|
- /*
- * Copyright (c) 2019 Lynne <dev@lynne.ee>
- * Power of two FFT:
- * Copyright (c) 2008 Loren Merritt
- * Copyright (c) 2002 Fabrice Bellard
- * Partly based on libdjbfft by D. J. Bernstein
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
- /* All costabs for a type are defined here */
- COSTABLE(16);
- COSTABLE(32);
- COSTABLE(64);
- COSTABLE(128);
- COSTABLE(256);
- COSTABLE(512);
- COSTABLE(1024);
- COSTABLE(2048);
- COSTABLE(4096);
- COSTABLE(8192);
- COSTABLE(16384);
- COSTABLE(32768);
- COSTABLE(65536);
- COSTABLE(131072);
- DECLARE_ALIGNED(32, FFTComplex, TX_NAME(ff_cos_53))[4];
-
- static FFTSample * const cos_tabs[18] = {
- NULL,
- NULL,
- NULL,
- NULL,
- TX_NAME(ff_cos_16),
- TX_NAME(ff_cos_32),
- TX_NAME(ff_cos_64),
- TX_NAME(ff_cos_128),
- TX_NAME(ff_cos_256),
- TX_NAME(ff_cos_512),
- TX_NAME(ff_cos_1024),
- TX_NAME(ff_cos_2048),
- TX_NAME(ff_cos_4096),
- TX_NAME(ff_cos_8192),
- TX_NAME(ff_cos_16384),
- TX_NAME(ff_cos_32768),
- TX_NAME(ff_cos_65536),
- TX_NAME(ff_cos_131072),
- };
-
- static av_always_inline void init_cos_tabs_idx(int index)
- {
- int m = 1 << index;
- double freq = 2*M_PI/m;
- FFTSample *tab = cos_tabs[index];
- for(int i = 0; i <= m/4; i++)
- tab[i] = RESCALE(cos(i*freq));
- for(int i = 1; i < m/4; i++)
- tab[m/2 - i] = tab[i];
- }
-
- #define INIT_FF_COS_TABS_FUNC(index, size) \
- static av_cold void init_cos_tabs_ ## size (void) \
- { \
- init_cos_tabs_idx(index); \
- }
-
- INIT_FF_COS_TABS_FUNC(4, 16)
- INIT_FF_COS_TABS_FUNC(5, 32)
- INIT_FF_COS_TABS_FUNC(6, 64)
- INIT_FF_COS_TABS_FUNC(7, 128)
- INIT_FF_COS_TABS_FUNC(8, 256)
- INIT_FF_COS_TABS_FUNC(9, 512)
- INIT_FF_COS_TABS_FUNC(10, 1024)
- INIT_FF_COS_TABS_FUNC(11, 2048)
- INIT_FF_COS_TABS_FUNC(12, 4096)
- INIT_FF_COS_TABS_FUNC(13, 8192)
- INIT_FF_COS_TABS_FUNC(14, 16384)
- INIT_FF_COS_TABS_FUNC(15, 32768)
- INIT_FF_COS_TABS_FUNC(16, 65536)
- INIT_FF_COS_TABS_FUNC(17, 131072)
-
- static av_cold void ff_init_53_tabs(void)
- {
- TX_NAME(ff_cos_53)[0] = (FFTComplex){ RESCALE(cos(2 * M_PI / 12)), RESCALE(cos(2 * M_PI / 12)) };
- TX_NAME(ff_cos_53)[1] = (FFTComplex){ RESCALE(cos(2 * M_PI / 6)), RESCALE(cos(2 * M_PI / 6)) };
- TX_NAME(ff_cos_53)[2] = (FFTComplex){ RESCALE(cos(2 * M_PI / 5)), RESCALE(sin(2 * M_PI / 5)) };
- TX_NAME(ff_cos_53)[3] = (FFTComplex){ RESCALE(cos(2 * M_PI / 10)), RESCALE(sin(2 * M_PI / 10)) };
- }
-
- static CosTabsInitOnce cos_tabs_init_once[] = {
- { ff_init_53_tabs, AV_ONCE_INIT },
- { NULL },
- { NULL },
- { NULL },
- { init_cos_tabs_16, AV_ONCE_INIT },
- { init_cos_tabs_32, AV_ONCE_INIT },
- { init_cos_tabs_64, AV_ONCE_INIT },
- { init_cos_tabs_128, AV_ONCE_INIT },
- { init_cos_tabs_256, AV_ONCE_INIT },
- { init_cos_tabs_512, AV_ONCE_INIT },
- { init_cos_tabs_1024, AV_ONCE_INIT },
- { init_cos_tabs_2048, AV_ONCE_INIT },
- { init_cos_tabs_4096, AV_ONCE_INIT },
- { init_cos_tabs_8192, AV_ONCE_INIT },
- { init_cos_tabs_16384, AV_ONCE_INIT },
- { init_cos_tabs_32768, AV_ONCE_INIT },
- { init_cos_tabs_65536, AV_ONCE_INIT },
- { init_cos_tabs_131072, AV_ONCE_INIT },
- };
-
- static av_cold void init_cos_tabs(int index)
- {
- ff_thread_once(&cos_tabs_init_once[index].control,
- cos_tabs_init_once[index].func);
- }
-
- static av_always_inline void fft3(FFTComplex *out, FFTComplex *in,
- ptrdiff_t stride)
- {
- FFTComplex tmp[2];
- #ifdef TX_INT32
- int64_t mtmp[4];
- #endif
-
- BF(tmp[0].re, tmp[1].im, in[1].im, in[2].im);
- BF(tmp[0].im, tmp[1].re, in[1].re, in[2].re);
-
- out[0*stride].re = in[0].re + tmp[1].re;
- out[0*stride].im = in[0].im + tmp[1].im;
-
- #ifdef TX_INT32
- mtmp[0] = (int64_t)TX_NAME(ff_cos_53)[0].re * tmp[0].re;
- mtmp[1] = (int64_t)TX_NAME(ff_cos_53)[0].im * tmp[0].im;
- mtmp[2] = (int64_t)TX_NAME(ff_cos_53)[1].re * tmp[1].re;
- mtmp[3] = (int64_t)TX_NAME(ff_cos_53)[1].re * tmp[1].im;
- out[1*stride].re = in[0].re - (mtmp[2] + mtmp[0] + 0x40000000 >> 31);
- out[1*stride].im = in[0].im - (mtmp[3] - mtmp[1] + 0x40000000 >> 31);
- out[2*stride].re = in[0].re - (mtmp[2] - mtmp[0] + 0x40000000 >> 31);
- out[2*stride].im = in[0].im - (mtmp[3] + mtmp[1] + 0x40000000 >> 31);
- #else
- tmp[0].re = TX_NAME(ff_cos_53)[0].re * tmp[0].re;
- tmp[0].im = TX_NAME(ff_cos_53)[0].im * tmp[0].im;
- tmp[1].re = TX_NAME(ff_cos_53)[1].re * tmp[1].re;
- tmp[1].im = TX_NAME(ff_cos_53)[1].re * tmp[1].im;
- out[1*stride].re = in[0].re - tmp[1].re + tmp[0].re;
- out[1*stride].im = in[0].im - tmp[1].im - tmp[0].im;
- out[2*stride].re = in[0].re - tmp[1].re - tmp[0].re;
- out[2*stride].im = in[0].im - tmp[1].im + tmp[0].im;
- #endif
- }
-
- #define DECL_FFT5(NAME, D0, D1, D2, D3, D4) \
- static av_always_inline void NAME(FFTComplex *out, FFTComplex *in, \
- ptrdiff_t stride) \
- { \
- FFTComplex z0[4], t[6]; \
- \
- BF(t[1].im, t[0].re, in[1].re, in[4].re); \
- BF(t[1].re, t[0].im, in[1].im, in[4].im); \
- BF(t[3].im, t[2].re, in[2].re, in[3].re); \
- BF(t[3].re, t[2].im, in[2].im, in[3].im); \
- \
- out[D0*stride].re = in[0].re + t[0].re + t[2].re; \
- out[D0*stride].im = in[0].im + t[0].im + t[2].im; \
- \
- SMUL(t[4].re, t[0].re, TX_NAME(ff_cos_53)[2].re, TX_NAME(ff_cos_53)[3].re, t[2].re, t[0].re); \
- SMUL(t[4].im, t[0].im, TX_NAME(ff_cos_53)[2].re, TX_NAME(ff_cos_53)[3].re, t[2].im, t[0].im); \
- CMUL(t[5].re, t[1].re, TX_NAME(ff_cos_53)[2].im, TX_NAME(ff_cos_53)[3].im, t[3].re, t[1].re); \
- CMUL(t[5].im, t[1].im, TX_NAME(ff_cos_53)[2].im, TX_NAME(ff_cos_53)[3].im, t[3].im, t[1].im); \
- \
- BF(z0[0].re, z0[3].re, t[0].re, t[1].re); \
- BF(z0[0].im, z0[3].im, t[0].im, t[1].im); \
- BF(z0[2].re, z0[1].re, t[4].re, t[5].re); \
- BF(z0[2].im, z0[1].im, t[4].im, t[5].im); \
- \
- out[D1*stride].re = in[0].re + z0[3].re; \
- out[D1*stride].im = in[0].im + z0[0].im; \
- out[D2*stride].re = in[0].re + z0[2].re; \
- out[D2*stride].im = in[0].im + z0[1].im; \
- out[D3*stride].re = in[0].re + z0[1].re; \
- out[D3*stride].im = in[0].im + z0[2].im; \
- out[D4*stride].re = in[0].re + z0[0].re; \
- out[D4*stride].im = in[0].im + z0[3].im; \
- }
-
- DECL_FFT5(fft5, 0, 1, 2, 3, 4)
- DECL_FFT5(fft5_m1, 0, 6, 12, 3, 9)
- DECL_FFT5(fft5_m2, 10, 1, 7, 13, 4)
- DECL_FFT5(fft5_m3, 5, 11, 2, 8, 14)
-
- static av_always_inline void fft15(FFTComplex *out, FFTComplex *in,
- ptrdiff_t stride)
- {
- FFTComplex tmp[15];
-
- for (int i = 0; i < 5; i++)
- fft3(tmp + i, in + i*3, 5);
-
- fft5_m1(out, tmp + 0, stride);
- fft5_m2(out, tmp + 5, stride);
- fft5_m3(out, tmp + 10, stride);
- }
-
- #define BUTTERFLIES(a0,a1,a2,a3) {\
- BF(t3, t5, t5, t1);\
- BF(a2.re, a0.re, a0.re, t5);\
- BF(a3.im, a1.im, a1.im, t3);\
- BF(t4, t6, t2, t6);\
- BF(a3.re, a1.re, a1.re, t4);\
- BF(a2.im, a0.im, a0.im, t6);\
- }
-
- // force loading all the inputs before storing any.
- // this is slightly slower for small data, but avoids store->load aliasing
- // for addresses separated by large powers of 2.
- #define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
- FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
- BF(t3, t5, t5, t1);\
- BF(a2.re, a0.re, r0, t5);\
- BF(a3.im, a1.im, i1, t3);\
- BF(t4, t6, t2, t6);\
- BF(a3.re, a1.re, r1, t4);\
- BF(a2.im, a0.im, i0, t6);\
- }
-
- #define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
- CMUL(t1, t2, a2.re, a2.im, wre, -wim);\
- CMUL(t5, t6, a3.re, a3.im, wre, wim);\
- BUTTERFLIES(a0,a1,a2,a3)\
- }
-
- #define TRANSFORM_ZERO(a0,a1,a2,a3) {\
- t1 = a2.re;\
- t2 = a2.im;\
- t5 = a3.re;\
- t6 = a3.im;\
- BUTTERFLIES(a0,a1,a2,a3)\
- }
-
- /* z[0...8n-1], w[1...2n-1] */
- #define PASS(name)\
- static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\
- {\
- FFTSample t1, t2, t3, t4, t5, t6;\
- int o1 = 2*n;\
- int o2 = 4*n;\
- int o3 = 6*n;\
- const FFTSample *wim = wre+o1;\
- n--;\
- \
- TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
- TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
- do {\
- z += 2;\
- wre += 2;\
- wim -= 2;\
- TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\
- TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
- } while(--n);\
- }
-
- PASS(pass)
- #undef BUTTERFLIES
- #define BUTTERFLIES BUTTERFLIES_BIG
- PASS(pass_big)
-
- #define DECL_FFT(n,n2,n4)\
- static void fft##n(FFTComplex *z)\
- {\
- fft##n2(z);\
- fft##n4(z+n4*2);\
- fft##n4(z+n4*3);\
- pass(z,TX_NAME(ff_cos_##n),n4/2);\
- }
-
- static void fft2(FFTComplex *z)
- {
- FFTComplex tmp;
- BF(tmp.re, z[0].re, z[0].re, z[1].re);
- BF(tmp.im, z[0].im, z[0].im, z[1].im);
- z[1] = tmp;
- }
-
- static void fft4(FFTComplex *z)
- {
- FFTSample t1, t2, t3, t4, t5, t6, t7, t8;
-
- BF(t3, t1, z[0].re, z[1].re);
- BF(t8, t6, z[3].re, z[2].re);
- BF(z[2].re, z[0].re, t1, t6);
- BF(t4, t2, z[0].im, z[1].im);
- BF(t7, t5, z[2].im, z[3].im);
- BF(z[3].im, z[1].im, t4, t8);
- BF(z[3].re, z[1].re, t3, t7);
- BF(z[2].im, z[0].im, t2, t5);
- }
-
- static void fft8(FFTComplex *z)
- {
- FFTSample t1, t2, t3, t4, t5, t6;
-
- fft4(z);
-
- BF(t1, z[5].re, z[4].re, -z[5].re);
- BF(t2, z[5].im, z[4].im, -z[5].im);
- BF(t5, z[7].re, z[6].re, -z[7].re);
- BF(t6, z[7].im, z[6].im, -z[7].im);
-
- BUTTERFLIES(z[0],z[2],z[4],z[6]);
- TRANSFORM(z[1],z[3],z[5],z[7],RESCALE(M_SQRT1_2),RESCALE(M_SQRT1_2));
- }
-
- static void fft16(FFTComplex *z)
- {
- FFTSample t1, t2, t3, t4, t5, t6;
- FFTSample cos_16_1 = TX_NAME(ff_cos_16)[1];
- FFTSample cos_16_3 = TX_NAME(ff_cos_16)[3];
-
- fft8(z);
- fft4(z+8);
- fft4(z+12);
-
- TRANSFORM_ZERO(z[0],z[4],z[8],z[12]);
- TRANSFORM(z[2],z[6],z[10],z[14],RESCALE(M_SQRT1_2),RESCALE(M_SQRT1_2));
- TRANSFORM(z[1],z[5],z[9],z[13],cos_16_1,cos_16_3);
- TRANSFORM(z[3],z[7],z[11],z[15],cos_16_3,cos_16_1);
- }
-
- DECL_FFT(32,16,8)
- DECL_FFT(64,32,16)
- DECL_FFT(128,64,32)
- DECL_FFT(256,128,64)
- DECL_FFT(512,256,128)
- #define pass pass_big
- DECL_FFT(1024,512,256)
- DECL_FFT(2048,1024,512)
- DECL_FFT(4096,2048,1024)
- DECL_FFT(8192,4096,2048)
- DECL_FFT(16384,8192,4096)
- DECL_FFT(32768,16384,8192)
- DECL_FFT(65536,32768,16384)
- DECL_FFT(131072,65536,32768)
-
- static void (* const fft_dispatch[])(FFTComplex*) = {
- NULL, fft2, fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512,
- fft1024, fft2048, fft4096, fft8192, fft16384, fft32768, fft65536, fft131072
- };
-
- #define DECL_COMP_FFT(N) \
- static void compound_fft_##N##xM(AVTXContext *s, void *_out, \
- void *_in, ptrdiff_t stride) \
- { \
- const int m = s->m, *in_map = s->pfatab, *out_map = in_map + N*m; \
- FFTComplex *in = _in; \
- FFTComplex *out = _out; \
- FFTComplex fft##N##in[N]; \
- void (*fftp)(FFTComplex *z) = fft_dispatch[av_log2(m)]; \
- \
- for (int i = 0; i < m; i++) { \
- for (int j = 0; j < N; j++) \
- fft##N##in[j] = in[in_map[i*N + j]]; \
- fft##N(s->tmp + s->revtab[i], fft##N##in, m); \
- } \
- \
- for (int i = 0; i < N; i++) \
- fftp(s->tmp + m*i); \
- \
- for (int i = 0; i < N*m; i++) \
- out[i] = s->tmp[out_map[i]]; \
- }
-
- DECL_COMP_FFT(3)
- DECL_COMP_FFT(5)
- DECL_COMP_FFT(15)
-
- static void monolithic_fft(AVTXContext *s, void *_out, void *_in,
- ptrdiff_t stride)
- {
- FFTComplex *in = _in;
- FFTComplex *out = _out;
- int m = s->m, mb = av_log2(m);
-
- if (s->flags & AV_TX_INPLACE) {
- FFTComplex tmp;
- int src, dst, *inplace_idx = s->inplace_idx;
-
- src = *inplace_idx++;
-
- do {
- tmp = out[src];
- dst = s->revtab[src];
- do {
- FFSWAP(FFTComplex, tmp, out[dst]);
- dst = s->revtab[dst];
- } while (dst != src); /* Can be > as well, but is less predictable */
- out[dst] = tmp;
- } while ((src = *inplace_idx++));
- } else {
- for (int i = 0; i < m; i++)
- out[i] = in[s->revtab[i]];
- }
-
- fft_dispatch[mb](out);
- }
-
- static void naive_fft(AVTXContext *s, void *_out, void *_in,
- ptrdiff_t stride)
- {
- FFTComplex *in = _in;
- FFTComplex *out = _out;
- const int n = s->n;
- double phase = s->inv ? 2.0*M_PI/n : -2.0*M_PI/n;
-
- for(int i = 0; i < n; i++) {
- FFTComplex tmp = { 0 };
- for(int j = 0; j < n; j++) {
- const double factor = phase*i*j;
- const FFTComplex mult = {
- RESCALE(cos(factor)),
- RESCALE(sin(factor)),
- };
- FFTComplex res;
- CMUL3(res, in[j], mult);
- tmp.re += res.re;
- tmp.im += res.im;
- }
- out[i] = tmp;
- }
- }
-
- #define DECL_COMP_IMDCT(N) \
- static void compound_imdct_##N##xM(AVTXContext *s, void *_dst, void *_src, \
- ptrdiff_t stride) \
- { \
- FFTComplex fft##N##in[N]; \
- FFTComplex *z = _dst, *exp = s->exptab; \
- const int m = s->m, len8 = N*m >> 1; \
- const int *in_map = s->pfatab, *out_map = in_map + N*m; \
- const FFTSample *src = _src, *in1, *in2; \
- void (*fftp)(FFTComplex *) = fft_dispatch[av_log2(m)]; \
- \
- stride /= sizeof(*src); /* To convert it from bytes */ \
- in1 = src; \
- in2 = src + ((N*m*2) - 1) * stride; \
- \
- for (int i = 0; i < m; i++) { \
- for (int j = 0; j < N; j++) { \
- const int k = in_map[i*N + j]; \
- FFTComplex tmp = { in2[-k*stride], in1[k*stride] }; \
- CMUL3(fft##N##in[j], tmp, exp[k >> 1]); \
- } \
- fft##N(s->tmp + s->revtab[i], fft##N##in, m); \
- } \
- \
- for (int i = 0; i < N; i++) \
- fftp(s->tmp + m*i); \
- \
- for (int i = 0; i < len8; i++) { \
- const int i0 = len8 + i, i1 = len8 - i - 1; \
- const int s0 = out_map[i0], s1 = out_map[i1]; \
- FFTComplex src1 = { s->tmp[s1].im, s->tmp[s1].re }; \
- FFTComplex src0 = { s->tmp[s0].im, s->tmp[s0].re }; \
- \
- CMUL(z[i1].re, z[i0].im, src1.re, src1.im, exp[i1].im, exp[i1].re); \
- CMUL(z[i0].re, z[i1].im, src0.re, src0.im, exp[i0].im, exp[i0].re); \
- } \
- }
-
- DECL_COMP_IMDCT(3)
- DECL_COMP_IMDCT(5)
- DECL_COMP_IMDCT(15)
-
- #define DECL_COMP_MDCT(N) \
- static void compound_mdct_##N##xM(AVTXContext *s, void *_dst, void *_src, \
- ptrdiff_t stride) \
- { \
- FFTSample *src = _src, *dst = _dst; \
- FFTComplex *exp = s->exptab, tmp, fft##N##in[N]; \
- const int m = s->m, len4 = N*m, len3 = len4 * 3, len8 = len4 >> 1; \
- const int *in_map = s->pfatab, *out_map = in_map + N*m; \
- void (*fftp)(FFTComplex *) = fft_dispatch[av_log2(m)]; \
- \
- stride /= sizeof(*dst); \
- \
- for (int i = 0; i < m; i++) { /* Folding and pre-reindexing */ \
- for (int j = 0; j < N; j++) { \
- const int k = in_map[i*N + j]; \
- if (k < len4) { \
- tmp.re = FOLD(-src[ len4 + k], src[1*len4 - 1 - k]); \
- tmp.im = FOLD(-src[ len3 + k], -src[1*len3 - 1 - k]); \
- } else { \
- tmp.re = FOLD(-src[ len4 + k], -src[5*len4 - 1 - k]); \
- tmp.im = FOLD( src[-len4 + k], -src[1*len3 - 1 - k]); \
- } \
- CMUL(fft##N##in[j].im, fft##N##in[j].re, tmp.re, tmp.im, \
- exp[k >> 1].re, exp[k >> 1].im); \
- } \
- fft##N(s->tmp + s->revtab[i], fft##N##in, m); \
- } \
- \
- for (int i = 0; i < N; i++) \
- fftp(s->tmp + m*i); \
- \
- for (int i = 0; i < len8; i++) { \
- const int i0 = len8 + i, i1 = len8 - i - 1; \
- const int s0 = out_map[i0], s1 = out_map[i1]; \
- FFTComplex src1 = { s->tmp[s1].re, s->tmp[s1].im }; \
- FFTComplex src0 = { s->tmp[s0].re, s->tmp[s0].im }; \
- \
- CMUL(dst[2*i1*stride + stride], dst[2*i0*stride], src0.re, src0.im, \
- exp[i0].im, exp[i0].re); \
- CMUL(dst[2*i0*stride + stride], dst[2*i1*stride], src1.re, src1.im, \
- exp[i1].im, exp[i1].re); \
- } \
- }
-
- DECL_COMP_MDCT(3)
- DECL_COMP_MDCT(5)
- DECL_COMP_MDCT(15)
-
- static void monolithic_imdct(AVTXContext *s, void *_dst, void *_src,
- ptrdiff_t stride)
- {
- FFTComplex *z = _dst, *exp = s->exptab;
- const int m = s->m, len8 = m >> 1;
- const FFTSample *src = _src, *in1, *in2;
- void (*fftp)(FFTComplex *) = fft_dispatch[av_log2(m)];
-
- stride /= sizeof(*src);
- in1 = src;
- in2 = src + ((m*2) - 1) * stride;
-
- for (int i = 0; i < m; i++) {
- FFTComplex tmp = { in2[-2*i*stride], in1[2*i*stride] };
- CMUL3(z[s->revtab[i]], tmp, exp[i]);
- }
-
- fftp(z);
-
- for (int i = 0; i < len8; i++) {
- const int i0 = len8 + i, i1 = len8 - i - 1;
- FFTComplex src1 = { z[i1].im, z[i1].re };
- FFTComplex src0 = { z[i0].im, z[i0].re };
-
- CMUL(z[i1].re, z[i0].im, src1.re, src1.im, exp[i1].im, exp[i1].re);
- CMUL(z[i0].re, z[i1].im, src0.re, src0.im, exp[i0].im, exp[i0].re);
- }
- }
-
- static void monolithic_mdct(AVTXContext *s, void *_dst, void *_src,
- ptrdiff_t stride)
- {
- FFTSample *src = _src, *dst = _dst;
- FFTComplex *exp = s->exptab, tmp, *z = _dst;
- const int m = s->m, len4 = m, len3 = len4 * 3, len8 = len4 >> 1;
- void (*fftp)(FFTComplex *) = fft_dispatch[av_log2(m)];
-
- stride /= sizeof(*dst);
-
- for (int i = 0; i < m; i++) { /* Folding and pre-reindexing */
- const int k = 2*i;
- if (k < len4) {
- tmp.re = FOLD(-src[ len4 + k], src[1*len4 - 1 - k]);
- tmp.im = FOLD(-src[ len3 + k], -src[1*len3 - 1 - k]);
- } else {
- tmp.re = FOLD(-src[ len4 + k], -src[5*len4 - 1 - k]);
- tmp.im = FOLD( src[-len4 + k], -src[1*len3 - 1 - k]);
- }
- CMUL(z[s->revtab[i]].im, z[s->revtab[i]].re, tmp.re, tmp.im,
- exp[i].re, exp[i].im);
- }
-
- fftp(z);
-
- for (int i = 0; i < len8; i++) {
- const int i0 = len8 + i, i1 = len8 - i - 1;
- FFTComplex src1 = { z[i1].re, z[i1].im };
- FFTComplex src0 = { z[i0].re, z[i0].im };
-
- CMUL(dst[2*i1*stride + stride], dst[2*i0*stride], src0.re, src0.im,
- exp[i0].im, exp[i0].re);
- CMUL(dst[2*i0*stride + stride], dst[2*i1*stride], src1.re, src1.im,
- exp[i1].im, exp[i1].re);
- }
- }
-
- static void naive_imdct(AVTXContext *s, void *_dst, void *_src,
- ptrdiff_t stride)
- {
- int len = s->n;
- int len2 = len*2;
- FFTSample *src = _src;
- FFTSample *dst = _dst;
- double scale = s->scale;
- const double phase = M_PI/(4.0*len2);
-
- stride /= sizeof(*src);
-
- for (int i = 0; i < len; i++) {
- double sum_d = 0.0;
- double sum_u = 0.0;
- double i_d = phase * (4*len - 2*i - 1);
- double i_u = phase * (3*len2 + 2*i + 1);
- for (int j = 0; j < len2; j++) {
- double a = (2 * j + 1);
- double a_d = cos(a * i_d);
- double a_u = cos(a * i_u);
- double val = UNSCALE(src[j*stride]);
- sum_d += a_d * val;
- sum_u += a_u * val;
- }
- dst[i + 0] = RESCALE( sum_d*scale);
- dst[i + len] = RESCALE(-sum_u*scale);
- }
- }
-
- static void naive_mdct(AVTXContext *s, void *_dst, void *_src,
- ptrdiff_t stride)
- {
- int len = s->n*2;
- FFTSample *src = _src;
- FFTSample *dst = _dst;
- double scale = s->scale;
- const double phase = M_PI/(4.0*len);
-
- stride /= sizeof(*dst);
-
- for (int i = 0; i < len; i++) {
- double sum = 0.0;
- for (int j = 0; j < len*2; j++) {
- int a = (2*j + 1 + len) * (2*i + 1);
- sum += UNSCALE(src[j]) * cos(a * phase);
- }
- dst[i*stride] = RESCALE(sum*scale);
- }
- }
-
- static int gen_mdct_exptab(AVTXContext *s, int len4, double scale)
- {
- const double theta = (scale < 0 ? len4 : 0) + 1.0/8.0;
-
- if (!(s->exptab = av_malloc_array(len4, sizeof(*s->exptab))))
- return AVERROR(ENOMEM);
-
- scale = sqrt(fabs(scale));
- for (int i = 0; i < len4; i++) {
- const double alpha = M_PI_2 * (i + theta) / len4;
- s->exptab[i].re = RESCALE(cos(alpha) * scale);
- s->exptab[i].im = RESCALE(sin(alpha) * scale);
- }
-
- return 0;
- }
-
- int TX_NAME(ff_tx_init_mdct_fft)(AVTXContext *s, av_tx_fn *tx,
- enum AVTXType type, int inv, int len,
- const void *scale, uint64_t flags)
- {
- const int is_mdct = ff_tx_type_is_mdct(type);
- int err, l, n = 1, m = 1, max_ptwo = 1 << (FF_ARRAY_ELEMS(fft_dispatch) - 1);
-
- if (is_mdct)
- len >>= 1;
-
- l = len;
-
- #define CHECK_FACTOR(DST, FACTOR, SRC) \
- if (DST == 1 && !(SRC % FACTOR)) { \
- DST = FACTOR; \
- SRC /= FACTOR; \
- }
- CHECK_FACTOR(n, 15, len)
- CHECK_FACTOR(n, 5, len)
- CHECK_FACTOR(n, 3, len)
- #undef CHECK_FACTOR
-
- /* len must be a power of two now */
- if (!(len & (len - 1)) && len >= 2 && len <= max_ptwo) {
- m = len;
- len = 1;
- }
-
- s->n = n;
- s->m = m;
- s->inv = inv;
- s->type = type;
- s->flags = flags;
-
- /* If we weren't able to split the length into factors we can handle,
- * resort to using the naive and slow FT. This also filters out
- * direct 3, 5 and 15 transforms as they're too niche. */
- if (len > 1 || m == 1) {
- if (is_mdct && (l & 1)) /* Odd (i)MDCTs are not supported yet */
- return AVERROR(ENOSYS);
- if (flags & AV_TX_INPLACE) /* Neither are in-place naive transforms */
- return AVERROR(ENOSYS);
- s->n = l;
- s->m = 1;
- *tx = naive_fft;
- if (is_mdct) {
- s->scale = *((SCALE_TYPE *)scale);
- *tx = inv ? naive_imdct : naive_mdct;
- }
- return 0;
- }
-
- if (n > 1 && m > 1) { /* 2D transform case */
- if ((err = ff_tx_gen_compound_mapping(s)))
- return err;
- if (!(s->tmp = av_malloc(n*m*sizeof(*s->tmp))))
- return AVERROR(ENOMEM);
- *tx = n == 3 ? compound_fft_3xM :
- n == 5 ? compound_fft_5xM :
- compound_fft_15xM;
- if (is_mdct)
- *tx = n == 3 ? inv ? compound_imdct_3xM : compound_mdct_3xM :
- n == 5 ? inv ? compound_imdct_5xM : compound_mdct_5xM :
- inv ? compound_imdct_15xM : compound_mdct_15xM;
- } else { /* Direct transform case */
- *tx = monolithic_fft;
- if (is_mdct)
- *tx = inv ? monolithic_imdct : monolithic_mdct;
- }
-
- if (n != 1)
- init_cos_tabs(0);
- if (m != 1) {
- if ((err = ff_tx_gen_ptwo_revtab(s, n == 1 && !is_mdct && !(flags & AV_TX_INPLACE))))
- return err;
- if (flags & AV_TX_INPLACE) {
- if (is_mdct) /* In-place MDCTs are not supported yet */
- return AVERROR(ENOSYS);
- if ((err = ff_tx_gen_ptwo_inplace_revtab_idx(s)))
- return err;
- }
- for (int i = 4; i <= av_log2(m); i++)
- init_cos_tabs(i);
- }
-
- if (is_mdct)
- return gen_mdct_exptab(s, n*m, *((SCALE_TYPE *)scale));
-
- return 0;
- }
|