| @@ -269,190 +269,190 @@ static inline int l3_unscale(int value, int exponent) | |||
| static void decode_init_static(AVCodec *codec) | |||
| { | |||
| int i, j, k; | |||
| int offset; | |||
| /* scale factors table for layer 1/2 */ | |||
| for (i = 0; i < 64; i++) { | |||
| int shift, mod; | |||
| /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */ | |||
| shift = i / 3; | |||
| mod = i % 3; | |||
| scale_factor_modshift[i] = mod | (shift << 2); | |||
| } | |||
| int offset; | |||
| /* scale factors table for layer 1/2 */ | |||
| for (i = 0; i < 64; i++) { | |||
| int shift, mod; | |||
| /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */ | |||
| shift = i / 3; | |||
| mod = i % 3; | |||
| scale_factor_modshift[i] = mod | (shift << 2); | |||
| } | |||
| /* scale factor multiply for layer 1 */ | |||
| for (i = 0; i < 15; i++) { | |||
| int n, norm; | |||
| n = i + 2; | |||
| norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1); | |||
| scale_factor_mult[i][0] = MULLx(norm, FIXR(1.0 * 2.0), FRAC_BITS); | |||
| scale_factor_mult[i][1] = MULLx(norm, FIXR(0.7937005259 * 2.0), FRAC_BITS); | |||
| scale_factor_mult[i][2] = MULLx(norm, FIXR(0.6299605249 * 2.0), FRAC_BITS); | |||
| av_dlog(avctx, "%d: norm=%x s=%x %x %x\n", i, norm, | |||
| scale_factor_mult[i][0], | |||
| scale_factor_mult[i][1], | |||
| scale_factor_mult[i][2]); | |||
| } | |||
| /* scale factor multiply for layer 1 */ | |||
| for (i = 0; i < 15; i++) { | |||
| int n, norm; | |||
| n = i + 2; | |||
| norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1); | |||
| scale_factor_mult[i][0] = MULLx(norm, FIXR(1.0 * 2.0), FRAC_BITS); | |||
| scale_factor_mult[i][1] = MULLx(norm, FIXR(0.7937005259 * 2.0), FRAC_BITS); | |||
| scale_factor_mult[i][2] = MULLx(norm, FIXR(0.6299605249 * 2.0), FRAC_BITS); | |||
| av_dlog(avctx, "%d: norm=%x s=%x %x %x\n", i, norm, | |||
| scale_factor_mult[i][0], | |||
| scale_factor_mult[i][1], | |||
| scale_factor_mult[i][2]); | |||
| } | |||
| RENAME(ff_mpa_synth_init)(RENAME(ff_mpa_synth_window)); | |||
| RENAME(ff_mpa_synth_init)(RENAME(ff_mpa_synth_window)); | |||
| /* huffman decode tables */ | |||
| offset = 0; | |||
| for (i = 1; i < 16; i++) { | |||
| const HuffTable *h = &mpa_huff_tables[i]; | |||
| int xsize, x, y; | |||
| uint8_t tmp_bits [512]; | |||
| uint16_t tmp_codes[512]; | |||
| /* huffman decode tables */ | |||
| offset = 0; | |||
| for (i = 1; i < 16; i++) { | |||
| const HuffTable *h = &mpa_huff_tables[i]; | |||
| int xsize, x, y; | |||
| uint8_t tmp_bits [512]; | |||
| uint16_t tmp_codes[512]; | |||
| memset(tmp_bits , 0, sizeof(tmp_bits )); | |||
| memset(tmp_codes, 0, sizeof(tmp_codes)); | |||
| memset(tmp_bits , 0, sizeof(tmp_bits )); | |||
| memset(tmp_codes, 0, sizeof(tmp_codes)); | |||
| xsize = h->xsize; | |||
| xsize = h->xsize; | |||
| j = 0; | |||
| for (x = 0; x < xsize; x++) { | |||
| for (y = 0; y < xsize; y++) { | |||
| tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ]; | |||
| tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++]; | |||
| } | |||
| j = 0; | |||
| for (x = 0; x < xsize; x++) { | |||
| for (y = 0; y < xsize; y++) { | |||
| tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ]; | |||
| tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++]; | |||
| } | |||
| /* XXX: fail test */ | |||
| huff_vlc[i].table = huff_vlc_tables+offset; | |||
| huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i]; | |||
| init_vlc(&huff_vlc[i], 7, 512, | |||
| tmp_bits, 1, 1, tmp_codes, 2, 2, | |||
| INIT_VLC_USE_NEW_STATIC); | |||
| offset += huff_vlc_tables_sizes[i]; | |||
| } | |||
| assert(offset == FF_ARRAY_ELEMS(huff_vlc_tables)); | |||
| offset = 0; | |||
| for (i = 0; i < 2; i++) { | |||
| huff_quad_vlc[i].table = huff_quad_vlc_tables+offset; | |||
| huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i]; | |||
| init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16, | |||
| mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1, | |||
| INIT_VLC_USE_NEW_STATIC); | |||
| offset += huff_quad_vlc_tables_sizes[i]; | |||
| } | |||
| assert(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables)); | |||
| for (i = 0; i < 9; i++) { | |||
| k = 0; | |||
| for (j = 0; j < 22; j++) { | |||
| band_index_long[i][j] = k; | |||
| k += band_size_long[i][j]; | |||
| } | |||
| band_index_long[i][22] = k; | |||
| /* XXX: fail test */ | |||
| huff_vlc[i].table = huff_vlc_tables+offset; | |||
| huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i]; | |||
| init_vlc(&huff_vlc[i], 7, 512, | |||
| tmp_bits, 1, 1, tmp_codes, 2, 2, | |||
| INIT_VLC_USE_NEW_STATIC); | |||
| offset += huff_vlc_tables_sizes[i]; | |||
| } | |||
| assert(offset == FF_ARRAY_ELEMS(huff_vlc_tables)); | |||
| offset = 0; | |||
| for (i = 0; i < 2; i++) { | |||
| huff_quad_vlc[i].table = huff_quad_vlc_tables+offset; | |||
| huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i]; | |||
| init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16, | |||
| mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1, | |||
| INIT_VLC_USE_NEW_STATIC); | |||
| offset += huff_quad_vlc_tables_sizes[i]; | |||
| } | |||
| assert(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables)); | |||
| for (i = 0; i < 9; i++) { | |||
| k = 0; | |||
| for (j = 0; j < 22; j++) { | |||
| band_index_long[i][j] = k; | |||
| k += band_size_long[i][j]; | |||
| } | |||
| band_index_long[i][22] = k; | |||
| } | |||
| /* compute n ^ (4/3) and store it in mantissa/exp format */ | |||
| mpegaudio_tableinit(); | |||
| for (i = 0; i < 4; i++) { | |||
| if (ff_mpa_quant_bits[i] < 0) { | |||
| for (j = 0; j < (1 << (-ff_mpa_quant_bits[i]+1)); j++) { | |||
| int val1, val2, val3, steps; | |||
| int val = j; | |||
| steps = ff_mpa_quant_steps[i]; | |||
| val1 = val % steps; | |||
| val /= steps; | |||
| val2 = val % steps; | |||
| val3 = val / steps; | |||
| division_tabs[i][j] = val1 + (val2 << 4) + (val3 << 8); | |||
| } | |||
| /* compute n ^ (4/3) and store it in mantissa/exp format */ | |||
| mpegaudio_tableinit(); | |||
| for (i = 0; i < 4; i++) { | |||
| if (ff_mpa_quant_bits[i] < 0) { | |||
| for (j = 0; j < (1 << (-ff_mpa_quant_bits[i]+1)); j++) { | |||
| int val1, val2, val3, steps; | |||
| int val = j; | |||
| steps = ff_mpa_quant_steps[i]; | |||
| val1 = val % steps; | |||
| val /= steps; | |||
| val2 = val % steps; | |||
| val3 = val / steps; | |||
| division_tabs[i][j] = val1 + (val2 << 4) + (val3 << 8); | |||
| } | |||
| } | |||
| } | |||
| for (i = 0; i < 7; i++) { | |||
| float f; | |||
| INTFLOAT v; | |||
| if (i != 6) { | |||
| f = tan((double)i * M_PI / 12.0); | |||
| v = FIXR(f / (1.0 + f)); | |||
| } else { | |||
| v = FIXR(1.0); | |||
| } | |||
| is_table[0][ i] = v; | |||
| is_table[1][6 - i] = v; | |||
| for (i = 0; i < 7; i++) { | |||
| float f; | |||
| INTFLOAT v; | |||
| if (i != 6) { | |||
| f = tan((double)i * M_PI / 12.0); | |||
| v = FIXR(f / (1.0 + f)); | |||
| } else { | |||
| v = FIXR(1.0); | |||
| } | |||
| /* invalid values */ | |||
| for (i = 7; i < 16; i++) | |||
| is_table[0][i] = is_table[1][i] = 0.0; | |||
| for (i = 0; i < 16; i++) { | |||
| double f; | |||
| int e, k; | |||
| for (j = 0; j < 2; j++) { | |||
| e = -(j + 1) * ((i + 1) >> 1); | |||
| f = pow(2.0, e / 4.0); | |||
| k = i & 1; | |||
| is_table_lsf[j][k ^ 1][i] = FIXR(f); | |||
| is_table_lsf[j][k ][i] = FIXR(1.0); | |||
| av_dlog(avctx, "is_table_lsf %d %d: %f %f\n", | |||
| i, j, (float) is_table_lsf[j][0][i], | |||
| (float) is_table_lsf[j][1][i]); | |||
| } | |||
| is_table[0][ i] = v; | |||
| is_table[1][6 - i] = v; | |||
| } | |||
| /* invalid values */ | |||
| for (i = 7; i < 16; i++) | |||
| is_table[0][i] = is_table[1][i] = 0.0; | |||
| for (i = 0; i < 16; i++) { | |||
| double f; | |||
| int e, k; | |||
| for (j = 0; j < 2; j++) { | |||
| e = -(j + 1) * ((i + 1) >> 1); | |||
| f = pow(2.0, e / 4.0); | |||
| k = i & 1; | |||
| is_table_lsf[j][k ^ 1][i] = FIXR(f); | |||
| is_table_lsf[j][k ][i] = FIXR(1.0); | |||
| av_dlog(avctx, "is_table_lsf %d %d: %f %f\n", | |||
| i, j, (float) is_table_lsf[j][0][i], | |||
| (float) is_table_lsf[j][1][i]); | |||
| } | |||
| } | |||
| for (i = 0; i < 8; i++) { | |||
| float ci, cs, ca; | |||
| ci = ci_table[i]; | |||
| cs = 1.0 / sqrt(1.0 + ci * ci); | |||
| ca = cs * ci; | |||
| for (i = 0; i < 8; i++) { | |||
| float ci, cs, ca; | |||
| ci = ci_table[i]; | |||
| cs = 1.0 / sqrt(1.0 + ci * ci); | |||
| ca = cs * ci; | |||
| #if !CONFIG_FLOAT | |||
| csa_table[i][0] = FIXHR(cs/4); | |||
| csa_table[i][1] = FIXHR(ca/4); | |||
| csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4); | |||
| csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4); | |||
| csa_table[i][0] = FIXHR(cs/4); | |||
| csa_table[i][1] = FIXHR(ca/4); | |||
| csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4); | |||
| csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4); | |||
| #else | |||
| csa_table[i][0] = cs; | |||
| csa_table[i][1] = ca; | |||
| csa_table[i][2] = ca + cs; | |||
| csa_table[i][3] = ca - cs; | |||
| csa_table[i][0] = cs; | |||
| csa_table[i][1] = ca; | |||
| csa_table[i][2] = ca + cs; | |||
| csa_table[i][3] = ca - cs; | |||
| #endif | |||
| } | |||
| } | |||
| /* compute mdct windows */ | |||
| for (i = 0; i < 36; i++) { | |||
| for (j = 0; j < 4; j++) { | |||
| double d; | |||
| if (j == 2 && i % 3 != 1) | |||
| continue; | |||
| d = sin(M_PI * (i + 0.5) / 36.0); | |||
| if (j == 1) { | |||
| if (i >= 30) d = 0; | |||
| else if (i >= 24) d = sin(M_PI * (i - 18 + 0.5) / 12.0); | |||
| else if (i >= 18) d = 1; | |||
| } else if (j == 3) { | |||
| if (i < 6) d = 0; | |||
| else if (i < 12) d = sin(M_PI * (i - 6 + 0.5) / 12.0); | |||
| else if (i < 18) d = 1; | |||
| } | |||
| //merge last stage of imdct into the window coefficients | |||
| d *= 0.5 / cos(M_PI * (2 * i + 19) / 72); | |||
| /* compute mdct windows */ | |||
| for (i = 0; i < 36; i++) { | |||
| for (j = 0; j < 4; j++) { | |||
| double d; | |||
| if (j == 2) | |||
| mdct_win[j][i/3] = FIXHR((d / (1<<5))); | |||
| else | |||
| mdct_win[j][i ] = FIXHR((d / (1<<5))); | |||
| if (j == 2 && i % 3 != 1) | |||
| continue; | |||
| d = sin(M_PI * (i + 0.5) / 36.0); | |||
| if (j == 1) { | |||
| if (i >= 30) d = 0; | |||
| else if (i >= 24) d = sin(M_PI * (i - 18 + 0.5) / 12.0); | |||
| else if (i >= 18) d = 1; | |||
| } else if (j == 3) { | |||
| if (i < 6) d = 0; | |||
| else if (i < 12) d = sin(M_PI * (i - 6 + 0.5) / 12.0); | |||
| else if (i < 18) d = 1; | |||
| } | |||
| //merge last stage of imdct into the window coefficients | |||
| d *= 0.5 / cos(M_PI * (2 * i + 19) / 72); | |||
| if (j == 2) | |||
| mdct_win[j][i/3] = FIXHR((d / (1<<5))); | |||
| else | |||
| mdct_win[j][i ] = FIXHR((d / (1<<5))); | |||
| } | |||
| } | |||
| /* NOTE: we do frequency inversion adter the MDCT by changing | |||
| the sign of the right window coefs */ | |||
| for (j = 0; j < 4; j++) { | |||
| for (i = 0; i < 36; i += 2) { | |||
| mdct_win[j + 4][i ] = mdct_win[j][i ]; | |||
| mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1]; | |||
| } | |||
| /* NOTE: we do frequency inversion adter the MDCT by changing | |||
| the sign of the right window coefs */ | |||
| for (j = 0; j < 4; j++) { | |||
| for (i = 0; i < 36; i += 2) { | |||
| mdct_win[j + 4][i ] = mdct_win[j][i ]; | |||
| mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1]; | |||
| } | |||
| } | |||
| } | |||
| static av_cold int decode_init(AVCodecContext * avctx) | |||