|
|
|
@@ -0,0 +1,261 @@ |
|
|
|
/* |
|
|
|
* Copyright (c) 2020 |
|
|
|
* |
|
|
|
* This file is part of FFmpeg. |
|
|
|
* |
|
|
|
* FFmpeg is free software; you can redistribute it and/or |
|
|
|
* modify it under the terms of the GNU Lesser General Public |
|
|
|
* License as published by the Free Software Foundation; either |
|
|
|
* version 2.1 of the License, or (at your option) any later version. |
|
|
|
* |
|
|
|
* FFmpeg is distributed in the hope that it will be useful, |
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
|
|
* Lesser General Public License for more details. |
|
|
|
* |
|
|
|
* You should have received a copy of the GNU Lesser General Public |
|
|
|
* License along with FFmpeg; if not, write to the Free Software |
|
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
|
|
*/ |
|
|
|
|
|
|
|
/** |
|
|
|
* @file |
|
|
|
* DNN OpenVINO backend implementation. |
|
|
|
*/ |
|
|
|
|
|
|
|
#include "dnn_backend_openvino.h" |
|
|
|
#include "libavformat/avio.h" |
|
|
|
#include "libavutil/avassert.h" |
|
|
|
#include <c_api/ie_c_api.h> |
|
|
|
|
|
|
|
typedef struct OVModel{ |
|
|
|
ie_core_t *core; |
|
|
|
ie_network_t *network; |
|
|
|
ie_executable_network_t *exe_network; |
|
|
|
ie_infer_request_t *infer_request; |
|
|
|
ie_blob_t *input_blob; |
|
|
|
ie_blob_t **output_blobs; |
|
|
|
uint32_t nb_output; |
|
|
|
} OVModel; |
|
|
|
|
|
|
|
static DNNDataType precision_to_datatype(precision_e precision) |
|
|
|
{ |
|
|
|
switch (precision) |
|
|
|
{ |
|
|
|
case FP32: |
|
|
|
return DNN_FLOAT; |
|
|
|
default: |
|
|
|
av_assert0(!"not supported yet."); |
|
|
|
return DNN_FLOAT; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
static DNNReturnType get_input_ov(void *model, DNNData *input, const char *input_name) |
|
|
|
{ |
|
|
|
OVModel *ov_model = (OVModel *)model; |
|
|
|
char *model_input_name = NULL; |
|
|
|
IEStatusCode status; |
|
|
|
size_t model_input_count = 0; |
|
|
|
dimensions_t dims; |
|
|
|
precision_e precision; |
|
|
|
|
|
|
|
status = ie_network_get_inputs_number(ov_model->network, &model_input_count); |
|
|
|
if (status != OK) |
|
|
|
return DNN_ERROR; |
|
|
|
|
|
|
|
for (size_t i = 0; i < model_input_count; i++) { |
|
|
|
status = ie_network_get_input_name(ov_model->network, i, &model_input_name); |
|
|
|
if (status != OK) |
|
|
|
return DNN_ERROR; |
|
|
|
if (strcmp(model_input_name, input_name) == 0) { |
|
|
|
ie_network_name_free(&model_input_name); |
|
|
|
status |= ie_network_get_input_dims(ov_model->network, input_name, &dims); |
|
|
|
status |= ie_network_get_input_precision(ov_model->network, input_name, &precision); |
|
|
|
if (status != OK) |
|
|
|
return DNN_ERROR; |
|
|
|
|
|
|
|
// The order of dims in the openvino is fixed and it is always NCHW for 4-D data. |
|
|
|
// while we pass NHWC data from FFmpeg to openvino |
|
|
|
status = ie_network_set_input_layout(ov_model->network, input_name, NHWC); |
|
|
|
if (status != OK) |
|
|
|
return DNN_ERROR; |
|
|
|
|
|
|
|
input->channels = dims.dims[1]; |
|
|
|
input->height = dims.dims[2]; |
|
|
|
input->width = dims.dims[3]; |
|
|
|
input->dt = precision_to_datatype(precision); |
|
|
|
return DNN_SUCCESS; |
|
|
|
} |
|
|
|
|
|
|
|
ie_network_name_free(&model_input_name); |
|
|
|
} |
|
|
|
|
|
|
|
return DNN_ERROR; |
|
|
|
} |
|
|
|
|
|
|
|
static DNNReturnType set_input_output_ov(void *model, DNNData *input, const char *input_name, const char **output_names, uint32_t nb_output) |
|
|
|
{ |
|
|
|
OVModel *ov_model = (OVModel *)model; |
|
|
|
IEStatusCode status; |
|
|
|
dimensions_t dims; |
|
|
|
precision_e precision; |
|
|
|
ie_blob_buffer_t blob_buffer; |
|
|
|
|
|
|
|
status = ie_exec_network_create_infer_request(ov_model->exe_network, &ov_model->infer_request); |
|
|
|
if (status != OK) |
|
|
|
goto err; |
|
|
|
|
|
|
|
status = ie_infer_request_get_blob(ov_model->infer_request, input_name, &ov_model->input_blob); |
|
|
|
if (status != OK) |
|
|
|
goto err; |
|
|
|
|
|
|
|
status |= ie_blob_get_dims(ov_model->input_blob, &dims); |
|
|
|
status |= ie_blob_get_precision(ov_model->input_blob, &precision); |
|
|
|
if (status != OK) |
|
|
|
goto err; |
|
|
|
|
|
|
|
av_assert0(input->channels == dims.dims[1]); |
|
|
|
av_assert0(input->height == dims.dims[2]); |
|
|
|
av_assert0(input->width == dims.dims[3]); |
|
|
|
av_assert0(input->dt == precision_to_datatype(precision)); |
|
|
|
|
|
|
|
status = ie_blob_get_buffer(ov_model->input_blob, &blob_buffer); |
|
|
|
if (status != OK) |
|
|
|
goto err; |
|
|
|
input->data = blob_buffer.buffer; |
|
|
|
|
|
|
|
// outputs |
|
|
|
ov_model->nb_output = 0; |
|
|
|
av_freep(&ov_model->output_blobs); |
|
|
|
ov_model->output_blobs = av_mallocz_array(nb_output, sizeof(*ov_model->output_blobs)); |
|
|
|
if (!ov_model->output_blobs) |
|
|
|
goto err; |
|
|
|
|
|
|
|
for (int i = 0; i < nb_output; i++) { |
|
|
|
const char *output_name = output_names[i]; |
|
|
|
status = ie_infer_request_get_blob(ov_model->infer_request, output_name, &(ov_model->output_blobs[i])); |
|
|
|
if (status != OK) |
|
|
|
goto err; |
|
|
|
ov_model->nb_output++; |
|
|
|
} |
|
|
|
|
|
|
|
return DNN_SUCCESS; |
|
|
|
|
|
|
|
err: |
|
|
|
if (ov_model->output_blobs) { |
|
|
|
for (uint32_t i = 0; i < ov_model->nb_output; i++) { |
|
|
|
ie_blob_free(&(ov_model->output_blobs[i])); |
|
|
|
} |
|
|
|
av_freep(&ov_model->output_blobs); |
|
|
|
} |
|
|
|
if (ov_model->input_blob) |
|
|
|
ie_blob_free(&ov_model->input_blob); |
|
|
|
if (ov_model->infer_request) |
|
|
|
ie_infer_request_free(&ov_model->infer_request); |
|
|
|
return DNN_ERROR; |
|
|
|
} |
|
|
|
|
|
|
|
DNNModel *ff_dnn_load_model_ov(const char *model_filename) |
|
|
|
{ |
|
|
|
DNNModel *model = NULL; |
|
|
|
OVModel *ov_model = NULL; |
|
|
|
IEStatusCode status; |
|
|
|
ie_config_t config = {NULL, NULL, NULL}; |
|
|
|
|
|
|
|
model = av_malloc(sizeof(DNNModel)); |
|
|
|
if (!model){ |
|
|
|
return NULL; |
|
|
|
} |
|
|
|
|
|
|
|
ov_model = av_mallocz(sizeof(OVModel)); |
|
|
|
if (!ov_model) |
|
|
|
goto err; |
|
|
|
|
|
|
|
status = ie_core_create("", &ov_model->core); |
|
|
|
if (status != OK) |
|
|
|
goto err; |
|
|
|
|
|
|
|
status = ie_core_read_network(ov_model->core, model_filename, NULL, &ov_model->network); |
|
|
|
if (status != OK) |
|
|
|
goto err; |
|
|
|
|
|
|
|
status = ie_core_load_network(ov_model->core, ov_model->network, "CPU", &config, &ov_model->exe_network); |
|
|
|
if (status != OK) |
|
|
|
goto err; |
|
|
|
|
|
|
|
model->model = (void *)ov_model; |
|
|
|
model->set_input_output = &set_input_output_ov; |
|
|
|
model->get_input = &get_input_ov; |
|
|
|
|
|
|
|
return model; |
|
|
|
|
|
|
|
err: |
|
|
|
if (model) |
|
|
|
av_freep(&model); |
|
|
|
if (ov_model) { |
|
|
|
if (ov_model->exe_network) |
|
|
|
ie_exec_network_free(&ov_model->exe_network); |
|
|
|
if (ov_model->network) |
|
|
|
ie_network_free(&ov_model->network); |
|
|
|
if (ov_model->core) |
|
|
|
ie_core_free(&ov_model->core); |
|
|
|
av_freep(&ov_model); |
|
|
|
} |
|
|
|
return NULL; |
|
|
|
} |
|
|
|
|
|
|
|
DNNReturnType ff_dnn_execute_model_ov(const DNNModel *model, DNNData *outputs, uint32_t nb_output) |
|
|
|
{ |
|
|
|
dimensions_t dims; |
|
|
|
precision_e precision; |
|
|
|
ie_blob_buffer_t blob_buffer; |
|
|
|
OVModel *ov_model = (OVModel *)model->model; |
|
|
|
uint32_t nb = FFMIN(nb_output, ov_model->nb_output); |
|
|
|
IEStatusCode status = ie_infer_request_infer(ov_model->infer_request); |
|
|
|
if (status != OK) |
|
|
|
return DNN_ERROR; |
|
|
|
|
|
|
|
for (uint32_t i = 0; i < nb; ++i) { |
|
|
|
status = ie_blob_get_buffer(ov_model->output_blobs[i], &blob_buffer); |
|
|
|
if (status != OK) |
|
|
|
return DNN_ERROR; |
|
|
|
|
|
|
|
status |= ie_blob_get_dims(ov_model->output_blobs[i], &dims); |
|
|
|
status |= ie_blob_get_precision(ov_model->output_blobs[i], &precision); |
|
|
|
if (status != OK) |
|
|
|
return DNN_ERROR; |
|
|
|
|
|
|
|
outputs[i].channels = dims.dims[1]; |
|
|
|
outputs[i].height = dims.dims[2]; |
|
|
|
outputs[i].width = dims.dims[3]; |
|
|
|
outputs[i].dt = precision_to_datatype(precision); |
|
|
|
outputs[i].data = blob_buffer.buffer; |
|
|
|
} |
|
|
|
|
|
|
|
return DNN_SUCCESS; |
|
|
|
} |
|
|
|
|
|
|
|
void ff_dnn_free_model_ov(DNNModel **model) |
|
|
|
{ |
|
|
|
if (*model){ |
|
|
|
OVModel *ov_model = (OVModel *)(*model)->model; |
|
|
|
if (ov_model->output_blobs) { |
|
|
|
for (uint32_t i = 0; i < ov_model->nb_output; i++) { |
|
|
|
ie_blob_free(&(ov_model->output_blobs[i])); |
|
|
|
} |
|
|
|
av_freep(&ov_model->output_blobs); |
|
|
|
} |
|
|
|
if (ov_model->input_blob) |
|
|
|
ie_blob_free(&ov_model->input_blob); |
|
|
|
if (ov_model->infer_request) |
|
|
|
ie_infer_request_free(&ov_model->infer_request); |
|
|
|
if (ov_model->exe_network) |
|
|
|
ie_exec_network_free(&ov_model->exe_network); |
|
|
|
if (ov_model->network) |
|
|
|
ie_network_free(&ov_model->network); |
|
|
|
if (ov_model->core) |
|
|
|
ie_core_free(&ov_model->core); |
|
|
|
av_freep(&ov_model); |
|
|
|
av_freep(model); |
|
|
|
} |
|
|
|
} |