|
|
@@ -27,13 +27,17 @@ |
|
|
|
* For more information on the OpenEXR format, visit: |
|
|
|
* http://openexr.com/ |
|
|
|
* |
|
|
|
* exr_flt2uint() and exr_halflt2uint() is credited to Reimar Döffinger |
|
|
|
* exr_flt2uint() and exr_halflt2uint() is credited to Reimar Döffinger. |
|
|
|
* exr_half2float() is credited to Aaftab Munshi; Dan Ginsburg, Dave Shreiner. |
|
|
|
* |
|
|
|
*/ |
|
|
|
|
|
|
|
#include <zlib.h> |
|
|
|
#include <float.h> |
|
|
|
|
|
|
|
#include "libavutil/imgutils.h" |
|
|
|
#include "libavutil/opt.h" |
|
|
|
#include "libavutil/intfloat.h" |
|
|
|
|
|
|
|
#include "avcodec.h" |
|
|
|
#include "bytestream.h" |
|
|
@@ -106,8 +110,75 @@ typedef struct EXRContext { |
|
|
|
EXRThreadData *thread_data; |
|
|
|
|
|
|
|
const char *layer; |
|
|
|
|
|
|
|
float gamma; |
|
|
|
|
|
|
|
uint16_t gamma_table[65536]; |
|
|
|
|
|
|
|
} EXRContext; |
|
|
|
|
|
|
|
/* -15 stored using a single precision bias of 127 */ |
|
|
|
#define HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP 0x38000000 |
|
|
|
/* max exponent value in single precision that will be converted |
|
|
|
* to Inf or Nan when stored as a half-float */ |
|
|
|
#define HALF_FLOAT_MAX_BIASED_EXP_AS_SINGLE_FP_EXP 0x47800000 |
|
|
|
|
|
|
|
/* 255 is the max exponent biased value */ |
|
|
|
#define FLOAT_MAX_BIASED_EXP (0xFF << 23) |
|
|
|
|
|
|
|
#define HALF_FLOAT_MAX_BIASED_EXP (0x1F << 10) |
|
|
|
|
|
|
|
/* |
|
|
|
* Convert a half float as a uint16_t into a full float. |
|
|
|
* |
|
|
|
* @param hf half float as uint16_t |
|
|
|
* |
|
|
|
* @return float value |
|
|
|
*/ |
|
|
|
static union av_intfloat32 exr_half2float(uint16_t hf) |
|
|
|
{ |
|
|
|
unsigned int sign = (unsigned int)(hf >> 15); |
|
|
|
unsigned int mantissa = (unsigned int)(hf & ((1 << 10) - 1)); |
|
|
|
unsigned int exp = (unsigned int)(hf & HALF_FLOAT_MAX_BIASED_EXP); |
|
|
|
union av_intfloat32 f; |
|
|
|
|
|
|
|
if (exp == HALF_FLOAT_MAX_BIASED_EXP) { |
|
|
|
// we have a half-float NaN or Inf |
|
|
|
// half-float NaNs will be converted to a single precision NaN |
|
|
|
// half-float Infs will be converted to a single precision Inf |
|
|
|
exp = FLOAT_MAX_BIASED_EXP; |
|
|
|
if (mantissa) |
|
|
|
mantissa = (1 << 23) - 1; // set all bits to indicate a NaN |
|
|
|
} else if (exp == 0x0) { |
|
|
|
// convert half-float zero/denorm to single precision value |
|
|
|
if (mantissa) { |
|
|
|
mantissa <<= 1; |
|
|
|
exp = HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP; |
|
|
|
// check for leading 1 in denorm mantissa |
|
|
|
while ((mantissa & (1 << 10))) { |
|
|
|
// for every leading 0, decrement single precision exponent by 1 |
|
|
|
// and shift half-float mantissa value to the left |
|
|
|
mantissa <<= 1; |
|
|
|
exp -= (1 << 23); |
|
|
|
} |
|
|
|
// clamp the mantissa to 10-bits |
|
|
|
mantissa &= ((1 << 10) - 1); |
|
|
|
// shift left to generate single-precision mantissa of 23-bits |
|
|
|
mantissa <<= 13; |
|
|
|
} |
|
|
|
} else { |
|
|
|
// shift left to generate single-precision mantissa of 23-bits |
|
|
|
mantissa <<= 13; |
|
|
|
// generate single precision biased exponent value |
|
|
|
exp = (exp << 13) + HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP; |
|
|
|
} |
|
|
|
|
|
|
|
f.i = (sign << 31) | exp | mantissa; |
|
|
|
|
|
|
|
return f; |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
/** |
|
|
|
* Convert from 32-bit float as uint32_t to uint16_t. |
|
|
|
* |
|
|
@@ -772,6 +843,7 @@ static int decode_block(AVCodecContext *avctx, void *tdata, |
|
|
|
int bxmin = s->xmin * 2 * s->desc->nb_components; |
|
|
|
int i, x, buf_size = s->buf_size; |
|
|
|
int ret; |
|
|
|
float one_gamma = 1.0f / s->gamma; |
|
|
|
|
|
|
|
line_offset = AV_RL64(s->gb.buffer + jobnr * 8); |
|
|
|
// Check if the buffer has the required bytes needed from the offset |
|
|
@@ -851,18 +923,30 @@ static int decode_block(AVCodecContext *avctx, void *tdata, |
|
|
|
if (s->pixel_type == EXR_FLOAT) { |
|
|
|
// 32-bit |
|
|
|
for (x = 0; x < xdelta; x++) { |
|
|
|
*ptr_x++ = exr_flt2uint(bytestream_get_le32(&r)); |
|
|
|
*ptr_x++ = exr_flt2uint(bytestream_get_le32(&g)); |
|
|
|
*ptr_x++ = exr_flt2uint(bytestream_get_le32(&b)); |
|
|
|
union av_intfloat32 t; |
|
|
|
t.i = bytestream_get_le32(&r); |
|
|
|
if ( t.f > 0.0f ) /* avoid negative values */ |
|
|
|
t.f = powf(t.f, one_gamma); |
|
|
|
*ptr_x++ = exr_flt2uint(t.i); |
|
|
|
|
|
|
|
t.i = bytestream_get_le32(&g); |
|
|
|
if ( t.f > 0.0f ) |
|
|
|
t.f = powf(t.f, one_gamma); |
|
|
|
*ptr_x++ = exr_flt2uint(t.i); |
|
|
|
|
|
|
|
t.i = bytestream_get_le32(&b); |
|
|
|
if ( t.f > 0.0f ) |
|
|
|
t.f = powf(t.f, one_gamma); |
|
|
|
*ptr_x++ = exr_flt2uint(t.i); |
|
|
|
if (channel_buffer[3]) |
|
|
|
*ptr_x++ = exr_flt2uint(bytestream_get_le32(&a)); |
|
|
|
} |
|
|
|
} else { |
|
|
|
// 16-bit |
|
|
|
for (x = 0; x < xdelta; x++) { |
|
|
|
*ptr_x++ = exr_halflt2uint(bytestream_get_le16(&r)); |
|
|
|
*ptr_x++ = exr_halflt2uint(bytestream_get_le16(&g)); |
|
|
|
*ptr_x++ = exr_halflt2uint(bytestream_get_le16(&b)); |
|
|
|
*ptr_x++ = s->gamma_table[bytestream_get_le16(&r)]; |
|
|
|
*ptr_x++ = s->gamma_table[bytestream_get_le16(&g)]; |
|
|
|
*ptr_x++ = s->gamma_table[bytestream_get_le16(&b)]; |
|
|
|
if (channel_buffer[3]) |
|
|
|
*ptr_x++ = exr_halflt2uint(bytestream_get_le16(&a)); |
|
|
|
} |
|
|
@@ -1261,7 +1345,10 @@ static int decode_frame(AVCodecContext *avctx, void *data, |
|
|
|
|
|
|
|
static av_cold int decode_init(AVCodecContext *avctx) |
|
|
|
{ |
|
|
|
uint32_t i; |
|
|
|
union av_intfloat32 t; |
|
|
|
EXRContext *s = avctx->priv_data; |
|
|
|
float one_gamma = 1.0f / s->gamma; |
|
|
|
|
|
|
|
s->avctx = avctx; |
|
|
|
s->xmin = ~0; |
|
|
@@ -1280,6 +1367,23 @@ static av_cold int decode_init(AVCodecContext *avctx) |
|
|
|
s->w = 0; |
|
|
|
s->h = 0; |
|
|
|
|
|
|
|
if ( one_gamma > 0.9999f && one_gamma < 1.0001f ) { |
|
|
|
for ( i = 0; i < 65536; ++i ) { |
|
|
|
s->gamma_table[i] = exr_halflt2uint(i); |
|
|
|
} |
|
|
|
} else { |
|
|
|
for ( i = 0; i < 65536; ++i ) { |
|
|
|
t = exr_half2float(i); |
|
|
|
/* If negative value we reuse half value */ |
|
|
|
if ( t.f <= 0.0f ) { |
|
|
|
s->gamma_table[i] = exr_halflt2uint(i); |
|
|
|
} else { |
|
|
|
t.f = powf(t.f, one_gamma); |
|
|
|
s->gamma_table[i] = exr_flt2uint(t.i); |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
// allocate thread data, used for non EXR_RAW compreesion types |
|
|
|
s->thread_data = av_mallocz_array(avctx->thread_count, sizeof(EXRThreadData)); |
|
|
|
if (!s->thread_data) |
|
|
@@ -1322,6 +1426,8 @@ static av_cold int decode_end(AVCodecContext *avctx) |
|
|
|
static const AVOption options[] = { |
|
|
|
{ "layer", "Set the decoding layer", OFFSET(layer), |
|
|
|
AV_OPT_TYPE_STRING, { .str = "" }, 0, 0, VD }, |
|
|
|
{ "gamma", "Set the float gamma value when decoding", OFFSET(gamma), |
|
|
|
AV_OPT_TYPE_FLOAT, { .dbl = 1.0f }, 0.001, FLT_MAX, VD }, |
|
|
|
{ NULL }, |
|
|
|
}; |
|
|
|
|
|
|
|