;
  2156. const int mb_xy= h->mb_xy;
  2157. const int mb_type= s->current_picture.mb_type[mb_xy];
  2158. uint8_t *dest_y, *dest_cb, *dest_cr;
  2159. int linesize, uvlinesize /*dct_offset*/;
  2160. int i;
  2161. int *block_offset = &h->block_offset[0];
  2162. const unsigned int bottom = mb_y & 1;
  2163. const int transform_bypass = (s->qscale == 0 && h->sps.transform_bypass), is_h264 = (simple || s->codec_id == CODEC_ID_H264);
  2164. void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride);
  2165. void (*idct_dc_add)(uint8_t *dst, DCTELEM *block, int stride);
  2166. dest_y = s->current_picture.data[0] + (mb_y * 16* s->linesize ) + mb_x * 16;
  2167. dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
  2168. dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
  2169. s->dsp.prefetch(dest_y + (s->mb_x&3)*4*s->linesize + 64, s->linesize, 4);
  2170. s->dsp.prefetch(dest_cb + (s->mb_x&7)*s->uvlinesize + 64, dest_cr - dest_cb, 2);
  2171. if (!simple && MB_FIELD) {
  2172. linesize = h->mb_linesize = s->linesize * 2;
  2173. uvlinesize = h->mb_uvlinesize = s->uvlinesize * 2;
  2174. block_offset = &h->block_offset[24];
  2175. if(mb_y&1){ //FIXME move out of this func?
  2176. dest_y -= s->linesize*15;
  2177. dest_cb-= s->uvlinesize*7;
  2178. dest_cr-= s->uvlinesize*7;
  2179. }
  2180. if(FRAME_MBAFF) {
  2181. int list;
  2182. for(list=0; list<h->list_count; list++){
  2183. if(!USES_LIST(mb_type, list))
  2184. continue;
  2185. if(IS_16X16(mb_type)){
  2186. int8_t *ref = &h->ref_cache[list][scan8[0]];
  2187. fill_rectangle(ref, 4, 4, 8, (16+*ref)^(s->mb_y&1), 1);
  2188. }else{
  2189. for(i=0; i<16; i+=4){
  2190. //FIXME can refs be smaller than 8x8 when !direct_8x8_inference ?
  2191. int ref = h->ref_cache[list][scan8[i]];
  2192. if(ref >= 0)
  2193. fill_rectangle(&h->ref_cache[list][scan8[i]], 2, 2, 8, (16+ref)^(s->mb_y&1), 1);
  2194. }
  2195. }
  2196. }
  2197. }
  2198. } else {
  2199. linesize = h->mb_linesize = s->linesize;
  2200. uvlinesize = h->mb_uvlinesize = s->uvlinesize;
  2201. // dct_offset = s->linesize * 16;
  2202. }
  2203. if(transform_bypass){
  2204. idct_dc_add =
  2205. idct_add = IS_8x8DCT(mb_type) ? s->dsp.add_pixels8 : s->dsp.add_pixels4;
  2206. }else if(IS_8x8DCT(mb_type)){
  2207. idct_dc_add = s->dsp.h264_idct8_dc_add;
  2208. idct_add = s->dsp.h264_idct8_add;
  2209. }else{
  2210. idct_dc_add = s->dsp.h264_idct_dc_add;
  2211. idct_add = s->dsp.h264_idct_add;
  2212. }
  2213. if(!simple && FRAME_MBAFF && h->deblocking_filter && IS_INTRA(mb_type)
  2214. && (!bottom || !IS_INTRA(s->current_picture.mb_type[mb_xy-s->mb_stride]))){
  2215. int mbt_y = mb_y&~1;
  2216. uint8_t *top_y = s->current_picture.data[0] + (mbt_y * 16* s->linesize ) + mb_x * 16;
  2217. uint8_t *top_cb = s->current_picture.data[1] + (mbt_y * 8 * s->uvlinesize) + mb_x * 8;
  2218. uint8_t *top_cr = s->current_picture.data[2] + (mbt_y * 8 * s->uvlinesize) + mb_x * 8;
  2219. xchg_pair_border(h, top_y, top_cb, top_cr, s->linesize, s->uvlinesize, 1);
  2220. }
  2221. if (!simple && IS_INTRA_PCM(mb_type)) {
  2222. unsigned int x, y;
  2223. // The pixels are stored in h->mb array in the same order as levels,
  2224. // copy them in output in the correct order.
  2225. for(i=0; i<16; i++) {
  2226. for (y=0; y<4; y++) {
  2227. for (x=0; x<4; x++) {
  2228. *(dest_y + block_offset[i] + y*linesize + x) = h->mb[i*16+y*4+x];
  2229. }
  2230. }
  2231. }
  2232. for(i=16; i<16+4; i++) {
  2233. for (y=0; y<4; y++) {
  2234. for (x=0; x<4; x++) {
  2235. *(dest_cb + block_offset[i] + y*uvlinesize + x) = h->mb[i*16+y*4+x];
  2236. }
  2237. }
  2238. }
  2239. for(i=20; i<20+4; i++) {
  2240. for (y=0; y<4; y++) {
  2241. for (x=0; x<4; x++) {
  2242. *(dest_cr + block_offset[i] + y*uvlinesize + x) = h->mb[i*16+y*4+x];
  2243. }
  2244. }
  2245. }
  2246. } else {
  2247. if(IS_INTRA(mb_type)){
  2248. if(h->deblocking_filter && (simple || !FRAME_MBAFF))
  2249. xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 1, simple);
  2250. if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  2251. h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cb, uvlinesize);
  2252. h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cr, uvlinesize);
  2253. }
  2254. if(IS_INTRA4x4(mb_type)){
  2255. if(simple || !s->encoding){
  2256. if(IS_8x8DCT(mb_type)){
  2257. for(i=0; i<16; i+=4){
  2258. uint8_t * const ptr= dest_y + block_offset[i];
  2259. const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
  2260. const int nnz = h->non_zero_count_cache[ scan8[i] ];
  2261. h->hpc.pred8x8l[ dir ](ptr, (h->topleft_samples_available<<i)&0x8000,
  2262. (h->topright_samples_available<<i)&0x4000, linesize);
  2263. if(nnz){
  2264. if(nnz == 1 && h->mb[i*16])
  2265. idct_dc_add(ptr, h->mb + i*16, linesize);
  2266. else
  2267. idct_add(ptr, h->mb + i*16, linesize);
  2268. }
  2269. }
  2270. }else
  2271. for(i=0; i<16; i++){
  2272. uint8_t * const ptr= dest_y + block_offset[i];
  2273. uint8_t *topright;
  2274. const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
  2275. int nnz, tr;
  2276. if(dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED){
  2277. const int topright_avail= (h->topright_samples_available<<i)&0x8000;
  2278. assert(mb_y || linesize <= block_offset[i]);
  2279. if(!topright_avail){
  2280. tr= ptr[3 - linesize]*0x01010101;
  2281. topright= (uint8_t*) &tr;
  2282. }else
  2283. topright= ptr + 4 - linesize;
  2284. }else
  2285. topright= NULL;
  2286. h->hpc.pred4x4[ dir ](ptr, topright, linesize);
  2287. nnz = h->non_zero_count_cache[ scan8[i] ];
  2288. if(nnz){
  2289. if(is_h264){
  2290. if(nnz == 1 && h->mb[i*16])
  2291. idct_dc_add(ptr, h->mb + i*16, linesize);
  2292. else
  2293. idct_add(ptr, h->mb + i*16, linesize);
  2294. }else
  2295. svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, 0);
  2296. }
  2297. }
  2298. }
  2299. }else{
  2300. h->hpc.pred16x16[ h->intra16x16_pred_mode ](dest_y , linesize);
  2301. if(is_h264){
  2302. if(!transform_bypass)
  2303. h264_luma_dc_dequant_idct_c(h->mb, s->qscale, h->dequant4_coeff[0][s->qscale][0]);
  2304. }else
  2305. svq3_luma_dc_dequant_idct_c(h->mb, s->qscale);
  2306. }
  2307. if(h->deblocking_filter && (simple || !FRAME_MBAFF))
  2308. xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0, simple);
  2309. }else if(is_h264){
  2310. hl_motion(h, dest_y, dest_cb, dest_cr,
  2311. s->me.qpel_put, s->dsp.put_h264_chroma_pixels_tab,
  2312. s->me.qpel_avg, s->dsp.avg_h264_chroma_pixels_tab,
  2313. s->dsp.weight_h264_pixels_tab, s->dsp.biweight_h264_pixels_tab);
  2314. }
  2315. if(!IS_INTRA4x4(mb_type)){
  2316. if(is_h264){
  2317. if(IS_INTRA16x16(mb_type)){
  2318. for(i=0; i<16; i++){
  2319. if(h->non_zero_count_cache[ scan8[i] ])
  2320. idct_add(dest_y + block_offset[i], h->mb + i*16, linesize);
  2321. else if(h->mb[i*16])
  2322. idct_dc_add(dest_y + block_offset[i], h->mb + i*16, linesize);
  2323. }
  2324. }else{
  2325. const int di = IS_8x8DCT(mb_type) ? 4 : 1;
  2326. for(i=0; i<16; i+=di){
  2327. int nnz = h->non_zero_count_cache[ scan8[i] ];
  2328. if(nnz){
  2329. if(nnz==1 && h->mb[i*16])
  2330. idct_dc_add(dest_y + block_offset[i], h->mb + i*16, linesize);
  2331. else
  2332. idct_add(dest_y + block_offset[i], h->mb + i*16, linesize);
  2333. }
  2334. }
  2335. }
  2336. }else{
  2337. for(i=0; i<16; i++){
  2338. if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
  2339. uint8_t * const ptr= dest_y + block_offset[i];
  2340. svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, IS_INTRA(mb_type) ? 1 : 0);
  2341. }
  2342. }
  2343. }
  2344. }
  2345. if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  2346. uint8_t *dest[2] = {dest_cb, dest_cr};
  2347. if(transform_bypass){
  2348. idct_add = idct_dc_add = s->dsp.add_pixels4;
  2349. }else{
  2350. idct_add = s->dsp.h264_idct_add;
  2351. idct_dc_add = s->dsp.h264_idct_dc_add;
  2352. chroma_dc_dequant_idct_c(h->mb + 16*16, h->chroma_qp[0], h->dequant4_coeff[IS_INTRA(mb_type) ? 1:4][h->chroma_qp[0]][0]);
  2353. chroma_dc_dequant_idct_c(h->mb + 16*16+4*16, h->chroma_qp[1], h->dequant4_coeff[IS_INTRA(mb_type) ? 2:5][h->chroma_qp[1]][0]);
  2354. }
  2355. if(is_h264){
  2356. for(i=16; i<16+8; i++){
  2357. if(h->non_zero_count_cache[ scan8[i] ])
  2358. idct_add(dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
  2359. else if(h->mb[i*16])
  2360. idct_dc_add(dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
  2361. }
  2362. }else{
  2363. for(i=16; i<16+8; i++){
  2364. if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
  2365. uint8_t * const ptr= dest[(i&4)>>2] + block_offset[i];
  2366. svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2);
  2367. }
  2368. }
  2369. }
  2370. }
  2371. }
  2372. if(h->deblocking_filter) {
  2373. if (!simple && FRAME_MBAFF) {
  2374. //FIXME try deblocking one mb at a time?
  2375. // the reduction in load/storing mvs and such might outweigh the extra backup/xchg_border
  2376. const int mb_y = s->mb_y - 1;
  2377. uint8_t *pair_dest_y, *pair_dest_cb, *pair_dest_cr;
  2378. const int mb_xy= mb_x + mb_y*s->mb_stride;
  2379. const int mb_type_top = s->current_picture.mb_type[mb_xy];
  2380. const int mb_type_bottom= s->current_picture.mb_type[mb_xy+s->mb_stride];
  2381. if (!bottom) return;
  2382. pair_dest_y = s->current_picture.data[0] + (mb_y * 16* s->linesize ) + mb_x * 16;
  2383. pair_dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
  2384. pair_dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
  2385. if(IS_INTRA(mb_type_top | mb_type_bottom))
  2386. xchg_pair_border(h, pair_dest_y, pair_dest_cb, pair_dest_cr, s->linesize, s->uvlinesize, 0);
  2387. backup_pair_border(h, pair_dest_y, pair_dest_cb, pair_dest_cr, s->linesize, s->uvlinesize);
  2388. // deblock a pair
  2389. // top
  2390. s->mb_y--; h->mb_xy -= s->mb_stride;
  2391. tprintf(h->s.avctx, "call mbaff filter_mb mb_x:%d mb_y:%d pair_dest_y = %p, dest_y = %p\n", mb_x, mb_y, pair_dest_y, dest_y);
  2392. fill_caches(h, mb_type_top, 1); //FIXME don't fill stuff which isn't used by filter_mb
  2393. h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.qscale_table[mb_xy]);
  2394. h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.qscale_table[mb_xy]);
  2395. filter_mb(h, mb_x, mb_y, pair_dest_y, pair_dest_cb, pair_dest_cr, linesize, uvlinesize);
  2396. // bottom
  2397. s->mb_y++; h->mb_xy += s->mb_stride;
  2398. tprintf(h->s.avctx, "call mbaff filter_mb\n");
  2399. fill_caches(h, mb_type_bottom, 1); //FIXME don't fill stuff which isn't used by filter_mb
  2400. h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.qscale_table[mb_xy+s->mb_stride]);
  2401. h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.qscale_table[mb_xy+s->mb_stride]);
  2402. filter_mb(h, mb_x, mb_y+1, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
  2403. } else {
  2404. tprintf(h->s.avctx, "call filter_mb\n");
  2405. backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, simple);
  2406. fill_caches(h, mb_type, 1); //FIXME don't fill stuff which isn't used by filter_mb
  2407. h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.qscale_table[mb_xy]);
  2408. h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.qscale_table[mb_xy]);
  2409. filter_mb_fast(h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
  2410. }
  2411. }
  2412. }
  2413. /**
  2414. * Process a macroblock; this case avoids checks for expensive uncommon cases.
  2415. */
  2416. static void hl_decode_mb_simple(H264Context *h){
  2417. hl_decode_mb_internal(h, 1);
  2418. }
  2419. /**
  2420. * Process a macroblock; this handles edge cases, such as interlacing.
  2421. */
  2422. static void av_noinline hl_decode_mb_complex(H264Context *h){
  2423. hl_decode_mb_internal(h, 0);
  2424. }
  2425. static void hl_decode_mb(H264Context *h){
  2426. MpegEncContext * const s = &h->s;
  2427. const int mb_xy= h->mb_xy;
  2428. const int mb_type= s->current_picture.mb_type[mb_xy];
  2429. int is_complex = FRAME_MBAFF || MB_FIELD || IS_INTRA_PCM(mb_type) || s->codec_id != CODEC_ID_H264 ||
  2430. (ENABLE_GRAY && (s->flags&CODEC_FLAG_GRAY)) || (ENABLE_H264_ENCODER && s->encoding) || ENABLE_SMALL;
  2431. if(ENABLE_H264_ENCODER && !s->decode)
  2432. return;
  2433. if (is_complex)
  2434. hl_decode_mb_complex(h);
  2435. else hl_decode_mb_simple(h);
  2436. }
  2437. static void pic_as_field(Picture *pic, const int parity){
  2438. int i;
  2439. for (i = 0; i < 4; ++i) {
  2440. if (parity == PICT_BOTTOM_FIELD)
  2441. pic->data[i] += pic->linesize[i];
  2442. pic->reference = parity;
  2443. pic->linesize[i] *= 2;
  2444. }
  2445. }
  2446. static int split_field_copy(Picture *dest, Picture *src,
  2447. int parity, int id_add){
  2448. int match = !!(src->reference & parity);
  2449. if (match) {
  2450. *dest = *src;
  2451. pic_as_field(dest, parity);
  2452. dest->pic_id *= 2;
  2453. dest->pic_id += id_add;
  2454. }
  2455. return match;
  2456. }
  2457. /**
  2458. * Split one reference list into field parts, interleaving by parity
  2459. * as per H.264 spec section 8.2.4.2.5. Output fields have their data pointers
  2460. * set to look at the actual start of data for that field.
  2461. *
  2462. * @param dest output list
  2463. * @param dest_len maximum number of fields to put in dest
  2464. * @param src the source reference list containing fields and/or field pairs
  2465. * (aka short_ref/long_ref, or
  2466. * refFrameListXShortTerm/refFrameListLongTerm in spec-speak)
  2467. * @param src_len number of Picture's in source (pairs and unmatched fields)
  2468. * @param parity the parity of the picture being decoded/needing
  2469. * these ref pics (PICT_{TOP,BOTTOM}_FIELD)
  2470. * @return number of fields placed in dest
  2471. */
  2472. static int split_field_half_ref_list(Picture *dest, int dest_len,
  2473. Picture *src, int src_len, int parity){
  2474. int same_parity = 1;
  2475. int same_i = 0;
  2476. int opp_i = 0;
  2477. int out_i;
  2478. int field_output;
  2479. for (out_i = 0; out_i < dest_len; out_i += field_output) {
  2480. if (same_parity && same_i < src_len) {
  2481. field_output = split_field_copy(dest + out_i, src + same_i,
  2482. parity, 1);
  2483. same_parity = !field_output;
  2484. same_i++;
  2485. } else if (opp_i < src_len) {
  2486. field_output = split_field_copy(dest + out_i, src + opp_i,
  2487. PICT_FRAME - parity, 0);
  2488. same_parity = field_output;
  2489. opp_i++;
  2490. } else {
  2491. break;
  2492. }
  2493. }
  2494. return out_i;
  2495. }
  2496. /**
  2497. * Split the reference frame list into a reference field list.
  2498. * This implements H.264 spec 8.2.4.2.5 for a combined input list.
  2499. * The input list contains both reference field pairs and
  2500. * unmatched reference fields; it is ordered as spec describes
  2501. * RefPicListX for frames in 8.2.4.2.1 and 8.2.4.2.3, except that
  2502. * unmatched field pairs are also present. Conceptually this is equivalent
  2503. * to concatenation of refFrameListXShortTerm with refFrameListLongTerm.
  2504. *
  2505. * @param dest output reference list where ordered fields are to be placed
  2506. * @param dest_len max number of fields to place at dest
  2507. * @param src source reference list, as described above
  2508. * @param src_len number of pictures (pairs and unmatched fields) in src
  2509. * @param parity parity of field being currently decoded
  2510. * (one of PICT_{TOP,BOTTOM}_FIELD)
  2511. * @param long_i index into src array that holds first long reference picture,
  2512. * or src_len if no long refs present.
  2513. */
  2514. static int split_field_ref_list(Picture *dest, int dest_len,
  2515. Picture *src, int src_len,
  2516. int parity, int long_i){
  2517. int i = split_field_half_ref_list(dest, dest_len, src, long_i, parity);
  2518. dest += i;
  2519. dest_len -= i;
  2520. i += split_field_half_ref_list(dest, dest_len, src + long_i,
  2521. src_len - long_i, parity);
  2522. return i;
  2523. }
  2524. /**
  2525. * fills the default_ref_list.
  2526. */
  2527. static int fill_default_ref_list(H264Context *h){
  2528. MpegEncContext * const s = &h->s;
  2529. int i;
  2530. int smallest_poc_greater_than_current = -1;
  2531. int structure_sel;
  2532. Picture sorted_short_ref[32];
  2533. Picture field_entry_list[2][32];
  2534. Picture *frame_list[2];
  2535. if (FIELD_PICTURE) {
  2536. structure_sel = PICT_FRAME;
  2537. frame_list[0] = field_entry_list[0];
  2538. frame_list[1] = field_entry_list[1];
  2539. } else {
  2540. structure_sel = 0;
  2541. frame_list[0] = h->default_ref_list[0];
  2542. frame_list[1] = h->default_ref_list[1];
  2543. }
  2544. if(h->slice_type_nos==FF_B_TYPE){
  2545. int list;
  2546. int len[2];
  2547. int short_len[2];
  2548. int out_i;
  2549. int limit= INT_MIN;
  2550. /* sort frame according to poc in B slice */
  2551. for(out_i=0; out_i<h->short_ref_count; out_i++){
  2552. int best_i=INT_MIN;
  2553. int best_poc=INT_MAX;
  2554. for(i=0; i<h->short_ref_count; i++){
  2555. const int poc= h->short_ref[i]->poc;
  2556. if(poc > limit && poc < best_poc){
  2557. best_poc= poc;
  2558. best_i= i;
  2559. }
  2560. }
  2561. assert(best_i != INT_MIN);
  2562. limit= best_poc;
  2563. sorted_short_ref[out_i]= *h->short_ref[best_i];
  2564. tprintf(h->s.avctx, "sorted poc: %d->%d poc:%d fn:%d\n", best_i, out_i, sorted_short_ref[out_i].poc, sorted_short_ref[out_i].frame_num);
  2565. if (-1 == smallest_poc_greater_than_current) {
  2566. if (h->short_ref[best_i]->poc >= s->current_picture_ptr->poc) {
  2567. smallest_poc_greater_than_current = out_i;
  2568. }
  2569. }
  2570. }
  2571. tprintf(h->s.avctx, "current poc: %d, smallest_poc_greater_than_current: %d\n", s->current_picture_ptr->poc, smallest_poc_greater_than_current);
  2572. // find the largest poc
  2573. for(list=0; list<2; list++){
  2574. int index = 0;
  2575. int j= -99;
  2576. int step= list ? -1 : 1;
  2577. for(i=0; i<h->short_ref_count && index < h->ref_count[list]; i++, j+=step) {
  2578. int sel;
  2579. while(j<0 || j>= h->short_ref_count){
  2580. if(j != -99 && step == (list ? -1 : 1))
  2581. return -1;
  2582. step = -step;
  2583. j= smallest_poc_greater_than_current + (step>>1);
  2584. }
  2585. sel = sorted_short_ref[j].reference | structure_sel;
  2586. if(sel != PICT_FRAME) continue;
  2587. frame_list[list][index ]= sorted_short_ref[j];
  2588. frame_list[list][index++].pic_id= sorted_short_ref[j].frame_num;
  2589. }
  2590. short_len[list] = index;
  2591. for(i = 0; i < 16 && index < h->ref_count[ list ]; i++){
  2592. int sel;
  2593. if(h->long_ref[i] == NULL) continue;
  2594. sel = h->long_ref[i]->reference | structure_sel;
  2595. if(sel != PICT_FRAME) continue;
  2596. frame_list[ list ][index ]= *h->long_ref[i];
  2597. frame_list[ list ][index++].pic_id= i;
  2598. }
  2599. len[list] = index;
  2600. }
  2601. for(list=0; list<2; list++){
  2602. if (FIELD_PICTURE)
  2603. len[list] = split_field_ref_list(h->default_ref_list[list],
  2604. h->ref_count[list],
  2605. frame_list[list],
  2606. len[list],
  2607. s->picture_structure,
  2608. short_len[list]);
  2609. // swap the two first elements of L1 when L0 and L1 are identical
  2610. if(list && len[0] > 1 && len[0] == len[1])
  2611. for(i=0; h->default_ref_list[0][i].data[0] == h->default_ref_list[1][i].data[0]; i++)
  2612. if(i == len[0]){
  2613. FFSWAP(Picture, h->default_ref_list[1][0], h->default_ref_list[1][1]);
  2614. break;
  2615. }
  2616. if(len[list] < h->ref_count[ list ])
  2617. memset(&h->default_ref_list[list][len[list]], 0, sizeof(Picture)*(h->ref_count[ list ] - len[list]));
  2618. }
  2619. }else{
  2620. int index=0;
  2621. int short_len;
  2622. for(i=0; i<h->short_ref_count; i++){
  2623. int sel;
  2624. sel = h->short_ref[i]->reference | structure_sel;
  2625. if(sel != PICT_FRAME) continue;
  2626. frame_list[0][index ]= *h->short_ref[i];
  2627. frame_list[0][index++].pic_id= h->short_ref[i]->frame_num;
  2628. }
  2629. short_len = index;
  2630. for(i = 0; i < 16; i++){
  2631. int sel;
  2632. if(h->long_ref[i] == NULL) continue;
  2633. sel = h->long_ref[i]->reference | structure_sel;
  2634. if(sel != PICT_FRAME) continue;
  2635. frame_list[0][index ]= *h->long_ref[i];
  2636. frame_list[0][index++].pic_id= i;
  2637. }
  2638. if (FIELD_PICTURE)
  2639. index = split_field_ref_list(h->default_ref_list[0],
  2640. h->ref_count[0], frame_list[0],
  2641. index, s->picture_structure,
  2642. short_len);
  2643. if(index < h->ref_count[0])
  2644. memset(&h->default_ref_list[0][index], 0, sizeof(Picture)*(h->ref_count[0] - index));
  2645. }
  2646. #ifdef TRACE
  2647. for (i=0; i<h->ref_count[0]; i++) {
  2648. tprintf(h->s.avctx, "List0: %s fn:%d 0x%p\n", (h->default_ref_list[0][i].long_ref ? "LT" : "ST"), h->default_ref_list[0][i].pic_id, h->default_ref_list[0][i].data[0]);
  2649. }
  2650. if(h->slice_type_nos==FF_B_TYPE){
  2651. for (i=0; i<h->ref_count[1]; i++) {
  2652. tprintf(h->s.avctx, "List1: %s fn:%d 0x%p\n", (h->default_ref_list[1][i].long_ref ? "LT" : "ST"), h->default_ref_list[1][i].pic_id, h->default_ref_list[1][i].data[0]);
  2653. }
  2654. }
  2655. #endif
  2656. return 0;
  2657. }
  2658. static void print_short_term(H264Context *h);
  2659. static void print_long_term(H264Context *h);
  2660. /**
  2661. * Extract structure information about the picture described by pic_num in
  2662. * the current decoding context (frame or field). Note that pic_num is
  2663. * picture number without wrapping (so, 0<=pic_num<max_pic_num).
  2664. * @param pic_num picture number for which to extract structure information
  2665. * @param structure one of PICT_XXX describing structure of picture
  2666. * with pic_num
  2667. * @return frame number (short term) or long term index of picture
  2668. * described by pic_num
  2669. */
  2670. static int pic_num_extract(H264Context *h, int pic_num, int *structure){
  2671. MpegEncContext * const s = &h->s;
  2672. *structure = s->picture_structure;
  2673. if(FIELD_PICTURE){
  2674. if (!(pic_num & 1))
  2675. /* opposite field */
  2676. *structure ^= PICT_FRAME;
  2677. pic_num >>= 1;
  2678. }
  2679. return pic_num;
  2680. }
  2681. static int decode_ref_pic_list_reordering(H264Context *h){
  2682. MpegEncContext * const s = &h->s;
  2683. int list, index, pic_structure;
  2684. print_short_term(h);
  2685. print_long_term(h);
  2686. if(h->slice_type_nos==FF_I_TYPE) return 0; //FIXME move before func
  2687. for(list=0; list<h->list_count; list++){
  2688. memcpy(h->ref_list[list], h->default_ref_list[list], sizeof(Picture)*h->ref_count[list]);
  2689. if(get_bits1(&s->gb)){
  2690. int pred= h->curr_pic_num;
  2691. for(index=0; ; index++){
  2692. unsigned int reordering_of_pic_nums_idc= get_ue_golomb(&s->gb);
  2693. unsigned int pic_id;
  2694. int i;
  2695. Picture *ref = NULL;
  2696. if(reordering_of_pic_nums_idc==3)
  2697. break;
  2698. if(index >= h->ref_count[list]){
  2699. av_log(h->s.avctx, AV_LOG_ERROR, "reference count overflow\n");
  2700. return -1;
  2701. }
  2702. if(reordering_of_pic_nums_idc<3){
  2703. if(reordering_of_pic_nums_idc<2){
  2704. const unsigned int abs_diff_pic_num= get_ue_golomb(&s->gb) + 1;
  2705. int frame_num;
  2706. if(abs_diff_pic_num > h->max_pic_num){
  2707. av_log(h->s.avctx, AV_LOG_ERROR, "abs_diff_pic_num overflow\n");
  2708. return -1;
  2709. }
  2710. if(reordering_of_pic_nums_idc == 0) pred-= abs_diff_pic_num;
  2711. else pred+= abs_diff_pic_num;
  2712. pred &= h->max_pic_num - 1;
  2713. frame_num = pic_num_extract(h, pred, &pic_structure);
  2714. for(i= h->short_ref_count-1; i>=0; i--){
  2715. ref = h->short_ref[i];
  2716. assert(ref->reference);
  2717. assert(!ref->long_ref);
  2718. if(ref->data[0] != NULL &&
  2719. ref->frame_num == frame_num &&
  2720. (ref->reference & pic_structure) &&
  2721. ref->long_ref == 0) // ignore non existing pictures by testing data[0] pointer
  2722. break;
  2723. }
  2724. if(i>=0)
  2725. ref->pic_id= pred;
  2726. }else{
  2727. int long_idx;
  2728. pic_id= get_ue_golomb(&s->gb); //long_term_pic_idx
  2729. long_idx= pic_num_extract(h, pic_id, &pic_structure);
  2730. if(long_idx>31){
  2731. av_log(h->s.avctx, AV_LOG_ERROR, "long_term_pic_idx overflow\n");
  2732. return -1;
  2733. }
  2734. ref = h->long_ref[long_idx];
  2735. assert(!(ref && !ref->reference));
  2736. if(ref && (ref->reference & pic_structure)){
  2737. ref->pic_id= pic_id;
  2738. assert(ref->long_ref);
  2739. i=0;
  2740. }else{
  2741. i=-1;
  2742. }
  2743. }
  2744. if (i < 0) {
  2745. av_log(h->s.avctx, AV_LOG_ERROR, "reference picture missing during reorder\n");
  2746. memset(&h->ref_list[list][index], 0, sizeof(Picture)); //FIXME
  2747. } else {
  2748. for(i=index; i+1<h->ref_count[list]; i++){
  2749. if(ref->long_ref == h->ref_list[list][i].long_ref && ref->pic_id == h->ref_list[list][i].pic_id)
  2750. break;
  2751. }
  2752. for(; i > index; i--){
  2753. h->ref_list[list][i]= h->ref_list[list][i-1];
  2754. }
  2755. h->ref_list[list][index]= *ref;
  2756. if (FIELD_PICTURE){
  2757. pic_as_field(&h->ref_list[list][index], pic_structure);
  2758. }
  2759. }
  2760. }else{
  2761. av_log(h->s.avctx, AV_LOG_ERROR, "illegal reordering_of_pic_nums_idc\n");
  2762. return -1;
  2763. }
  2764. }
  2765. }
  2766. }
  2767. for(list=0; list<h->list_count; list++){
  2768. for(index= 0; index < h->ref_count[list]; index++){
  2769. if(!h->ref_list[list][index].data[0])
  2770. h->ref_list[list][index]= s->current_picture;
  2771. }
  2772. }
  2773. if(h->slice_type_nos==FF_B_TYPE && !h->direct_spatial_mv_pred)
  2774. direct_dist_scale_factor(h);
  2775. direct_ref_list_init(h);
  2776. return 0;
  2777. }
  2778. static void fill_mbaff_ref_list(H264Context *h){
  2779. int list, i, j;
  2780. for(list=0; list<2; list++){ //FIXME try list_count
  2781. for(i=0; i<h->ref_count[list]; i++){
  2782. Picture *frame = &h->ref_list[list][i];
  2783. Picture *field = &h->ref_list[list][16+2*i];
  2784. field[0] = *frame;
  2785. for(j=0; j<3; j++)
  2786. field[0].linesize[j] <<= 1;
  2787. field[0].reference = PICT_TOP_FIELD;
  2788. field[1] = field[0];
  2789. for(j=0; j<3; j++)
  2790. field[1].data[j] += frame->linesize[j];
  2791. field[1].reference = PICT_BOTTOM_FIELD;
  2792. h->luma_weight[list][16+2*i] = h->luma_weight[list][16+2*i+1] = h->luma_weight[list][i];
  2793. h->luma_offset[list][16+2*i] = h->luma_offset[list][16+2*i+1] = h->luma_offset[list][i];
  2794. for(j=0; j<2; j++){
  2795. h->chroma_weight[list][16+2*i][j] = h->chroma_weight[list][16+2*i+1][j] = h->chroma_weight[list][i][j];
  2796. h->chroma_offset[list][16+2*i][j] = h->chroma_offset[list][16+2*i+1][j] = h->chroma_offset[list][i][j];
  2797. }
  2798. }
  2799. }
  2800. for(j=0; j<h->ref_count[1]; j++){
  2801. for(i=0; i<h->ref_count[0]; i++)
  2802. h->implicit_weight[j][16+2*i] = h->implicit_weight[j][16+2*i+1] = h->implicit_weight[j][i];
  2803. memcpy(h->implicit_weight[16+2*j], h->implicit_weight[j], sizeof(*h->implicit_weight));
  2804. memcpy(h->implicit_weight[16+2*j+1], h->implicit_weight[j], sizeof(*h->implicit_weight));
  2805. }
  2806. }
  2807. static int pred_weight_table(H264Context *h){
  2808. MpegEncContext * const s = &h->s;
  2809. int list, i;
  2810. int luma_def, chroma_def;
  2811. h->use_weight= 0;
  2812. h->use_weight_chroma= 0;
  2813. h->luma_log2_weight_denom= get_ue_golomb(&s->gb);
  2814. h->chroma_log2_weight_denom= get_ue_golomb(&s->gb);
  2815. luma_def = 1<<h->luma_log2_weight_denom;
  2816. chroma_def = 1<<h->chroma_log2_weight_denom;
  2817. for(list=0; list<2; list++){
  2818. for(i=0; i<h->ref_count[list]; i++){
  2819. int luma_weight_flag, chroma_weight_flag;
  2820. luma_weight_flag= get_bits1(&s->gb);
  2821. if(luma_weight_flag){
  2822. h->luma_weight[list][i]= get_se_golomb(&s->gb);
  2823. h->luma_offset[list][i]= get_se_golomb(&s->gb);
  2824. if( h->luma_weight[list][i] != luma_def
  2825. || h->luma_offset[list][i] != 0)
  2826. h->use_weight= 1;
  2827. }else{
  2828. h->luma_weight[list][i]= luma_def;
  2829. h->luma_offset[list][i]= 0;
  2830. }
  2831. chroma_weight_flag= get_bits1(&s->gb);
  2832. if(chroma_weight_flag){
  2833. int j;
  2834. for(j=0; j<2; j++){
  2835. h->chroma_weight[list][i][j]= get_se_golomb(&s->gb);
  2836. h->chroma_offset[list][i][j]= get_se_golomb(&s->gb);
  2837. if( h->chroma_weight[list][i][j] != chroma_def
  2838. || h->chroma_offset[list][i][j] != 0)
  2839. h->use_weight_chroma= 1;
  2840. }
  2841. }else{
  2842. int j;
  2843. for(j=0; j<2; j++){
  2844. h->chroma_weight[list][i][j]= chroma_def;
  2845. h->chroma_offset[list][i][j]= 0;
  2846. }
  2847. }
  2848. }
  2849. if(h->slice_type_nos != FF_B_TYPE) break;
  2850. }
  2851. h->use_weight= h->use_weight || h->use_weight_chroma;
  2852. return 0;
  2853. }
  2854. static void implicit_weight_table(H264Context *h){
  2855. MpegEncContext * const s = &h->s;
  2856. int ref0, ref1;
  2857. int cur_poc = s->current_picture_ptr->poc;
  2858. if( h->ref_count[0] == 1 && h->ref_count[1] == 1
  2859. && h->ref_list[0][0].poc + h->ref_list[1][0].poc == 2*cur_poc){
  2860. h->use_weight= 0;
  2861. h->use_weight_chroma= 0;
  2862. return;
  2863. }
  2864. h->use_weight= 2;
  2865. h->use_weight_chroma= 2;
  2866. h->luma_log2_weight_denom= 5;
  2867. h->chroma_log2_weight_denom= 5;
  2868. for(ref0=0; ref0 < h->ref_count[0]; ref0++){
  2869. int poc0 = h->ref_list[0][ref0].poc;
  2870. for(ref1=0; ref1 < h->ref_count[1]; ref1++){
  2871. int poc1 = h->ref_list[1][ref1].poc;
  2872. int td = av_clip(poc1 - poc0, -128, 127);
  2873. if(td){
  2874. int tb = av_clip(cur_poc - poc0, -128, 127);
  2875. int tx = (16384 + (FFABS(td) >> 1)) / td;
  2876. int dist_scale_factor = av_clip((tb*tx + 32) >> 6, -1024, 1023) >> 2;
  2877. if(dist_scale_factor < -64 || dist_scale_factor > 128)
  2878. h->implicit_weight[ref0][ref1] = 32;
  2879. else
  2880. h->implicit_weight[ref0][ref1] = 64 - dist_scale_factor;
  2881. }else
  2882. h->implicit_weight[ref0][ref1] = 32;
  2883. }
  2884. }
  2885. }
  2886. /**
  2887. * Mark a picture as no longer needed for reference. The refmask
  2888. * argument allows unreferencing of individual fields or the whole frame.
  2889. * If the picture becomes entirely unreferenced, but is being held for
  2890. * display purposes, it is marked as such.
  2891. * @param refmask mask of fields to unreference; the mask is bitwise
  2892. * anded with the reference marking of pic
  2893. * @return non-zero if pic becomes entirely unreferenced (except possibly
  2894. * for display purposes) zero if one of the fields remains in
  2895. * reference
  2896. */
  2897. static inline int unreference_pic(H264Context *h, Picture *pic, int refmask){
  2898. int i;
  2899. if (pic->reference &= refmask) {
  2900. return 0;
  2901. } else {
  2902. for(i = 0; h->delayed_pic[i]; i++)
  2903. if(pic == h->delayed_pic[i]){
  2904. pic->reference=DELAYED_PIC_REF;
  2905. break;
  2906. }
  2907. return 1;
  2908. }
  2909. }
  2910. /**
  2911. * instantaneous decoder refresh.
  2912. */
  2913. static void idr(H264Context *h){
  2914. int i;
  2915. for(i=0; i<16; i++){
  2916. if (h->long_ref[i] != NULL) {
  2917. unreference_pic(h, h->long_ref[i], 0);
  2918. h->long_ref[i]= NULL;
  2919. }
  2920. }
  2921. h->long_ref_count=0;
  2922. for(i=0; i<h->short_ref_count; i++){
  2923. unreference_pic(h, h->short_ref[i], 0);
  2924. h->short_ref[i]= NULL;
  2925. }
  2926. h->short_ref_count=0;
  2927. }
  2928. /* forget old pics after a seek */
  2929. static void flush_dpb(AVCodecContext *avctx){
  2930. H264Context *h= avctx->priv_data;
  2931. int i;
  2932. for(i=0; i<MAX_DELAYED_PIC_COUNT; i++) {
  2933. if(h->delayed_pic[i])
  2934. h->delayed_pic[i]->reference= 0;
  2935. h->delayed_pic[i]= NULL;
  2936. }
  2937. h->outputed_poc= INT_MIN;
  2938. idr(h);
  2939. if(h->s.current_picture_ptr)
  2940. h->s.current_picture_ptr->reference= 0;
  2941. h->s.first_field= 0;
  2942. ff_mpeg_flush(avctx);
  2943. }
  2944. /**
  2945. * Find a Picture in the short term reference list by frame number.
  2946. * @param frame_num frame number to search for
  2947. * @param idx the index into h->short_ref where returned picture is found
  2948. * undefined if no picture found.
  2949. * @return pointer to the found picture, or NULL if no pic with the provided
  2950. * frame number is found
  2951. */
  2952. static Picture * find_short(H264Context *h, int frame_num, int *idx){
  2953. MpegEncContext * const s = &h->s;
  2954. int i;
  2955. for(i=0; i<h->short_ref_count; i++){
  2956. Picture *pic= h->short_ref[i];
  2957. if(s->avctx->debug&FF_DEBUG_MMCO)
  2958. av_log(h->s.avctx, AV_LOG_DEBUG, "%d %d %p\n", i, pic->frame_num, pic);
  2959. if(pic->frame_num == frame_num) {
  2960. *idx = i;
  2961. return pic;
  2962. }
  2963. }
  2964. return NULL;
  2965. }
  2966. /**
  2967. * Remove a picture from the short term reference list by its index in
  2968. * that list. This does no checking on the provided index; it is assumed
  2969. * to be valid. Other list entries are shifted down.
  2970. * @param i index into h->short_ref of picture to remove.
  2971. */
  2972. static void remove_short_at_index(H264Context *h, int i){
  2973. assert(i >= 0 && i < h->short_ref_count);
  2974. h->short_ref[i]= NULL;
  2975. if (--h->short_ref_count)
  2976. memmove(&h->short_ref[i], &h->short_ref[i+1], (h->short_ref_count - i)*sizeof(Picture*));
  2977. }
  2978. /**
  2979. *
  2980. * @return the removed picture or NULL if an error occurs
  2981. */
  2982. static Picture * remove_short(H264Context *h, int frame_num){
  2983. MpegEncContext * const s = &h->s;
  2984. Picture *pic;
  2985. int i;
  2986. if(s->avctx->debug&FF_DEBUG_MMCO)
  2987. av_log(h->s.avctx, AV_LOG_DEBUG, "remove short %d count %d\n", frame_num, h->short_ref_count);
  2988. pic = find_short(h, frame_num, &i);
  2989. if (pic)
  2990. remove_short_at_index(h, i);
  2991. return pic;
  2992. }
  2993. /**
  2994. * Remove a picture from the long term reference list by its index in
  2995. * that list. This does no checking on the provided index; it is assumed
  2996. * to be valid. The removed entry is set to NULL. Other entries are unaffected.
  2997. * @param i index into h->long_ref of picture to remove.
  2998. */
  2999. static void remove_long_at_index(H264Context *h, int i){
  3000. h->long_ref[i]= NULL;
  3001. h->long_ref_count--;
  3002. }
  3003. /**
  3004. *
  3005. * @return the removed picture or NULL if an error occurs
  3006. */
  3007. static Picture * remove_long(H264Context *h, int i){
  3008. Picture *pic;
  3009. pic= h->long_ref[i];
  3010. if (pic)
  3011. remove_long_at_index(h, i);
  3012. return pic;
  3013. }
  3014. /**
  3015. * print short term list
  3016. */
  3017. static void print_short_term(H264Context *h) {
  3018. uint32_t i;
  3019. if(h->s.avctx->debug&FF_DEBUG_MMCO) {
  3020. av_log(h->s.avctx, AV_LOG_DEBUG, "short term list:\n");
  3021. for(i=0; i<h->short_ref_count; i++){
  3022. Picture *pic= h->short_ref[i];
  3023. av_log(h->s.avctx, AV_LOG_DEBUG, "%d fn:%d poc:%d %p\n", i, pic->frame_num, pic->poc, pic->data[0]);
  3024. }
  3025. }
  3026. }
  3027. /**
  3028. * print long term list
  3029. */
  3030. static void print_long_term(H264Context *h) {
  3031. uint32_t i;
  3032. if(h->s.avctx->debug&FF_DEBUG_MMCO) {
  3033. av_log(h->s.avctx, AV_LOG_DEBUG, "long term list:\n");
  3034. for(i = 0; i < 16; i++){
  3035. Picture *pic= h->long_ref[i];
  3036. if (pic) {
  3037. av_log(h->s.avctx, AV_LOG_DEBUG, "%d fn:%d poc:%d %p\n", i, pic->frame_num, pic->poc, pic->data[0]);
  3038. }
  3039. }
  3040. }
  3041. }
  3042. /**
  3043. * Executes the reference picture marking (memory management control operations).
  3044. */
  3045. static int execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count){
  3046. MpegEncContext * const s = &h->s;
  3047. int i, j;
  3048. int current_ref_assigned=0;
  3049. Picture *pic;
  3050. if((s->avctx->debug&FF_DEBUG_MMCO) && mmco_count==0)
  3051. av_log(h->s.avctx, AV_LOG_DEBUG, "no mmco here\n");
  3052. for(i=0; i<mmco_count; i++){
  3053. int structure, frame_num, unref_pic;
  3054. if(s->avctx->debug&FF_DEBUG_MMCO)
  3055. av_log(h->s.avctx, AV_LOG_DEBUG, "mmco:%d %d %d\n", h->mmco[i].opcode, h->mmco[i].short_pic_num, h->mmco[i].long_arg);
  3056. switch(mmco[i].opcode){
  3057. case MMCO_SHORT2UNUSED:
  3058. if(s->avctx->debug&FF_DEBUG_MMCO)
  3059. av_log(h->s.avctx, AV_LOG_DEBUG, "mmco: unref short %d count %d\n", h->mmco[i].short_pic_num, h->short_ref_count);
  3060. frame_num = pic_num_extract(h, mmco[i].short_pic_num, &structure);
  3061. pic = find_short(h, frame_num, &j);
  3062. if (pic) {
  3063. if (unreference_pic(h, pic, structure ^ PICT_FRAME))
  3064. remove_short_at_index(h, j);
  3065. } else if(s->avctx->debug&FF_DEBUG_MMCO)
  3066. av_log(h->s.avctx, AV_LOG_DEBUG, "mmco: unref short failure\n");
  3067. break;
  3068. case MMCO_SHORT2LONG:
  3069. if (FIELD_PICTURE && mmco[i].long_arg < h->long_ref_count &&
  3070. h->long_ref[mmco[i].long_arg]->frame_num ==
  3071. mmco[i].short_pic_num / 2) {
  3072. /* do nothing, we've already moved this field pair. */
  3073. } else {
  3074. int frame_num = mmco[i].short_pic_num >> FIELD_PICTURE;
  3075. pic= remove_long(h, mmco[i].long_arg);
  3076. if(pic) unreference_pic(h, pic, 0);
  3077. h->long_ref[ mmco[i].long_arg ]= remove_short(h, frame_num);
  3078. if (h->long_ref[ mmco[i].long_arg ]){
  3079. h->long_ref[ mmco[i].long_arg ]->long_ref=1;
  3080. h->long_ref_count++;
  3081. }
  3082. }
  3083. break;
  3084. case MMCO_LONG2UNUSED:
  3085. j = pic_num_extract(h, mmco[i].long_arg, &structure);
  3086. pic = h->long_ref[j];
  3087. if (pic) {
  3088. if (unreference_pic(h, pic, structure ^ PICT_FRAME))
  3089. remove_long_at_index(h, j);
  3090. } else if(s->avctx->debug&FF_DEBUG_MMCO)
  3091. av_log(h->s.avctx, AV_LOG_DEBUG, "mmco: unref long failure\n");
  3092. break;
  3093. case MMCO_LONG:
  3094. unref_pic = 1;
  3095. if (FIELD_PICTURE && !s->first_field) {
  3096. if (h->long_ref[mmco[i].long_arg] == s->current_picture_ptr) {
  3097. /* Just mark second field as referenced */
  3098. unref_pic = 0;
  3099. } else if (s->current_picture_ptr->reference) {
  3100. /* First field in pair is in short term list or
  3101. * at a different long term index.
  3102. * This is not allowed; see 7.4.3, notes 2 and 3.
  3103. * Report the problem and keep the pair where it is,
  3104. * and mark this field valid.
  3105. */
  3106. av_log(h->s.avctx, AV_LOG_ERROR,
  3107. "illegal long term reference assignment for second "
  3108. "field in complementary field pair (first field is "
  3109. "short term or has non-matching long index)\n");
  3110. unref_pic = 0;
  3111. }
  3112. }
  3113. if (unref_pic) {
  3114. pic= remove_long(h, mmco[i].long_arg);
  3115. if(pic) unreference_pic(h, pic, 0);
  3116. h->long_ref[ mmco[i].long_arg ]= s->current_picture_ptr;
  3117. h->long_ref[ mmco[i].long_arg ]->long_ref=1;
  3118. h->long_ref_count++;
  3119. }
  3120. s->current_picture_ptr->reference |= s->picture_structure;
  3121. current_ref_assigned=1;
  3122. break;
  3123. case MMCO_SET_MAX_LONG:
  3124. assert(mmco[i].long_arg <= 16);
  3125. // just remove the long term which index is greater than new max
  3126. for(j = mmco[i].long_arg; j<16; j++){
  3127. pic = remove_long(h, j);
  3128. if (pic) unreference_pic(h, pic, 0);
  3129. }
  3130. break;
  3131. case MMCO_RESET:
  3132. while(h->short_ref_count){
  3133. pic= remove_short(h, h->short_ref[0]->frame_num);
  3134. if(pic) unreference_pic(h, pic, 0);
  3135. }
  3136. for(j = 0; j < 16; j++) {
  3137. pic= remove_long(h, j);
  3138. if(pic) unreference_pic(h, pic, 0);
  3139. }
  3140. s->current_picture_ptr->poc=
  3141. s->current_picture_ptr->field_poc[0]=
  3142. s->current_picture_ptr->field_poc[1]=
  3143. h->poc_lsb=
  3144. h->poc_msb=
  3145. h->frame_num=
  3146. s->current_picture_ptr->frame_num= 0;
  3147. break;
  3148. default: assert(0);
  3149. }
  3150. }
  3151. if (!current_ref_assigned && FIELD_PICTURE &&
  3152. !s->first_field && s->current_picture_ptr->reference) {
  3153. /* Second field of complementary field pair; the first field of
  3154. * which is already referenced. If short referenced, it
  3155. * should be first entry in short_ref. If not, it must exist
  3156. * in long_ref; trying to put it on the short list here is an
  3157. * error in the encoded bit stream (ref: 7.4.3, NOTE 2 and 3).
  3158. */
  3159. if (h->short_ref_count && h->short_ref[0] == s->current_picture_ptr) {
  3160. /* Just mark the second field valid */
  3161. s->current_picture_ptr->reference = PICT_FRAME;
  3162. } else if (s->current_picture_ptr->long_ref) {
  3163. av_log(h->s.avctx, AV_LOG_ERROR, "illegal short term reference "
  3164. "assignment for second field "
  3165. "in complementary field pair "
  3166. "(first field is long term)\n");
  3167. } else {
  3168. /*
  3169. * First field in reference, but not in any sensible place on our
  3170. * reference lists. This shouldn't happen unless reference
  3171. * handling somewhere else is wrong.
  3172. */
  3173. assert(0);
  3174. }
  3175. current_ref_assigned = 1;
  3176. }
  3177. if(!current_ref_assigned){
  3178. pic= remove_short(h, s->current_picture_ptr->frame_num);
  3179. if(pic){
  3180. unreference_pic(h, pic, 0);
  3181. av_log(h->s.avctx, AV_LOG_ERROR, "illegal short term buffer state detected\n");
  3182. }
  3183. if(h->short_ref_count)
  3184. memmove(&h->short_ref[1], &h->short_ref[0], h->short_ref_count*sizeof(Picture*));
  3185. h->short_ref[0]= s->current_picture_ptr;
  3186. h->short_ref[0]->long_ref=0;
  3187. h->short_ref_count++;
  3188. s->current_picture_ptr->reference |= s->picture_structure;
  3189. }
  3190. if (h->long_ref_count + h->short_ref_count > h->sps.ref_frame_count){
  3191. /* We have too many reference frames, probably due to corrupted
  3192. * stream. Need to discard one frame. Prevents overrun of the
  3193. * short_ref and long_ref buffers.
  3194. */
  3195. av_log(h->s.avctx, AV_LOG_ERROR,
  3196. "number of reference frames exceeds max (probably "
  3197. "corrupt input), discarding one\n");
  3198. if (h->long_ref_count && !h->short_ref_count) {
  3199. for (i = 0; i < 16; ++i)
  3200. if (h->long_ref[i])
  3201. break;
  3202. assert(i < 16);
  3203. pic = h->long_ref[i];
  3204. remove_long_at_index(h, i);
  3205. } else {
  3206. pic = h->short_ref[h->short_ref_count - 1];
  3207. remove_short_at_index(h, h->short_ref_count - 1);
  3208. }
  3209. unreference_pic(h, pic, 0);
  3210. }
  3211. print_short_term(h);
  3212. print_long_term(h);
  3213. return 0;
  3214. }
  3215. static int decode_ref_pic_marking(H264Context *h, GetBitContext *gb){
  3216. MpegEncContext * const s = &h->s;
  3217. int i;
  3218. if(h->nal_unit_type == NAL_IDR_SLICE){ //FIXME fields
  3219. s->broken_link= get_bits1(gb) -1;
  3220. h->mmco[0].long_arg= get_bits1(gb) - 1; // current_long_term_idx
  3221. if(h->mmco[0].long_arg == -1)
  3222. h->mmco_index= 0;
  3223. else{
  3224. h->mmco[0].opcode= MMCO_LONG;
  3225. h->mmco_index= 1;
  3226. }
  3227. }else{
  3228. if(get_bits1(gb)){ // adaptive_ref_pic_marking_mode_flag
  3229. for(i= 0; i<MAX_MMCO_COUNT; i++) {
  3230. MMCOOpcode opcode= get_ue_golomb(gb);
  3231. h->mmco[i].opcode= opcode;
  3232. if(opcode==MMCO_SHORT2UNUSED || opcode==MMCO_SHORT2LONG){
  3233. h->mmco[i].short_pic_num= (h->curr_pic_num - get_ue_golomb(gb) - 1) & (h->max_pic_num - 1);
  3234. /* if(h->mmco[i].short_pic_num >= h->short_ref_count || h->short_ref[ h->mmco[i].short_pic_num ] == NULL){
  3235. av_log(s->avctx, AV_LOG_ERROR, "illegal short ref in memory management control operation %d\n", mmco);
  3236. return -1;
  3237. }*/
  3238. }
  3239. if(opcode==MMCO_SHORT2LONG || opcode==MMCO_LONG2UNUSED || opcode==MMCO_LONG || opcode==MMCO_SET_MAX_LONG){
  3240. unsigned int long_arg= get_ue_golomb(gb);
  3241. if(long_arg >= 32 || (long_arg >= 16 && !(opcode == MMCO_LONG2UNUSED && FIELD_PICTURE))){
  3242. av_log(h->s.avctx, AV_LOG_ERROR, "illegal long ref in memory management control operation %d\n", opcode);
  3243. return -1;
  3244. }
  3245. h->mmco[i].long_arg= long_arg;
  3246. }
  3247. if(opcode > (unsigned)MMCO_LONG){
  3248. av_log(h->s.avctx, AV_LOG_ERROR, "illegal memory management control operation %d\n", opcode);
  3249. return -1;
  3250. }
  3251. if(opcode == MMCO_END)
  3252. break;
  3253. }
  3254. h->mmco_index= i;
  3255. }else{
  3256. assert(h->long_ref_count + h->short_ref_count <= h->sps.ref_frame_count);
  3257. if(h->short_ref_count && h->long_ref_count + h->short_ref_count == h->sps.ref_frame_count &&
  3258. !(FIELD_PICTURE && !s->first_field && s->current_picture_ptr->reference)) {
  3259. h->mmco[0].opcode= MMCO_SHORT2UNUSED;
  3260. h->mmco[0].short_pic_num= h->short_ref[ h->short_ref_count - 1 ]->frame_num;
  3261. h->mmco_index= 1;
  3262. if (FIELD_PICTURE) {
  3263. h->mmco[0].short_pic_num *= 2;
  3264. h->mmco[1].opcode= MMCO_SHORT2UNUSED;
  3265. h->mmco[1].short_pic_num= h->mmco[0].short_pic_num + 1;
  3266. h->mmco_index= 2;
  3267. }
  3268. }else
  3269. h->mmco_index= 0;
  3270. }
  3271. }
  3272. return 0;
  3273. }
  3274. static int init_poc(H264Context *h){
  3275. MpegEncContext * const s = &h->s;
  3276. const int max_frame_num= 1<<h->sps.log2_max_frame_num;
  3277. int field_poc[2];
  3278. if(h->nal_unit_type == NAL_IDR_SLICE){
  3279. h->frame_num_offset= 0;
  3280. }else{
  3281. if(h->frame_num < h->prev_frame_num)
  3282. h->frame_num_offset= h->prev_frame_num_offset + max_frame_num;
  3283. else
  3284. h->frame_num_offset= h->prev_frame_num_offset;
  3285. }
  3286. if(h->sps.poc_type==0){
  3287. const int max_poc_lsb= 1<<h->sps.log2_max_poc_lsb;
  3288. if(h->nal_unit_type == NAL_IDR_SLICE){
  3289. h->prev_poc_msb=
  3290. h->prev_poc_lsb= 0;
  3291. }
  3292. if (h->poc_lsb < h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb/2)
  3293. h->poc_msb = h->prev_poc_msb + max_poc_lsb;
  3294. else if(h->poc_lsb > h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb/2)
  3295. h->poc_msb = h->prev_poc_msb - max_poc_lsb;
  3296. else
  3297. h->poc_msb = h->prev_poc_msb;
  3298. //printf("poc: %d %d\n", h->poc_msb, h->poc_lsb);
  3299. field_poc[0] =
  3300. field_poc[1] = h->poc_msb + h->poc_lsb;
  3301. if(s->picture_structure == PICT_FRAME)
  3302. field_poc[1] += h->delta_poc_bottom;
  3303. }else if(h->sps.poc_type==1){
  3304. int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc;
  3305. int i;
  3306. if(h->sps.poc_cycle_length != 0)
  3307. abs_frame_num = h->frame_num_offset + h->frame_num;
  3308. else
  3309. abs_frame_num = 0;
  3310. if(h->nal_ref_idc==0 && abs_frame_num > 0)
  3311. abs_frame_num--;
  3312. expected_delta_per_poc_cycle = 0;
  3313. for(i=0; i < h->sps.poc_cycle_length; i++)
  3314. expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[ i ]; //FIXME integrate during sps parse
  3315. if(abs_frame_num > 0){
  3316. int poc_cycle_cnt = (abs_frame_num - 1) / h->sps.poc_cycle_length;
  3317. int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length;
  3318. expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle;
  3319. for(i = 0; i <= frame_num_in_poc_cycle; i++)
  3320. expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[ i ];
  3321. } else
  3322. expectedpoc = 0;
  3323. if(h->nal_ref_idc == 0)
  3324. expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic;
  3325. field_poc[0] = expectedpoc + h->delta_poc[0];
  3326. field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field;
  3327. if(s->picture_structure == PICT_FRAME)
  3328. field_poc[1] += h->delta_poc[1];
  3329. }else{
  3330. int poc;
  3331. if(h->nal_unit_type == NAL_IDR_SLICE){
  3332. poc= 0;
  3333. }else{
  3334. if(h->nal_ref_idc) poc= 2*(h->frame_num_offset + h->frame_num);
  3335. else poc= 2*(h->frame_num_offset + h->frame_num) - 1;
  3336. }
  3337. field_poc[0]= poc;
  3338. field_poc[1]= poc;
  3339. }
  3340. if(s->picture_structure != PICT_BOTTOM_FIELD) {
  3341. s->current_picture_ptr->field_poc[0]= field_poc[0];
  3342. s->current_picture_ptr->poc = field_poc[0];
  3343. }
  3344. if(s->picture_structure != PICT_TOP_FIELD) {
  3345. s->current_picture_ptr->field_poc[1]= field_poc[1];
  3346. s->current_picture_ptr->poc = field_poc[1];
  3347. }
  3348. if(!FIELD_PICTURE || !s->first_field) {
  3349. Picture *cur = s->current_picture_ptr;
  3350. cur->poc= FFMIN(cur->field_poc[0], cur->field_poc[1]);
  3351. }
  3352. return 0;
  3353. }
  3354. /**
  3355. * initialize scan tables
  3356. */
  3357. static void init_scan_tables(H264Context *h){
  3358. MpegEncContext * const s = &h->s;
  3359. int i;
  3360. if(s->dsp.h264_idct_add == ff_h264_idct_add_c){ //FIXME little ugly
  3361. memcpy(h->zigzag_scan, zigzag_scan, 16*sizeof(uint8_t));
  3362. memcpy(h-> field_scan, field_scan, 16*sizeof(uint8_t));
  3363. }else{
  3364. for(i=0; i<16; i++){
  3365. #define T(x) (x>>2) | ((x<<2) & 0xF)
  3366. h->zigzag_scan[i] = T(zigzag_scan[i]);
  3367. h-> field_scan[i] = T( field_scan[i]);
  3368. #undef T
  3369. }
  3370. }
  3371. if(s->dsp.h264_idct8_add == ff_h264_idct8_add_c){
  3372. memcpy(h->zigzag_scan8x8, zigzag_scan8x8, 64*sizeof(uint8_t));
  3373. memcpy(h->zigzag_scan8x8_cavlc, zigzag_scan8x8_cavlc, 64*sizeof(uint8_t));
  3374. memcpy(h->field_scan8x8, field_scan8x8, 64*sizeof(uint8_t));
  3375. memcpy(h->field_scan8x8_cavlc, field_scan8x8_cavlc, 64*sizeof(uint8_t));
  3376. }else{
  3377. for(i=0; i<64; i++){
  3378. #define T(x) (x>>3) | ((x&7)<<3)
  3379. h->zigzag_scan8x8[i] = T(zigzag_scan8x8[i]);
  3380. h->zigzag_scan8x8_cavlc[i] = T(zigzag_scan8x8_cavlc[i]);
  3381. h->field_scan8x8[i] = T(field_scan8x8[i]);
  3382. h->field_scan8x8_cavlc[i] = T(field_scan8x8_cavlc[i]);
  3383. #undef T
  3384. }
  3385. }
  3386. if(h->sps.transform_bypass){ //FIXME same ugly
  3387. h->zigzag_scan_q0 = zigzag_scan;
  3388. h->zigzag_scan8x8_q0 = zigzag_scan8x8;
  3389. h->zigzag_scan8x8_cavlc_q0 = zigzag_scan8x8_cavlc;
  3390. h->field_scan_q0 = field_scan;
  3391. h->field_scan8x8_q0 = field_scan8x8;
  3392. h->field_scan8x8_cavlc_q0 = field_scan8x8_cavlc;
  3393. }else{
  3394. h->zigzag_scan_q0 = h->zigzag_scan;
  3395. h->zigzag_scan8x8_q0 = h->zigzag_scan8x8;
  3396. h->zigzag_scan8x8_cavlc_q0 = h->zigzag_scan8x8_cavlc;
  3397. h->field_scan_q0 = h->field_scan;
  3398. h->field_scan8x8_q0 = h->field_scan8x8;
  3399. h->field_scan8x8_cavlc_q0 = h->field_scan8x8_cavlc;
  3400. }
  3401. }
  3402. /**
  3403. * Replicates H264 "master" context to thread contexts.
  3404. */
  3405. static void clone_slice(H264Context *dst, H264Context *src)
  3406. {
  3407. memcpy(dst->block_offset, src->block_offset, sizeof(dst->block_offset));
  3408. dst->s.current_picture_ptr = src->s.current_picture_ptr;
  3409. dst->s.current_picture = src->s.current_picture;
  3410. dst->s.linesize = src->s.linesize;
  3411. dst->s.uvlinesize = src->s.uvlinesize;
  3412. dst->s.first_field = src->s.first_field;
  3413. dst->prev_poc_msb = src->prev_poc_msb;
  3414. dst->prev_poc_lsb = src->prev_poc_lsb;
  3415. dst->prev_frame_num_offset = src->prev_frame_num_offset;
  3416. dst->prev_frame_num = src->prev_frame_num;
  3417. dst->short_ref_count = src->short_ref_count;
  3418. memcpy(dst->short_ref, src->short_ref, sizeof(dst->short_ref));
  3419. memcpy(dst->long_ref, src->long_ref, sizeof(dst->long_ref));
  3420. memcpy(dst->default_ref_list, src->default_ref_list, sizeof(dst->default_ref_list));
  3421. memcpy(dst->ref_list, src->ref_list, sizeof(dst->ref_list));
  3422. memcpy(dst->dequant4_coeff, src->dequant4_coeff, sizeof(src->dequant4_coeff));
  3423. memcpy(dst->dequant8_coeff, src->dequant8_coeff, sizeof(src->dequant8_coeff));
  3424. }
  3425. /**
  3426. * decodes a slice header.
  3427. * This will also call MPV_common_init() and frame_start() as needed.
  3428. *
  3429. * @param h h264context
  3430. * @param h0 h264 master context (differs from 'h' when doing sliced based parallel decoding)
  3431. *
  3432. * @return 0 if okay, <0 if an error occurred, 1 if decoding must not be multithreaded
  3433. */
  3434. static int decode_slice_header(H264Context *h, H264Context *h0){
  3435. MpegEncContext * const s = &h->s;
  3436. MpegEncContext * const s0 = &h0->s;
  3437. unsigned int first_mb_in_slice;
  3438. unsigned int pps_id;
  3439. int num_ref_idx_active_override_flag;
  3440. static const uint8_t slice_type_map[5]= {FF_P_TYPE, FF_B_TYPE, FF_I_TYPE, FF_SP_TYPE, FF_SI_TYPE};
  3441. unsigned int slice_type, tmp, i, j;
  3442. int default_ref_list_done = 0;
  3443. int last_pic_structure;
  3444. s->dropable= h->nal_ref_idc == 0;
  3445. if((s->avctx->flags2 & CODEC_FLAG2_FAST) && !h->nal_ref_idc){
  3446. s->me.qpel_put= s->dsp.put_2tap_qpel_pixels_tab;
  3447. s->me.qpel_avg= s->dsp.avg_2tap_qpel_pixels_tab;
  3448. }else{
  3449. s->me.qpel_put= s->dsp.put_h264_qpel_pixels_tab;
  3450. s->me.qpel_avg= s->dsp.avg_h264_qpel_pixels_tab;
  3451. }
  3452. first_mb_in_slice= get_ue_golomb(&s->gb);
  3453. if((s->flags2 & CODEC_FLAG2_CHUNKS) && first_mb_in_slice == 0){
  3454. h0->current_slice = 0;
  3455. if (!s0->first_field)
  3456. s->current_picture_ptr= NULL;
  3457. }
  3458. slice_type= get_ue_golomb(&s->gb);
  3459. if(slice_type > 9){
  3460. av_log(h->s.avctx, AV_LOG_ERROR, "slice type too large (%d) at %d %d\n", h->slice_type, s->mb_x, s->mb_y);
  3461. return -1;
  3462. }
  3463. if(slice_type > 4){
  3464. slice_type -= 5;
  3465. h->slice_type_fixed=1;
  3466. }else
  3467. h->slice_type_fixed=0;
  3468. slice_type= slice_type_map[ slice_type ];
  3469. if (slice_type == FF_I_TYPE
  3470. || (h0->current_slice != 0 && slice_type == h0->last_slice_type) ) {
  3471. default_ref_list_done = 1;
  3472. }
  3473. h->slice_type= slice_type;
  3474. h->slice_type_nos= slice_type & 3;
  3475. s->pict_type= h->slice_type; // to make a few old func happy, it's wrong though
  3476. if (s->pict_type == FF_B_TYPE && s0->last_picture_ptr == NULL) {
  3477. av_log(h->s.avctx, AV_LOG_ERROR,
  3478. "B picture before any references, skipping\n");
  3479. return -1;
  3480. }
  3481. pps_id= get_ue_golomb(&s->gb);
  3482. if(pps_id>=MAX_PPS_COUNT){
  3483. av_log(h->s.avctx, AV_LOG_ERROR, "pps_id out of range\n");
  3484. return -1;
  3485. }
  3486. if(!h0->pps_buffers[pps_id]) {
  3487. av_log(h->s.avctx, AV_LOG_ERROR, "non existing PPS referenced\n");
  3488. return -1;
  3489. }
  3490. h->pps= *h0->pps_buffers[pps_id];
  3491. if(!h0->sps_buffers[h->pps.sps_id]) {
  3492. av_log(h->s.avctx, AV_LOG_ERROR, "non existing SPS referenced\n");
  3493. return -1;
  3494. }
  3495. h->sps = *h0->sps_buffers[h->pps.sps_id];
  3496. if(h == h0 && h->dequant_coeff_pps != pps_id){
  3497. h->dequant_coeff_pps = pps_id;
  3498. init_dequant_tables(h);
  3499. }
  3500. s->mb_width= h->sps.mb_width;
  3501. s->mb_height= h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag);
  3502. h->b_stride= s->mb_width*4;
  3503. h->b8_stride= s->mb_width*2;
  3504. s->width = 16*s->mb_width - 2*FFMIN(h->sps.crop_right, 7);
  3505. if(h->sps.frame_mbs_only_flag)
  3506. s->height= 16*s->mb_height - 2*FFMIN(h->sps.crop_bottom, 7);
  3507. else
  3508. s->height= 16*s->mb_height - 4*FFMIN(h->sps.crop_bottom, 3);
  3509. if (s->context_initialized
  3510. && ( s->width != s->avctx->width || s->height != s->avctx->height)) {
  3511. if(h != h0)
  3512. return -1; // width / height changed during parallelized decoding
  3513. free_tables(h);
  3514. MPV_common_end(s);
  3515. }
  3516. if (!s->context_initialized) {
  3517. if(h != h0)
  3518. return -1; // we cant (re-)initialize context during parallel decoding
  3519. if (MPV_common_init(s) < 0)
  3520. return -1;
  3521. s->first_field = 0;
  3522. init_scan_tables(h);
  3523. alloc_tables(h);
  3524. for(i = 1; i < s->avctx->thread_count; i++) {
  3525. H264Context *c;
  3526. c = h->thread_context[i] = av_malloc(sizeof(H264Context));
  3527. memcpy(c, h->s.thread_context[i], sizeof(MpegEncContext));
  3528. memset(&c->s + 1, 0, sizeof(H264Context) - sizeof(MpegEncContext));
  3529. c->sps = h->sps;
  3530. c->pps = h->pps;
  3531. init_scan_tables(c);
  3532. clone_tables(c, h);
  3533. }
  3534. for(i = 0; i < s->avctx->thread_count; i++)
  3535. if(context_init(h->thread_context[i]) < 0)
  3536. return -1;
  3537. s->avctx->width = s->width;
  3538. s->avctx->height = s->height;
  3539. s->avctx->sample_aspect_ratio= h->sps.sar;
  3540. if(!s->avctx->sample_aspect_ratio.den)
  3541. s->avctx->sample_aspect_ratio.den = 1;
  3542. if(h->sps.timing_info_present_flag){
  3543. s->avctx->time_base= (AVRational){h->sps.num_units_in_tick * 2, h->sps.time_scale};
  3544. if(h->x264_build > 0 && h->x264_build < 44)
  3545. s->avctx->time_base.den *= 2;
  3546. av_reduce(&s->avctx->time_base.num, &s->avctx->time_base.den,
  3547. s->avctx->time_base.num, s->avctx->time_base.den, 1<<30);
  3548. }
  3549. }
  3550. h->frame_num= get_bits(&s->gb, h->sps.log2_max_frame_num);
  3551. h->mb_mbaff = 0;
  3552. h->mb_aff_frame = 0;
  3553. last_pic_structure = s0->picture_structure;
  3554. if(h->sps.frame_mbs_only_flag){
  3555. s->picture_structure= PICT_FRAME;
  3556. }else{
  3557. if(get_bits1(&s->gb)) { //field_pic_flag
  3558. s->picture_structure= PICT_TOP_FIELD + get_bits1(&s->gb); //bottom_field_flag
  3559. } else {
  3560. s->picture_structure= PICT_FRAME;
  3561. h->mb_aff_frame = h->sps.mb_aff;
  3562. }
  3563. }
  3564. if(h0->current_slice == 0){
  3565. while(h->frame_num != h->prev_frame_num &&
  3566. h->frame_num != (h->prev_frame_num+1)%(1<<h->sps.log2_max_frame_num)){
  3567. av_log(NULL, AV_LOG_DEBUG, "Frame num gap %d %d\n", h->frame_num, h->prev_frame_num);
  3568. frame_start(h);
  3569. h->prev_frame_num++;
  3570. h->prev_frame_num %= 1<<h->sps.log2_max_frame_num;
  3571. s->current_picture_ptr->frame_num= h->prev_frame_num;
  3572. execute_ref_pic_marking(h, NULL, 0);
  3573. }
  3574. /* See if we have a decoded first field looking for a pair... */
  3575. if (s0->first_field) {
  3576. assert(s0->current_picture_ptr);
  3577. assert(s0->current_picture_ptr->data[0]);
  3578. assert(s0->current_picture_ptr->reference != DELAYED_PIC_REF);
  3579. /* figure out if we have a complementary field pair */
  3580. if (!FIELD_PICTURE || s->picture_structure == last_pic_structure) {
  3581. /*
  3582. * Previous field is unmatched. Don't display it, but let it
  3583. * remain for reference if marked as such.
  3584. */
  3585. s0->current_picture_ptr = NULL;
  3586. s0->first_field = FIELD_PICTURE;
  3587. } else {
  3588. if (h->nal_ref_idc &&
  3589. s0->current_picture_ptr->reference &&
  3590. s0->current_picture_ptr->frame_num != h->frame_num) {
  3591. /*
  3592. * This and previous field were reference, but had
  3593. * different frame_nums. Consider this field first in
  3594. * pair. Throw away previous field except for reference
  3595. * purposes.
  3596. */
  3597. s0->first_field = 1;
  3598. s0->current_picture_ptr = NULL;
  3599. } else {
  3600. /* Second field in complementary pair */
  3601. s0->first_field = 0;
  3602. }
  3603. }
  3604. } else {
  3605. /* Frame or first field in a potentially complementary pair */
  3606. assert(!s0->current_picture_ptr);
  3607. s0->first_field = FIELD_PICTURE;
  3608. }
  3609. if((!FIELD_PICTURE || s0->first_field) && frame_start(h) < 0) {
  3610. s0->first_field = 0;
  3611. return -1;
  3612. }
  3613. }
  3614. if(h != h0)
  3615. clone_slice(h, h0);
  3616. s->current_picture_ptr->frame_num= h->frame_num; //FIXME frame_num cleanup
  3617. assert(s->mb_num == s->mb_width * s->mb_height);
  3618. if(first_mb_in_slice << FIELD_OR_MBAFF_PICTURE >= s->mb_num ||
  3619. first_mb_in_slice >= s->mb_num){
  3620. av_log(h->s.avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n");
  3621. return -1;
  3622. }
  3623. s->resync_mb_x = s->mb_x = first_mb_in_slice % s->mb_width;
  3624. s->resync_mb_y = s->mb_y = (first_mb_in_slice / s->mb_width) << FIELD_OR_MBAFF_PICTURE;
  3625. if (s->picture_structure == PICT_BOTTOM_FIELD)
  3626. s->resync_mb_y = s->mb_y = s->mb_y + 1;
  3627. assert(s->mb_y < s->mb_height);
  3628. if(s->picture_structure==PICT_FRAME){
  3629. h->curr_pic_num= h->frame_num;
  3630. h->max_pic_num= 1<< h->sps.log2_max_frame_num;
  3631. }else{
  3632. h->curr_pic_num= 2*h->frame_num + 1;
  3633. h->max_pic_num= 1<<(h->sps.log2_max_frame_num + 1);
  3634. }
  3635. if(h->nal_unit_type == NAL_IDR_SLICE){
  3636. get_ue_golomb(&s->gb); /* idr_pic_id */
  3637. }
  3638. if(h->sps.poc_type==0){
  3639. h->poc_lsb= get_bits(&s->gb, h->sps.log2_max_poc_lsb);
  3640. if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME){
  3641. h->delta_poc_bottom= get_se_golomb(&s->gb);
  3642. }
  3643. }
  3644. if(h->sps.poc_type==1 && !h->sps.delta_pic_order_always_zero_flag){
  3645. h->delta_poc[0]= get_se_golomb(&s->gb);
  3646. if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME)
  3647. h->delta_poc[1]= get_se_golomb(&s->gb);
  3648. }
  3649. init_poc(h);
  3650. if(h->pps.redundant_pic_cnt_present){
  3651. h->redundant_pic_count= get_ue_golomb(&s->gb);
  3652. }
  3653. //set defaults, might be overriden a few line later
  3654. h->ref_count[0]= h->pps.ref_count[0];
  3655. h->ref_count[1]= h->pps.ref_count[1];
  3656. if(h->slice_type_nos != FF_I_TYPE){
  3657. if(h->slice_type_nos == FF_B_TYPE){
  3658. h->direct_spatial_mv_pred= get_bits1(&s->gb);
  3659. }
  3660. num_ref_idx_active_override_flag= get_bits1(&s->gb);
  3661. if(num_ref_idx_active_override_flag){
  3662. h->ref_count[0]= get_ue_golomb(&s->gb) + 1;
  3663. if(h->slice_type_nos==FF_B_TYPE)
  3664. h->ref_count[1]= get_ue_golomb(&s->gb) + 1;
  3665. if(h->ref_count[0]-1 > 32-1 || h->ref_count[1]-1 > 32-1){
  3666. av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow\n");
  3667. h->ref_count[0]= h->ref_count[1]= 1;
  3668. return -1;
  3669. }
  3670. }
  3671. if(h->slice_type_nos == FF_B_TYPE)
  3672. h->list_count= 2;
  3673. else
  3674. h->list_count= 1;
  3675. }else
  3676. h->list_count= 0;
  3677. if(!default_ref_list_done){
  3678. fill_default_ref_list(h);
  3679. }
  3680. if(decode_ref_pic_list_reordering(h) < 0)
  3681. return -1;
  3682. if( (h->pps.weighted_pred && h->slice_type_nos == FF_P_TYPE )
  3683. || (h->pps.weighted_bipred_idc==1 && h->slice_type_nos== FF_B_TYPE ) )
  3684. pred_weight_table(h);
  3685. else if(h->pps.weighted_bipred_idc==2 && h->slice_type_nos== FF_B_TYPE)
  3686. implicit_weight_table(h);
  3687. else
  3688. h->use_weight = 0;
  3689. if(h->nal_ref_idc)
  3690. decode_ref_pic_marking(h0, &s->gb);
  3691. if(FRAME_MBAFF)
  3692. fill_mbaff_ref_list(h);
  3693. if( h->slice_type_nos != FF_I_TYPE && h->pps.cabac ){
  3694. tmp = get_ue_golomb(&s->gb);
  3695. if(tmp > 2){
  3696. av_log(s->avctx, AV_LOG_ERROR, "cabac_init_idc overflow\n");
  3697. return -1;
  3698. }
  3699. h->cabac_init_idc= tmp;
  3700. }
  3701. h->last_qscale_diff = 0;
  3702. tmp = h->pps.init_qp + get_se_golomb(&s->gb);
  3703. if(tmp>51){
  3704. av_log(s->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp);
  3705. return -1;
  3706. }
  3707. s->qscale= tmp;
  3708. h->chroma_qp[0] = get_chroma_qp(h, 0, s->qscale);
  3709. h->chroma_qp[1] = get_chroma_qp(h, 1, s->qscale);
  3710. //FIXME qscale / qp ... stuff
  3711. if(h->slice_type == FF_SP_TYPE){
  3712. get_bits1(&s->gb); /* sp_for_switch_flag */
  3713. }
  3714. if(h->slice_type==FF_SP_TYPE || h->slice_type == FF_SI_TYPE){
  3715. get_se_golomb(&s->gb); /* slice_qs_delta */
  3716. }
  3717. h->deblocking_filter = 1;
  3718. h->slice_alpha_c0_offset = 0;
  3719. h->slice_beta_offset = 0;
  3720. if( h->pps.deblocking_filter_parameters_present ) {
  3721. tmp= get_ue_golomb(&s->gb);
  3722. if(tmp > 2){
  3723. av_log(s->avctx, AV_LOG_ERROR, "deblocking_filter_idc %u out of range\n", tmp);
  3724. return -1;
  3725. }
  3726. h->deblocking_filter= tmp;
  3727. if(h->deblocking_filter < 2)
  3728. h->deblocking_filter^= 1; // 1<->0
  3729. if( h->deblocking_filter ) {
  3730. h->slice_alpha_c0_offset = get_se_golomb(&s->gb) << 1;
  3731. h->slice_beta_offset = get_se_golomb(&s->gb) << 1;
  3732. }
  3733. }
  3734. if( s->avctx->skip_loop_filter >= AVDISCARD_ALL
  3735. ||(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY && h->slice_type_nos != FF_I_TYPE)
  3736. ||(s->avctx->skip_loop_filter >= AVDISCARD_BIDIR && h->slice_type_nos == FF_B_TYPE)
  3737. ||(s->avctx->skip_loop_filter >= AVDISCARD_NONREF && h->nal_ref_idc == 0))
  3738. h->deblocking_filter= 0;
  3739. if(h->deblocking_filter == 1 && h0->max_contexts > 1) {
  3740. if(s->avctx->flags2 & CODEC_FLAG2_FAST) {
  3741. /* Cheat slightly for speed:
  3742. Do not bother to deblock across slices. */
  3743. h->deblocking_filter = 2;
  3744. } else {
  3745. h0->max_contexts = 1;
  3746. if(!h0->single_decode_warning) {
  3747. av_log(s->avctx, AV_LOG_INFO, "Cannot parallelize deblocking type 1, decoding such frames in sequential order\n");
  3748. h0->single_decode_warning = 1;
  3749. }
  3750. if(h != h0)
  3751. return 1; // deblocking switched inside frame
  3752. }
  3753. }
  3754. #if 0 //FMO
  3755. if( h->pps.num_slice_groups > 1 && h->pps.mb_slice_group_map_type >= 3 && h->pps.mb_slice_group_map_type <= 5)
  3756. slice_group_change_cycle= get_bits(&s->gb, ?);
  3757. #endif
  3758. h0->last_slice_type = slice_type;
  3759. h->slice_num = ++h0->current_slice;
  3760. for(j=0; j<2; j++){
  3761. int *ref2frm= h->ref2frm[h->slice_num&15][j];
  3762. ref2frm[0]=
  3763. ref2frm[1]= -1;
  3764. for(i=0; i<48; i++)
  3765. ref2frm[i+2]= 4*h->ref_list[j][i].frame_num
  3766. +(h->ref_list[j][i].reference&3);
  3767. }
  3768. h->emu_edge_width= (s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16;
  3769. h->emu_edge_height= (FRAME_MBAFF || FIELD_PICTURE) ? 0 : h->emu_edge_width;
  3770. if(s->avctx->debug&FF_DEBUG_PICT_INFO){
  3771. av_log(h->s.avctx, AV_LOG_DEBUG, "slice:%d %s mb:%d %c pps:%u frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s %s\n",
  3772. h->slice_num,
  3773. (s->picture_structure==PICT_FRAME ? "F" : s->picture_structure==PICT_TOP_FIELD ? "T" : "B"),
  3774. first_mb_in_slice,
  3775. av_get_pict_type_char(h->slice_type),
  3776. pps_id, h->frame_num,
  3777. s->current_picture_ptr->field_poc[0], s->current_picture_ptr->field_poc[1],
  3778. h->ref_count[0], h->ref_count[1],
  3779. s->qscale,
  3780. h->deblocking_filter, h->slice_alpha_c0_offset/2, h->slice_beta_offset/2,
  3781. h->use_weight,
  3782. h->use_weight==1 && h->use_weight_chroma ? "c" : "",
  3783. h->slice_type == FF_B_TYPE ? (h->direct_spatial_mv_pred ? "SPAT" : "TEMP") : ""
  3784. );
  3785. }
  3786. return 0;
  3787. }
  3788. /**
  3789. *
  3790. */
  3791. static inline int get_level_prefix(GetBitContext *gb){
  3792. unsigned int buf;
  3793. int log;
  3794. OPEN_READER(re, gb);
  3795. UPDATE_CACHE(re, gb);
  3796. buf=GET_CACHE(re, gb);
  3797. log= 32 - av_log2(buf);
  3798. #ifdef TRACE
  3799. print_bin(buf>>(32-log), log);
  3800. av_log(NULL, AV_LOG_DEBUG, "%5d %2d %3d lpr @%5d in %s get_level_prefix\n", buf>>(32-log), log, log-1, get_bits_count(gb), __FILE__);
  3801. #endif
  3802. LAST_SKIP_BITS(re, gb, log);
  3803. CLOSE_READER(re, gb);
  3804. return log-1;
  3805. }
  3806. static inline int get_dct8x8_allowed(H264Context *h){
  3807. int i;
  3808. for(i=0; i<4; i++){
  3809. if(!IS_SUB_8X8(h->sub_mb_type[i])
  3810. || (!h->sps.direct_8x8_inference_flag && IS_DIRECT(h->sub_mb_type[i])))
  3811. return 0;
  3812. }
  3813. return 1;
  3814. }
  3815. /**
  3816. * decodes a residual block.
  3817. * @param n block index
  3818. * @param scantable scantable
  3819. * @param max_coeff number of coefficients in the block
  3820. * @return <0 if an error occurred
  3821. */
  3822. static int decode_residual(H264Context *h, GetBitContext *gb, DCTELEM *block, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff){
  3823. MpegEncContext * const s = &h->s;
  3824. static const int coeff_token_table_index[17]= {0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3};
  3825. int level[16];
  3826. int zeros_left, coeff_num, coeff_token, total_coeff, i, j, trailing_ones, run_before;
  3827. //FIXME put trailing_onex into the context
  3828. if(n == CHROMA_DC_BLOCK_INDEX){
  3829. coeff_token= get_vlc2(gb, chroma_dc_coeff_token_vlc.table, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 1);
  3830. total_coeff= coeff_token>>2;
  3831. }else{
  3832. if(n == LUMA_DC_BLOCK_INDEX){
  3833. total_coeff= pred_non_zero_count(h, 0);
  3834. coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
  3835. total_coeff= coeff_token>>2;
  3836. }else{
  3837. total_coeff= pred_non_zero_count(h, n);
  3838. coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
  3839. total_coeff= coeff_token>>2;
  3840. h->non_zero_count_cache[ scan8[n] ]= total_coeff;
  3841. }
  3842. }
  3843. //FIXME set last_non_zero?
  3844. if(total_coeff==0)
  3845. return 0;
  3846. if(total_coeff > (unsigned)max_coeff) {
  3847. av_log(h->s.avctx, AV_LOG_ERROR, "corrupted macroblock %d %d (total_coeff=%d)\n", s->mb_x, s->mb_y, total_coeff);
  3848. return -1;
  3849. }
  3850. trailing_ones= coeff_token&3;
  3851. tprintf(h->s.avctx, "trailing:%d, total:%d\n", trailing_ones, total_coeff);
  3852. assert(total_coeff<=16);
  3853. for(i=0; i<trailing_ones; i++){
  3854. level[i]= 1 - 2*get_bits1(gb);
  3855. }
  3856. if(i<total_coeff) {
  3857. int level_code, mask;
  3858. int suffix_length = total_coeff > 10 && trailing_ones < 3;
  3859. int prefix= get_level_prefix(gb);
  3860. //first coefficient has suffix_length equal to 0 or 1
  3861. if(prefix<14){ //FIXME try to build a large unified VLC table for all this
  3862. if(suffix_length)
  3863. level_code= (prefix<<suffix_length) + get_bits(gb, suffix_length); //part
  3864. else
  3865. level_code= (prefix<<suffix_length); //part
  3866. }else if(prefix==14){
  3867. if(suffix_length)
  3868. level_code= (prefix<<suffix_length) + get_bits(gb, suffix_length); //part
  3869. else
  3870. level_code= prefix + get_bits(gb, 4); //part
  3871. }else{
  3872. level_code= (15<<suffix_length) + get_bits(gb, prefix-3); //part
  3873. if(suffix_length==0) level_code+=15; //FIXME doesn't make (much)sense
  3874. if(prefix>=16)
  3875. level_code += (1<<(prefix-3))-4096;
  3876. }
  3877. if(trailing_ones < 3) level_code += 2;
  3878. suffix_length = 1;
  3879. if(level_code > 5)
  3880. suffix_length++;
  3881. mask= -(level_code&1);
  3882. level[i]= (((2+level_code)>>1) ^ mask) - mask;
  3883. i++;
  3884. //remaining coefficients have suffix_length > 0
  3885. for(;i<total_coeff;i++) {
  3886. static const int suffix_limit[7] = {0,5,11,23,47,95,INT_MAX };
  3887. prefix = get_level_prefix(gb);
  3888. if(prefix<15){
  3889. level_code = (prefix<<suffix_length) + get_bits(gb, suffix_length);
  3890. }else{
  3891. level_code = (15<<suffix_length) + get_bits(gb, prefix-3);
  3892. if(prefix>=16)
  3893. level_code += (1<<(prefix-3))-4096;
  3894. }
  3895. mask= -(level_code&1);
  3896. level[i]= (((2+level_code)>>1) ^ mask) - mask;
  3897. if(level_code > suffix_limit[suffix_length])
  3898. suffix_length++;
  3899. }
  3900. }
  3901. if(total_coeff == max_coeff)
  3902. zeros_left=0;
  3903. else{
  3904. if(n == CHROMA_DC_BLOCK_INDEX)
  3905. zeros_left= get_vlc2(gb, chroma_dc_total_zeros_vlc[ total_coeff-1 ].table, CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 1);
  3906. else
  3907. zeros_left= get_vlc2(gb, total_zeros_vlc[ total_coeff-1 ].table, TOTAL_ZEROS_VLC_BITS, 1);
  3908. }
  3909. coeff_num = zeros_left + total_coeff - 1;
  3910. j = scantable[coeff_num];
  3911. if(n > 24){
  3912. block[j] = level[0];
  3913. for(i=1;i<total_coeff;i++) {
  3914. if(zeros_left <= 0)
  3915. run_before = 0;
  3916. else if(zeros_left < 7){
  3917. run_before= get_vlc2(gb, run_vlc[zeros_left-1].table, RUN_VLC_BITS, 1);
  3918. }else{
  3919. run_before= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2);
  3920. }
  3921. zeros_left -= run_before;
  3922. coeff_num -= 1 + run_before;
  3923. j= scantable[ coeff_num ];
  3924. block[j]= level[i];
  3925. }
  3926. }else{
  3927. block[j] = (level[0] * qmul[j] + 32)>>6;
  3928. for(i=1;i<total_coeff;i++) {
  3929. if(zeros_left <= 0)
  3930. run_before = 0;
  3931. else if(zeros_left < 7){
  3932. run_before= get_vlc2(gb, run_vlc[zeros_left-1].table, RUN_VLC_BITS, 1);
  3933. }else{
  3934. run_before= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2);
  3935. }
  3936. zeros_left -= run_before;
  3937. coeff_num -= 1 + run_before;
  3938. j= scantable[ coeff_num ];
  3939. block[j]= (level[i] * qmul[j] + 32)>>6;
  3940. }
  3941. }
  3942. if(zeros_left<0){
  3943. av_log(h->s.avctx, AV_LOG_ERROR, "negative number of zero coeffs at %d %d\n", s->mb_x, s->mb_y);
  3944. return -1;
  3945. }
  3946. return 0;
  3947. }
  3948. static void predict_field_decoding_flag(H264Context *h){
  3949. MpegEncContext * const s = &h->s;
  3950. const int mb_xy= h->mb_xy;
  3951. int mb_type = (h->slice_table[mb_xy-1] == h->slice_num)
  3952. ? s->current_picture.mb_type[mb_xy-1]
  3953. : (h->slice_table[mb_xy-s->mb_stride] == h->slice_num)
  3954. ? s->current_picture.mb_type[mb_xy-s->mb_stride]
  3955. : 0;
  3956. h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
  3957. }
  3958. /**
  3959. * decodes a P_SKIP or B_SKIP macroblock
  3960. */
  3961. static void decode_mb_skip(H264Context *h){
  3962. MpegEncContext * const s = &h->s;
  3963. const int mb_xy= h->mb_xy;
  3964. int mb_type=0;
  3965. memset(h->non_zero_count[mb_xy], 0, 16);
  3966. memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
  3967. if(MB_FIELD)
  3968. mb_type|= MB_TYPE_INTERLACED;
  3969. if( h->slice_type_nos == FF_B_TYPE )
  3970. {
  3971. // just for fill_caches. pred_direct_motion will set the real mb_type
  3972. mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
  3973. fill_caches(h, mb_type, 0); //FIXME check what is needed and what not ...
  3974. pred_direct_motion(h, &mb_type);
  3975. mb_type|= MB_TYPE_SKIP;
  3976. }
  3977. else
  3978. {
  3979. int mx, my;
  3980. mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
  3981. fill_caches(h, mb_type, 0); //FIXME check what is needed and what not ...
  3982. pred_pskip_motion(h, &mx, &my);
  3983. fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
  3984. fill_rectangle( h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
  3985. }
  3986. write_back_motion(h, mb_type);
  3987. s->current_picture.mb_type[mb_xy]= mb_type;
  3988. s->current_picture.qscale_table[mb_xy]= s->qscale;
  3989. h->slice_table[ mb_xy ]= h->slice_num;
  3990. h->prev_mb_skipped= 1;
  3991. }
  3992. /**
  3993. * decodes a macroblock
  3994. * @returns 0 if ok, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
  3995. */
  3996. static int decode_mb_cavlc(H264Context *h){
  3997. MpegEncContext * const s = &h->s;
  3998. int mb_xy;
  3999. int partition_count;
  4000. unsigned int mb_type, cbp;
  4001. int dct8x8_allowed= h->pps.transform_8x8_mode;
  4002. mb_xy = h->mb_xy = s->mb_x + s->mb_y*s->mb_stride;
  4003. s->dsp.clear_blocks(h->mb); //FIXME avoid if already clear (move after skip handlong?
  4004. tprintf(s->avctx, "pic:%d mb:%d/%d\n", h->frame_num, s->mb_x, s->mb_y);
  4005. cbp = 0; /* avoid warning. FIXME: find a solution without slowing
  4006. down the code */
  4007. if(h->slice_type_nos != FF_I_TYPE){
  4008. if(s->mb_skip_run==-1)
  4009. s->mb_skip_run= get_ue_golomb(&s->gb);
  4010. if (s->mb_skip_run--) {
  4011. if(FRAME_MBAFF && (s->mb_y&1) == 0){
  4012. if(s->mb_skip_run==0)
  4013. h->mb_mbaff = h->mb_field_decoding_flag = get_bits1(&s->gb);
  4014. else
  4015. predict_field_decoding_flag(h);
  4016. }
  4017. decode_mb_skip(h);
  4018. return 0;
  4019. }
  4020. }
  4021. if(FRAME_MBAFF){
  4022. if( (s->mb_y&1) == 0 )
  4023. h->mb_mbaff = h->mb_field_decoding_flag = get_bits1(&s->gb);
  4024. }else
  4025. h->mb_field_decoding_flag= (s->picture_structure!=PICT_FRAME);
  4026. h->prev_mb_skipped= 0;
  4027. mb_type= get_ue_golomb(&s->gb);
  4028. if(h->slice_type_nos == FF_B_TYPE){
  4029. if(mb_type < 23){
  4030. partition_count= b_mb_type_info[mb_type].partition_count;
  4031. mb_type= b_mb_type_info[mb_type].type;
  4032. }else{
  4033. mb_type -= 23;
  4034. goto decode_intra_mb;
  4035. }
  4036. }else if(h->slice_type_nos == FF_P_TYPE){
  4037. if(mb_type < 5){
  4038. partition_count= p_mb_type_info[mb_type].partition_count;
  4039. mb_type= p_mb_type_info[mb_type].type;
  4040. }else{
  4041. mb_type -= 5;
  4042. goto decode_intra_mb;
  4043. }
  4044. }else{
  4045. assert(h->slice_type_nos == FF_I_TYPE);
  4046. if(h->slice_type == FF_SI_TYPE && mb_type)
  4047. mb_type--;
  4048. decode_intra_mb:
  4049. if(mb_type > 25){
  4050. av_log(h->s.avctx, AV_LOG_ERROR, "mb_type %d in %c slice too large at %d %d\n", mb_type, av_get_pict_type_char(h->slice_type), s->mb_x, s->mb_y);
  4051. return -1;
  4052. }
  4053. partition_count=0;
  4054. cbp= i_mb_type_info[mb_type].cbp;
  4055. h->intra16x16_pred_mode= i_mb_type_info[mb_type].pred_mode;
  4056. mb_type= i_mb_type_info[mb_type].type;
  4057. }
  4058. if(MB_FIELD)
  4059. mb_type |= MB_TYPE_INTERLACED;
  4060. h->slice_table[ mb_xy ]= h->slice_num;
  4061. if(IS_INTRA_PCM(mb_type)){
  4062. unsigned int x, y;
  4063. // We assume these blocks are very rare so we do not optimize it.
  4064. align_get_bits(&s->gb);
  4065. // The pixels are stored in the same order as levels in h->mb array.
  4066. for(y=0; y<16; y++){
  4067. const int index= 4*(y&3) + 32*((y>>2)&1) + 128*(y>>3);
  4068. for(x=0; x<16; x++){
  4069. tprintf(s->avctx, "LUMA ICPM LEVEL (%3d)\n", show_bits(&s->gb, 8));
  4070. h->mb[index + (x&3) + 16*((x>>2)&1) + 64*(x>>3)]= get_bits(&s->gb, 8);
  4071. }
  4072. }
  4073. for(y=0; y<8; y++){
  4074. const int index= 256 + 4*(y&3) + 32*(y>>2);
  4075. for(x=0; x<8; x++){
  4076. tprintf(s->avctx, "CHROMA U ICPM LEVEL (%3d)\n", show_bits(&s->gb, 8));
  4077. h->mb[index + (x&3) + 16*(x>>2)]= get_bits(&s->gb, 8);
  4078. }
  4079. }
  4080. for(y=0; y<8; y++){
  4081. const int index= 256 + 64 + 4*(y&3) + 32*(y>>2);
  4082. for(x=0; x<8; x++){
  4083. tprintf(s->avctx, "CHROMA V ICPM LEVEL (%3d)\n", show_bits(&s->gb, 8));
  4084. h->mb[index + (x&3) + 16*(x>>2)]= get_bits(&s->gb, 8);
  4085. }
  4086. }
  4087. // In deblocking, the quantizer is 0
  4088. s->current_picture.qscale_table[mb_xy]= 0;
  4089. // All coeffs are present
  4090. memset(h->non_zero_count[mb_xy], 16, 16);
  4091. s->current_picture.mb_type[mb_xy]= mb_type;
  4092. return 0;
  4093. }
  4094. if(MB_MBAFF){
  4095. h->ref_count[0] <<= 1;
  4096. h->ref_count[1] <<= 1;
  4097. }
  4098. fill_caches(h, mb_type, 0);
  4099. //mb_pred
  4100. if(IS_INTRA(mb_type)){
  4101. int pred_mode;
  4102. // init_top_left_availability(h);
  4103. if(IS_INTRA4x4(mb_type)){
  4104. int i;
  4105. int di = 1;
  4106. if(dct8x8_allowed && get_bits1(&s->gb)){
  4107. mb_type |= MB_TYPE_8x8DCT;
  4108. di = 4;
  4109. }
  4110. // fill_intra4x4_pred_table(h);
  4111. for(i=0; i<16; i+=di){
  4112. int mode= pred_intra_mode(h, i);
  4113. if(!get_bits1(&s->gb)){
  4114. const int rem_mode= get_bits(&s->gb, 3);
  4115. mode = rem_mode + (rem_mode >= mode);
  4116. }
  4117. if(di==4)
  4118. fill_rectangle( &h->intra4x4_pred_mode_cache[ scan8[i] ], 2, 2, 8, mode, 1 );
  4119. else
  4120. h->intra4x4_pred_mode_cache[ scan8[i] ] = mode;
  4121. }
  4122. write_back_intra_pred_mode(h);
  4123. if( check_intra4x4_pred_mode(h) < 0)
  4124. return -1;
  4125. }else{
  4126. h->intra16x16_pred_mode= check_intra_pred_mode(h, h->intra16x16_pred_mode);
  4127. if(h->intra16x16_pred_mode < 0)
  4128. return -1;
  4129. }
  4130. pred_mode= check_intra_pred_mode(h, get_ue_golomb(&s->gb));
  4131. if(pred_mode < 0)
  4132. return -1;
  4133. h->chroma_pred_mode= pred_mode;
  4134. }else if(partition_count==4){
  4135. int i, j, sub_partition_count[4], list, ref[2][4];
  4136. if(h->slice_type_nos == FF_B_TYPE){
  4137. for(i=0; i<4; i++){
  4138. h->sub_mb_type[i]= get_ue_golomb(&s->gb);
  4139. if(h->sub_mb_type[i] >=13){
  4140. av_log(h->s.avctx, AV_LOG_ERROR, "B sub_mb_type %u out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y);
  4141. return -1;
  4142. }
  4143. sub_partition_count[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  4144. h->sub_mb_type[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  4145. }
  4146. if( IS_DIRECT(h->sub_mb_type[0]) || IS_DIRECT(h->sub_mb_type[1])
  4147. || IS_DIRECT(h->sub_mb_type[2]) || IS_DIRECT(h->sub_mb_type[3])) {
  4148. pred_direct_motion(h, &mb_type);
  4149. h->ref_cache[0][scan8[4]] =
  4150. h->ref_cache[1][scan8[4]] =
  4151. h->ref_cache[0][scan8[12]] =
  4152. h->ref_cache[1][scan8[12]] = PART_NOT_AVAILABLE;
  4153. }
  4154. }else{
  4155. assert(h->slice_type_nos == FF_P_TYPE); //FIXME SP correct ?
  4156. for(i=0; i<4; i++){
  4157. h->sub_mb_type[i]= get_ue_golomb(&s->gb);
  4158. if(h->sub_mb_type[i] >=4){
  4159. av_log(h->s.avctx, AV_LOG_ERROR, "P sub_mb_type %u out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y);
  4160. return -1;
  4161. }
  4162. sub_partition_count[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  4163. h->sub_mb_type[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  4164. }
  4165. }
  4166. for(list=0; list<h->list_count; list++){
  4167. int ref_count= IS_REF0(mb_type) ? 1 : h->ref_count[list];
  4168. for(i=0; i<4; i++){
  4169. if(IS_DIRECT(h->sub_mb_type[i])) continue;
  4170. if(IS_DIR(h->sub_mb_type[i], 0, list)){
  4171. unsigned int tmp = get_te0_golomb(&s->gb, ref_count); //FIXME init to 0 before and skip?
  4172. if(tmp>=ref_count){
  4173. av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", tmp);
  4174. return -1;
  4175. }
  4176. ref[list][i]= tmp;
  4177. }else{
  4178. //FIXME
  4179. ref[list][i] = -1;
  4180. }
  4181. }
  4182. }
  4183. if(dct8x8_allowed)
  4184. dct8x8_allowed = get_dct8x8_allowed(h);
  4185. for(list=0; list<h->list_count; list++){
  4186. for(i=0; i<4; i++){
  4187. if(IS_DIRECT(h->sub_mb_type[i])) {
  4188. h->ref_cache[list][ scan8[4*i] ] = h->ref_cache[list][ scan8[4*i]+1 ];
  4189. continue;
  4190. }
  4191. h->ref_cache[list][ scan8[4*i] ]=h->ref_cache[list][ scan8[4*i]+1 ]=
  4192. h->ref_cache[list][ scan8[4*i]+8 ]=h->ref_cache[list][ scan8[4*i]+9 ]= ref[list][i];
  4193. if(IS_DIR(h->sub_mb_type[i], 0, list)){
  4194. const int sub_mb_type= h->sub_mb_type[i];
  4195. const int block_width= (sub_mb_type & (MB_TYPE_16x16|MB_TYPE_16x8)) ? 2 : 1;
  4196. for(j=0; j<sub_partition_count[i]; j++){
  4197. int mx, my;
  4198. const int index= 4*i + block_width*j;
  4199. int16_t (* mv_cache)[2]= &h->mv_cache[list][ scan8[index] ];
  4200. pred_motion(h, index, block_width, list, h->ref_cache[list][ scan8[index] ], &mx, &my);
  4201. mx += get_se_golomb(&s->gb);
  4202. my += get_se_golomb(&s->gb);
  4203. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  4204. if(IS_SUB_8X8(sub_mb_type)){
  4205. mv_cache[ 1 ][0]=
  4206. mv_cache[ 8 ][0]= mv_cache[ 9 ][0]= mx;
  4207. mv_cache[ 1 ][1]=
  4208. mv_cache[ 8 ][1]= mv_cache[ 9 ][1]= my;
  4209. }else if(IS_SUB_8X4(sub_mb_type)){
  4210. mv_cache[ 1 ][0]= mx;
  4211. mv_cache[ 1 ][1]= my;
  4212. }else if(IS_SUB_4X8(sub_mb_type)){
  4213. mv_cache[ 8 ][0]= mx;
  4214. mv_cache[ 8 ][1]= my;
  4215. }
  4216. mv_cache[ 0 ][0]= mx;
  4217. mv_cache[ 0 ][1]= my;
  4218. }
  4219. }else{
  4220. uint32_t *p= (uint32_t *)&h->mv_cache[list][ scan8[4*i] ][0];
  4221. p[0] = p[1]=
  4222. p[8] = p[9]= 0;
  4223. }
  4224. }
  4225. }
  4226. }else if(IS_DIRECT(mb_type)){
  4227. pred_direct_motion(h, &mb_type);
  4228. dct8x8_allowed &= h->sps.direct_8x8_inference_flag;
  4229. }else{
  4230. int list, mx, my, i;
  4231. //FIXME we should set ref_idx_l? to 0 if we use that later ...
  4232. if(IS_16X16(mb_type)){
  4233. for(list=0; list<h->list_count; list++){
  4234. unsigned int val;
  4235. if(IS_DIR(mb_type, 0, list)){
  4236. val= get_te0_golomb(&s->gb, h->ref_count[list]);
  4237. if(val >= h->ref_count[list]){
  4238. av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
  4239. return -1;
  4240. }
  4241. }else
  4242. val= LIST_NOT_USED&0xFF;
  4243. fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, val, 1);
  4244. }
  4245. for(list=0; list<h->list_count; list++){
  4246. unsigned int val;
  4247. if(IS_DIR(mb_type, 0, list)){
  4248. pred_motion(h, 0, 4, list, h->ref_cache[list][ scan8[0] ], &mx, &my);
  4249. mx += get_se_golomb(&s->gb);
  4250. my += get_se_golomb(&s->gb);
  4251. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  4252. val= pack16to32(mx,my);
  4253. }else
  4254. val=0;
  4255. fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, val, 4);
  4256. }
  4257. }
  4258. else if(IS_16X8(mb_type)){
  4259. for(list=0; list<h->list_count; list++){
  4260. for(i=0; i<2; i++){
  4261. unsigned int val;
  4262. if(IS_DIR(mb_type, i, list)){
  4263. val= get_te0_golomb(&s->gb, h->ref_count[list]);
  4264. if(val >= h->ref_count[list]){
  4265. av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
  4266. return -1;
  4267. }
  4268. }else
  4269. val= LIST_NOT_USED&0xFF;
  4270. fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 1);
  4271. }
  4272. }
  4273. for(list=0; list<h->list_count; list++){
  4274. for(i=0; i<2; i++){
  4275. unsigned int val;
  4276. if(IS_DIR(mb_type, i, list)){
  4277. pred_16x8_motion(h, 8*i, list, h->ref_cache[list][scan8[0] + 16*i], &mx, &my);
  4278. mx += get_se_golomb(&s->gb);
  4279. my += get_se_golomb(&s->gb);
  4280. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  4281. val= pack16to32(mx,my);
  4282. }else
  4283. val=0;
  4284. fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 4);
  4285. }
  4286. }
  4287. }else{
  4288. assert(IS_8X16(mb_type));
  4289. for(list=0; list<h->list_count; list++){
  4290. for(i=0; i<2; i++){
  4291. unsigned int val;
  4292. if(IS_DIR(mb_type, i, list)){ //FIXME optimize
  4293. val= get_te0_golomb(&s->gb, h->ref_count[list]);
  4294. if(val >= h->ref_count[list]){
  4295. av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
  4296. return -1;
  4297. }
  4298. }else
  4299. val= LIST_NOT_USED&0xFF;
  4300. fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 1);
  4301. }
  4302. }
  4303. for(list=0; list<h->list_count; list++){
  4304. for(i=0; i<2; i++){
  4305. unsigned int val;
  4306. if(IS_DIR(mb_type, i, list)){
  4307. pred_8x16_motion(h, i*4, list, h->ref_cache[list][ scan8[0] + 2*i ], &mx, &my);
  4308. mx += get_se_golomb(&s->gb);
  4309. my += get_se_golomb(&s->gb);
  4310. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  4311. val= pack16to32(mx,my);
  4312. }else
  4313. val=0;
  4314. fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 4);
  4315. }
  4316. }
  4317. }
  4318. }
  4319. if(IS_INTER(mb_type))
  4320. write_back_motion(h, mb_type);
  4321. if(!IS_INTRA16x16(mb_type)){
  4322. cbp= get_ue_golomb(&s->gb);
  4323. if(cbp > 47){
  4324. av_log(h->s.avctx, AV_LOG_ERROR, "cbp too large (%u) at %d %d\n", cbp, s->mb_x, s->mb_y);
  4325. return -1;
  4326. }
  4327. if(IS_INTRA4x4(mb_type))
  4328. cbp= golomb_to_intra4x4_cbp[cbp];
  4329. else
  4330. cbp= golomb_to_inter_cbp[cbp];
  4331. }
  4332. h->cbp = cbp;
  4333. if(dct8x8_allowed && (cbp&15) && !IS_INTRA(mb_type)){
  4334. if(get_bits1(&s->gb))
  4335. mb_type |= MB_TYPE_8x8DCT;
  4336. }
  4337. s->current_picture.mb_type[mb_xy]= mb_type;
  4338. if(cbp || IS_INTRA16x16(mb_type)){
  4339. int i8x8, i4x4, chroma_idx;
  4340. int dquant;
  4341. GetBitContext *gb= IS_INTRA(mb_type) ? h->intra_gb_ptr : h->inter_gb_ptr;
  4342. const uint8_t *scan, *scan8x8, *dc_scan;
  4343. // fill_non_zero_count_cache(h);
  4344. if(IS_INTERLACED(mb_type)){
  4345. scan8x8= s->qscale ? h->field_scan8x8_cavlc : h->field_scan8x8_cavlc_q0;
  4346. scan= s->qscale ? h->field_scan : h->field_scan_q0;
  4347. dc_scan= luma_dc_field_scan;
  4348. }else{
  4349. scan8x8= s->qscale ? h->zigzag_scan8x8_cavlc : h->zigzag_scan8x8_cavlc_q0;
  4350. scan= s->qscale ? h->zigzag_scan : h->zigzag_scan_q0;
  4351. dc_scan= luma_dc_zigzag_scan;
  4352. }
  4353. dquant= get_se_golomb(&s->gb);
  4354. if( dquant > 25 || dquant < -26 ){
  4355. av_log(h->s.avctx, AV_LOG_ERROR, "dquant out of range (%d) at %d %d\n", dquant, s->mb_x, s->mb_y);
  4356. return -1;
  4357. }
  4358. s->qscale += dquant;
  4359. if(((unsigned)s->qscale) > 51){
  4360. if(s->qscale<0) s->qscale+= 52;
  4361. else s->qscale-= 52;
  4362. }
  4363. h->chroma_qp[0]= get_chroma_qp(h, 0, s->qscale);
  4364. h->chroma_qp[1]= get_chroma_qp(h, 1, s->qscale);
  4365. if(IS_INTRA16x16(mb_type)){
  4366. if( decode_residual(h, h->intra_gb_ptr, h->mb, LUMA_DC_BLOCK_INDEX, dc_scan, h->dequant4_coeff[0][s->qscale], 16) < 0){
  4367. return -1; //FIXME continue if partitioned and other return -1 too
  4368. }
  4369. assert((cbp&15) == 0 || (cbp&15) == 15);
  4370. if(cbp&15){
  4371. for(i8x8=0; i8x8<4; i8x8++){
  4372. for(i4x4=0; i4x4<4; i4x4++){
  4373. const int index= i4x4 + 4*i8x8;
  4374. if( decode_residual(h, h->intra_gb_ptr, h->mb + 16*index, index, scan + 1, h->dequant4_coeff[0][s->qscale], 15) < 0 ){
  4375. return -1;
  4376. }
  4377. }
  4378. }
  4379. }else{
  4380. fill_rectangle(&h->non_zero_count_cache[scan8[0]], 4, 4, 8, 0, 1);
  4381. }
  4382. }else{
  4383. for(i8x8=0; i8x8<4; i8x8++){
  4384. if(cbp & (1<<i8x8)){
  4385. if(IS_8x8DCT(mb_type)){
  4386. DCTELEM *buf = &h->mb[64*i8x8];
  4387. uint8_t *nnz;
  4388. for(i4x4=0; i4x4<4; i4x4++){
  4389. if( decode_residual(h, gb, buf, i4x4+4*i8x8, scan8x8+16*i4x4,
  4390. h->dequant8_coeff[IS_INTRA( mb_type ) ? 0:1][s->qscale], 16) <0 )
  4391. return -1;
  4392. }
  4393. nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
  4394. nnz[0] += nnz[1] + nnz[8] + nnz[9];
  4395. }else{
  4396. for(i4x4=0; i4x4<4; i4x4++){
  4397. const int index= i4x4 + 4*i8x8;
  4398. if( decode_residual(h, gb, h->mb + 16*index, index, scan, h->dequant4_coeff[IS_INTRA( mb_type ) ? 0:3][s->qscale], 16) <0 ){
  4399. return -1;
  4400. }
  4401. }
  4402. }
  4403. }else{
  4404. uint8_t * const nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
  4405. nnz[0] = nnz[1] = nnz[8] = nnz[9] = 0;
  4406. }
  4407. }
  4408. }
  4409. if(cbp&0x30){
  4410. for(chroma_idx=0; chroma_idx<2; chroma_idx++)
  4411. if( decode_residual(h, gb, h->mb + 256 + 16*4*chroma_idx, CHROMA_DC_BLOCK_INDEX, chroma_dc_scan, NULL, 4) < 0){
  4412. return -1;
  4413. }
  4414. }
  4415. if(cbp&0x20){
  4416. for(chroma_idx=0; chroma_idx<2; chroma_idx++){
  4417. const uint32_t *qmul = h->dequant4_coeff[chroma_idx+1+(IS_INTRA( mb_type ) ? 0:3)][h->chroma_qp[chroma_idx]];
  4418. for(i4x4=0; i4x4<4; i4x4++){
  4419. const int index= 16 + 4*chroma_idx + i4x4;
  4420. if( decode_residual(h, gb, h->mb + 16*index, index, scan + 1, qmul, 15) < 0){
  4421. return -1;
  4422. }
  4423. }
  4424. }
  4425. }else{
  4426. uint8_t * const nnz= &h->non_zero_count_cache[0];
  4427. nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
  4428. nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
  4429. }
  4430. }else{
  4431. uint8_t * const nnz= &h->non_zero_count_cache[0];
  4432. fill_rectangle(&nnz[scan8[0]], 4, 4, 8, 0, 1);
  4433. nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
  4434. nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
  4435. }
  4436. s->current_picture.qscale_table[mb_xy]= s->qscale;
  4437. write_back_non_zero_count(h);
  4438. if(MB_MBAFF){
  4439. h->ref_count[0] >>= 1;
  4440. h->ref_count[1] >>= 1;
  4441. }
  4442. return 0;
  4443. }
  4444. static int decode_cabac_field_decoding_flag(H264Context *h) {
  4445. MpegEncContext * const s = &h->s;
  4446. const int mb_x = s->mb_x;
  4447. const int mb_y = s->mb_y & ~1;
  4448. const int mba_xy = mb_x - 1 + mb_y *s->mb_stride;
  4449. const int mbb_xy = mb_x + (mb_y-2)*s->mb_stride;
  4450. unsigned int ctx = 0;
  4451. if( h->slice_table[mba_xy] == h->slice_num && IS_INTERLACED( s->current_picture.mb_type[mba_xy] ) ) {
  4452. ctx += 1;
  4453. }
  4454. if( h->slice_table[mbb_xy] == h->slice_num && IS_INTERLACED( s->current_picture.mb_type[mbb_xy] ) ) {
  4455. ctx += 1;
  4456. }
  4457. return get_cabac_noinline( &h->cabac, &h->cabac_state[70 + ctx] );
  4458. }
  4459. static int decode_cabac_intra_mb_type(H264Context *h, int ctx_base, int intra_slice) {
  4460. uint8_t *state= &h->cabac_state[ctx_base];
  4461. int mb_type;
  4462. if(intra_slice){
  4463. MpegEncContext * const s = &h->s;
  4464. const int mba_xy = h->left_mb_xy[0];
  4465. const int mbb_xy = h->top_mb_xy;
  4466. int ctx=0;
  4467. if( h->slice_table[mba_xy] == h->slice_num && !IS_INTRA4x4( s->current_picture.mb_type[mba_xy] ) )
  4468. ctx++;
  4469. if( h->slice_table[mbb_xy] == h->slice_num && !IS_INTRA4x4( s->current_picture.mb_type[mbb_xy] ) )
  4470. ctx++;
  4471. if( get_cabac_noinline( &h->cabac, &state[ctx] ) == 0 )
  4472. return 0; /* I4x4 */
  4473. state += 2;
  4474. }else{
  4475. if( get_cabac_noinline( &h->cabac, &state[0] ) == 0 )
  4476. return 0; /* I4x4 */
  4477. }
  4478. if( get_cabac_terminate( &h->cabac ) )
  4479. return 25; /* PCM */
  4480. mb_type = 1; /* I16x16 */
  4481. mb_type += 12 * get_cabac_noinline( &h->cabac, &state[1] ); /* cbp_luma != 0 */
  4482. if( get_cabac_noinline( &h->cabac, &state[2] ) ) /* cbp_chroma */
  4483. mb_type += 4 + 4 * get_cabac_noinline( &h->cabac, &state[2+intra_slice] );
  4484. mb_type += 2 * get_cabac_noinline( &h->cabac, &state[3+intra_slice] );
  4485. mb_type += 1 * get_cabac_noinline( &h->cabac, &state[3+2*intra_slice] );
  4486. return mb_type;
  4487. }
  4488. static int decode_cabac_mb_type( H264Context *h ) {
  4489. MpegEncContext * const s = &h->s;
  4490. if( h->slice_type_nos == FF_I_TYPE ) {
  4491. return decode_cabac_intra_mb_type(h, 3, 1);
  4492. } else if( h->slice_type_nos == FF_P_TYPE ) {
  4493. if( get_cabac_noinline( &h->cabac, &h->cabac_state[14] ) == 0 ) {
  4494. /* P-type */
  4495. if( get_cabac_noinline( &h->cabac, &h->cabac_state[15] ) == 0 ) {
  4496. /* P_L0_D16x16, P_8x8 */
  4497. return 3 * get_cabac_noinline( &h->cabac, &h->cabac_state[16] );
  4498. } else {
  4499. /* P_L0_D8x16, P_L0_D16x8 */
  4500. return 2 - get_cabac_noinline( &h->cabac, &h->cabac_state[17] );
  4501. }
  4502. } else {
  4503. return decode_cabac_intra_mb_type(h, 17, 0) + 5;
  4504. }
  4505. } else if( h->slice_type_nos == FF_B_TYPE ) {
  4506. const int mba_xy = h->left_mb_xy[0];
  4507. const int mbb_xy = h->top_mb_xy;
  4508. int ctx = 0;
  4509. int bits;
  4510. if( h->slice_table[mba_xy] == h->slice_num && !IS_DIRECT( s->current_picture.mb_type[mba_xy] ) )
  4511. ctx++;
  4512. if( h->slice_table[mbb_xy] == h->slice_num && !IS_DIRECT( s->current_picture.mb_type[mbb_xy] ) )
  4513. ctx++;
  4514. if( !get_cabac_noinline( &h->cabac, &h->cabac_state[27+ctx] ) )
  4515. return 0; /* B_Direct_16x16 */
  4516. if( !get_cabac_noinline( &h->cabac, &h->cabac_state[27+3] ) ) {
  4517. return 1 + get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] ); /* B_L[01]_16x16 */
  4518. }
  4519. bits = get_cabac_noinline( &h->cabac, &h->cabac_state[27+4] ) << 3;
  4520. bits|= get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] ) << 2;
  4521. bits|= get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] ) << 1;
  4522. bits|= get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] );
  4523. if( bits < 8 )
  4524. return bits + 3; /* B_Bi_16x16 through B_L1_L0_16x8 */
  4525. else if( bits == 13 ) {
  4526. return decode_cabac_intra_mb_type(h, 32, 0) + 23;
  4527. } else if( bits == 14 )
  4528. return 11; /* B_L1_L0_8x16 */
  4529. else if( bits == 15 )
  4530. return 22; /* B_8x8 */
  4531. bits= ( bits<<1 ) | get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] );
  4532. return bits - 4; /* B_L0_Bi_* through B_Bi_Bi_* */
  4533. } else {
  4534. /* TODO SI/SP frames? */
  4535. return -1;
  4536. }
  4537. }
  4538. static int decode_cabac_mb_skip( H264Context *h, int mb_x, int mb_y ) {
  4539. MpegEncContext * const s = &h->s;
  4540. int mba_xy, mbb_xy;
  4541. int ctx = 0;
  4542. if(FRAME_MBAFF){ //FIXME merge with the stuff in fill_caches?
  4543. int mb_xy = mb_x + (mb_y&~1)*s->mb_stride;
  4544. mba_xy = mb_xy - 1;
  4545. if( (mb_y&1)
  4546. && h->slice_table[mba_xy] == h->slice_num
  4547. && MB_FIELD == !!IS_INTERLACED( s->current_picture.mb_type[mba_xy] ) )
  4548. mba_xy += s->mb_stride;
  4549. if( MB_FIELD ){
  4550. mbb_xy = mb_xy - s->mb_stride;
  4551. if( !(mb_y&1)
  4552. && h->slice_table[mbb_xy] == h->slice_num
  4553. && IS_INTERLACED( s->current_picture.mb_type[mbb_xy] ) )
  4554. mbb_xy -= s->mb_stride;
  4555. }else
  4556. mbb_xy = mb_x + (mb_y-1)*s->mb_stride;
  4557. }else{
  4558. int mb_xy = h->mb_xy;
  4559. mba_xy = mb_xy - 1;
  4560. mbb_xy = mb_xy - (s->mb_stride << FIELD_PICTURE);
  4561. }
  4562. if( h->slice_table[mba_xy] == h->slice_num && !IS_SKIP( s->current_picture.mb_type[mba_xy] ))
  4563. ctx++;
  4564. if( h->slice_table[mbb_xy] == h->slice_num && !IS_SKIP( s->current_picture.mb_type[mbb_xy] ))
  4565. ctx++;
  4566. if( h->slice_type_nos == FF_B_TYPE )
  4567. ctx += 13;
  4568. return get_cabac_noinline( &h->cabac, &h->cabac_state[11+ctx] );
  4569. }
  4570. static int decode_cabac_mb_intra4x4_pred_mode( H264Context *h, int pred_mode ) {
  4571. int mode = 0;
  4572. if( get_cabac( &h->cabac, &h->cabac_state[68] ) )
  4573. return pred_mode;
  4574. mode += 1 * get_cabac( &h->cabac, &h->cabac_state[69] );
  4575. mode += 2 * get_cabac( &h->cabac, &h->cabac_state[69] );
  4576. mode += 4 * get_cabac( &h->cabac, &h->cabac_state[69] );
  4577. if( mode >= pred_mode )
  4578. return mode + 1;
  4579. else
  4580. return mode;
  4581. }
  4582. static int decode_cabac_mb_chroma_pre_mode( H264Context *h) {
  4583. const int mba_xy = h->left_mb_xy[0];
  4584. const int mbb_xy = h->top_mb_xy;
  4585. int ctx = 0;
  4586. /* No need to test for IS_INTRA4x4 and IS_INTRA16x16, as we set chroma_pred_mode_table to 0 */
  4587. if( h->slice_table[mba_xy] == h->slice_num && h->chroma_pred_mode_table[mba_xy] != 0 )
  4588. ctx++;
  4589. if( h->slice_table[mbb_xy] == h->slice_num && h->chroma_pred_mode_table[mbb_xy] != 0 )
  4590. ctx++;
  4591. if( get_cabac_noinline( &h->cabac, &h->cabac_state[64+ctx] ) == 0 )
  4592. return 0;
  4593. if( get_cabac_noinline( &h->cabac, &h->cabac_state[64+3] ) == 0 )
  4594. return 1;
  4595. if( get_cabac_noinline( &h->cabac, &h->cabac_state[64+3] ) == 0 )
  4596. return 2;
  4597. else
  4598. return 3;
  4599. }
  4600. static int decode_cabac_mb_cbp_luma( H264Context *h) {
  4601. int cbp_b, cbp_a, ctx, cbp = 0;
  4602. cbp_a = h->slice_table[h->left_mb_xy[0]] == h->slice_num ? h->left_cbp : -1;
  4603. cbp_b = h->slice_table[h->top_mb_xy] == h->slice_num ? h->top_cbp : -1;
  4604. ctx = !(cbp_a & 0x02) + 2 * !(cbp_b & 0x04);
  4605. cbp |= get_cabac_noinline(&h->cabac, &h->cabac_state[73 + ctx]);
  4606. ctx = !(cbp & 0x01) + 2 * !(cbp_b & 0x08);
  4607. cbp |= get_cabac_noinline(&h->cabac, &h->cabac_state[73 + ctx]) << 1;
  4608. ctx = !(cbp_a & 0x08) + 2 * !(cbp & 0x01);
  4609. cbp |= get_cabac_noinline(&h->cabac, &h->cabac_state[73 + ctx]) << 2;
  4610. ctx = !(cbp & 0x04) + 2 * !(cbp & 0x02);
  4611. cbp |= get_cabac_noinline(&h->cabac, &h->cabac_state[73 + ctx]) << 3;
  4612. return cbp;
  4613. }
  4614. static int decode_cabac_mb_cbp_chroma( H264Context *h) {
  4615. int ctx;
  4616. int cbp_a, cbp_b;
  4617. cbp_a = (h->left_cbp>>4)&0x03;
  4618. cbp_b = (h-> top_cbp>>4)&0x03;
  4619. ctx = 0;
  4620. if( cbp_a > 0 ) ctx++;
  4621. if( cbp_b > 0 ) ctx += 2;
  4622. if( get_cabac_noinline( &h->cabac, &h->cabac_state[77 + ctx] ) == 0 )
  4623. return 0;
  4624. ctx = 4;
  4625. if( cbp_a == 2 ) ctx++;
  4626. if( cbp_b == 2 ) ctx += 2;
  4627. return 1 + get_cabac_noinline( &h->cabac, &h->cabac_state[77 + ctx] );
  4628. }
  4629. static int decode_cabac_mb_dqp( H264Context *h) {
  4630. int ctx = 0;
  4631. int val = 0;
  4632. if( h->last_qscale_diff != 0 )
  4633. ctx++;
  4634. while( get_cabac_noinline( &h->cabac, &h->cabac_state[60 + ctx] ) ) {
  4635. if( ctx < 2 )
  4636. ctx = 2;
  4637. else
  4638. ctx = 3;
  4639. val++;
  4640. if(val > 102) //prevent infinite loop
  4641. return INT_MIN;
  4642. }
  4643. if( val&0x01 )
  4644. return (val + 1)/2;
  4645. else
  4646. return -(val + 1)/2;
  4647. }
  4648. static int decode_cabac_p_mb_sub_type( H264Context *h ) {
  4649. if( get_cabac( &h->cabac, &h->cabac_state[21] ) )
  4650. return 0; /* 8x8 */
  4651. if( !get_cabac( &h->cabac, &h->cabac_state[22] ) )
  4652. return 1; /* 8x4 */
  4653. if( get_cabac( &h->cabac, &h->cabac_state[23] ) )
  4654. return 2; /* 4x8 */
  4655. return 3; /* 4x4 */
  4656. }
  4657. static int decode_cabac_b_mb_sub_type( H264Context *h ) {
  4658. int type;
  4659. if( !get_cabac( &h->cabac, &h->cabac_state[36] ) )
  4660. return 0; /* B_Direct_8x8 */
  4661. if( !get_cabac( &h->cabac, &h->cabac_state[37] ) )
  4662. return 1 + get_cabac( &h->cabac, &h->cabac_state[39] ); /* B_L0_8x8, B_L1_8x8 */
  4663. type = 3;
  4664. if( get_cabac( &h->cabac, &h->cabac_state[38] ) ) {
  4665. if( get_cabac( &h->cabac, &h->cabac_state[39] ) )
  4666. return 11 + get_cabac( &h->cabac, &h->cabac_state[39] ); /* B_L1_4x4, B_Bi_4x4 */
  4667. type += 4;
  4668. }
  4669. type += 2*get_cabac( &h->cabac, &h->cabac_state[39] );
  4670. type += get_cabac( &h->cabac, &h->cabac_state[39] );
  4671. return type;
  4672. }
  4673. static inline int decode_cabac_mb_transform_size( H264Context *h ) {
  4674. return get_cabac_noinline( &h->cabac, &h->cabac_state[399 + h->neighbor_transform_size] );
  4675. }
  4676. static int decode_cabac_mb_ref( H264Context *h, int list, int n ) {
  4677. int refa = h->ref_cache[list][scan8[n] - 1];
  4678. int refb = h->ref_cache[list][scan8[n] - 8];
  4679. int ref = 0;
  4680. int ctx = 0;
  4681. if( h->slice_type_nos == FF_B_TYPE) {
  4682. if( refa > 0 && !h->direct_cache[scan8[n] - 1] )
  4683. ctx++;
  4684. if( refb > 0 && !h->direct_cache[scan8[n] - 8] )
  4685. ctx += 2;
  4686. } else {
  4687. if( refa > 0 )
  4688. ctx++;
  4689. if( refb > 0 )
  4690. ctx += 2;
  4691. }
  4692. while( get_cabac( &h->cabac, &h->cabac_state[54+ctx] ) ) {
  4693. ref++;
  4694. if( ctx < 4 )
  4695. ctx = 4;
  4696. else
  4697. ctx = 5;
  4698. if(ref >= 32 /*h->ref_list[list]*/){
  4699. av_log(h->s.avctx, AV_LOG_ERROR, "overflow in decode_cabac_mb_ref\n");
  4700. return 0; //FIXME we should return -1 and check the return everywhere
  4701. }
  4702. }
  4703. return ref;
  4704. }
  4705. static int decode_cabac_mb_mvd( H264Context *h, int list, int n, int l ) {
  4706. int amvd = abs( h->mvd_cache[list][scan8[n] - 1][l] ) +
  4707. abs( h->mvd_cache[list][scan8[n] - 8][l] );
  4708. int ctxbase = (l == 0) ? 40 : 47;
  4709. int ctx, mvd;
  4710. if( amvd < 3 )
  4711. ctx = 0;
  4712. else if( amvd > 32 )
  4713. ctx = 2;
  4714. else
  4715. ctx = 1;
  4716. if(!get_cabac(&h->cabac, &h->cabac_state[ctxbase+ctx]))
  4717. return 0;
  4718. mvd= 1;
  4719. ctx= 3;
  4720. while( mvd < 9 && get_cabac( &h->cabac, &h->cabac_state[ctxbase+ctx] ) ) {
  4721. mvd++;
  4722. if( ctx < 6 )
  4723. ctx++;
  4724. }
  4725. if( mvd >= 9 ) {
  4726. int k = 3;
  4727. while( get_cabac_bypass( &h->cabac ) ) {
  4728. mvd += 1 << k;
  4729. k++;
  4730. if(k>24){
  4731. av_log(h->s.avctx, AV_LOG_ERROR, "overflow in decode_cabac_mb_mvd\n");
  4732. return INT_MIN;
  4733. }
  4734. }
  4735. while( k-- ) {
  4736. if( get_cabac_bypass( &h->cabac ) )
  4737. mvd += 1 << k;
  4738. }
  4739. }
  4740. return get_cabac_bypass_sign( &h->cabac, -mvd );
  4741. }
  4742. static av_always_inline int get_cabac_cbf_ctx( H264Context *h, int cat, int idx, int is_dc ) {
  4743. int nza, nzb;
  4744. int ctx = 0;
  4745. if( is_dc ) {
  4746. if( cat == 0 ) {
  4747. nza = h->left_cbp&0x100;
  4748. nzb = h-> top_cbp&0x100;
  4749. } else {
  4750. nza = (h->left_cbp>>(6+idx))&0x01;
  4751. nzb = (h-> top_cbp>>(6+idx))&0x01;
  4752. }
  4753. } else {
  4754. if( cat == 4 ) {
  4755. nza = h->non_zero_count_cache[scan8[16+idx] - 1];
  4756. nzb = h->non_zero_count_cache[scan8[16+idx] - 8];
  4757. } else {
  4758. assert(cat == 1 || cat == 2);
  4759. nza = h->non_zero_count_cache[scan8[idx] - 1];
  4760. nzb = h->non_zero_count_cache[scan8[idx] - 8];
  4761. }
  4762. }
  4763. if( nza > 0 )
  4764. ctx++;
  4765. if( nzb > 0 )
  4766. ctx += 2;
  4767. return ctx + 4 * cat;
  4768. }
  4769. DECLARE_ASM_CONST(1, uint8_t, last_coeff_flag_offset_8x8[63]) = {
  4770. 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  4771. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  4772. 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
  4773. 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8
  4774. };
  4775. static av_always_inline void decode_cabac_residual_internal( H264Context *h, DCTELEM *block, int cat, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff, int is_dc ) {
  4776. static const int significant_coeff_flag_offset[2][6] = {
  4777. { 105+0, 105+15, 105+29, 105+44, 105+47, 402 },
  4778. { 277+0, 277+15, 277+29, 277+44, 277+47, 436 }
  4779. };
  4780. static const int last_coeff_flag_offset[2][6] = {
  4781. { 166+0, 166+15, 166+29, 166+44, 166+47, 417 },
  4782. { 338+0, 338+15, 338+29, 338+44, 338+47, 451 }
  4783. };
  4784. static const int coeff_abs_level_m1_offset[6] = {
  4785. 227+0, 227+10, 227+20, 227+30, 227+39, 426
  4786. };
  4787. static const uint8_t significant_coeff_flag_offset_8x8[2][63] = {
  4788. { 0, 1, 2, 3, 4, 5, 5, 4, 4, 3, 3, 4, 4, 4, 5, 5,
  4789. 4, 4, 4, 4, 3, 3, 6, 7, 7, 7, 8, 9,10, 9, 8, 7,
  4790. 7, 6,11,12,13,11, 6, 7, 8, 9,14,10, 9, 8, 6,11,
  4791. 12,13,11, 6, 9,14,10, 9,11,12,13,11,14,10,12 },
  4792. { 0, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 7, 7, 8, 4, 5,
  4793. 6, 9,10,10, 8,11,12,11, 9, 9,10,10, 8,11,12,11,
  4794. 9, 9,10,10, 8,11,12,11, 9, 9,10,10, 8,13,13, 9,
  4795. 9,10,10, 8,13,13, 9, 9,10,10,14,14,14,14,14 }
  4796. };
  4797. /* node ctx: 0..3: abslevel1 (with abslevelgt1 == 0).
  4798. * 4..7: abslevelgt1 + 3 (and abslevel1 doesn't matter).
  4799. * map node ctx => cabac ctx for level=1 */
  4800. static const uint8_t coeff_abs_level1_ctx[8] = { 1, 2, 3, 4, 0, 0, 0, 0 };
  4801. /* map node ctx => cabac ctx for level>1 */
  4802. static const uint8_t coeff_abs_levelgt1_ctx[8] = { 5, 5, 5, 5, 6, 7, 8, 9 };
  4803. static const uint8_t coeff_abs_level_transition[2][8] = {
  4804. /* update node ctx after decoding a level=1 */
  4805. { 1, 2, 3, 3, 4, 5, 6, 7 },
  4806. /* update node ctx after decoding a level>1 */
  4807. { 4, 4, 4, 4, 5, 6, 7, 7 }
  4808. };
  4809. int index[64];
  4810. int av_unused last;
  4811. int coeff_count = 0;
  4812. int node_ctx = 0;
  4813. uint8_t *significant_coeff_ctx_base;
  4814. uint8_t *last_coeff_ctx_base;
  4815. uint8_t *abs_level_m1_ctx_base;
  4816. #ifndef ARCH_X86
  4817. #define CABAC_ON_STACK
  4818. #endif
  4819. #ifdef CABAC_ON_STACK
  4820. #define CC &cc
  4821. CABACContext cc;
  4822. cc.range = h->cabac.range;
  4823. cc.low = h->cabac.low;
  4824. cc.bytestream= h->cabac.bytestream;
  4825. #else
  4826. #define CC &h->cabac
  4827. #endif
  4828. /* cat: 0-> DC 16x16 n = 0
  4829. * 1-> AC 16x16 n = luma4x4idx
  4830. * 2-> Luma4x4 n = luma4x4idx
  4831. * 3-> DC Chroma n = iCbCr
  4832. * 4-> AC Chroma n = 4 * iCbCr + chroma4x4idx
  4833. * 5-> Luma8x8 n = 4 * luma8x8idx
  4834. */
  4835. /* read coded block flag */
  4836. if( is_dc || cat != 5 ) {
  4837. if( get_cabac( CC, &h->cabac_state[85 + get_cabac_cbf_ctx( h, cat, n, is_dc ) ] ) == 0 ) {
  4838. if( !is_dc ) {
  4839. if( cat == 4 )
  4840. h->non_zero_count_cache[scan8[16+n]] = 0;
  4841. else
  4842. h->non_zero_count_cache[scan8[n]] = 0;
  4843. }
  4844. #ifdef CABAC_ON_STACK
  4845. h->cabac.range = cc.range ;
  4846. h->cabac.low = cc.low ;
  4847. h->cabac.bytestream= cc.bytestream;
  4848. #endif
  4849. return;
  4850. }
  4851. }
  4852. significant_coeff_ctx_base = h->cabac_state
  4853. + significant_coeff_flag_offset[MB_FIELD][cat];
  4854. last_coeff_ctx_base = h->cabac_state
  4855. + last_coeff_flag_offset[MB_FIELD][cat];
  4856. abs_level_m1_ctx_base = h->cabac_state
  4857. + coeff_abs_level_m1_offset[cat];
  4858. if( !is_dc && cat == 5 ) {
  4859. #define DECODE_SIGNIFICANCE( coefs, sig_off, last_off ) \
  4860. for(last= 0; last < coefs; last++) { \
  4861. uint8_t *sig_ctx = significant_coeff_ctx_base + sig_off; \
  4862. if( get_cabac( CC, sig_ctx )) { \
  4863. uint8_t *last_ctx = last_coeff_ctx_base + last_off; \
  4864. index[coeff_count++] = last; \
  4865. if( get_cabac( CC, last_ctx ) ) { \
  4866. last= max_coeff; \
  4867. break; \
  4868. } \
  4869. } \
  4870. }\
  4871. if( last == max_coeff -1 ) {\
  4872. index[coeff_count++] = last;\
  4873. }
  4874. const uint8_t *sig_off = significant_coeff_flag_offset_8x8[MB_FIELD];
  4875. #if defined(ARCH_X86) && defined(HAVE_7REGS) && defined(HAVE_EBX_AVAILABLE) && !defined(BROKEN_RELOCATIONS)
  4876. coeff_count= decode_significance_8x8_x86(CC, significant_coeff_ctx_base, index, sig_off);
  4877. } else {
  4878. coeff_count= decode_significance_x86(CC, max_coeff, significant_coeff_ctx_base, index);
  4879. #else
  4880. DECODE_SIGNIFICANCE( 63, sig_off[last], last_coeff_flag_offset_8x8[last] );
  4881. } else {
  4882. DECODE_SIGNIFICANCE( max_coeff - 1, last, last );
  4883. #endif
  4884. }
  4885. assert(coeff_count > 0);
  4886. if( is_dc ) {
  4887. if( cat == 0 )
  4888. h->cbp_table[h->mb_xy] |= 0x100;
  4889. else
  4890. h->cbp_table[h->mb_xy] |= 0x40 << n;
  4891. } else {
  4892. if( cat == 5 )
  4893. fill_rectangle(&h->non_zero_count_cache[scan8[n]], 2, 2, 8, coeff_count, 1);
  4894. else if( cat == 4 )
  4895. h->non_zero_count_cache[scan8[16+n]] = coeff_count;
  4896. else {
  4897. assert( cat == 1 || cat == 2 );
  4898. h->non_zero_count_cache[scan8[n]] = coeff_count;
  4899. }
  4900. }
  4901. while( coeff_count-- ) {
  4902. uint8_t *ctx = coeff_abs_level1_ctx[node_ctx] + abs_level_m1_ctx_base;
  4903. int j= scantable[index[coeff_count]];
  4904. if( get_cabac( CC, ctx ) == 0 ) {
  4905. node_ctx = coeff_abs_level_transition[0][node_ctx];
  4906. if( is_dc ) {
  4907. block[j] = get_cabac_bypass_sign( CC, -1);
  4908. }else{
  4909. block[j] = (get_cabac_bypass_sign( CC, -qmul[j]) + 32) >> 6;
  4910. }
  4911. } else {
  4912. int coeff_abs = 2;
  4913. ctx = coeff_abs_levelgt1_ctx[node_ctx] + abs_level_m1_ctx_base;
  4914. node_ctx = coeff_abs_level_transition[1][node_ctx];
  4915. while( coeff_abs < 15 && get_cabac( CC, ctx ) ) {
  4916. coeff_abs++;
  4917. }
  4918. if( coeff_abs >= 15 ) {
  4919. int j = 0;
  4920. while( get_cabac_bypass( CC ) ) {
  4921. j++;
  4922. }
  4923. coeff_abs=1;
  4924. while( j-- ) {
  4925. coeff_abs += coeff_abs + get_cabac_bypass( CC );
  4926. }
  4927. coeff_abs+= 14;
  4928. }
  4929. if( is_dc ) {
  4930. block[j] = get_cabac_bypass_sign( CC, -coeff_abs );
  4931. }else{
  4932. block[j] = (get_cabac_bypass_sign( CC, -coeff_abs ) * qmul[j] + 32) >> 6;
  4933. }
  4934. }
  4935. }
  4936. #ifdef CABAC_ON_STACK
  4937. h->cabac.range = cc.range ;
  4938. h->cabac.low = cc.low ;
  4939. h->cabac.bytestream= cc.bytestream;
  4940. #endif
  4941. }
  4942. #ifndef CONFIG_SMALL
  4943. static void decode_cabac_residual_dc( H264Context *h, DCTELEM *block, int cat, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff ) {
  4944. decode_cabac_residual_internal(h, block, cat, n, scantable, qmul, max_coeff, 1);
  4945. }
  4946. static void decode_cabac_residual_nondc( H264Context *h, DCTELEM *block, int cat, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff ) {
  4947. decode_cabac_residual_internal(h, block, cat, n, scantable, qmul, max_coeff, 0);
  4948. }
  4949. #endif
  4950. static void decode_cabac_residual( H264Context *h, DCTELEM *block, int cat, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff ) {
  4951. #ifdef CONFIG_SMALL
  4952. decode_cabac_residual_internal(h, block, cat, n, scantable, qmul, max_coeff, cat == 0 || cat == 3);
  4953. #else
  4954. if( cat == 0 || cat == 3 ) decode_cabac_residual_dc(h, block, cat, n, scantable, qmul, max_coeff);
  4955. else decode_cabac_residual_nondc(h, block, cat, n, scantable, qmul, max_coeff);
  4956. #endif
  4957. }
  4958. static inline void compute_mb_neighbors(H264Context *h)
  4959. {
  4960. MpegEncContext * const s = &h->s;
  4961. const int mb_xy = h->mb_xy;
  4962. h->top_mb_xy = mb_xy - s->mb_stride;
  4963. h->left_mb_xy[0] = mb_xy - 1;
  4964. if(FRAME_MBAFF){
  4965. const int pair_xy = s->mb_x + (s->mb_y & ~1)*s->mb_stride;
  4966. const int top_pair_xy = pair_xy - s->mb_stride;
  4967. const int top_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]);
  4968. const int left_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]);
  4969. const int curr_mb_frame_flag = !MB_FIELD;
  4970. const int bottom = (s->mb_y & 1);
  4971. if (bottom
  4972. ? !curr_mb_frame_flag // bottom macroblock
  4973. : (!curr_mb_frame_flag && !top_mb_frame_flag) // top macroblock
  4974. ) {
  4975. h->top_mb_xy -= s->mb_stride;
  4976. }
  4977. if (left_mb_frame_flag != curr_mb_frame_flag) {
  4978. h->left_mb_xy[0] = pair_xy - 1;
  4979. }
  4980. } else if (FIELD_PICTURE) {
  4981. h->top_mb_xy -= s->mb_stride;
  4982. }
  4983. return;
  4984. }
  4985. /**
  4986. * decodes a macroblock
  4987. * @returns 0 if ok, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
  4988. */
  4989. static int decode_mb_cabac(H264Context *h) {
  4990. MpegEncContext * const s = &h->s;
  4991. int mb_xy;
  4992. int mb_type, partition_count, cbp = 0;
  4993. int dct8x8_allowed= h->pps.transform_8x8_mode;
  4994. mb_xy = h->mb_xy = s->mb_x + s->mb_y*s->mb_stride;
  4995. s->dsp.clear_blocks(h->mb); //FIXME avoid if already clear (move after skip handlong?)
  4996. tprintf(s->avctx, "pic:%d mb:%d/%d\n", h->frame_num, s->mb_x, s->mb_y);
  4997. if( h->slice_type_nos != FF_I_TYPE ) {
  4998. int skip;
  4999. /* a skipped mb needs the aff flag from the following mb */
  5000. if( FRAME_MBAFF && s->mb_x==0 && (s->mb_y&1)==0 )
  5001. predict_field_decoding_flag(h);
  5002. if( FRAME_MBAFF && (s->mb_y&1)==1 && h->prev_mb_skipped )
  5003. skip = h->next_mb_skipped;
  5004. else
  5005. skip = decode_cabac_mb_skip( h, s->mb_x, s->mb_y );
  5006. /* read skip flags */
  5007. if( skip ) {
  5008. if( FRAME_MBAFF && (s->mb_y&1)==0 ){
  5009. s->current_picture.mb_type[mb_xy] = MB_TYPE_SKIP;
  5010. h->next_mb_skipped = decode_cabac_mb_skip( h, s->mb_x, s->mb_y+1 );
  5011. if(h->next_mb_skipped)
  5012. predict_field_decoding_flag(h);
  5013. else
  5014. h->mb_mbaff = h->mb_field_decoding_flag = decode_cabac_field_decoding_flag(h);
  5015. }
  5016. decode_mb_skip(h);
  5017. h->cbp_table[mb_xy] = 0;
  5018. h->chroma_pred_mode_table[mb_xy] = 0;
  5019. h->last_qscale_diff = 0;
  5020. return 0;
  5021. }
  5022. }
  5023. if(FRAME_MBAFF){
  5024. if( (s->mb_y&1) == 0 )
  5025. h->mb_mbaff =
  5026. h->mb_field_decoding_flag = decode_cabac_field_decoding_flag(h);
  5027. }else
  5028. h->mb_field_decoding_flag= (s->picture_structure!=PICT_FRAME);
  5029. h->prev_mb_skipped = 0;
  5030. compute_mb_neighbors(h);
  5031. if( ( mb_type = decode_cabac_mb_type( h ) ) < 0 ) {
  5032. av_log( h->s.avctx, AV_LOG_ERROR, "decode_cabac_mb_type failed\n" );
  5033. return -1;
  5034. }
  5035. if( h->slice_type_nos == FF_B_TYPE ) {
  5036. if( mb_type < 23 ){
  5037. partition_count= b_mb_type_info[mb_type].partition_count;
  5038. mb_type= b_mb_type_info[mb_type].type;
  5039. }else{
  5040. mb_type -= 23;
  5041. goto decode_intra_mb;
  5042. }
  5043. } else if( h->slice_type_nos == FF_P_TYPE ) {
  5044. if( mb_type < 5) {
  5045. partition_count= p_mb_type_info[mb_type].partition_count;
  5046. mb_type= p_mb_type_info[mb_type].type;
  5047. } else {
  5048. mb_type -= 5;
  5049. goto decode_intra_mb;
  5050. }
  5051. } else {
  5052. if(h->slice_type == FF_SI_TYPE && mb_type)
  5053. mb_type--;
  5054. assert(h->slice_type_nos == FF_I_TYPE);
  5055. decode_intra_mb:
  5056. partition_count = 0;
  5057. cbp= i_mb_type_info[mb_type].cbp;
  5058. h->intra16x16_pred_mode= i_mb_type_info[mb_type].pred_mode;
  5059. mb_type= i_mb_type_info[mb_type].type;
  5060. }
  5061. if(MB_FIELD)
  5062. mb_type |= MB_TYPE_INTERLACED;
  5063. h->slice_table[ mb_xy ]= h->slice_num;
  5064. if(IS_INTRA_PCM(mb_type)) {
  5065. const uint8_t *ptr;
  5066. unsigned int x, y;
  5067. // We assume these blocks are very rare so we do not optimize it.
  5068. // FIXME The two following lines get the bitstream position in the cabac
  5069. // decode, I think it should be done by a function in cabac.h (or cabac.c).
  5070. ptr= h->cabac.bytestream;
  5071. if(h->cabac.low&0x1) ptr--;
  5072. if(CABAC_BITS==16){
  5073. if(h->cabac.low&0x1FF) ptr--;
  5074. }
  5075. // The pixels are stored in the same order as levels in h->mb array.
  5076. for(y=0; y<16; y++){
  5077. const int index= 4*(y&3) + 32*((y>>2)&1) + 128*(y>>3);
  5078. for(x=0; x<16; x++){
  5079. tprintf(s->avctx, "LUMA ICPM LEVEL (%3d)\n", *ptr);
  5080. h->mb[index + (x&3) + 16*((x>>2)&1) + 64*(x>>3)]= *ptr++;
  5081. }
  5082. }
  5083. for(y=0; y<8; y++){
  5084. const int index= 256 + 4*(y&3) + 32*(y>>2);
  5085. for(x=0; x<8; x++){
  5086. tprintf(s->avctx, "CHROMA U ICPM LEVEL (%3d)\n", *ptr);
  5087. h->mb[index + (x&3) + 16*(x>>2)]= *ptr++;
  5088. }
  5089. }
  5090. for(y=0; y<8; y++){
  5091. const int index= 256 + 64 + 4*(y&3) + 32*(y>>2);
  5092. for(x=0; x<8; x++){
  5093. tprintf(s->avctx, "CHROMA V ICPM LEVEL (%3d)\n", *ptr);
  5094. h->mb[index + (x&3) + 16*(x>>2)]= *ptr++;
  5095. }
  5096. }
  5097. ff_init_cabac_decoder(&h->cabac, ptr, h->cabac.bytestream_end - ptr);
  5098. // All blocks are present
  5099. h->cbp_table[mb_xy] = 0x1ef;
  5100. h->chroma_pred_mode_table[mb_xy] = 0;
  5101. // In deblocking, the quantizer is 0
  5102. s->current_picture.qscale_table[mb_xy]= 0;
  5103. // All coeffs are present
  5104. memset(h->non_zero_count[mb_xy], 16, 16);
  5105. s->current_picture.mb_type[mb_xy]= mb_type;
  5106. h->last_qscale_diff = 0;
  5107. return 0;
  5108. }
  5109. if(MB_MBAFF){
  5110. h->ref_count[0] <<= 1;
  5111. h->ref_count[1] <<= 1;
  5112. }
  5113. fill_caches(h, mb_type, 0);
  5114. if( IS_INTRA( mb_type ) ) {
  5115. int i, pred_mode;
  5116. if( IS_INTRA4x4( mb_type ) ) {
  5117. if( dct8x8_allowed && decode_cabac_mb_transform_size( h ) ) {
  5118. mb_type |= MB_TYPE_8x8DCT;
  5119. for( i = 0; i < 16; i+=4 ) {
  5120. int pred = pred_intra_mode( h, i );
  5121. int mode = decode_cabac_mb_intra4x4_pred_mode( h, pred );
  5122. fill_rectangle( &h->intra4x4_pred_mode_cache[ scan8[i] ], 2, 2, 8, mode, 1 );
  5123. }
  5124. } else {
  5125. for( i = 0; i < 16; i++ ) {
  5126. int pred = pred_intra_mode( h, i );
  5127. h->intra4x4_pred_mode_cache[ scan8[i] ] = decode_cabac_mb_intra4x4_pred_mode( h, pred );
  5128. //av_log( s->avctx, AV_LOG_ERROR, "i4x4 pred=%d mode=%d\n", pred, h->intra4x4_pred_mode_cache[ scan8[i] ] );
  5129. }
  5130. }
  5131. write_back_intra_pred_mode(h);
  5132. if( check_intra4x4_pred_mode(h) < 0 ) return -1;
  5133. } else {
  5134. h->intra16x16_pred_mode= check_intra_pred_mode( h, h->intra16x16_pred_mode );
  5135. if( h->intra16x16_pred_mode < 0 ) return -1;
  5136. }
  5137. h->chroma_pred_mode_table[mb_xy] =
  5138. pred_mode = decode_cabac_mb_chroma_pre_mode( h );
  5139. pred_mode= check_intra_pred_mode( h, pred_mode );
  5140. if( pred_mode < 0 ) return -1;
  5141. h->chroma_pred_mode= pred_mode;
  5142. } else if( partition_count == 4 ) {
  5143. int i, j, sub_partition_count[4], list, ref[2][4];
  5144. if( h->slice_type_nos == FF_B_TYPE ) {
  5145. for( i = 0; i < 4; i++ ) {
  5146. h->sub_mb_type[i] = decode_cabac_b_mb_sub_type( h );
  5147. sub_partition_count[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  5148. h->sub_mb_type[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  5149. }
  5150. if( IS_DIRECT(h->sub_mb_type[0] | h->sub_mb_type[1] |
  5151. h->sub_mb_type[2] | h->sub_mb_type[3]) ) {
  5152. pred_direct_motion(h, &mb_type);
  5153. h->ref_cache[0][scan8[4]] =
  5154. h->ref_cache[1][scan8[4]] =
  5155. h->ref_cache[0][scan8[12]] =
  5156. h->ref_cache[1][scan8[12]] = PART_NOT_AVAILABLE;
  5157. if( h->ref_count[0] > 1 || h->ref_count[1] > 1 ) {
  5158. for( i = 0; i < 4; i++ )
  5159. if( IS_DIRECT(h->sub_mb_type[i]) )
  5160. fill_rectangle( &h->direct_cache[scan8[4*i]], 2, 2, 8, 1, 1 );
  5161. }
  5162. }
  5163. } else {
  5164. for( i = 0; i < 4; i++ ) {
  5165. h->sub_mb_type[i] = decode_cabac_p_mb_sub_type( h );
  5166. sub_partition_count[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  5167. h->sub_mb_type[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  5168. }
  5169. }
  5170. for( list = 0; list < h->list_count; list++ ) {
  5171. for( i = 0; i < 4; i++ ) {
  5172. if(IS_DIRECT(h->sub_mb_type[i])) continue;
  5173. if(IS_DIR(h->sub_mb_type[i], 0, list)){
  5174. if( h->ref_count[list] > 1 )
  5175. ref[list][i] = decode_cabac_mb_ref( h, list, 4*i );
  5176. else
  5177. ref[list][i] = 0;
  5178. } else {
  5179. ref[list][i] = -1;
  5180. }
  5181. h->ref_cache[list][ scan8[4*i]+1 ]=
  5182. h->ref_cache[list][ scan8[4*i]+8 ]=h->ref_cache[list][ scan8[4*i]+9 ]= ref[list][i];
  5183. }
  5184. }
  5185. if(dct8x8_allowed)
  5186. dct8x8_allowed = get_dct8x8_allowed(h);
  5187. for(list=0; list<h->list_count; list++){
  5188. for(i=0; i<4; i++){
  5189. h->ref_cache[list][ scan8[4*i] ]=h->ref_cache[list][ scan8[4*i]+1 ];
  5190. if(IS_DIRECT(h->sub_mb_type[i])){
  5191. fill_rectangle(h->mvd_cache[list][scan8[4*i]], 2, 2, 8, 0, 4);
  5192. continue;
  5193. }
  5194. if(IS_DIR(h->sub_mb_type[i], 0, list) && !IS_DIRECT(h->sub_mb_type[i])){
  5195. const int sub_mb_type= h->sub_mb_type[i];
  5196. const int block_width= (sub_mb_type & (MB_TYPE_16x16|MB_TYPE_16x8)) ? 2 : 1;
  5197. for(j=0; j<sub_partition_count[i]; j++){
  5198. int mpx, mpy;
  5199. int mx, my;
  5200. const int index= 4*i + block_width*j;
  5201. int16_t (* mv_cache)[2]= &h->mv_cache[list][ scan8[index] ];
  5202. int16_t (* mvd_cache)[2]= &h->mvd_cache[list][ scan8[index] ];
  5203. pred_motion(h, index, block_width, list, h->ref_cache[list][ scan8[index] ], &mpx, &mpy);
  5204. mx = mpx + decode_cabac_mb_mvd( h, list, index, 0 );
  5205. my = mpy + decode_cabac_mb_mvd( h, list, index, 1 );
  5206. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  5207. if(IS_SUB_8X8(sub_mb_type)){
  5208. mv_cache[ 1 ][0]=
  5209. mv_cache[ 8 ][0]= mv_cache[ 9 ][0]= mx;
  5210. mv_cache[ 1 ][1]=
  5211. mv_cache[ 8 ][1]= mv_cache[ 9 ][1]= my;
  5212. mvd_cache[ 1 ][0]=
  5213. mvd_cache[ 8 ][0]= mvd_cache[ 9 ][0]= mx - mpx;
  5214. mvd_cache[ 1 ][1]=
  5215. mvd_cache[ 8 ][1]= mvd_cache[ 9 ][1]= my - mpy;
  5216. }else if(IS_SUB_8X4(sub_mb_type)){
  5217. mv_cache[ 1 ][0]= mx;
  5218. mv_cache[ 1 ][1]= my;
  5219. mvd_cache[ 1 ][0]= mx - mpx;
  5220. mvd_cache[ 1 ][1]= my - mpy;
  5221. }else if(IS_SUB_4X8(sub_mb_type)){
  5222. mv_cache[ 8 ][0]= mx;
  5223. mv_cache[ 8 ][1]= my;
  5224. mvd_cache[ 8 ][0]= mx - mpx;
  5225. mvd_cache[ 8 ][1]= my - mpy;
  5226. }
  5227. mv_cache[ 0 ][0]= mx;
  5228. mv_cache[ 0 ][1]= my;
  5229. mvd_cache[ 0 ][0]= mx - mpx;
  5230. mvd_cache[ 0 ][1]= my - mpy;
  5231. }
  5232. }else{
  5233. uint32_t *p= (uint32_t *)&h->mv_cache[list][ scan8[4*i] ][0];
  5234. uint32_t *pd= (uint32_t *)&h->mvd_cache[list][ scan8[4*i] ][0];
  5235. p[0] = p[1] = p[8] = p[9] = 0;
  5236. pd[0]= pd[1]= pd[8]= pd[9]= 0;
  5237. }
  5238. }
  5239. }
  5240. } else if( IS_DIRECT(mb_type) ) {
  5241. pred_direct_motion(h, &mb_type);
  5242. fill_rectangle(h->mvd_cache[0][scan8[0]], 4, 4, 8, 0, 4);
  5243. fill_rectangle(h->mvd_cache[1][scan8[0]], 4, 4, 8, 0, 4);
  5244. dct8x8_allowed &= h->sps.direct_8x8_inference_flag;
  5245. } else {
  5246. int list, mx, my, i, mpx, mpy;
  5247. if(IS_16X16(mb_type)){
  5248. for(list=0; list<h->list_count; list++){
  5249. if(IS_DIR(mb_type, 0, list)){
  5250. const int ref = h->ref_count[list] > 1 ? decode_cabac_mb_ref( h, list, 0 ) : 0;
  5251. fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, ref, 1);
  5252. }else
  5253. fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, (uint8_t)LIST_NOT_USED, 1); //FIXME factorize and the other fill_rect below too
  5254. }
  5255. for(list=0; list<h->list_count; list++){
  5256. if(IS_DIR(mb_type, 0, list)){
  5257. pred_motion(h, 0, 4, list, h->ref_cache[list][ scan8[0] ], &mpx, &mpy);
  5258. mx = mpx + decode_cabac_mb_mvd( h, list, 0, 0 );
  5259. my = mpy + decode_cabac_mb_mvd( h, list, 0, 1 );
  5260. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  5261. fill_rectangle(h->mvd_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx-mpx,my-mpy), 4);
  5262. fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx,my), 4);
  5263. }else
  5264. fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, 0, 4);
  5265. }
  5266. }
  5267. else if(IS_16X8(mb_type)){
  5268. for(list=0; list<h->list_count; list++){
  5269. for(i=0; i<2; i++){
  5270. if(IS_DIR(mb_type, i, list)){
  5271. const int ref= h->ref_count[list] > 1 ? decode_cabac_mb_ref( h, list, 8*i ) : 0;
  5272. fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, ref, 1);
  5273. }else
  5274. fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, (LIST_NOT_USED&0xFF), 1);
  5275. }
  5276. }
  5277. for(list=0; list<h->list_count; list++){
  5278. for(i=0; i<2; i++){
  5279. if(IS_DIR(mb_type, i, list)){
  5280. pred_16x8_motion(h, 8*i, list, h->ref_cache[list][scan8[0] + 16*i], &mpx, &mpy);
  5281. mx = mpx + decode_cabac_mb_mvd( h, list, 8*i, 0 );
  5282. my = mpy + decode_cabac_mb_mvd( h, list, 8*i, 1 );
  5283. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  5284. fill_rectangle(h->mvd_cache[list][ scan8[0] + 16*i ], 4, 2, 8, pack16to32(mx-mpx,my-mpy), 4);
  5285. fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, pack16to32(mx,my), 4);
  5286. }else{
  5287. fill_rectangle(h->mvd_cache[list][ scan8[0] + 16*i ], 4, 2, 8, 0, 4);
  5288. fill_rectangle(h-> mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, 0, 4);
  5289. }
  5290. }
  5291. }
  5292. }else{
  5293. assert(IS_8X16(mb_type));
  5294. for(list=0; list<h->list_count; list++){
  5295. for(i=0; i<2; i++){
  5296. if(IS_DIR(mb_type, i, list)){ //FIXME optimize
  5297. const int ref= h->ref_count[list] > 1 ? decode_cabac_mb_ref( h, list, 4*i ) : 0;
  5298. fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, ref, 1);
  5299. }else
  5300. fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, (LIST_NOT_USED&0xFF), 1);
  5301. }
  5302. }
  5303. for(list=0; list<h->list_count; list++){
  5304. for(i=0; i<2; i++){
  5305. if(IS_DIR(mb_type, i, list)){
  5306. pred_8x16_motion(h, i*4, list, h->ref_cache[list][ scan8[0] + 2*i ], &mpx, &mpy);
  5307. mx = mpx + decode_cabac_mb_mvd( h, list, 4*i, 0 );
  5308. my = mpy + decode_cabac_mb_mvd( h, list, 4*i, 1 );
  5309. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  5310. fill_rectangle(h->mvd_cache[list][ scan8[0] + 2*i ], 2, 4, 8, pack16to32(mx-mpx,my-mpy), 4);
  5311. fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, pack16to32(mx,my), 4);
  5312. }else{
  5313. fill_rectangle(h->mvd_cache[list][ scan8[0] + 2*i ], 2, 4, 8, 0, 4);
  5314. fill_rectangle(h-> mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, 0, 4);
  5315. }
  5316. }
  5317. }
  5318. }
  5319. }
  5320. if( IS_INTER( mb_type ) ) {
  5321. h->chroma_pred_mode_table[mb_xy] = 0;
  5322. write_back_motion( h, mb_type );
  5323. }
  5324. if( !IS_INTRA16x16( mb_type ) ) {
  5325. cbp = decode_cabac_mb_cbp_luma( h );
  5326. cbp |= decode_cabac_mb_cbp_chroma( h ) << 4;
  5327. }
  5328. h->cbp_table[mb_xy] = h->cbp = cbp;
  5329. if( dct8x8_allowed && (cbp&15) && !IS_INTRA( mb_type ) ) {
  5330. if( decode_cabac_mb_transform_size( h ) )
  5331. mb_type |= MB_TYPE_8x8DCT;
  5332. }
  5333. s->current_picture.mb_type[mb_xy]= mb_type;
  5334. if( cbp || IS_INTRA16x16( mb_type ) ) {
  5335. const uint8_t *scan, *scan8x8, *dc_scan;
  5336. const uint32_t *qmul;
  5337. int dqp;
  5338. if(IS_INTERLACED(mb_type)){
  5339. scan8x8= s->qscale ? h->field_scan8x8 : h->field_scan8x8_q0;
  5340. scan= s->qscale ? h->field_scan : h->field_scan_q0;
  5341. dc_scan= luma_dc_field_scan;
  5342. }else{
  5343. scan8x8= s->qscale ? h->zigzag_scan8x8 : h->zigzag_scan8x8_q0;
  5344. scan= s->qscale ? h->zigzag_scan : h->zigzag_scan_q0;
  5345. dc_scan= luma_dc_zigzag_scan;
  5346. }
  5347. h->last_qscale_diff = dqp = decode_cabac_mb_dqp( h );
  5348. if( dqp == INT_MIN ){
  5349. av_log(h->s.avctx, AV_LOG_ERROR, "cabac decode of qscale diff failed at %d %d\n", s->mb_x, s->mb_y);
  5350. return -1;
  5351. }
  5352. s->qscale += dqp;
  5353. if(((unsigned)s->qscale) > 51){
  5354. if(s->qscale<0) s->qscale+= 52;
  5355. else s->qscale-= 52;
  5356. }
  5357. h->chroma_qp[0] = get_chroma_qp(h, 0, s->qscale);
  5358. h->chroma_qp[1] = get_chroma_qp(h, 1, s->qscale);
  5359. if( IS_INTRA16x16( mb_type ) ) {
  5360. int i;
  5361. //av_log( s->avctx, AV_LOG_ERROR, "INTRA16x16 DC\n" );
  5362. decode_cabac_residual( h, h->mb, 0, 0, dc_scan, NULL, 16);
  5363. if( cbp&15 ) {
  5364. qmul = h->dequant4_coeff[0][s->qscale];
  5365. for( i = 0; i < 16; i++ ) {
  5366. //av_log( s->avctx, AV_LOG_ERROR, "INTRA16x16 AC:%d\n", i );
  5367. decode_cabac_residual(h, h->mb + 16*i, 1, i, scan + 1, qmul, 15);
  5368. }
  5369. } else {
  5370. fill_rectangle(&h->non_zero_count_cache[scan8[0]], 4, 4, 8, 0, 1);
  5371. }
  5372. } else {
  5373. int i8x8, i4x4;
  5374. for( i8x8 = 0; i8x8 < 4; i8x8++ ) {
  5375. if( cbp & (1<<i8x8) ) {
  5376. if( IS_8x8DCT(mb_type) ) {
  5377. decode_cabac_residual(h, h->mb + 64*i8x8, 5, 4*i8x8,
  5378. scan8x8, h->dequant8_coeff[IS_INTRA( mb_type ) ? 0:1][s->qscale], 64);
  5379. } else {
  5380. qmul = h->dequant4_coeff[IS_INTRA( mb_type ) ? 0:3][s->qscale];
  5381. for( i4x4 = 0; i4x4 < 4; i4x4++ ) {
  5382. const int index = 4*i8x8 + i4x4;
  5383. //av_log( s->avctx, AV_LOG_ERROR, "Luma4x4: %d\n", index );
  5384. //START_TIMER
  5385. decode_cabac_residual(h, h->mb + 16*index, 2, index, scan, qmul, 16);
  5386. //STOP_TIMER("decode_residual")
  5387. }
  5388. }
  5389. } else {
  5390. uint8_t * const nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
  5391. nnz[0] = nnz[1] = nnz[8] = nnz[9] = 0;
  5392. }
  5393. }
  5394. }
  5395. if( cbp&0x30 ){
  5396. int c;
  5397. for( c = 0; c < 2; c++ ) {
  5398. //av_log( s->avctx, AV_LOG_ERROR, "INTRA C%d-DC\n",c );
  5399. decode_cabac_residual(h, h->mb + 256 + 16*4*c, 3, c, chroma_dc_scan, NULL, 4);
  5400. }
  5401. }
  5402. if( cbp&0x20 ) {
  5403. int c, i;
  5404. for( c = 0; c < 2; c++ ) {
  5405. qmul = h->dequant4_coeff[c+1+(IS_INTRA( mb_type ) ? 0:3)][h->chroma_qp[c]];
  5406. for( i = 0; i < 4; i++ ) {
  5407. const int index = 16 + 4 * c + i;
  5408. //av_log( s->avctx, AV_LOG_ERROR, "INTRA C%d-AC %d\n",c, index - 16 );
  5409. decode_cabac_residual(h, h->mb + 16*index, 4, index - 16, scan + 1, qmul, 15);
  5410. }
  5411. }
  5412. } else {
  5413. uint8_t * const nnz= &h->non_zero_count_cache[0];
  5414. nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
  5415. nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
  5416. }
  5417. } else {
  5418. uint8_t * const nnz= &h->non_zero_count_cache[0];
  5419. fill_rectangle(&nnz[scan8[0]], 4, 4, 8, 0, 1);
  5420. nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
  5421. nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
  5422. h->last_qscale_diff = 0;
  5423. }
  5424. s->current_picture.qscale_table[mb_xy]= s->qscale;
  5425. write_back_non_zero_count(h);
  5426. if(MB_MBAFF){
  5427. h->ref_count[0] >>= 1;
  5428. h->ref_count[1] >>= 1;
  5429. }
  5430. return 0;
  5431. }
  5432. static void filter_mb_edgev( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int qp ) {
  5433. int i, d;
  5434. const int index_a = qp + h->slice_alpha_c0_offset;
  5435. const int alpha = (alpha_table+52)[index_a];
  5436. const int beta = (beta_table+52)[qp + h->slice_beta_offset];
  5437. if( bS[0] < 4 ) {
  5438. int8_t tc[4];
  5439. for(i=0; i<4; i++)
  5440. tc[i] = bS[i] ? (tc0_table+52)[index_a][bS[i] - 1] : -1;
  5441. h->s.dsp.h264_h_loop_filter_luma(pix, stride, alpha, beta, tc);
  5442. } else {
  5443. /* 16px edge length, because bS=4 is triggered by being at
  5444. * the edge of an intra MB, so all 4 bS are the same */
  5445. for( d = 0; d < 16; d++ ) {
  5446. const int p0 = pix[-1];
  5447. const int p1 = pix[-2];
  5448. const int p2 = pix[-3];
  5449. const int q0 = pix[0];
  5450. const int q1 = pix[1];
  5451. const int q2 = pix[2];
  5452. if( FFABS( p0 - q0 ) < alpha &&
  5453. FFABS( p1 - p0 ) < beta &&
  5454. FFABS( q1 - q0 ) < beta ) {
  5455. if(FFABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){
  5456. if( FFABS( p2 - p0 ) < beta)
  5457. {
  5458. const int p3 = pix[-4];
  5459. /* p0', p1', p2' */
  5460. pix[-1] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3;
  5461. pix[-2] = ( p2 + p1 + p0 + q0 + 2 ) >> 2;
  5462. pix[-3] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3;
  5463. } else {
  5464. /* p0' */
  5465. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5466. }
  5467. if( FFABS( q2 - q0 ) < beta)
  5468. {
  5469. const int q3 = pix[3];
  5470. /* q0', q1', q2' */
  5471. pix[0] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3;
  5472. pix[1] = ( p0 + q0 + q1 + q2 + 2 ) >> 2;
  5473. pix[2] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3;
  5474. } else {
  5475. /* q0' */
  5476. pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5477. }
  5478. }else{
  5479. /* p0', q0' */
  5480. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5481. pix[ 0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5482. }
  5483. tprintf(h->s.avctx, "filter_mb_edgev i:%d d:%d\n# bS:4 -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, d, p2, p1, p0, q0, q1, q2, pix[-2], pix[-1], pix[0], pix[1]);
  5484. }
  5485. pix += stride;
  5486. }
  5487. }
  5488. }
  5489. static void filter_mb_edgecv( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int qp ) {
  5490. int i;
  5491. const int index_a = qp + h->slice_alpha_c0_offset;
  5492. const int alpha = (alpha_table+52)[index_a];
  5493. const int beta = (beta_table+52)[qp + h->slice_beta_offset];
  5494. if( bS[0] < 4 ) {
  5495. int8_t tc[4];
  5496. for(i=0; i<4; i++)
  5497. tc[i] = bS[i] ? (tc0_table+52)[index_a][bS[i] - 1] + 1 : 0;
  5498. h->s.dsp.h264_h_loop_filter_chroma(pix, stride, alpha, beta, tc);
  5499. } else {
  5500. h->s.dsp.h264_h_loop_filter_chroma_intra(pix, stride, alpha, beta);
  5501. }
  5502. }
  5503. static void filter_mb_mbaff_edgev( H264Context *h, uint8_t *pix, int stride, int16_t bS[8], int qp[2] ) {
  5504. int i;
  5505. for( i = 0; i < 16; i++, pix += stride) {
  5506. int index_a;
  5507. int alpha;
  5508. int beta;
  5509. int qp_index;
  5510. int bS_index = (i >> 1);
  5511. if (!MB_FIELD) {
  5512. bS_index &= ~1;
  5513. bS_index |= (i & 1);
  5514. }
  5515. if( bS[bS_index] == 0 ) {
  5516. continue;
  5517. }
  5518. qp_index = MB_FIELD ? (i >> 3) : (i & 1);
  5519. index_a = qp[qp_index] + h->slice_alpha_c0_offset;
  5520. alpha = (alpha_table+52)[index_a];
  5521. beta = (beta_table+52)[qp[qp_index] + h->slice_beta_offset];
  5522. if( bS[bS_index] < 4 ) {
  5523. const int tc0 = (tc0_table+52)[index_a][bS[bS_index] - 1];
  5524. const int p0 = pix[-1];
  5525. const int p1 = pix[-2];
  5526. const int p2 = pix[-3];
  5527. const int q0 = pix[0];
  5528. const int q1 = pix[1];
  5529. const int q2 = pix[2];
  5530. if( FFABS( p0 - q0 ) < alpha &&
  5531. FFABS( p1 - p0 ) < beta &&
  5532. FFABS( q1 - q0 ) < beta ) {
  5533. int tc = tc0;
  5534. int i_delta;
  5535. if( FFABS( p2 - p0 ) < beta ) {
  5536. pix[-2] = p1 + av_clip( ( p2 + ( ( p0 + q0 + 1 ) >> 1 ) - ( p1 << 1 ) ) >> 1, -tc0, tc0 );
  5537. tc++;
  5538. }
  5539. if( FFABS( q2 - q0 ) < beta ) {
  5540. pix[1] = q1 + av_clip( ( q2 + ( ( p0 + q0 + 1 ) >> 1 ) - ( q1 << 1 ) ) >> 1, -tc0, tc0 );
  5541. tc++;
  5542. }
  5543. i_delta = av_clip( (((q0 - p0 ) << 2) + (p1 - q1) + 4) >> 3, -tc, tc );
  5544. pix[-1] = av_clip_uint8( p0 + i_delta ); /* p0' */
  5545. pix[0] = av_clip_uint8( q0 - i_delta ); /* q0' */
  5546. tprintf(h->s.avctx, "filter_mb_mbaff_edgev i:%d, qp:%d, indexA:%d, alpha:%d, beta:%d, tc:%d\n# bS:%d -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, qp[qp_index], index_a, alpha, beta, tc, bS[bS_index], pix[-3], p1, p0, q0, q1, pix[2], p1, pix[-1], pix[0], q1);
  5547. }
  5548. }else{
  5549. const int p0 = pix[-1];
  5550. const int p1 = pix[-2];
  5551. const int p2 = pix[-3];
  5552. const int q0 = pix[0];
  5553. const int q1 = pix[1];
  5554. const int q2 = pix[2];
  5555. if( FFABS( p0 - q0 ) < alpha &&
  5556. FFABS( p1 - p0 ) < beta &&
  5557. FFABS( q1 - q0 ) < beta ) {
  5558. if(FFABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){
  5559. if( FFABS( p2 - p0 ) < beta)
  5560. {
  5561. const int p3 = pix[-4];
  5562. /* p0', p1', p2' */
  5563. pix[-1] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3;
  5564. pix[-2] = ( p2 + p1 + p0 + q0 + 2 ) >> 2;
  5565. pix[-3] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3;
  5566. } else {
  5567. /* p0' */
  5568. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5569. }
  5570. if( FFABS( q2 - q0 ) < beta)
  5571. {
  5572. const int q3 = pix[3];
  5573. /* q0', q1', q2' */
  5574. pix[0] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3;
  5575. pix[1] = ( p0 + q0 + q1 + q2 + 2 ) >> 2;
  5576. pix[2] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3;
  5577. } else {
  5578. /* q0' */
  5579. pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5580. }
  5581. }else{
  5582. /* p0', q0' */
  5583. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5584. pix[ 0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5585. }
  5586. tprintf(h->s.avctx, "filter_mb_mbaff_edgev i:%d, qp:%d, indexA:%d, alpha:%d, beta:%d\n# bS:4 -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x, %02x, %02x]\n", i, qp[qp_index], index_a, alpha, beta, p2, p1, p0, q0, q1, q2, pix[-3], pix[-2], pix[-1], pix[0], pix[1], pix[2]);
  5587. }
  5588. }
  5589. }
  5590. }
  5591. static void filter_mb_mbaff_edgecv( H264Context *h, uint8_t *pix, int stride, int16_t bS[8], int qp[2] ) {
  5592. int i;
  5593. for( i = 0; i < 8; i++, pix += stride) {
  5594. int index_a;
  5595. int alpha;
  5596. int beta;
  5597. int qp_index;
  5598. int bS_index = i;
  5599. if( bS[bS_index] == 0 ) {
  5600. continue;
  5601. }
  5602. qp_index = MB_FIELD ? (i >> 2) : (i & 1);
  5603. index_a = qp[qp_index] + h->slice_alpha_c0_offset;
  5604. alpha = (alpha_table+52)[index_a];
  5605. beta = (beta_table+52)[qp[qp_index] + h->slice_beta_offset];
  5606. if( bS[bS_index] < 4 ) {
  5607. const int tc = (tc0_table+52)[index_a][bS[bS_index] - 1] + 1;
  5608. const int p0 = pix[-1];
  5609. const int p1 = pix[-2];
  5610. const int q0 = pix[0];
  5611. const int q1 = pix[1];
  5612. if( FFABS( p0 - q0 ) < alpha &&
  5613. FFABS( p1 - p0 ) < beta &&
  5614. FFABS( q1 - q0 ) < beta ) {
  5615. const int i_delta = av_clip( (((q0 - p0 ) << 2) + (p1 - q1) + 4) >> 3, -tc, tc );
  5616. pix[-1] = av_clip_uint8( p0 + i_delta ); /* p0' */
  5617. pix[0] = av_clip_uint8( q0 - i_delta ); /* q0' */
  5618. tprintf(h->s.avctx, "filter_mb_mbaff_edgecv i:%d, qp:%d, indexA:%d, alpha:%d, beta:%d, tc:%d\n# bS:%d -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, qp[qp_index], index_a, alpha, beta, tc, bS[bS_index], pix[-3], p1, p0, q0, q1, pix[2], p1, pix[-1], pix[0], q1);
  5619. }
  5620. }else{
  5621. const int p0 = pix[-1];
  5622. const int p1 = pix[-2];
  5623. const int q0 = pix[0];
  5624. const int q1 = pix[1];
  5625. if( FFABS( p0 - q0 ) < alpha &&
  5626. FFABS( p1 - p0 ) < beta &&
  5627. FFABS( q1 - q0 ) < beta ) {
  5628. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2; /* p0' */
  5629. pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2; /* q0' */
  5630. tprintf(h->s.avctx, "filter_mb_mbaff_edgecv i:%d\n# bS:4 -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x, %02x, %02x]\n", i, pix[-3], p1, p0, q0, q1, pix[2], pix[-3], pix[-2], pix[-1], pix[0], pix[1], pix[2]);
  5631. }
  5632. }
  5633. }
  5634. }
  5635. static void filter_mb_edgeh( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int qp ) {
  5636. int i, d;
  5637. const int index_a = qp + h->slice_alpha_c0_offset;
  5638. const int alpha = (alpha_table+52)[index_a];
  5639. const int beta = (beta_table+52)[qp + h->slice_beta_offset];
  5640. const int pix_next = stride;
  5641. if( bS[0] < 4 ) {
  5642. int8_t tc[4];
  5643. for(i=0; i<4; i++)
  5644. tc[i] = bS[i] ? (tc0_table+52)[index_a][bS[i] - 1] : -1;
  5645. h->s.dsp.h264_v_loop_filter_luma(pix, stride, alpha, beta, tc);
  5646. } else {
  5647. /* 16px edge length, see filter_mb_edgev */
  5648. for( d = 0; d < 16; d++ ) {
  5649. const int p0 = pix[-1*pix_next];
  5650. const int p1 = pix[-2*pix_next];
  5651. const int p2 = pix[-3*pix_next];
  5652. const int q0 = pix[0];
  5653. const int q1 = pix[1*pix_next];
  5654. const int q2 = pix[2*pix_next];
  5655. if( FFABS( p0 - q0 ) < alpha &&
  5656. FFABS( p1 - p0 ) < beta &&
  5657. FFABS( q1 - q0 ) < beta ) {
  5658. const int p3 = pix[-4*pix_next];
  5659. const int q3 = pix[ 3*pix_next];
  5660. if(FFABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){
  5661. if( FFABS( p2 - p0 ) < beta) {
  5662. /* p0', p1', p2' */
  5663. pix[-1*pix_next] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3;
  5664. pix[-2*pix_next] = ( p2 + p1 + p0 + q0 + 2 ) >> 2;
  5665. pix[-3*pix_next] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3;
  5666. } else {
  5667. /* p0' */
  5668. pix[-1*pix_next] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5669. }
  5670. if( FFABS( q2 - q0 ) < beta) {
  5671. /* q0', q1', q2' */
  5672. pix[0*pix_next] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3;
  5673. pix[1*pix_next] = ( p0 + q0 + q1 + q2 + 2 ) >> 2;
  5674. pix[2*pix_next] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3;
  5675. } else {
  5676. /* q0' */
  5677. pix[0*pix_next] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5678. }
  5679. }else{
  5680. /* p0', q0' */
  5681. pix[-1*pix_next] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5682. pix[ 0*pix_next] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5683. }
  5684. tprintf(h->s.avctx, "filter_mb_edgeh i:%d d:%d, qp:%d, indexA:%d, alpha:%d, beta:%d\n# bS:%d -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, d, qp, index_a, alpha, beta, bS[i], p2, p1, p0, q0, q1, q2, pix[-2*pix_next], pix[-pix_next], pix[0], pix[pix_next]);
  5685. }
  5686. pix++;
  5687. }
  5688. }
  5689. }
  5690. static void filter_mb_edgech( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int qp ) {
  5691. int i;
  5692. const int index_a = qp + h->slice_alpha_c0_offset;
  5693. const int alpha = (alpha_table+52)[index_a];
  5694. const int beta = (beta_table+52)[qp + h->slice_beta_offset];
  5695. if( bS[0] < 4 ) {
  5696. int8_t tc[4];
  5697. for(i=0; i<4; i++)
  5698. tc[i] = bS[i] ? (tc0_table+52)[index_a][bS[i] - 1] + 1 : 0;
  5699. h->s.dsp.h264_v_loop_filter_chroma(pix, stride, alpha, beta, tc);
  5700. } else {
  5701. h->s.dsp.h264_v_loop_filter_chroma_intra(pix, stride, alpha, beta);
  5702. }
  5703. }
  5704. static void filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize) {
  5705. MpegEncContext * const s = &h->s;
  5706. int mb_y_firstrow = s->picture_structure == PICT_BOTTOM_FIELD;
  5707. int mb_xy, mb_type;
  5708. int qp, qp0, qp1, qpc, qpc0, qpc1, qp_thresh;
  5709. mb_xy = h->mb_xy;
  5710. if(mb_x==0 || mb_y==mb_y_firstrow || !s->dsp.h264_loop_filter_strength || h->pps.chroma_qp_diff ||
  5711. 1 ||
  5712. (h->deblocking_filter == 2 && (h->slice_table[mb_xy] != h->slice_table[h->top_mb_xy] ||
  5713. h->slice_table[mb_xy] != h->slice_table[mb_xy - 1]))) {
  5714. filter_mb(h, mb_x, mb_y, img_y, img_cb, img_cr, linesize, uvlinesize);
  5715. return;
  5716. }
  5717. assert(!FRAME_MBAFF);
  5718. mb_type = s->current_picture.mb_type[mb_xy];
  5719. qp = s->current_picture.qscale_table[mb_xy];
  5720. qp0 = s->current_picture.qscale_table[mb_xy-1];
  5721. qp1 = s->current_picture.qscale_table[h->top_mb_xy];
  5722. qpc = get_chroma_qp( h, 0, qp );
  5723. qpc0 = get_chroma_qp( h, 0, qp0 );
  5724. qpc1 = get_chroma_qp( h, 0, qp1 );
  5725. qp0 = (qp + qp0 + 1) >> 1;
  5726. qp1 = (qp + qp1 + 1) >> 1;
  5727. qpc0 = (qpc + qpc0 + 1) >> 1;
  5728. qpc1 = (qpc + qpc1 + 1) >> 1;
  5729. qp_thresh = 15 - h->slice_alpha_c0_offset;
  5730. if(qp <= qp_thresh && qp0 <= qp_thresh && qp1 <= qp_thresh &&
  5731. qpc <= qp_thresh && qpc0 <= qp_thresh && qpc1 <= qp_thresh)
  5732. return;
  5733. if( IS_INTRA(mb_type) ) {
  5734. int16_t bS4[4] = {4,4,4,4};
  5735. int16_t bS3[4] = {3,3,3,3};
  5736. int16_t *bSH = FIELD_PICTURE ? bS3 : bS4;
  5737. if( IS_8x8DCT(mb_type) ) {
  5738. filter_mb_edgev( h, &img_y[4*0], linesize, bS4, qp0 );
  5739. filter_mb_edgev( h, &img_y[4*2], linesize, bS3, qp );
  5740. filter_mb_edgeh( h, &img_y[4*0*linesize], linesize, bSH, qp1 );
  5741. filter_mb_edgeh( h, &img_y[4*2*linesize], linesize, bS3, qp );
  5742. } else {
  5743. filter_mb_edgev( h, &img_y[4*0], linesize, bS4, qp0 );
  5744. filter_mb_edgev( h, &img_y[4*1], linesize, bS3, qp );
  5745. filter_mb_edgev( h, &img_y[4*2], linesize, bS3, qp );
  5746. filter_mb_edgev( h, &img_y[4*3], linesize, bS3, qp );
  5747. filter_mb_edgeh( h, &img_y[4*0*linesize], linesize, bSH, qp1 );
  5748. filter_mb_edgeh( h, &img_y[4*1*linesize], linesize, bS3, qp );
  5749. filter_mb_edgeh( h, &img_y[4*2*linesize], linesize, bS3, qp );
  5750. filter_mb_edgeh( h, &img_y[4*3*linesize], linesize, bS3, qp );
  5751. }
  5752. filter_mb_edgecv( h, &img_cb[2*0], uvlinesize, bS4, qpc0 );
  5753. filter_mb_edgecv( h, &img_cb[2*2], uvlinesize, bS3, qpc );
  5754. filter_mb_edgecv( h, &img_cr[2*0], uvlinesize, bS4, qpc0 );
  5755. filter_mb_edgecv( h, &img_cr[2*2], uvlinesize, bS3, qpc );
  5756. filter_mb_edgech( h, &img_cb[2*0*uvlinesize], uvlinesize, bSH, qpc1 );
  5757. filter_mb_edgech( h, &img_cb[2*2*uvlinesize], uvlinesize, bS3, qpc );
  5758. filter_mb_edgech( h, &img_cr[2*0*uvlinesize], uvlinesize, bSH, qpc1 );
  5759. filter_mb_edgech( h, &img_cr[2*2*uvlinesize], uvlinesize, bS3, qpc );
  5760. return;
  5761. } else {
  5762. DECLARE_ALIGNED_8(int16_t, bS[2][4][4]);
  5763. uint64_t (*bSv)[4] = (uint64_t(*)[4])bS;
  5764. int edges;
  5765. if( IS_8x8DCT(mb_type) && (h->cbp&7) == 7 ) {
  5766. edges = 4;
  5767. bSv[0][0] = bSv[0][2] = bSv[1][0] = bSv[1][2] = 0x0002000200020002ULL;
  5768. } else {
  5769. int mask_edge1 = (mb_type & (MB_TYPE_16x16 | MB_TYPE_8x16)) ? 3 :
  5770. (mb_type & MB_TYPE_16x8) ? 1 : 0;
  5771. int mask_edge0 = (mb_type & (MB_TYPE_16x16 | MB_TYPE_8x16))
  5772. && (s->current_picture.mb_type[mb_xy-1] & (MB_TYPE_16x16 | MB_TYPE_8x16))
  5773. ? 3 : 0;
  5774. int step = IS_8x8DCT(mb_type) ? 2 : 1;
  5775. edges = (mb_type & MB_TYPE_16x16) && !(h->cbp & 15) ? 1 : 4;
  5776. s->dsp.h264_loop_filter_strength( bS, h->non_zero_count_cache, h->ref_cache, h->mv_cache,
  5777. (h->slice_type_nos == FF_B_TYPE), edges, step, mask_edge0, mask_edge1, FIELD_PICTURE);
  5778. }
  5779. if( IS_INTRA(s->current_picture.mb_type[mb_xy-1]) )
  5780. bSv[0][0] = 0x0004000400040004ULL;
  5781. if( IS_INTRA(s->current_picture.mb_type[h->top_mb_xy]) )
  5782. bSv[1][0] = FIELD_PICTURE ? 0x0003000300030003ULL : 0x0004000400040004ULL;
  5783. #define FILTER(hv,dir,edge)\
  5784. if(bSv[dir][edge]) {\
  5785. filter_mb_edge##hv( h, &img_y[4*edge*(dir?linesize:1)], linesize, bS[dir][edge], edge ? qp : qp##dir );\
  5786. if(!(edge&1)) {\
  5787. filter_mb_edgec##hv( h, &img_cb[2*edge*(dir?uvlinesize:1)], uvlinesize, bS[dir][edge], edge ? qpc : qpc##dir );\
  5788. filter_mb_edgec##hv( h, &img_cr[2*edge*(dir?uvlinesize:1)], uvlinesize, bS[dir][edge], edge ? qpc : qpc##dir );\
  5789. }\
  5790. }
  5791. if( edges == 1 ) {
  5792. FILTER(v,0,0);
  5793. FILTER(h,1,0);
  5794. } else if( IS_8x8DCT(mb_type) ) {
  5795. FILTER(v,0,0);
  5796. FILTER(v,0,2);
  5797. FILTER(h,1,0);
  5798. FILTER(h,1,2);
  5799. } else {
  5800. FILTER(v,0,0);
  5801. FILTER(v,0,1);
  5802. FILTER(v,0,2);
  5803. FILTER(v,0,3);
  5804. FILTER(h,1,0);
  5805. FILTER(h,1,1);
  5806. FILTER(h,1,2);
  5807. FILTER(h,1,3);
  5808. }
  5809. #undef FILTER
  5810. }
  5811. }
  5812. static void filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize) {
  5813. MpegEncContext * const s = &h->s;
  5814. const int mb_xy= mb_x + mb_y*s->mb_stride;
  5815. const int mb_type = s->current_picture.mb_type[mb_xy];
  5816. const int mvy_limit = IS_INTERLACED(mb_type) ? 2 : 4;
  5817. int first_vertical_edge_done = 0;
  5818. int dir;
  5819. //for sufficiently low qp, filtering wouldn't do anything
  5820. //this is a conservative estimate: could also check beta_offset and more accurate chroma_qp
  5821. if(!FRAME_MBAFF){
  5822. int qp_thresh = 15 - h->slice_alpha_c0_offset - FFMAX3(0, h->pps.chroma_qp_index_offset[0], h->pps.chroma_qp_index_offset[1]);
  5823. int qp = s->current_picture.qscale_table[mb_xy];
  5824. if(qp <= qp_thresh
  5825. && (mb_x == 0 || ((qp + s->current_picture.qscale_table[mb_xy-1] + 1)>>1) <= qp_thresh)
  5826. && (mb_y == 0 || ((qp + s->current_picture.qscale_table[h->top_mb_xy] + 1)>>1) <= qp_thresh)){
  5827. return;
  5828. }
  5829. }
  5830. if (FRAME_MBAFF
  5831. // left mb is in picture
  5832. && h->slice_table[mb_xy-1] != 255
  5833. // and current and left pair do not have the same interlaced type
  5834. && (IS_INTERLACED(mb_type) != IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]))
  5835. // and left mb is in the same slice if deblocking_filter == 2
  5836. && (h->deblocking_filter!=2 || h->slice_table[mb_xy-1] == h->slice_table[mb_xy])) {
  5837. /* First vertical edge is different in MBAFF frames
  5838. * There are 8 different bS to compute and 2 different Qp
  5839. */
  5840. const int pair_xy = mb_x + (mb_y&~1)*s->mb_stride;
  5841. const int left_mb_xy[2] = { pair_xy-1, pair_xy-1+s->mb_stride };
  5842. int16_t bS[8];
  5843. int qp[2];
  5844. int bqp[2];
  5845. int rqp[2];
  5846. int mb_qp, mbn0_qp, mbn1_qp;
  5847. int i;
  5848. first_vertical_edge_done = 1;
  5849. if( IS_INTRA(mb_type) )
  5850. bS[0] = bS[1] = bS[2] = bS[3] = bS[4] = bS[5] = bS[6] = bS[7] = 4;
  5851. else {
  5852. for( i = 0; i < 8; i++ ) {
  5853. int mbn_xy = MB_FIELD ? left_mb_xy[i>>2] : left_mb_xy[i&1];
  5854. if( IS_INTRA( s->current_picture.mb_type[mbn_xy] ) )
  5855. bS[i] = 4;
  5856. else if( h->non_zero_count_cache[12+8*(i>>1)] != 0 ||
  5857. /* FIXME: with 8x8dct + cavlc, should check cbp instead of nnz */
  5858. h->non_zero_count[mbn_xy][MB_FIELD ? i&3 : (i>>2)+(mb_y&1)*2] )
  5859. bS[i] = 2;
  5860. else
  5861. bS[i] = 1;
  5862. }
  5863. }
  5864. mb_qp = s->current_picture.qscale_table[mb_xy];
  5865. mbn0_qp = s->current_picture.qscale_table[left_mb_xy[0]];
  5866. mbn1_qp = s->current_picture.qscale_table[left_mb_xy[1]];
  5867. qp[0] = ( mb_qp + mbn0_qp + 1 ) >> 1;
  5868. bqp[0] = ( get_chroma_qp( h, 0, mb_qp ) +
  5869. get_chroma_qp( h, 0, mbn0_qp ) + 1 ) >> 1;
  5870. rqp[0] = ( get_chroma_qp( h, 1, mb_qp ) +
  5871. get_chroma_qp( h, 1, mbn0_qp ) + 1 ) >> 1;
  5872. qp[1] = ( mb_qp + mbn1_qp + 1 ) >> 1;
  5873. bqp[1] = ( get_chroma_qp( h, 0, mb_qp ) +
  5874. get_chroma_qp( h, 0, mbn1_qp ) + 1 ) >> 1;
  5875. rqp[1] = ( get_chroma_qp( h, 1, mb_qp ) +
  5876. get_chroma_qp( h, 1, mbn1_qp ) + 1 ) >> 1;
  5877. /* Filter edge */
  5878. tprintf(s->avctx, "filter mb:%d/%d MBAFF, QPy:%d/%d, QPb:%d/%d QPr:%d/%d ls:%d uvls:%d", mb_x, mb_y, qp[0], qp[1], bqp[0], bqp[1], rqp[0], rqp[1], linesize, uvlinesize);
  5879. { int i; for (i = 0; i < 8; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); }
  5880. filter_mb_mbaff_edgev ( h, &img_y [0], linesize, bS, qp );
  5881. filter_mb_mbaff_edgecv( h, &img_cb[0], uvlinesize, bS, bqp );
  5882. filter_mb_mbaff_edgecv( h, &img_cr[0], uvlinesize, bS, rqp );
  5883. }
  5884. /* dir : 0 -> vertical edge, 1 -> horizontal edge */
  5885. for( dir = 0; dir < 2; dir++ )
  5886. {
  5887. int edge;
  5888. const int mbm_xy = dir == 0 ? mb_xy -1 : h->top_mb_xy;
  5889. const int mbm_type = s->current_picture.mb_type[mbm_xy];
  5890. int (*ref2frm) [48+2] = h->ref2frm[ h->slice_num &15 ];
  5891. int (*ref2frmm)[48+2] = h->ref2frm[ h->slice_table[mbm_xy]&15 ];
  5892. int start = h->slice_table[mbm_xy] == 255 ? 1 : 0;
  5893. const int edges = (mb_type & (MB_TYPE_16x16|MB_TYPE_SKIP))
  5894. == (MB_TYPE_16x16|MB_TYPE_SKIP) ? 1 : 4;
  5895. // how often to recheck mv-based bS when iterating between edges
  5896. const int mask_edge = (mb_type & (MB_TYPE_16x16 | (MB_TYPE_16x8 << dir))) ? 3 :
  5897. (mb_type & (MB_TYPE_8x16 >> dir)) ? 1 : 0;
  5898. // how often to recheck mv-based bS when iterating along each edge
  5899. const int mask_par0 = mb_type & (MB_TYPE_16x16 | (MB_TYPE_8x16 >> dir));
  5900. if (first_vertical_edge_done) {
  5901. start = 1;
  5902. first_vertical_edge_done = 0;
  5903. }
  5904. if (h->deblocking_filter==2 && h->slice_table[mbm_xy] != h->slice_table[mb_xy])
  5905. start = 1;
  5906. if (FRAME_MBAFF && (dir == 1) && ((mb_y&1) == 0) && start == 0
  5907. && !IS_INTERLACED(mb_type)
  5908. && IS_INTERLACED(mbm_type)
  5909. ) {
  5910. // This is a special case in the norm where the filtering must
  5911. // be done twice (one each of the field) even if we are in a
  5912. // frame macroblock.
  5913. //
  5914. static const int nnz_idx[4] = {4,5,6,3};
  5915. unsigned int tmp_linesize = 2 * linesize;
  5916. unsigned int tmp_uvlinesize = 2 * uvlinesize;
  5917. int mbn_xy = mb_xy - 2 * s->mb_stride;
  5918. int qp;
  5919. int i, j;
  5920. int16_t bS[4];
  5921. for(j=0; j<2; j++, mbn_xy += s->mb_stride){
  5922. if( IS_INTRA(mb_type) ||
  5923. IS_INTRA(s->current_picture.mb_type[mbn_xy]) ) {
  5924. bS[0] = bS[1] = bS[2] = bS[3] = 3;
  5925. } else {
  5926. const uint8_t *mbn_nnz = h->non_zero_count[mbn_xy];
  5927. for( i = 0; i < 4; i++ ) {
  5928. if( h->non_zero_count_cache[scan8[0]+i] != 0 ||
  5929. mbn_nnz[nnz_idx[i]] != 0 )
  5930. bS[i] = 2;
  5931. else
  5932. bS[i] = 1;
  5933. }
  5934. }
  5935. // Do not use s->qscale as luma quantizer because it has not the same
  5936. // value in IPCM macroblocks.
  5937. qp = ( s->current_picture.qscale_table[mb_xy] + s->current_picture.qscale_table[mbn_xy] + 1 ) >> 1;
  5938. tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d ls:%d uvls:%d", mb_x, mb_y, dir, edge, qp, tmp_linesize, tmp_uvlinesize);
  5939. { int i; for (i = 0; i < 4; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); }
  5940. filter_mb_edgeh( h, &img_y[j*linesize], tmp_linesize, bS, qp );
  5941. filter_mb_edgech( h, &img_cb[j*uvlinesize], tmp_uvlinesize, bS,
  5942. ( h->chroma_qp[0] + get_chroma_qp( h, 0, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
  5943. filter_mb_edgech( h, &img_cr[j*uvlinesize], tmp_uvlinesize, bS,
  5944. ( h->chroma_qp[1] + get_chroma_qp( h, 1, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
  5945. }
  5946. start = 1;
  5947. }
  5948. /* Calculate bS */
  5949. for( edge = start; edge < edges; edge++ ) {
  5950. /* mbn_xy: neighbor macroblock */
  5951. const int mbn_xy = edge > 0 ? mb_xy : mbm_xy;
  5952. const int mbn_type = s->current_picture.mb_type[mbn_xy];
  5953. int (*ref2frmn)[48+2] = edge > 0 ? ref2frm : ref2frmm;
  5954. int16_t bS[4];
  5955. int qp;
  5956. if( (edge&1) && IS_8x8DCT(mb_type) )
  5957. continue;
  5958. if( IS_INTRA(mb_type) ||
  5959. IS_INTRA(mbn_type) ) {
  5960. int value;
  5961. if (edge == 0) {
  5962. if ( (!IS_INTERLACED(mb_type) && !IS_INTERLACED(mbm_type))
  5963. || ((FRAME_MBAFF || (s->picture_structure != PICT_FRAME)) && (dir == 0))
  5964. ) {
  5965. value = 4;
  5966. } else {
  5967. value = 3;
  5968. }
  5969. } else {
  5970. value = 3;
  5971. }
  5972. bS[0] = bS[1] = bS[2] = bS[3] = value;
  5973. } else {
  5974. int i, l;
  5975. int mv_done;
  5976. if( edge & mask_edge ) {
  5977. bS[0] = bS[1] = bS[2] = bS[3] = 0;
  5978. mv_done = 1;
  5979. }
  5980. else if( FRAME_MBAFF && IS_INTERLACED(mb_type ^ mbn_type)) {
  5981. bS[0] = bS[1] = bS[2] = bS[3] = 1;
  5982. mv_done = 1;
  5983. }
  5984. else if( mask_par0 && (edge || (mbn_type & (MB_TYPE_16x16 | (MB_TYPE_8x16 >> dir)))) ) {
  5985. int b_idx= 8 + 4 + edge * (dir ? 8:1);
  5986. int bn_idx= b_idx - (dir ? 8:1);
  5987. int v = 0;
  5988. for( l = 0; !v && l < 1 + (h->slice_type_nos == FF_B_TYPE); l++ ) {
  5989. v |= ref2frm[l][h->ref_cache[l][b_idx]+2] != ref2frmn[l][h->ref_cache[l][bn_idx]+2] ||
  5990. FFABS( h->mv_cache[l][b_idx][0] - h->mv_cache[l][bn_idx][0] ) >= 4 ||
  5991. FFABS( h->mv_cache[l][b_idx][1] - h->mv_cache[l][bn_idx][1] ) >= mvy_limit;
  5992. }
  5993. if(h->slice_type_nos == FF_B_TYPE && v){
  5994. v=0;
  5995. for( l = 0; !v && l < 2; l++ ) {
  5996. int ln= 1-l;
  5997. v |= ref2frm[l][h->ref_cache[l][b_idx]+2] != ref2frmn[ln][h->ref_cache[ln][bn_idx]+2] ||
  5998. FFABS( h->mv_cache[l][b_idx][0] - h->mv_cache[ln][bn_idx][0] ) >= 4 ||
  5999. FFABS( h->mv_cache[l][b_idx][1] - h->mv_cache[ln][bn_idx][1] ) >= mvy_limit;
  6000. }
  6001. }
  6002. bS[0] = bS[1] = bS[2] = bS[3] = v;
  6003. mv_done = 1;
  6004. }
  6005. else
  6006. mv_done = 0;
  6007. for( i = 0; i < 4; i++ ) {
  6008. int x = dir == 0 ? edge : i;
  6009. int y = dir == 0 ? i : edge;
  6010. int b_idx= 8 + 4 + x + 8*y;
  6011. int bn_idx= b_idx - (dir ? 8:1);
  6012. if( h->non_zero_count_cache[b_idx] != 0 ||
  6013. h->non_zero_count_cache[bn_idx] != 0 ) {
  6014. bS[i] = 2;
  6015. }
  6016. else if(!mv_done)
  6017. {
  6018. bS[i] = 0;
  6019. for( l = 0; l < 1 + (h->slice_type_nos == FF_B_TYPE); l++ ) {
  6020. if( ref2frm[l][h->ref_cache[l][b_idx]+2] != ref2frmn[l][h->ref_cache[l][bn_idx]+2] ||
  6021. FFABS( h->mv_cache[l][b_idx][0] - h->mv_cache[l][bn_idx][0] ) >= 4 ||
  6022. FFABS( h->mv_cache[l][b_idx][1] - h->mv_cache[l][bn_idx][1] ) >= mvy_limit ) {
  6023. bS[i] = 1;
  6024. break;
  6025. }
  6026. }
  6027. if(h->slice_type_nos == FF_B_TYPE && bS[i]){
  6028. bS[i] = 0;
  6029. for( l = 0; l < 2; l++ ) {
  6030. int ln= 1-l;
  6031. if( ref2frm[l][h->ref_cache[l][b_idx]+2] != ref2frmn[ln][h->ref_cache[ln][bn_idx]+2] ||
  6032. FFABS( h->mv_cache[l][b_idx][0] - h->mv_cache[ln][bn_idx][0] ) >= 4 ||
  6033. FFABS( h->mv_cache[l][b_idx][1] - h->mv_cache[ln][bn_idx][1] ) >= mvy_limit ) {
  6034. bS[i] = 1;
  6035. break;
  6036. }
  6037. }
  6038. }
  6039. }
  6040. }
  6041. if(bS[0]+bS[1]+bS[2]+bS[3] == 0)
  6042. continue;
  6043. }
  6044. /* Filter edge */
  6045. // Do not use s->qscale as luma quantizer because it has not the same
  6046. // value in IPCM macroblocks.
  6047. qp = ( s->current_picture.qscale_table[mb_xy] + s->current_picture.qscale_table[mbn_xy] + 1 ) >> 1;
  6048. //tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d, QPc:%d, QPcn:%d\n", mb_x, mb_y, dir, edge, qp, h->chroma_qp, s->current_picture.qscale_table[mbn_xy]);
  6049. tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d ls:%d uvls:%d", mb_x, mb_y, dir, edge, qp, linesize, uvlinesize);
  6050. { int i; for (i = 0; i < 4; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); }
  6051. if( dir == 0 ) {
  6052. filter_mb_edgev( h, &img_y[4*edge], linesize, bS, qp );
  6053. if( (edge&1) == 0 ) {
  6054. filter_mb_edgecv( h, &img_cb[2*edge], uvlinesize, bS,
  6055. ( h->chroma_qp[0] + get_chroma_qp( h, 0, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
  6056. filter_mb_edgecv( h, &img_cr[2*edge], uvlinesize, bS,
  6057. ( h->chroma_qp[1] + get_chroma_qp( h, 1, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
  6058. }
  6059. } else {
  6060. filter_mb_edgeh( h, &img_y[4*edge*linesize], linesize, bS, qp );
  6061. if( (edge&1) == 0 ) {
  6062. filter_mb_edgech( h, &img_cb[2*edge*uvlinesize], uvlinesize, bS,
  6063. ( h->chroma_qp[0] + get_chroma_qp( h, 0, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
  6064. filter_mb_edgech( h, &img_cr[2*edge*uvlinesize], uvlinesize, bS,
  6065. ( h->chroma_qp[1] + get_chroma_qp( h, 1, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
  6066. }
  6067. }
  6068. }
  6069. }
  6070. }
  6071. static int decode_slice(struct AVCodecContext *avctx, H264Context *h){
  6072. MpegEncContext * const s = &h->s;
  6073. const int part_mask= s->partitioned_frame ? (AC_END|AC_ERROR) : 0x7F;
  6074. s->mb_skip_run= -1;
  6075. if( h->pps.cabac ) {
  6076. int i;
  6077. /* realign */
  6078. align_get_bits( &s->gb );
  6079. /* init cabac */
  6080. ff_init_cabac_states( &h->cabac);
  6081. ff_init_cabac_decoder( &h->cabac,
  6082. s->gb.buffer + get_bits_count(&s->gb)/8,
  6083. ( s->gb.size_in_bits - get_bits_count(&s->gb) + 7)/8);
  6084. /* calculate pre-state */
  6085. for( i= 0; i < 460; i++ ) {
  6086. int pre;
  6087. if( h->slice_type_nos == FF_I_TYPE )
  6088. pre = av_clip( ((cabac_context_init_I[i][0] * s->qscale) >>4 ) + cabac_context_init_I[i][1], 1, 126 );
  6089. else
  6090. pre = av_clip( ((cabac_context_init_PB[h->cabac_init_idc][i][0] * s->qscale) >>4 ) + cabac_context_init_PB[h->cabac_init_idc][i][1], 1, 126 );
  6091. if( pre <= 63 )
  6092. h->cabac_state[i] = 2 * ( 63 - pre ) + 0;
  6093. else
  6094. h->cabac_state[i] = 2 * ( pre - 64 ) + 1;
  6095. }
  6096. for(;;){
  6097. //START_TIMER
  6098. int ret = decode_mb_cabac(h);
  6099. int eos;
  6100. //STOP_TIMER("decode_mb_cabac")
  6101. if(ret>=0) hl_decode_mb(h);
  6102. if( ret >= 0 && FRAME_MBAFF ) { //FIXME optimal? or let mb_decode decode 16x32 ?
  6103. s->mb_y++;
  6104. if(ret>=0) ret = decode_mb_cabac(h);
  6105. if(ret>=0) hl_decode_mb(h);
  6106. s->mb_y--;
  6107. }
  6108. eos = get_cabac_terminate( &h->cabac );
  6109. if( ret < 0 || h->cabac.bytestream > h->cabac.bytestream_end + 2) {
  6110. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d, bytestream (%td)\n", s->mb_x, s->mb_y, h->cabac.bytestream_end - h->cabac.bytestream);
  6111. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  6112. return -1;
  6113. }
  6114. if( ++s->mb_x >= s->mb_width ) {
  6115. s->mb_x = 0;
  6116. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  6117. ++s->mb_y;
  6118. if(FIELD_OR_MBAFF_PICTURE) {
  6119. ++s->mb_y;
  6120. }
  6121. }
  6122. if( eos || s->mb_y >= s->mb_height ) {
  6123. tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  6124. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6125. return 0;
  6126. }
  6127. }
  6128. } else {
  6129. for(;;){
  6130. int ret = decode_mb_cavlc(h);
  6131. if(ret>=0) hl_decode_mb(h);
  6132. if(ret>=0 && FRAME_MBAFF){ //FIXME optimal? or let mb_decode decode 16x32 ?
  6133. s->mb_y++;
  6134. ret = decode_mb_cavlc(h);
  6135. if(ret>=0) hl_decode_mb(h);
  6136. s->mb_y--;
  6137. }
  6138. if(ret<0){
  6139. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  6140. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  6141. return -1;
  6142. }
  6143. if(++s->mb_x >= s->mb_width){
  6144. s->mb_x=0;
  6145. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  6146. ++s->mb_y;
  6147. if(FIELD_OR_MBAFF_PICTURE) {
  6148. ++s->mb_y;
  6149. }
  6150. if(s->mb_y >= s->mb_height){
  6151. tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  6152. if(get_bits_count(&s->gb) == s->gb.size_in_bits ) {
  6153. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6154. return 0;
  6155. }else{
  6156. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6157. return -1;
  6158. }
  6159. }
  6160. }
  6161. if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->mb_skip_run<=0){
  6162. tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  6163. if(get_bits_count(&s->gb) == s->gb.size_in_bits ){
  6164. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6165. return 0;
  6166. }else{
  6167. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  6168. return -1;
  6169. }
  6170. }
  6171. }
  6172. }
  6173. #if 0
  6174. for(;s->mb_y < s->mb_height; s->mb_y++){
  6175. for(;s->mb_x < s->mb_width; s->mb_x++){
  6176. int ret= decode_mb(h);
  6177. hl_decode_mb(h);
  6178. if(ret<0){
  6179. av_log(s->avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  6180. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  6181. return -1;
  6182. }
  6183. if(++s->mb_x >= s->mb_width){
  6184. s->mb_x=0;
  6185. if(++s->mb_y >= s->mb_height){
  6186. if(get_bits_count(s->gb) == s->gb.size_in_bits){
  6187. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6188. return 0;
  6189. }else{
  6190. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6191. return -1;
  6192. }
  6193. }
  6194. }
  6195. if(get_bits_count(s->?gb) >= s->gb?.size_in_bits){
  6196. if(get_bits_count(s->gb) == s->gb.size_in_bits){
  6197. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6198. return 0;
  6199. }else{
  6200. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  6201. return -1;
  6202. }
  6203. }
  6204. }
  6205. s->mb_x=0;
  6206. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  6207. }
  6208. #endif
  6209. return -1; //not reached
  6210. }
  6211. static int decode_unregistered_user_data(H264Context *h, int size){
  6212. MpegEncContext * const s = &h->s;
  6213. uint8_t user_data[16+256];
  6214. int e, build, i;
  6215. if(size<16)
  6216. return -1;
  6217. for(i=0; i<sizeof(user_data)-1 && i<size; i++){
  6218. user_data[i]= get_bits(&s->gb, 8);
  6219. }
  6220. user_data[i]= 0;
  6221. e= sscanf(user_data+16, "x264 - core %d"/*%s - H.264/MPEG-4 AVC codec - Copyleft 2005 - http://www.videolan.org/x264.html*/, &build);
  6222. if(e==1 && build>=0)
  6223. h->x264_build= build;
  6224. if(s->avctx->debug & FF_DEBUG_BUGS)
  6225. av_log(s->avctx, AV_LOG_DEBUG, "user data:\"%s\"\n", user_data+16);
  6226. for(; i<size; i++)
  6227. skip_bits(&s->gb, 8);
  6228. return 0;
  6229. }
  6230. static int decode_sei(H264Context *h){
  6231. MpegEncContext * const s = &h->s;
  6232. while(get_bits_count(&s->gb) + 16 < s->gb.size_in_bits){
  6233. int size, type;
  6234. type=0;
  6235. do{
  6236. type+= show_bits(&s->gb, 8);
  6237. }while(get_bits(&s->gb, 8) == 255);
  6238. size=0;
  6239. do{
  6240. size+= show_bits(&s->gb, 8);
  6241. }while(get_bits(&s->gb, 8) == 255);
  6242. switch(type){
  6243. case 5:
  6244. if(decode_unregistered_user_data(h, size) < 0)
  6245. return -1;
  6246. break;
  6247. default:
  6248. skip_bits(&s->gb, 8*size);
  6249. }
  6250. //FIXME check bits here
  6251. align_get_bits(&s->gb);
  6252. }
  6253. return 0;
  6254. }
  6255. static inline void decode_hrd_parameters(H264Context *h, SPS *sps){
  6256. MpegEncContext * const s = &h->s;
  6257. int cpb_count, i;
  6258. cpb_count = get_ue_golomb(&s->gb) + 1;
  6259. get_bits(&s->gb, 4); /* bit_rate_scale */
  6260. get_bits(&s->gb, 4); /* cpb_size_scale */
  6261. for(i=0; i<cpb_count; i++){
  6262. get_ue_golomb(&s->gb); /* bit_rate_value_minus1 */
  6263. get_ue_golomb(&s->gb); /* cpb_size_value_minus1 */
  6264. get_bits1(&s->gb); /* cbr_flag */
  6265. }
  6266. get_bits(&s->gb, 5); /* initial_cpb_removal_delay_length_minus1 */
  6267. get_bits(&s->gb, 5); /* cpb_removal_delay_length_minus1 */
  6268. get_bits(&s->gb, 5); /* dpb_output_delay_length_minus1 */
  6269. get_bits(&s->gb, 5); /* time_offset_length */
  6270. }
  6271. static inline int decode_vui_parameters(H264Context *h, SPS *sps){
  6272. MpegEncContext * const s = &h->s;
  6273. int aspect_ratio_info_present_flag;
  6274. unsigned int aspect_ratio_idc;
  6275. int nal_hrd_parameters_present_flag, vcl_hrd_parameters_present_flag;
  6276. aspect_ratio_info_present_flag= get_bits1(&s->gb);
  6277. if( aspect_ratio_info_present_flag ) {
  6278. aspect_ratio_idc= get_bits(&s->gb, 8);
  6279. if( aspect_ratio_idc == EXTENDED_SAR ) {
  6280. sps->sar.num= get_bits(&s->gb, 16);
  6281. sps->sar.den= get_bits(&s->gb, 16);
  6282. }else if(aspect_ratio_idc < sizeof(pixel_aspect)/sizeof(*pixel_aspect)){
  6283. sps->sar= pixel_aspect[aspect_ratio_idc];
  6284. }else{
  6285. av_log(h->s.avctx, AV_LOG_ERROR, "illegal aspect ratio\n");
  6286. return -1;
  6287. }
  6288. }else{
  6289. sps->sar.num=
  6290. sps->sar.den= 0;
  6291. }
  6292. // s->avctx->aspect_ratio= sar_width*s->width / (float)(s->height*sar_height);
  6293. if(get_bits1(&s->gb)){ /* overscan_info_present_flag */
  6294. get_bits1(&s->gb); /* overscan_appropriate_flag */
  6295. }
  6296. if(get_bits1(&s->gb)){ /* video_signal_type_present_flag */
  6297. get_bits(&s->gb, 3); /* video_format */
  6298. get_bits1(&s->gb); /* video_full_range_flag */
  6299. if(get_bits1(&s->gb)){ /* colour_description_present_flag */
  6300. get_bits(&s->gb, 8); /* colour_primaries */
  6301. get_bits(&s->gb, 8); /* transfer_characteristics */
  6302. get_bits(&s->gb, 8); /* matrix_coefficients */
  6303. }
  6304. }
  6305. if(get_bits1(&s->gb)){ /* chroma_location_info_present_flag */
  6306. get_ue_golomb(&s->gb); /* chroma_sample_location_type_top_field */
  6307. get_ue_golomb(&s->gb); /* chroma_sample_location_type_bottom_field */
  6308. }
  6309. sps->timing_info_present_flag = get_bits1(&s->gb);
  6310. if(sps->timing_info_present_flag){
  6311. sps->num_units_in_tick = get_bits_long(&s->gb, 32);
  6312. sps->time_scale = get_bits_long(&s->gb, 32);
  6313. sps->fixed_frame_rate_flag = get_bits1(&s->gb);
  6314. }
  6315. nal_hrd_parameters_present_flag = get_bits1(&s->gb);
  6316. if(nal_hrd_parameters_present_flag)
  6317. decode_hrd_parameters(h, sps);
  6318. vcl_hrd_parameters_present_flag = get_bits1(&s->gb);
  6319. if(vcl_hrd_parameters_present_flag)
  6320. decode_hrd_parameters(h, sps);
  6321. if(nal_hrd_parameters_present_flag || vcl_hrd_parameters_present_flag)
  6322. get_bits1(&s->gb); /* low_delay_hrd_flag */
  6323. get_bits1(&s->gb); /* pic_struct_present_flag */
  6324. sps->bitstream_restriction_flag = get_bits1(&s->gb);
  6325. if(sps->bitstream_restriction_flag){
  6326. unsigned int num_reorder_frames;
  6327. get_bits1(&s->gb); /* motion_vectors_over_pic_boundaries_flag */
  6328. get_ue_golomb(&s->gb); /* max_bytes_per_pic_denom */
  6329. get_ue_golomb(&s->gb); /* max_bits_per_mb_denom */
  6330. get_ue_golomb(&s->gb); /* log2_max_mv_length_horizontal */
  6331. get_ue_golomb(&s->gb); /* log2_max_mv_length_vertical */
  6332. num_reorder_frames= get_ue_golomb(&s->gb);
  6333. get_ue_golomb(&s->gb); /*max_dec_frame_buffering*/
  6334. if(num_reorder_frames > 16 /*max_dec_frame_buffering || max_dec_frame_buffering > 16*/){
  6335. av_log(h->s.avctx, AV_LOG_ERROR, "illegal num_reorder_frames %d\n", num_reorder_frames);
  6336. return -1;
  6337. }
  6338. sps->num_reorder_frames= num_reorder_frames;
  6339. }
  6340. return 0;
  6341. }
  6342. static void decode_scaling_list(H264Context *h, uint8_t *factors, int size,
  6343. const uint8_t *jvt_list, const uint8_t *fallback_list){
  6344. MpegEncContext * const s = &h->s;
  6345. int i, last = 8, next = 8;
  6346. const uint8_t *scan = size == 16 ? zigzag_scan : zigzag_scan8x8;
  6347. if(!get_bits1(&s->gb)) /* matrix not written, we use the predicted one */
  6348. memcpy(factors, fallback_list, size*sizeof(uint8_t));
  6349. else
  6350. for(i=0;i<size;i++){
  6351. if(next)
  6352. next = (last + get_se_golomb(&s->gb)) & 0xff;
  6353. if(!i && !next){ /* matrix not written, we use the preset one */
  6354. memcpy(factors, jvt_list, size*sizeof(uint8_t));
  6355. break;
  6356. }
  6357. last = factors[scan[i]] = next ? next : last;
  6358. }
  6359. }
  6360. static void decode_scaling_matrices(H264Context *h, SPS *sps, PPS *pps, int is_sps,
  6361. uint8_t (*scaling_matrix4)[16], uint8_t (*scaling_matrix8)[64]){
  6362. MpegEncContext * const s = &h->s;
  6363. int fallback_sps = !is_sps && sps->scaling_matrix_present;
  6364. const uint8_t *fallback[4] = {
  6365. fallback_sps ? sps->scaling_matrix4[0] : default_scaling4[0],
  6366. fallback_sps ? sps->scaling_matrix4[3] : default_scaling4[1],
  6367. fallback_sps ? sps->scaling_matrix8[0] : default_scaling8[0],
  6368. fallback_sps ? sps->scaling_matrix8[1] : default_scaling8[1]
  6369. };
  6370. if(get_bits1(&s->gb)){
  6371. sps->scaling_matrix_present |= is_sps;
  6372. decode_scaling_list(h,scaling_matrix4[0],16,default_scaling4[0],fallback[0]); // Intra, Y
  6373. decode_scaling_list(h,scaling_matrix4[1],16,default_scaling4[0],scaling_matrix4[0]); // Intra, Cr
  6374. decode_scaling_list(h,scaling_matrix4[2],16,default_scaling4[0],scaling_matrix4[1]); // Intra, Cb
  6375. decode_scaling_list(h,scaling_matrix4[3],16,default_scaling4[1],fallback[1]); // Inter, Y
  6376. decode_scaling_list(h,scaling_matrix4[4],16,default_scaling4[1],scaling_matrix4[3]); // Inter, Cr
  6377. decode_scaling_list(h,scaling_matrix4[5],16,default_scaling4[1],scaling_matrix4[4]); // Inter, Cb
  6378. if(is_sps || pps->transform_8x8_mode){
  6379. decode_scaling_list(h,scaling_matrix8[0],64,default_scaling8[0],fallback[2]); // Intra, Y
  6380. decode_scaling_list(h,scaling_matrix8[1],64,default_scaling8[1],fallback[3]); // Inter, Y
  6381. }
  6382. } else if(fallback_sps) {
  6383. memcpy(scaling_matrix4, sps->scaling_matrix4, 6*16*sizeof(uint8_t));
  6384. memcpy(scaling_matrix8, sps->scaling_matrix8, 2*64*sizeof(uint8_t));
  6385. }
  6386. }
  6387. /**
  6388. * Returns and optionally allocates SPS / PPS structures in the supplied array 'vec'
  6389. */
  6390. static void *
  6391. alloc_parameter_set(H264Context *h, void **vec, const unsigned int id, const unsigned int max,
  6392. const size_t size, const char *name)
  6393. {
  6394. if(id>=max) {
  6395. av_log(h->s.avctx, AV_LOG_ERROR, "%s_id (%d) out of range\n", name, id);
  6396. return NULL;
  6397. }
  6398. if(!vec[id]) {
  6399. vec[id] = av_mallocz(size);
  6400. if(vec[id] == NULL)
  6401. av_log(h->s.avctx, AV_LOG_ERROR, "cannot allocate memory for %s\n", name);
  6402. }
  6403. return vec[id];
  6404. }
  6405. static inline int decode_seq_parameter_set(H264Context *h){
  6406. MpegEncContext * const s = &h->s;
  6407. int profile_idc, level_idc;
  6408. unsigned int sps_id, tmp, mb_width, mb_height;
  6409. int i;
  6410. SPS *sps;
  6411. profile_idc= get_bits(&s->gb, 8);
  6412. get_bits1(&s->gb); //constraint_set0_flag
  6413. get_bits1(&s->gb); //constraint_set1_flag
  6414. get_bits1(&s->gb); //constraint_set2_flag
  6415. get_bits1(&s->gb); //constraint_set3_flag
  6416. get_bits(&s->gb, 4); // reserved
  6417. level_idc= get_bits(&s->gb, 8);
  6418. sps_id= get_ue_golomb(&s->gb);
  6419. sps = alloc_parameter_set(h, (void **)h->sps_buffers, sps_id, MAX_SPS_COUNT, sizeof(SPS), "sps");
  6420. if(sps == NULL)
  6421. return -1;
  6422. sps->profile_idc= profile_idc;
  6423. sps->level_idc= level_idc;
  6424. if(sps->profile_idc >= 100){ //high profile
  6425. if(get_ue_golomb(&s->gb) == 3) //chroma_format_idc
  6426. get_bits1(&s->gb); //residual_color_transform_flag
  6427. get_ue_golomb(&s->gb); //bit_depth_luma_minus8
  6428. get_ue_golomb(&s->gb); //bit_depth_chroma_minus8
  6429. sps->transform_bypass = get_bits1(&s->gb);
  6430. decode_scaling_matrices(h, sps, NULL, 1, sps->scaling_matrix4, sps->scaling_matrix8);
  6431. }else
  6432. sps->scaling_matrix_present = 0;
  6433. sps->log2_max_frame_num= get_ue_golomb(&s->gb) + 4;
  6434. sps->poc_type= get_ue_golomb(&s->gb);
  6435. if(sps->poc_type == 0){ //FIXME #define
  6436. sps->log2_max_poc_lsb= get_ue_golomb(&s->gb) + 4;
  6437. } else if(sps->poc_type == 1){//FIXME #define
  6438. sps->delta_pic_order_always_zero_flag= get_bits1(&s->gb);
  6439. sps->offset_for_non_ref_pic= get_se_golomb(&s->gb);
  6440. sps->offset_for_top_to_bottom_field= get_se_golomb(&s->gb);
  6441. tmp= get_ue_golomb(&s->gb);
  6442. if(tmp >= sizeof(sps->offset_for_ref_frame) / sizeof(sps->offset_for_ref_frame[0])){
  6443. av_log(h->s.avctx, AV_LOG_ERROR, "poc_cycle_length overflow %u\n", tmp);
  6444. return -1;
  6445. }
  6446. sps->poc_cycle_length= tmp;
  6447. for(i=0; i<sps->poc_cycle_length; i++)
  6448. sps->offset_for_ref_frame[i]= get_se_golomb(&s->gb);
  6449. }else if(sps->poc_type != 2){
  6450. av_log(h->s.avctx, AV_LOG_ERROR, "illegal POC type %d\n", sps->poc_type);
  6451. return -1;
  6452. }
  6453. tmp= get_ue_golomb(&s->gb);
  6454. if(tmp > MAX_PICTURE_COUNT-2 || tmp >= 32){
  6455. av_log(h->s.avctx, AV_LOG_ERROR, "too many reference frames\n");
  6456. return -1;
  6457. }
  6458. sps->ref_frame_count= tmp;
  6459. sps->gaps_in_frame_num_allowed_flag= get_bits1(&s->gb);
  6460. mb_width= get_ue_golomb(&s->gb) + 1;
  6461. mb_height= get_ue_golomb(&s->gb) + 1;
  6462. if(mb_width >= INT_MAX/16 || mb_height >= INT_MAX/16 ||
  6463. avcodec_check_dimensions(NULL, 16*mb_width, 16*mb_height)){
  6464. av_log(h->s.avctx, AV_LOG_ERROR, "mb_width/height overflow\n");
  6465. return -1;
  6466. }
  6467. sps->mb_width = mb_width;
  6468. sps->mb_height= mb_height;
  6469. sps->frame_mbs_only_flag= get_bits1(&s->gb);
  6470. if(!sps->frame_mbs_only_flag)
  6471. sps->mb_aff= get_bits1(&s->gb);
  6472. else
  6473. sps->mb_aff= 0;
  6474. sps->direct_8x8_inference_flag= get_bits1(&s->gb);
  6475. #ifndef ALLOW_INTERLACE
  6476. if(sps->mb_aff)
  6477. av_log(h->s.avctx, AV_LOG_ERROR, "MBAFF support not included; enable it at compile-time.\n");
  6478. #endif
  6479. if(!sps->direct_8x8_inference_flag && sps->mb_aff)
  6480. av_log(h->s.avctx, AV_LOG_ERROR, "MBAFF + !direct_8x8_inference is not implemented\n");
  6481. sps->crop= get_bits1(&s->gb);
  6482. if(sps->crop){
  6483. sps->crop_left = get_ue_golomb(&s->gb);
  6484. sps->crop_right = get_ue_golomb(&s->gb);
  6485. sps->crop_top = get_ue_golomb(&s->gb);
  6486. sps->crop_bottom= get_ue_golomb(&s->gb);
  6487. if(sps->crop_left || sps->crop_top){
  6488. av_log(h->s.avctx, AV_LOG_ERROR, "insane cropping not completely supported, this could look slightly wrong ...\n");
  6489. }
  6490. if(sps->crop_right >= 8 || sps->crop_bottom >= (8>> !h->sps.frame_mbs_only_flag)){
  6491. av_log(h->s.avctx, AV_LOG_ERROR, "brainfart cropping not supported, this could look slightly wrong ...\n");
  6492. }
  6493. }else{
  6494. sps->crop_left =
  6495. sps->crop_right =
  6496. sps->crop_top =
  6497. sps->crop_bottom= 0;
  6498. }
  6499. sps->vui_parameters_present_flag= get_bits1(&s->gb);
  6500. if( sps->vui_parameters_present_flag )
  6501. decode_vui_parameters(h, sps);
  6502. if(s->avctx->debug&FF_DEBUG_PICT_INFO){
  6503. av_log(h->s.avctx, AV_LOG_DEBUG, "sps:%u profile:%d/%d poc:%d ref:%d %dx%d %s %s crop:%d/%d/%d/%d %s\n",
  6504. sps_id, sps->profile_idc, sps->level_idc,
  6505. sps->poc_type,
  6506. sps->ref_frame_count,
  6507. sps->mb_width, sps->mb_height,
  6508. sps->frame_mbs_only_flag ? "FRM" : (sps->mb_aff ? "MB-AFF" : "PIC-AFF"),
  6509. sps->direct_8x8_inference_flag ? "8B8" : "",
  6510. sps->crop_left, sps->crop_right,
  6511. sps->crop_top, sps->crop_bottom,
  6512. sps->vui_parameters_present_flag ? "VUI" : ""
  6513. );
  6514. }
  6515. return 0;
  6516. }
  6517. static void
  6518. build_qp_table(PPS *pps, int t, int index)
  6519. {
  6520. int i;
  6521. for(i = 0; i < 52; i++)
  6522. pps->chroma_qp_table[t][i] = chroma_qp[av_clip(i + index, 0, 51)];
  6523. }
  6524. static inline int decode_picture_parameter_set(H264Context *h, int bit_length){
  6525. MpegEncContext * const s = &h->s;
  6526. unsigned int tmp, pps_id= get_ue_golomb(&s->gb);
  6527. PPS *pps;
  6528. pps = alloc_parameter_set(h, (void **)h->pps_buffers, pps_id, MAX_PPS_COUNT, sizeof(PPS), "pps");
  6529. if(pps == NULL)
  6530. return -1;
  6531. tmp= get_ue_golomb(&s->gb);
  6532. if(tmp>=MAX_SPS_COUNT || h->sps_buffers[tmp] == NULL){
  6533. av_log(h->s.avctx, AV_LOG_ERROR, "sps_id out of range\n");
  6534. return -1;
  6535. }
  6536. pps->sps_id= tmp;
  6537. pps->cabac= get_bits1(&s->gb);
  6538. pps->pic_order_present= get_bits1(&s->gb);
  6539. pps->slice_group_count= get_ue_golomb(&s->gb) + 1;
  6540. if(pps->slice_group_count > 1 ){
  6541. pps->mb_slice_group_map_type= get_ue_golomb(&s->gb);
  6542. av_log(h->s.avctx, AV_LOG_ERROR, "FMO not supported\n");
  6543. switch(pps->mb_slice_group_map_type){
  6544. case 0:
  6545. #if 0
  6546. | for( i = 0; i <= num_slice_groups_minus1; i++ ) | | |
  6547. | run_length[ i ] |1 |ue(v) |
  6548. #endif
  6549. break;
  6550. case 2:
  6551. #if 0
  6552. | for( i = 0; i < num_slice_groups_minus1; i++ ) | | |
  6553. |{ | | |
  6554. | top_left_mb[ i ] |1 |ue(v) |
  6555. | bottom_right_mb[ i ] |1 |ue(v) |
  6556. | } | | |
  6557. #endif
  6558. break;
  6559. case 3:
  6560. case 4:
  6561. case 5:
  6562. #if 0
  6563. | slice_group_change_direction_flag |1 |u(1) |
  6564. | slice_group_change_rate_minus1 |1 |ue(v) |
  6565. #endif
  6566. break;
  6567. case 6:
  6568. #if 0
  6569. | slice_group_id_cnt_minus1 |1 |ue(v) |
  6570. | for( i = 0; i <= slice_group_id_cnt_minus1; i++ | | |
  6571. |) | | |
  6572. | slice_group_id[ i ] |1 |u(v) |
  6573. #endif
  6574. break;
  6575. }
  6576. }
  6577. pps->ref_count[0]= get_ue_golomb(&s->gb) + 1;
  6578. pps->ref_count[1]= get_ue_golomb(&s->gb) + 1;
  6579. if(pps->ref_count[0]-1 > 32-1 || pps->ref_count[1]-1 > 32-1){
  6580. av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow (pps)\n");
  6581. pps->ref_count[0]= pps->ref_count[1]= 1;
  6582. return -1;
  6583. }
  6584. pps->weighted_pred= get_bits1(&s->gb);
  6585. pps->weighted_bipred_idc= get_bits(&s->gb, 2);
  6586. pps->init_qp= get_se_golomb(&s->gb) + 26;
  6587. pps->init_qs= get_se_golomb(&s->gb) + 26;
  6588. pps->chroma_qp_index_offset[0]= get_se_golomb(&s->gb);
  6589. pps->deblocking_filter_parameters_present= get_bits1(&s->gb);
  6590. pps->constrained_intra_pred= get_bits1(&s->gb);
  6591. pps->redundant_pic_cnt_present = get_bits1(&s->gb);
  6592. pps->transform_8x8_mode= 0;
  6593. h->dequant_coeff_pps= -1; //contents of sps/pps can change even if id doesn't, so reinit
  6594. memset(pps->scaling_matrix4, 16, 6*16*sizeof(uint8_t));
  6595. memset(pps->scaling_matrix8, 16, 2*64*sizeof(uint8_t));
  6596. if(get_bits_count(&s->gb) < bit_length){
  6597. pps->transform_8x8_mode= get_bits1(&s->gb);
  6598. decode_scaling_matrices(h, h->sps_buffers[pps->sps_id], pps, 0, pps->scaling_matrix4, pps->scaling_matrix8);
  6599. pps->chroma_qp_index_offset[1]= get_se_golomb(&s->gb); //second_chroma_qp_index_offset
  6600. } else {
  6601. pps->chroma_qp_index_offset[1]= pps->chroma_qp_index_offset[0];
  6602. }
  6603. build_qp_table(pps, 0, pps->chroma_qp_index_offset[0]);
  6604. build_qp_table(pps, 1, pps->chroma_qp_index_offset[1]);
  6605. if(pps->chroma_qp_index_offset[0] != pps->chroma_qp_index_offset[1])
  6606. h->pps.chroma_qp_diff= 1;
  6607. if(s->avctx->debug&FF_DEBUG_PICT_INFO){
  6608. av_log(h->s.avctx, AV_LOG_DEBUG, "pps:%u sps:%u %s slice_groups:%d ref:%d/%d %s qp:%d/%d/%d/%d %s %s %s %s\n",
  6609. pps_id, pps->sps_id,
  6610. pps->cabac ? "CABAC" : "CAVLC",
  6611. pps->slice_group_count,
  6612. pps->ref_count[0], pps->ref_count[1],
  6613. pps->weighted_pred ? "weighted" : "",
  6614. pps->init_qp, pps->init_qs, pps->chroma_qp_index_offset[0], pps->chroma_qp_index_offset[1],
  6615. pps->deblocking_filter_parameters_present ? "LPAR" : "",
  6616. pps->constrained_intra_pred ? "CONSTR" : "",
  6617. pps->redundant_pic_cnt_present ? "REDU" : "",
  6618. pps->transform_8x8_mode ? "8x8DCT" : ""
  6619. );
  6620. }
  6621. return 0;
  6622. }
  6623. /**
  6624. * Call decode_slice() for each context.
  6625. *
  6626. * @param h h264 master context
  6627. * @param context_count number of contexts to execute
  6628. */
  6629. static void execute_decode_slices(H264Context *h, int context_count){
  6630. MpegEncContext * const s = &h->s;
  6631. AVCodecContext * const avctx= s->avctx;
  6632. H264Context *hx;
  6633. int i;
  6634. if(context_count == 1) {
  6635. decode_slice(avctx, h);
  6636. } else {
  6637. for(i = 1; i < context_count; i++) {
  6638. hx = h->thread_context[i];
  6639. hx->s.error_resilience = avctx->error_resilience;
  6640. hx->s.error_count = 0;
  6641. }
  6642. avctx->execute(avctx, (void *)decode_slice,
  6643. (void **)h->thread_context, NULL, context_count);
  6644. /* pull back stuff from slices to master context */
  6645. hx = h->thread_context[context_count - 1];
  6646. s->mb_x = hx->s.mb_x;
  6647. s->mb_y = hx->s.mb_y;
  6648. s->dropable = hx->s.dropable;
  6649. s->picture_structure = hx->s.picture_structure;
  6650. for(i = 1; i < context_count; i++)
  6651. h->s.error_count += h->thread_context[i]->s.error_count;
  6652. }
  6653. }
  6654. static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size){
  6655. MpegEncContext * const s = &h->s;
  6656. AVCodecContext * const avctx= s->avctx;
  6657. int buf_index=0;
  6658. H264Context *hx; ///< thread context
  6659. int context_count = 0;
  6660. h->max_contexts = avctx->thread_count;
  6661. #if 0
  6662. int i;
  6663. for(i=0; i<50; i++){
  6664. av_log(NULL, AV_LOG_ERROR,"%02X ", buf[i]);
  6665. }
  6666. #endif
  6667. if(!(s->flags2 & CODEC_FLAG2_CHUNKS)){
  6668. h->current_slice = 0;
  6669. if (!s->first_field)
  6670. s->current_picture_ptr= NULL;
  6671. }
  6672. for(;;){
  6673. int consumed;
  6674. int dst_length;
  6675. int bit_length;
  6676. const uint8_t *ptr;
  6677. int i, nalsize = 0;
  6678. int err;
  6679. if(h->is_avc) {
  6680. if(buf_index >= buf_size) break;
  6681. nalsize = 0;
  6682. for(i = 0; i < h->nal_length_size; i++)
  6683. nalsize = (nalsize << 8) | buf[buf_index++];
  6684. if(nalsize <= 1 || (nalsize+buf_index > buf_size)){
  6685. if(nalsize == 1){
  6686. buf_index++;
  6687. continue;
  6688. }else{
  6689. av_log(h->s.avctx, AV_LOG_ERROR, "AVC: nal size %d\n", nalsize);
  6690. break;
  6691. }
  6692. }
  6693. } else {
  6694. // start code prefix search
  6695. for(; buf_index + 3 < buf_size; buf_index++){
  6696. // This should always succeed in the first iteration.
  6697. if(buf[buf_index] == 0 && buf[buf_index+1] == 0 && buf[buf_index+2] == 1)
  6698. break;
  6699. }
  6700. if(buf_index+3 >= buf_size) break;
  6701. buf_index+=3;
  6702. }
  6703. hx = h->thread_context[context_count];
  6704. ptr= decode_nal(hx, buf + buf_index, &dst_length, &consumed, h->is_avc ? nalsize : buf_size - buf_index);
  6705. if (ptr==NULL || dst_length < 0){
  6706. return -1;
  6707. }
  6708. while(ptr[dst_length - 1] == 0 && dst_length > 0)
  6709. dst_length--;
  6710. bit_length= !dst_length ? 0 : (8*dst_length - decode_rbsp_trailing(h, ptr + dst_length - 1));
  6711. if(s->avctx->debug&FF_DEBUG_STARTCODE){
  6712. av_log(h->s.avctx, AV_LOG_DEBUG, "NAL %d at %d/%d length %d\n", hx->nal_unit_type, buf_index, buf_size, dst_length);
  6713. }
  6714. if (h->is_avc && (nalsize != consumed)){
  6715. av_log(h->s.avctx, AV_LOG_ERROR, "AVC: Consumed only %d bytes instead of %d\n", consumed, nalsize);
  6716. consumed= nalsize;
  6717. }
  6718. buf_index += consumed;
  6719. if( (s->hurry_up == 1 && h->nal_ref_idc == 0) //FIXME do not discard SEI id
  6720. ||(avctx->skip_frame >= AVDISCARD_NONREF && h->nal_ref_idc == 0))
  6721. continue;
  6722. again:
  6723. err = 0;
  6724. switch(hx->nal_unit_type){
  6725. case NAL_IDR_SLICE:
  6726. if (h->nal_unit_type != NAL_IDR_SLICE) {
  6727. av_log(h->s.avctx, AV_LOG_ERROR, "Invalid mix of idr and non-idr slices");
  6728. return -1;
  6729. }
  6730. idr(h); //FIXME ensure we don't loose some frames if there is reordering
  6731. case NAL_SLICE:
  6732. init_get_bits(&hx->s.gb, ptr, bit_length);
  6733. hx->intra_gb_ptr=
  6734. hx->inter_gb_ptr= &hx->s.gb;
  6735. hx->s.data_partitioning = 0;
  6736. if((err = decode_slice_header(hx, h)))
  6737. break;
  6738. s->current_picture_ptr->key_frame|= (hx->nal_unit_type == NAL_IDR_SLICE);
  6739. if(hx->redundant_pic_count==0 && hx->s.hurry_up < 5
  6740. && (avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc)
  6741. && (avctx->skip_frame < AVDISCARD_BIDIR || hx->slice_type_nos!=FF_B_TYPE)
  6742. && (avctx->skip_frame < AVDISCARD_NONKEY || hx->slice_type_nos==FF_I_TYPE)
  6743. && avctx->skip_frame < AVDISCARD_ALL)
  6744. context_count++;
  6745. break;
  6746. case NAL_DPA:
  6747. init_get_bits(&hx->s.gb, ptr, bit_length);
  6748. hx->intra_gb_ptr=
  6749. hx->inter_gb_ptr= NULL;
  6750. hx->s.data_partitioning = 1;
  6751. err = decode_slice_header(hx, h);
  6752. break;
  6753. case NAL_DPB:
  6754. init_get_bits(&hx->intra_gb, ptr, bit_length);
  6755. hx->intra_gb_ptr= &hx->intra_gb;
  6756. break;
  6757. case NAL_DPC:
  6758. init_get_bits(&hx->inter_gb, ptr, bit_length);
  6759. hx->inter_gb_ptr= &hx->inter_gb;
  6760. if(hx->redundant_pic_count==0 && hx->intra_gb_ptr && hx->s.data_partitioning
  6761. && s->context_initialized
  6762. && s->hurry_up < 5
  6763. && (avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc)
  6764. && (avctx->skip_frame < AVDISCARD_BIDIR || hx->slice_type_nos!=FF_B_TYPE)
  6765. && (avctx->skip_frame < AVDISCARD_NONKEY || hx->slice_type_nos==FF_I_TYPE)
  6766. && avctx->skip_frame < AVDISCARD_ALL)
  6767. context_count++;
  6768. break;
  6769. case NAL_SEI:
  6770. init_get_bits(&s->gb, ptr, bit_length);
  6771. decode_sei(h);
  6772. break;
  6773. case NAL_SPS:
  6774. init_get_bits(&s->gb, ptr, bit_length);
  6775. decode_seq_parameter_set(h);
  6776. if(s->flags& CODEC_FLAG_LOW_DELAY)
  6777. s->low_delay=1;
  6778. if(avctx->has_b_frames < 2)
  6779. avctx->has_b_frames= !s->low_delay;
  6780. break;
  6781. case NAL_PPS:
  6782. init_get_bits(&s->gb, ptr, bit_length);
  6783. decode_picture_parameter_set(h, bit_length);
  6784. break;
  6785. case NAL_AUD:
  6786. case NAL_END_SEQUENCE:
  6787. case NAL_END_STREAM:
  6788. case NAL_FILLER_DATA:
  6789. case NAL_SPS_EXT:
  6790. case NAL_AUXILIARY_SLICE:
  6791. break;
  6792. default:
  6793. av_log(avctx, AV_LOG_DEBUG, "Unknown NAL code: %d (%d bits)\n", h->nal_unit_type, bit_length);
  6794. }
  6795. if(context_count == h->max_contexts) {
  6796. execute_decode_slices(h, context_count);
  6797. context_count = 0;
  6798. }
  6799. if (err < 0)
  6800. av_log(h->s.avctx, AV_LOG_ERROR, "decode_slice_header error\n");
  6801. else if(err == 1) {
  6802. /* Slice could not be decoded in parallel mode, copy down
  6803. * NAL unit stuff to context 0 and restart. Note that
  6804. * rbsp_buffer is not transfered, but since we no longer
  6805. * run in parallel mode this should not be an issue. */
  6806. h->nal_unit_type = hx->nal_unit_type;
  6807. h->nal_ref_idc = hx->nal_ref_idc;
  6808. hx = h;
  6809. goto again;
  6810. }
  6811. }
  6812. if(context_count)
  6813. execute_decode_slices(h, context_count);
  6814. return buf_index;
  6815. }
  6816. /**
  6817. * returns the number of bytes consumed for building the current frame
  6818. */
  6819. static int get_consumed_bytes(MpegEncContext *s, int pos, int buf_size){
  6820. if(s->flags&CODEC_FLAG_TRUNCATED){
  6821. pos -= s->parse_context.last_index;
  6822. if(pos<0) pos=0; // FIXME remove (unneeded?)
  6823. return pos;
  6824. }else{
  6825. if(pos==0) pos=1; //avoid infinite loops (i doubt that is needed but ...)
  6826. if(pos+10>buf_size) pos=buf_size; // oops ;)
  6827. return pos;
  6828. }
  6829. }
  6830. static int decode_frame(AVCodecContext *avctx,
  6831. void *data, int *data_size,
  6832. const uint8_t *buf, int buf_size)
  6833. {
  6834. H264Context *h = avctx->priv_data;
  6835. MpegEncContext *s = &h->s;
  6836. AVFrame *pict = data;
  6837. int buf_index;
  6838. s->flags= avctx->flags;
  6839. s->flags2= avctx->flags2;
  6840. if(s->flags&CODEC_FLAG_TRUNCATED){
  6841. const int next= ff_h264_find_frame_end(h, buf, buf_size);
  6842. assert((buf_size > 0) || (next == END_NOT_FOUND));
  6843. if( ff_combine_frame(&s->parse_context, next, &buf, &buf_size) < 0 )
  6844. return buf_size;
  6845. //printf("next:%d buf_size:%d last_index:%d\n", next, buf_size, s->parse_context.last_index);
  6846. }
  6847. /* no supplementary picture */
  6848. if (buf_size == 0) {
  6849. Picture *out;
  6850. int i, out_idx;
  6851. //FIXME factorize this with the output code below
  6852. out = h->delayed_pic[0];
  6853. out_idx = 0;
  6854. for(i=1; h->delayed_pic[i] && !h->delayed_pic[i]->key_frame && h->delayed_pic[i]->poc; i++)
  6855. if(h->delayed_pic[i]->poc < out->poc){
  6856. out = h->delayed_pic[i];
  6857. out_idx = i;
  6858. }
  6859. for(i=out_idx; h->delayed_pic[i]; i++)
  6860. h->delayed_pic[i] = h->delayed_pic[i+1];
  6861. if(out){
  6862. *data_size = sizeof(AVFrame);
  6863. *pict= *(AVFrame*)out;
  6864. }
  6865. return 0;
  6866. }
  6867. if(h->is_avc && !h->got_avcC) {
  6868. int i, cnt, nalsize;
  6869. unsigned char *p = avctx->extradata;
  6870. if(avctx->extradata_size < 7) {
  6871. av_log(avctx, AV_LOG_ERROR, "avcC too short\n");
  6872. return -1;
  6873. }
  6874. if(*p != 1) {
  6875. av_log(avctx, AV_LOG_ERROR, "Unknown avcC version %d\n", *p);
  6876. return -1;
  6877. }
  6878. /* sps and pps in the avcC always have length coded with 2 bytes,
  6879. so put a fake nal_length_size = 2 while parsing them */
  6880. h->nal_length_size = 2;
  6881. // Decode sps from avcC
  6882. cnt = *(p+5) & 0x1f; // Number of sps
  6883. p += 6;
  6884. for (i = 0; i < cnt; i++) {
  6885. nalsize = AV_RB16(p) + 2;
  6886. if(decode_nal_units(h, p, nalsize) < 0) {
  6887. av_log(avctx, AV_LOG_ERROR, "Decoding sps %d from avcC failed\n", i);
  6888. return -1;
  6889. }
  6890. p += nalsize;
  6891. }
  6892. // Decode pps from avcC
  6893. cnt = *(p++); // Number of pps
  6894. for (i = 0; i < cnt; i++) {
  6895. nalsize = AV_RB16(p) + 2;
  6896. if(decode_nal_units(h, p, nalsize) != nalsize) {
  6897. av_log(avctx, AV_LOG_ERROR, "Decoding pps %d from avcC failed\n", i);
  6898. return -1;
  6899. }
  6900. p += nalsize;
  6901. }
  6902. // Now store right nal length size, that will be use to parse all other nals
  6903. h->nal_length_size = ((*(((char*)(avctx->extradata))+4))&0x03)+1;
  6904. // Do not reparse avcC
  6905. h->got_avcC = 1;
  6906. }
  6907. if(avctx->frame_number==0 && !h->is_avc && s->avctx->extradata_size){
  6908. if(decode_nal_units(h, s->avctx->extradata, s->avctx->extradata_size) < 0)
  6909. return -1;
  6910. }
  6911. buf_index=decode_nal_units(h, buf, buf_size);
  6912. if(buf_index < 0)
  6913. return -1;
  6914. if(!(s->flags2 & CODEC_FLAG2_CHUNKS) && !s->current_picture_ptr){
  6915. if (avctx->skip_frame >= AVDISCARD_NONREF || s->hurry_up) return 0;
  6916. av_log(avctx, AV_LOG_ERROR, "no frame!\n");
  6917. return -1;
  6918. }
  6919. if(!(s->flags2 & CODEC_FLAG2_CHUNKS) || (s->mb_y >= s->mb_height && s->mb_height)){
  6920. Picture *out = s->current_picture_ptr;
  6921. Picture *cur = s->current_picture_ptr;
  6922. int i, pics, cross_idr, out_of_order, out_idx;
  6923. s->mb_y= 0;
  6924. s->current_picture_ptr->qscale_type= FF_QSCALE_TYPE_H264;
  6925. s->current_picture_ptr->pict_type= s->pict_type;
  6926. if(!s->dropable) {
  6927. execute_ref_pic_marking(h, h->mmco, h->mmco_index);
  6928. h->prev_poc_msb= h->poc_msb;
  6929. h->prev_poc_lsb= h->poc_lsb;
  6930. }
  6931. h->prev_frame_num_offset= h->frame_num_offset;
  6932. h->prev_frame_num= h->frame_num;
  6933. /*
  6934. * FIXME: Error handling code does not seem to support interlaced
  6935. * when slices span multiple rows
  6936. * The ff_er_add_slice calls don't work right for bottom
  6937. * fields; they cause massive erroneous error concealing
  6938. * Error marking covers both fields (top and bottom).
  6939. * This causes a mismatched s->error_count
  6940. * and a bad error table. Further, the error count goes to
  6941. * INT_MAX when called for bottom field, because mb_y is
  6942. * past end by one (callers fault) and resync_mb_y != 0
  6943. * causes problems for the first MB line, too.
  6944. */
  6945. if (!FIELD_PICTURE)
  6946. ff_er_frame_end(s);
  6947. MPV_frame_end(s);
  6948. if (s->first_field) {
  6949. /* Wait for second field. */
  6950. *data_size = 0;
  6951. } else {
  6952. cur->interlaced_frame = FIELD_OR_MBAFF_PICTURE;
  6953. /* Derive top_field_first from field pocs. */
  6954. cur->top_field_first = cur->field_poc[0] < cur->field_poc[1];
  6955. //FIXME do something with unavailable reference frames
  6956. /* Sort B-frames into display order */
  6957. if(h->sps.bitstream_restriction_flag
  6958. && s->avctx->has_b_frames < h->sps.num_reorder_frames){
  6959. s->avctx->has_b_frames = h->sps.num_reorder_frames;
  6960. s->low_delay = 0;
  6961. }
  6962. if( s->avctx->strict_std_compliance >= FF_COMPLIANCE_STRICT
  6963. && !h->sps.bitstream_restriction_flag){
  6964. s->avctx->has_b_frames= MAX_DELAYED_PIC_COUNT;
  6965. s->low_delay= 0;
  6966. }
  6967. pics = 0;
  6968. while(h->delayed_pic[pics]) pics++;
  6969. assert(pics <= MAX_DELAYED_PIC_COUNT);
  6970. h->delayed_pic[pics++] = cur;
  6971. if(cur->reference == 0)
  6972. cur->reference = DELAYED_PIC_REF;
  6973. cross_idr = 0;
  6974. for(i=0; h->delayed_pic[i]; i++)
  6975. if(h->delayed_pic[i]->key_frame || h->delayed_pic[i]->poc==0)
  6976. cross_idr = 1;
  6977. out = h->delayed_pic[0];
  6978. out_idx = 0;
  6979. for(i=1; h->delayed_pic[i] && !h->delayed_pic[i]->key_frame && h->delayed_pic[i]->poc; i++)
  6980. if(h->delayed_pic[i]->poc < out->poc){
  6981. out = h->delayed_pic[i];
  6982. out_idx = i;
  6983. }
  6984. out_of_order = !cross_idr && out->poc < h->outputed_poc;
  6985. if(h->sps.bitstream_restriction_flag && s->avctx->has_b_frames >= h->sps.num_reorder_frames)
  6986. { }
  6987. else if((out_of_order && pics-1 == s->avctx->has_b_frames && s->avctx->has_b_frames < MAX_DELAYED_PIC_COUNT)
  6988. || (s->low_delay &&
  6989. ((!cross_idr && out->poc > h->outputed_poc + 2)
  6990. || cur->pict_type == FF_B_TYPE)))
  6991. {
  6992. s->low_delay = 0;
  6993. s->avctx->has_b_frames++;
  6994. }
  6995. if(out_of_order || pics > s->avctx->has_b_frames){
  6996. out->reference &= ~DELAYED_PIC_REF;
  6997. for(i=out_idx; h->delayed_pic[i]; i++)
  6998. h->delayed_pic[i] = h->delayed_pic[i+1];
  6999. }
  7000. if(!out_of_order && pics > s->avctx->has_b_frames){
  7001. *data_size = sizeof(AVFrame);
  7002. h->outputed_poc = out->poc;
  7003. *pict= *(AVFrame*)out;
  7004. }else{
  7005. av_log(avctx, AV_LOG_DEBUG, "no picture\n");
  7006. }
  7007. }
  7008. }
  7009. assert(pict->data[0] || !*data_size);
  7010. ff_print_debug_info(s, pict);
  7011. //printf("out %d\n", (int)pict->data[0]);
  7012. #if 0 //?
  7013. /* Return the Picture timestamp as the frame number */
  7014. /* we subtract 1 because it is added on utils.c */
  7015. avctx->frame_number = s->picture_number - 1;
  7016. #endif
  7017. return get_consumed_bytes(s, buf_index, buf_size);
  7018. }
  7019. #if 0
  7020. static inline void fill_mb_avail(H264Context *h){
  7021. MpegEncContext * const s = &h->s;
  7022. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  7023. if(s->mb_y){
  7024. h->mb_avail[0]= s->mb_x && h->slice_table[mb_xy - s->mb_stride - 1] == h->slice_num;
  7025. h->mb_avail[1]= h->slice_table[mb_xy - s->mb_stride ] == h->slice_num;
  7026. h->mb_avail[2]= s->mb_x+1 < s->mb_width && h->slice_table[mb_xy - s->mb_stride + 1] == h->slice_num;
  7027. }else{
  7028. h->mb_avail[0]=
  7029. h->mb_avail[1]=
  7030. h->mb_avail[2]= 0;
  7031. }
  7032. h->mb_avail[3]= s->mb_x && h->slice_table[mb_xy - 1] == h->slice_num;
  7033. h->mb_avail[4]= 1; //FIXME move out
  7034. h->mb_avail[5]= 0; //FIXME move out
  7035. }
  7036. #endif
  7037. #ifdef TEST
  7038. #undef printf
  7039. #undef random
  7040. #define COUNT 8000
  7041. #define SIZE (COUNT*40)
  7042. int main(void){
  7043. int i;
  7044. uint8_t temp[SIZE];
  7045. PutBitContext pb;
  7046. GetBitContext gb;
  7047. // int int_temp[10000];
  7048. DSPContext dsp;
  7049. AVCodecContext avctx;
  7050. dsputil_init(&dsp, &avctx);
  7051. init_put_bits(&pb, temp, SIZE);
  7052. printf("testing unsigned exp golomb\n");
  7053. for(i=0; i<COUNT; i++){
  7054. START_TIMER
  7055. set_ue_golomb(&pb, i);
  7056. STOP_TIMER("set_ue_golomb");
  7057. }
  7058. flush_put_bits(&pb);
  7059. init_get_bits(&gb, temp, 8*SIZE);
  7060. for(i=0; i<COUNT; i++){
  7061. int j, s;
  7062. s= show_bits(&gb, 24);
  7063. START_TIMER
  7064. j= get_ue_golomb(&gb);
  7065. if(j != i){
  7066. printf("mismatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
  7067. // return -1;
  7068. }
  7069. STOP_TIMER("get_ue_golomb");
  7070. }
  7071. init_put_bits(&pb, temp, SIZE);
  7072. printf("testing signed exp golomb\n");
  7073. for(i=0; i<COUNT; i++){
  7074. START_TIMER
  7075. set_se_golomb(&pb, i - COUNT/2);
  7076. STOP_TIMER("set_se_golomb");
  7077. }
  7078. flush_put_bits(&pb);
  7079. init_get_bits(&gb, temp, 8*SIZE);
  7080. for(i=0; i<COUNT; i++){
  7081. int j, s;
  7082. s= show_bits(&gb, 24);
  7083. START_TIMER
  7084. j= get_se_golomb(&gb);
  7085. if(j != i - COUNT/2){
  7086. printf("mismatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
  7087. // return -1;
  7088. }
  7089. STOP_TIMER("get_se_golomb");
  7090. }
  7091. #if 0
  7092. printf("testing 4x4 (I)DCT\n");
  7093. DCTELEM block[16];
  7094. uint8_t src[16], ref[16];
  7095. uint64_t error= 0, max_error=0;
  7096. for(i=0; i<COUNT; i++){
  7097. int j;
  7098. // printf("%d %d %d\n", r1, r2, (r2-r1)*16);
  7099. for(j=0; j<16; j++){
  7100. ref[j]= random()%255;
  7101. src[j]= random()%255;
  7102. }
  7103. h264_diff_dct_c(block, src, ref, 4);
  7104. //normalize
  7105. for(j=0; j<16; j++){
  7106. // printf("%d ", block[j]);
  7107. block[j]= block[j]*4;
  7108. if(j&1) block[j]= (block[j]*4 + 2)/5;
  7109. if(j&4) block[j]= (block[j]*4 + 2)/5;
  7110. }
  7111. // printf("\n");
  7112. s->dsp.h264_idct_add(ref, block, 4);
  7113. /* for(j=0; j<16; j++){
  7114. printf("%d ", ref[j]);
  7115. }
  7116. printf("\n");*/
  7117. for(j=0; j<16; j++){
  7118. int diff= FFABS(src[j] - ref[j]);
  7119. error+= diff*diff;
  7120. max_error= FFMAX(max_error, diff);
  7121. }
  7122. }
  7123. printf("error=%f max_error=%d\n", ((float)error)/COUNT/16, (int)max_error );
  7124. printf("testing quantizer\n");
  7125. for(qp=0; qp<52; qp++){
  7126. for(i=0; i<16; i++)
  7127. src1_block[i]= src2_block[i]= random()%255;
  7128. }
  7129. printf("Testing NAL layer\n");
  7130. uint8_t bitstream[COUNT];
  7131. uint8_t nal[COUNT*2];
  7132. H264Context h;
  7133. memset(&h, 0, sizeof(H264Context));
  7134. for(i=0; i<COUNT; i++){
  7135. int zeros= i;
  7136. int nal_length;
  7137. int consumed;
  7138. int out_length;
  7139. uint8_t *out;
  7140. int j;
  7141. for(j=0; j<COUNT; j++){
  7142. bitstream[j]= (random() % 255) + 1;
  7143. }
  7144. for(j=0; j<zeros; j++){
  7145. int pos= random() % COUNT;
  7146. while(bitstream[pos] == 0){
  7147. pos++;
  7148. pos %= COUNT;
  7149. }
  7150. bitstream[pos]=0;
  7151. }
  7152. START_TIMER
  7153. nal_length= encode_nal(&h, nal, bitstream, COUNT, COUNT*2);
  7154. if(nal_length<0){
  7155. printf("encoding failed\n");
  7156. return -1;
  7157. }
  7158. out= decode_nal(&h, nal, &out_length, &consumed, nal_length);
  7159. STOP_TIMER("NAL")
  7160. if(out_length != COUNT){
  7161. printf("incorrect length %d %d\n", out_length, COUNT);
  7162. return -1;
  7163. }
  7164. if(consumed != nal_length){
  7165. printf("incorrect consumed length %d %d\n", nal_length, consumed);
  7166. return -1;
  7167. }
  7168. if(memcmp(bitstream, out, COUNT)){
  7169. printf("mismatch\n");
  7170. return -1;
  7171. }
  7172. }
  7173. #endif
  7174. printf("Testing RBSP\n");
  7175. return 0;
  7176. }
  7177. #endif /* TEST */
  7178. static av_cold int decode_end(AVCodecContext *avctx)
  7179. {
  7180. H264Context *h = avctx->priv_data;
  7181. MpegEncContext *s = &h->s;
  7182. av_freep(&h->rbsp_buffer[0]);
  7183. av_freep(&h->rbsp_buffer[1]);
  7184. free_tables(h); //FIXME cleanup init stuff perhaps
  7185. MPV_common_end(s);
  7186. // memset(h, 0, sizeof(H264Context));
  7187. return 0;
  7188. }
  7189. AVCodec h264_decoder = {
  7190. "h264",
  7191. CODEC_TYPE_VIDEO,
  7192. CODEC_ID_H264,
  7193. sizeof(H264Context),
  7194. decode_init,
  7195. NULL,
  7196. decode_end,
  7197. decode_frame,
  7198. /*CODEC_CAP_DRAW_HORIZ_BAND |*/ CODEC_CAP_DR1 | CODEC_CAP_TRUNCATED | CODEC_CAP_DELAY,
  7199. .flush= flush_dpb,
  7200. .long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10"),
  7201. };
  7202. #include "svq3.c"