|
|
|
@@ -61,6 +61,12 @@ static DNNReturnType set_input_output_native(void *model, DNNInputData *input, c |
|
|
|
return DNN_ERROR; |
|
|
|
} |
|
|
|
cur_channels = conv_params->output_num; |
|
|
|
|
|
|
|
if (conv_params->padding_method == VALID) { |
|
|
|
int pad_size = conv_params->kernel_size - 1; |
|
|
|
cur_height -= pad_size; |
|
|
|
cur_width -= pad_size; |
|
|
|
} |
|
|
|
break; |
|
|
|
case DEPTH_TO_SPACE: |
|
|
|
depth_to_space_params = (DepthToSpaceParams *)network->layers[layer].params; |
|
|
|
@@ -77,6 +83,10 @@ static DNNReturnType set_input_output_native(void *model, DNNInputData *input, c |
|
|
|
if (network->layers[layer].output){ |
|
|
|
av_freep(&network->layers[layer].output); |
|
|
|
} |
|
|
|
|
|
|
|
if (cur_height <= 0 || cur_width <= 0) |
|
|
|
return DNN_ERROR; |
|
|
|
|
|
|
|
network->layers[layer].output = av_malloc(cur_height * cur_width * cur_channels * sizeof(float)); |
|
|
|
if (!network->layers[layer].output){ |
|
|
|
return DNN_ERROR; |
|
|
|
@@ -154,13 +164,14 @@ DNNModel *ff_dnn_load_model_native(const char *model_filename) |
|
|
|
ff_dnn_free_model_native(&model); |
|
|
|
return NULL; |
|
|
|
} |
|
|
|
conv_params->padding_method = (int32_t)avio_rl32(model_file_context); |
|
|
|
conv_params->activation = (int32_t)avio_rl32(model_file_context); |
|
|
|
conv_params->input_num = (int32_t)avio_rl32(model_file_context); |
|
|
|
conv_params->output_num = (int32_t)avio_rl32(model_file_context); |
|
|
|
conv_params->kernel_size = (int32_t)avio_rl32(model_file_context); |
|
|
|
kernel_size = conv_params->input_num * conv_params->output_num * |
|
|
|
conv_params->kernel_size * conv_params->kernel_size; |
|
|
|
dnn_size += 16 + (kernel_size + conv_params->output_num << 2); |
|
|
|
dnn_size += 20 + (kernel_size + conv_params->output_num << 2); |
|
|
|
if (dnn_size > file_size || conv_params->input_num <= 0 || |
|
|
|
conv_params->output_num <= 0 || conv_params->kernel_size <= 0){ |
|
|
|
avio_closep(&model_file_context); |
|
|
|
@@ -218,23 +229,35 @@ DNNModel *ff_dnn_load_model_native(const char *model_filename) |
|
|
|
|
|
|
|
static void convolve(const float *input, float *output, const ConvolutionalParams *conv_params, int width, int height) |
|
|
|
{ |
|
|
|
int y, x, n_filter, ch, kernel_y, kernel_x; |
|
|
|
int radius = conv_params->kernel_size >> 1; |
|
|
|
int src_linesize = width * conv_params->input_num; |
|
|
|
int filter_linesize = conv_params->kernel_size * conv_params->input_num; |
|
|
|
int filter_size = conv_params->kernel_size * filter_linesize; |
|
|
|
int pad_size = (conv_params->padding_method == VALID) ? (conv_params->kernel_size - 1) / 2 : 0; |
|
|
|
|
|
|
|
for (y = 0; y < height; ++y){ |
|
|
|
for (x = 0; x < width; ++x){ |
|
|
|
for (n_filter = 0; n_filter < conv_params->output_num; ++n_filter){ |
|
|
|
for (int y = pad_size; y < height - pad_size; ++y) { |
|
|
|
for (int x = pad_size; x < width - pad_size; ++x) { |
|
|
|
for (int n_filter = 0; n_filter < conv_params->output_num; ++n_filter) { |
|
|
|
output[n_filter] = conv_params->biases[n_filter]; |
|
|
|
for (ch = 0; ch < conv_params->input_num; ++ch){ |
|
|
|
for (kernel_y = 0; kernel_y < conv_params->kernel_size; ++kernel_y){ |
|
|
|
for (kernel_x = 0; kernel_x < conv_params->kernel_size; ++kernel_x){ |
|
|
|
output[n_filter] += input[CLAMP_TO_EDGE(y + kernel_y - radius, height) * src_linesize + |
|
|
|
CLAMP_TO_EDGE(x + kernel_x - radius, width) * conv_params->input_num + ch] * |
|
|
|
conv_params->kernel[n_filter * filter_size + kernel_y * filter_linesize + |
|
|
|
kernel_x * conv_params->input_num + ch]; |
|
|
|
|
|
|
|
for (int ch = 0; ch < conv_params->input_num; ++ch) { |
|
|
|
for (int kernel_y = 0; kernel_y < conv_params->kernel_size; ++kernel_y) { |
|
|
|
for (int kernel_x = 0; kernel_x < conv_params->kernel_size; ++kernel_x) { |
|
|
|
float input_pel; |
|
|
|
if (conv_params->padding_method == SAME_CLAMP_TO_EDGE) { |
|
|
|
int y_pos = CLAMP_TO_EDGE(y + kernel_y - radius, height); |
|
|
|
int x_pos = CLAMP_TO_EDGE(x + kernel_x - radius, width); |
|
|
|
input_pel = input[y_pos * src_linesize + x_pos * conv_params->input_num + ch]; |
|
|
|
} else { |
|
|
|
int y_pos = y + kernel_y - radius; |
|
|
|
int x_pos = x + kernel_x - radius; |
|
|
|
input_pel = (x_pos < 0 || x_pos >= width || y_pos < 0 || y_pos >= height) ? 0.0 : |
|
|
|
input[y_pos * src_linesize + x_pos * conv_params->input_num + ch]; |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
output[n_filter] += input_pel * conv_params->kernel[n_filter * filter_size + kernel_y * filter_linesize + |
|
|
|
kernel_x * conv_params->input_num + ch]; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
@@ -305,6 +328,11 @@ DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNData *output |
|
|
|
conv_params = (ConvolutionalParams *)network->layers[layer].params; |
|
|
|
convolve(network->layers[layer - 1].output, network->layers[layer].output, conv_params, cur_width, cur_height); |
|
|
|
cur_channels = conv_params->output_num; |
|
|
|
if (conv_params->padding_method == VALID) { |
|
|
|
int pad_size = conv_params->kernel_size - 1; |
|
|
|
cur_height -= pad_size; |
|
|
|
cur_width -= pad_size; |
|
|
|
} |
|
|
|
break; |
|
|
|
case DEPTH_TO_SPACE: |
|
|
|
depth_to_space_params = (DepthToSpaceParams *)network->layers[layer].params; |
|
|
|
|