|
|
|
@@ -948,10 +948,10 @@ static void subtract_mean_predictor(PredictorCoefficients *model) |
|
|
|
int filter_size = model->nsize; |
|
|
|
int nns = model->nns; |
|
|
|
|
|
|
|
float softmax_means[256]; // Average of individual softmax filters. |
|
|
|
float elliott_means[256]; // Average of individual elliott filters. |
|
|
|
float mean_filter[48 * 6]; // Pointwise average of all softmax filters. |
|
|
|
float mean_bias; |
|
|
|
double softmax_means[256]; // Average of individual softmax filters. |
|
|
|
double elliott_means[256]; // Average of individual elliott filters. |
|
|
|
double mean_filter[48 * 6]; // Pointwise average of all softmax filters. |
|
|
|
double mean_bias; |
|
|
|
|
|
|
|
// Quality 1. |
|
|
|
for (int nn = 0; nn < nns; nn++) { |
|
|
|
@@ -976,7 +976,7 @@ static void subtract_mean_predictor(PredictorCoefficients *model) |
|
|
|
} |
|
|
|
|
|
|
|
// Quality 2. |
|
|
|
memset(mean_filter, 0, 48 * 6 * sizeof(float)); |
|
|
|
memset(mean_filter, 0, sizeof(mean_filter)); |
|
|
|
|
|
|
|
for (int nn = 0; nn < nns; nn++) { |
|
|
|
softmax_means[nn] = mean(model->softmax_q2 + nn * filter_size, filter_size); |
|
|
|
|