|
|
@@ -24,8 +24,7 @@ |
|
|
|
*/ |
|
|
|
|
|
|
|
#include "dnn_backend_tf.h" |
|
|
|
#include "dnn_srcnn.h" |
|
|
|
#include "dnn_espcn.h" |
|
|
|
#include "dnn_backend_native.h" |
|
|
|
#include "libavformat/avio.h" |
|
|
|
|
|
|
|
#include <tensorflow/c/c_api.h> |
|
|
@@ -156,32 +155,14 @@ static DNNReturnType set_input_output_tf(void *model, DNNData *input, DNNData *o |
|
|
|
return DNN_SUCCESS; |
|
|
|
} |
|
|
|
|
|
|
|
DNNModel *ff_dnn_load_model_tf(const char *model_filename) |
|
|
|
static DNNReturnType load_tf_model(TFModel *tf_model, const char *model_filename) |
|
|
|
{ |
|
|
|
DNNModel *model = NULL; |
|
|
|
TFModel *tf_model = NULL; |
|
|
|
TF_Buffer *graph_def; |
|
|
|
TF_ImportGraphDefOptions *graph_opts; |
|
|
|
|
|
|
|
model = av_malloc(sizeof(DNNModel)); |
|
|
|
if (!model){ |
|
|
|
return NULL; |
|
|
|
} |
|
|
|
|
|
|
|
tf_model = av_malloc(sizeof(TFModel)); |
|
|
|
if (!tf_model){ |
|
|
|
av_freep(&model); |
|
|
|
return NULL; |
|
|
|
} |
|
|
|
tf_model->session = NULL; |
|
|
|
tf_model->input_tensor = NULL; |
|
|
|
tf_model->output_data = NULL; |
|
|
|
|
|
|
|
graph_def = read_graph(model_filename); |
|
|
|
if (!graph_def){ |
|
|
|
av_freep(&tf_model); |
|
|
|
av_freep(&model); |
|
|
|
return NULL; |
|
|
|
return DNN_ERROR; |
|
|
|
} |
|
|
|
tf_model->graph = TF_NewGraph(); |
|
|
|
tf_model->status = TF_NewStatus(); |
|
|
@@ -192,26 +173,178 @@ DNNModel *ff_dnn_load_model_tf(const char *model_filename) |
|
|
|
if (TF_GetCode(tf_model->status) != TF_OK){ |
|
|
|
TF_DeleteGraph(tf_model->graph); |
|
|
|
TF_DeleteStatus(tf_model->status); |
|
|
|
av_freep(&tf_model); |
|
|
|
av_freep(&model); |
|
|
|
return NULL; |
|
|
|
return DNN_ERROR; |
|
|
|
} |
|
|
|
|
|
|
|
model->model = (void *)tf_model; |
|
|
|
model->set_input_output = &set_input_output_tf; |
|
|
|
return DNN_SUCCESS; |
|
|
|
} |
|
|
|
|
|
|
|
return model; |
|
|
|
#define NAME_BUFFER_SIZE 256 |
|
|
|
|
|
|
|
static DNNReturnType add_conv_layer(TFModel *tf_model, TF_Operation *transpose_op, TF_Operation **cur_op, |
|
|
|
ConvolutionalParams* params, const int layer) |
|
|
|
{ |
|
|
|
TF_Operation *op; |
|
|
|
TF_OperationDescription *op_desc; |
|
|
|
TF_Output input; |
|
|
|
int64_t strides[] = {1, 1, 1, 1}; |
|
|
|
TF_Tensor *tensor; |
|
|
|
int64_t dims[4]; |
|
|
|
int dims_len; |
|
|
|
char name_buffer[NAME_BUFFER_SIZE]; |
|
|
|
int32_t size; |
|
|
|
|
|
|
|
size = params->input_num * params->output_num * params->kernel_size * params->kernel_size; |
|
|
|
input.index = 0; |
|
|
|
|
|
|
|
snprintf(name_buffer, NAME_BUFFER_SIZE, "conv_kernel%d", layer); |
|
|
|
op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer); |
|
|
|
TF_SetAttrType(op_desc, "dtype", TF_FLOAT); |
|
|
|
dims[0] = params->output_num; |
|
|
|
dims[1] = params->kernel_size; |
|
|
|
dims[2] = params->kernel_size; |
|
|
|
dims[3] = params->input_num; |
|
|
|
dims_len = 4; |
|
|
|
tensor = TF_AllocateTensor(TF_FLOAT, dims, dims_len, size * sizeof(float)); |
|
|
|
memcpy(TF_TensorData(tensor), params->kernel, size * sizeof(float)); |
|
|
|
TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status); |
|
|
|
if (TF_GetCode(tf_model->status) != TF_OK){ |
|
|
|
return DNN_ERROR; |
|
|
|
} |
|
|
|
op = TF_FinishOperation(op_desc, tf_model->status); |
|
|
|
if (TF_GetCode(tf_model->status) != TF_OK){ |
|
|
|
return DNN_ERROR; |
|
|
|
} |
|
|
|
|
|
|
|
snprintf(name_buffer, NAME_BUFFER_SIZE, "transpose%d", layer); |
|
|
|
op_desc = TF_NewOperation(tf_model->graph, "Transpose", name_buffer); |
|
|
|
input.oper = op; |
|
|
|
TF_AddInput(op_desc, input); |
|
|
|
input.oper = transpose_op; |
|
|
|
TF_AddInput(op_desc, input); |
|
|
|
TF_SetAttrType(op_desc, "T", TF_FLOAT); |
|
|
|
TF_SetAttrType(op_desc, "Tperm", TF_INT32); |
|
|
|
op = TF_FinishOperation(op_desc, tf_model->status); |
|
|
|
if (TF_GetCode(tf_model->status) != TF_OK){ |
|
|
|
return DNN_ERROR; |
|
|
|
} |
|
|
|
|
|
|
|
snprintf(name_buffer, NAME_BUFFER_SIZE, "conv2d%d", layer); |
|
|
|
op_desc = TF_NewOperation(tf_model->graph, "Conv2D", name_buffer); |
|
|
|
input.oper = *cur_op; |
|
|
|
TF_AddInput(op_desc, input); |
|
|
|
input.oper = op; |
|
|
|
TF_AddInput(op_desc, input); |
|
|
|
TF_SetAttrType(op_desc, "T", TF_FLOAT); |
|
|
|
TF_SetAttrIntList(op_desc, "strides", strides, 4); |
|
|
|
TF_SetAttrString(op_desc, "padding", "VALID", 5); |
|
|
|
*cur_op = TF_FinishOperation(op_desc, tf_model->status); |
|
|
|
if (TF_GetCode(tf_model->status) != TF_OK){ |
|
|
|
return DNN_ERROR; |
|
|
|
} |
|
|
|
|
|
|
|
snprintf(name_buffer, NAME_BUFFER_SIZE, "conv_biases%d", layer); |
|
|
|
op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer); |
|
|
|
TF_SetAttrType(op_desc, "dtype", TF_FLOAT); |
|
|
|
dims[0] = params->output_num; |
|
|
|
dims_len = 1; |
|
|
|
tensor = TF_AllocateTensor(TF_FLOAT, dims, dims_len, params->output_num * sizeof(float)); |
|
|
|
memcpy(TF_TensorData(tensor), params->biases, params->output_num * sizeof(float)); |
|
|
|
TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status); |
|
|
|
if (TF_GetCode(tf_model->status) != TF_OK){ |
|
|
|
return DNN_ERROR; |
|
|
|
} |
|
|
|
op = TF_FinishOperation(op_desc, tf_model->status); |
|
|
|
if (TF_GetCode(tf_model->status) != TF_OK){ |
|
|
|
return DNN_ERROR; |
|
|
|
} |
|
|
|
|
|
|
|
snprintf(name_buffer, NAME_BUFFER_SIZE, "bias_add%d", layer); |
|
|
|
op_desc = TF_NewOperation(tf_model->graph, "BiasAdd", name_buffer); |
|
|
|
input.oper = *cur_op; |
|
|
|
TF_AddInput(op_desc, input); |
|
|
|
input.oper = op; |
|
|
|
TF_AddInput(op_desc, input); |
|
|
|
TF_SetAttrType(op_desc, "T", TF_FLOAT); |
|
|
|
*cur_op = TF_FinishOperation(op_desc, tf_model->status); |
|
|
|
if (TF_GetCode(tf_model->status) != TF_OK){ |
|
|
|
return DNN_ERROR; |
|
|
|
} |
|
|
|
|
|
|
|
snprintf(name_buffer, NAME_BUFFER_SIZE, "activation%d", layer); |
|
|
|
switch (params->activation){ |
|
|
|
case RELU: |
|
|
|
op_desc = TF_NewOperation(tf_model->graph, "Relu", name_buffer); |
|
|
|
break; |
|
|
|
case TANH: |
|
|
|
op_desc = TF_NewOperation(tf_model->graph, "Tanh", name_buffer); |
|
|
|
break; |
|
|
|
case SIGMOID: |
|
|
|
op_desc = TF_NewOperation(tf_model->graph, "Sigmoid", name_buffer); |
|
|
|
break; |
|
|
|
default: |
|
|
|
return DNN_ERROR; |
|
|
|
} |
|
|
|
input.oper = *cur_op; |
|
|
|
TF_AddInput(op_desc, input); |
|
|
|
TF_SetAttrType(op_desc, "T", TF_FLOAT); |
|
|
|
*cur_op = TF_FinishOperation(op_desc, tf_model->status); |
|
|
|
if (TF_GetCode(tf_model->status) != TF_OK){ |
|
|
|
return DNN_ERROR; |
|
|
|
} |
|
|
|
|
|
|
|
return DNN_SUCCESS; |
|
|
|
} |
|
|
|
|
|
|
|
static TF_Operation *add_pad_op(TFModel *tf_model, TF_Operation *input_op, int32_t pad) |
|
|
|
static DNNReturnType add_depth_to_space_layer(TFModel *tf_model, TF_Operation **cur_op, |
|
|
|
DepthToSpaceParams *params, const int layer) |
|
|
|
{ |
|
|
|
TF_OperationDescription *op_desc; |
|
|
|
TF_Output input; |
|
|
|
char name_buffer[NAME_BUFFER_SIZE]; |
|
|
|
|
|
|
|
snprintf(name_buffer, NAME_BUFFER_SIZE, "depth_to_space%d", layer); |
|
|
|
op_desc = TF_NewOperation(tf_model->graph, "DepthToSpace", name_buffer); |
|
|
|
input.oper = *cur_op; |
|
|
|
input.index = 0; |
|
|
|
TF_AddInput(op_desc, input); |
|
|
|
TF_SetAttrType(op_desc, "T", TF_FLOAT); |
|
|
|
TF_SetAttrInt(op_desc, "block_size", params->block_size); |
|
|
|
*cur_op = TF_FinishOperation(op_desc, tf_model->status); |
|
|
|
if (TF_GetCode(tf_model->status) != TF_OK){ |
|
|
|
return DNN_ERROR; |
|
|
|
} |
|
|
|
|
|
|
|
return DNN_SUCCESS; |
|
|
|
} |
|
|
|
|
|
|
|
static int calculate_pad(const ConvolutionalNetwork *conv_network) |
|
|
|
{ |
|
|
|
ConvolutionalParams *params; |
|
|
|
int32_t layer; |
|
|
|
int pad = 0; |
|
|
|
|
|
|
|
for (layer = 0; layer < conv_network->layers_num; ++layer){ |
|
|
|
if (conv_network->layers[layer].type == CONV){ |
|
|
|
params = (ConvolutionalParams *)conv_network->layers[layer].params; |
|
|
|
pad += params->kernel_size >> 1; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
return pad; |
|
|
|
} |
|
|
|
|
|
|
|
static DNNReturnType add_pad_op(TFModel *tf_model, TF_Operation **cur_op, const int32_t pad) |
|
|
|
{ |
|
|
|
TF_Operation *op; |
|
|
|
TF_Tensor *tensor; |
|
|
|
TF_OperationDescription *op_desc; |
|
|
|
TF_Output input; |
|
|
|
int32_t *pads; |
|
|
|
int64_t pads_shape[] = {4, 2}; |
|
|
|
|
|
|
|
input.index = 0; |
|
|
|
|
|
|
|
op_desc = TF_NewOperation(tf_model->graph, "Const", "pads"); |
|
|
|
TF_SetAttrType(op_desc, "dtype", TF_INT32); |
|
|
|
tensor = TF_AllocateTensor(TF_INT32, pads_shape, 2, 4 * 2 * sizeof(int32_t)); |
|
|
@@ -222,68 +355,73 @@ static TF_Operation *add_pad_op(TFModel *tf_model, TF_Operation *input_op, int32 |
|
|
|
pads[6] = 0; pads[7] = 0; |
|
|
|
TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status); |
|
|
|
if (TF_GetCode(tf_model->status) != TF_OK){ |
|
|
|
return NULL; |
|
|
|
return DNN_ERROR; |
|
|
|
} |
|
|
|
op = TF_FinishOperation(op_desc, tf_model->status); |
|
|
|
if (TF_GetCode(tf_model->status) != TF_OK){ |
|
|
|
return NULL; |
|
|
|
return DNN_ERROR; |
|
|
|
} |
|
|
|
|
|
|
|
op_desc = TF_NewOperation(tf_model->graph, "MirrorPad", "mirror_pad"); |
|
|
|
input.oper = input_op; |
|
|
|
input.index = 0; |
|
|
|
input.oper = *cur_op; |
|
|
|
TF_AddInput(op_desc, input); |
|
|
|
input.oper = op; |
|
|
|
TF_AddInput(op_desc, input); |
|
|
|
TF_SetAttrType(op_desc, "T", TF_FLOAT); |
|
|
|
TF_SetAttrType(op_desc, "Tpaddings", TF_INT32); |
|
|
|
TF_SetAttrString(op_desc, "mode", "SYMMETRIC", 9); |
|
|
|
op = TF_FinishOperation(op_desc, tf_model->status); |
|
|
|
*cur_op = TF_FinishOperation(op_desc, tf_model->status); |
|
|
|
if (TF_GetCode(tf_model->status) != TF_OK){ |
|
|
|
return NULL; |
|
|
|
return DNN_ERROR; |
|
|
|
} |
|
|
|
|
|
|
|
return op; |
|
|
|
return DNN_SUCCESS; |
|
|
|
} |
|
|
|
|
|
|
|
static TF_Operation *add_const_op(TFModel *tf_model, const float *values, const int64_t *dims, int dims_len, const char *name) |
|
|
|
static DNNReturnType load_native_model(TFModel *tf_model, const char *model_filename) |
|
|
|
{ |
|
|
|
int dim; |
|
|
|
int32_t layer; |
|
|
|
TF_OperationDescription *op_desc; |
|
|
|
TF_Operation *op; |
|
|
|
TF_Operation *transpose_op; |
|
|
|
TF_Tensor *tensor; |
|
|
|
size_t len; |
|
|
|
TF_Output input; |
|
|
|
int32_t *transpose_perm; |
|
|
|
int64_t transpose_perm_shape[] = {4}; |
|
|
|
int64_t input_shape[] = {1, -1, -1, -1}; |
|
|
|
int32_t pad; |
|
|
|
DNNReturnType layer_add_res; |
|
|
|
DNNModel *native_model = NULL; |
|
|
|
ConvolutionalNetwork *conv_network; |
|
|
|
|
|
|
|
native_model = ff_dnn_load_model_native(model_filename); |
|
|
|
if (!native_model){ |
|
|
|
return DNN_ERROR; |
|
|
|
} |
|
|
|
|
|
|
|
op_desc = TF_NewOperation(tf_model->graph, "Const", name); |
|
|
|
TF_SetAttrType(op_desc, "dtype", TF_FLOAT); |
|
|
|
len = sizeof(float); |
|
|
|
for (dim = 0; dim < dims_len; ++dim){ |
|
|
|
len *= dims[dim]; |
|
|
|
conv_network = (ConvolutionalNetwork *)native_model->model; |
|
|
|
pad = calculate_pad(conv_network); |
|
|
|
tf_model->graph = TF_NewGraph(); |
|
|
|
tf_model->status = TF_NewStatus(); |
|
|
|
|
|
|
|
#define CLEANUP_ON_ERROR(tf_model) \ |
|
|
|
{ \ |
|
|
|
TF_DeleteGraph(tf_model->graph); \ |
|
|
|
TF_DeleteStatus(tf_model->status); \ |
|
|
|
return DNN_ERROR; \ |
|
|
|
} |
|
|
|
tensor = TF_AllocateTensor(TF_FLOAT, dims, dims_len, len); |
|
|
|
memcpy(TF_TensorData(tensor), values, len); |
|
|
|
TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status); |
|
|
|
|
|
|
|
op_desc = TF_NewOperation(tf_model->graph, "Placeholder", "x"); |
|
|
|
TF_SetAttrType(op_desc, "dtype", TF_FLOAT); |
|
|
|
TF_SetAttrShape(op_desc, "shape", input_shape, 4); |
|
|
|
op = TF_FinishOperation(op_desc, tf_model->status); |
|
|
|
if (TF_GetCode(tf_model->status) != TF_OK){ |
|
|
|
return NULL; |
|
|
|
CLEANUP_ON_ERROR(tf_model); |
|
|
|
} |
|
|
|
|
|
|
|
return TF_FinishOperation(op_desc, tf_model->status); |
|
|
|
} |
|
|
|
|
|
|
|
static TF_Operation* add_conv_layers(TFModel *tf_model, const float **consts, const int64_t **consts_dims, |
|
|
|
const int *consts_dims_len, const char **activations, |
|
|
|
TF_Operation *input_op, int layers_num) |
|
|
|
{ |
|
|
|
int i; |
|
|
|
TF_OperationDescription *op_desc; |
|
|
|
TF_Operation *op; |
|
|
|
TF_Operation *transpose_op; |
|
|
|
TF_Output input; |
|
|
|
int64_t strides[] = {1, 1, 1, 1}; |
|
|
|
int32_t *transpose_perm; |
|
|
|
TF_Tensor *tensor; |
|
|
|
int64_t transpose_perm_shape[] = {4}; |
|
|
|
#define NAME_BUFF_SIZE 256 |
|
|
|
char name_buffer[NAME_BUFF_SIZE]; |
|
|
|
if (add_pad_op(tf_model, &op, pad) != DNN_SUCCESS){ |
|
|
|
CLEANUP_ON_ERROR(tf_model); |
|
|
|
} |
|
|
|
|
|
|
|
op_desc = TF_NewOperation(tf_model->graph, "Const", "transpose_perm"); |
|
|
|
TF_SetAttrType(op_desc, "dtype", TF_INT32); |
|
|
@@ -295,153 +433,48 @@ static TF_Operation* add_conv_layers(TFModel *tf_model, const float **consts, co |
|
|
|
transpose_perm[3] = 0; |
|
|
|
TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status); |
|
|
|
if (TF_GetCode(tf_model->status) != TF_OK){ |
|
|
|
return NULL; |
|
|
|
CLEANUP_ON_ERROR(tf_model); |
|
|
|
} |
|
|
|
transpose_op = TF_FinishOperation(op_desc, tf_model->status); |
|
|
|
if (TF_GetCode(tf_model->status) != TF_OK){ |
|
|
|
return NULL; |
|
|
|
} |
|
|
|
|
|
|
|
input.index = 0; |
|
|
|
for (i = 0; i < layers_num; ++i){ |
|
|
|
snprintf(name_buffer, NAME_BUFF_SIZE, "conv_kernel%d", i); |
|
|
|
op = add_const_op(tf_model, consts[i << 1], consts_dims[i << 1], consts_dims_len[i << 1], name_buffer); |
|
|
|
if (TF_GetCode(tf_model->status) != TF_OK || op == NULL){ |
|
|
|
return NULL; |
|
|
|
} |
|
|
|
|
|
|
|
snprintf(name_buffer, NAME_BUFF_SIZE, "transpose%d", i); |
|
|
|
op_desc = TF_NewOperation(tf_model->graph, "Transpose", name_buffer); |
|
|
|
input.oper = op; |
|
|
|
TF_AddInput(op_desc, input); |
|
|
|
input.oper = transpose_op; |
|
|
|
TF_AddInput(op_desc, input); |
|
|
|
TF_SetAttrType(op_desc, "T", TF_FLOAT); |
|
|
|
TF_SetAttrType(op_desc, "Tperm", TF_INT32); |
|
|
|
op = TF_FinishOperation(op_desc, tf_model->status); |
|
|
|
if (TF_GetCode(tf_model->status) != TF_OK){ |
|
|
|
return NULL; |
|
|
|
} |
|
|
|
|
|
|
|
snprintf(name_buffer, NAME_BUFF_SIZE, "conv2d%d", i); |
|
|
|
op_desc = TF_NewOperation(tf_model->graph, "Conv2D", name_buffer); |
|
|
|
input.oper = input_op; |
|
|
|
TF_AddInput(op_desc, input); |
|
|
|
input.oper = op; |
|
|
|
TF_AddInput(op_desc, input); |
|
|
|
TF_SetAttrType(op_desc, "T", TF_FLOAT); |
|
|
|
TF_SetAttrIntList(op_desc, "strides", strides, 4); |
|
|
|
TF_SetAttrString(op_desc, "padding", "VALID", 5); |
|
|
|
input_op = TF_FinishOperation(op_desc, tf_model->status); |
|
|
|
if (TF_GetCode(tf_model->status) != TF_OK){ |
|
|
|
return NULL; |
|
|
|
} |
|
|
|
|
|
|
|
snprintf(name_buffer, NAME_BUFF_SIZE, "conv_biases%d", i); |
|
|
|
op = add_const_op(tf_model, consts[(i << 1) + 1], consts_dims[(i << 1) + 1], consts_dims_len[(i << 1) + 1], name_buffer); |
|
|
|
if (TF_GetCode(tf_model->status) != TF_OK || op == NULL){ |
|
|
|
return NULL; |
|
|
|
for (layer = 0; layer < conv_network->layers_num; ++layer){ |
|
|
|
switch (conv_network->layers[layer].type){ |
|
|
|
case INPUT: |
|
|
|
break; |
|
|
|
case CONV: |
|
|
|
layer_add_res = add_conv_layer(tf_model, transpose_op, &op, |
|
|
|
(ConvolutionalParams *)conv_network->layers[layer].params, layer); |
|
|
|
break; |
|
|
|
case DEPTH_TO_SPACE: |
|
|
|
layer_add_res = add_depth_to_space_layer(tf_model, &op, |
|
|
|
(DepthToSpaceParams *)conv_network->layers[layer].params, layer); |
|
|
|
break; |
|
|
|
default: |
|
|
|
CLEANUP_ON_ERROR(tf_model); |
|
|
|
} |
|
|
|
|
|
|
|
snprintf(name_buffer, NAME_BUFF_SIZE, "bias_add%d", i); |
|
|
|
op_desc = TF_NewOperation(tf_model->graph, "BiasAdd", name_buffer); |
|
|
|
input.oper = input_op; |
|
|
|
TF_AddInput(op_desc, input); |
|
|
|
input.oper = op; |
|
|
|
TF_AddInput(op_desc, input); |
|
|
|
TF_SetAttrType(op_desc, "T", TF_FLOAT); |
|
|
|
input_op = TF_FinishOperation(op_desc, tf_model->status); |
|
|
|
if (TF_GetCode(tf_model->status) != TF_OK){ |
|
|
|
return NULL; |
|
|
|
if (layer_add_res != DNN_SUCCESS){ |
|
|
|
CLEANUP_ON_ERROR(tf_model); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
snprintf(name_buffer, NAME_BUFF_SIZE, "activation%d", i); |
|
|
|
op_desc = TF_NewOperation(tf_model->graph, activations[i], name_buffer); |
|
|
|
input.oper = input_op; |
|
|
|
TF_AddInput(op_desc, input); |
|
|
|
TF_SetAttrType(op_desc, "T", TF_FLOAT); |
|
|
|
input_op = TF_FinishOperation(op_desc, tf_model->status); |
|
|
|
if (TF_GetCode(tf_model->status) != TF_OK){ |
|
|
|
return NULL; |
|
|
|
} |
|
|
|
op_desc = TF_NewOperation(tf_model->graph, "Identity", "y"); |
|
|
|
input.oper = op; |
|
|
|
TF_AddInput(op_desc, input); |
|
|
|
TF_FinishOperation(op_desc, tf_model->status); |
|
|
|
if (TF_GetCode(tf_model->status) != TF_OK){ |
|
|
|
CLEANUP_ON_ERROR(tf_model); |
|
|
|
} |
|
|
|
|
|
|
|
return input_op; |
|
|
|
ff_dnn_free_model_native(&native_model); |
|
|
|
|
|
|
|
return DNN_SUCCESS; |
|
|
|
} |
|
|
|
|
|
|
|
DNNModel *ff_dnn_load_default_model_tf(DNNDefaultModel model_type) |
|
|
|
DNNModel *ff_dnn_load_model_tf(const char *model_filename) |
|
|
|
{ |
|
|
|
DNNModel *model = NULL; |
|
|
|
TFModel *tf_model = NULL; |
|
|
|
TF_OperationDescription *op_desc; |
|
|
|
TF_Operation *op; |
|
|
|
TF_Output input; |
|
|
|
static const int64_t input_shape[] = {1, -1, -1, 1}; |
|
|
|
static const char tanh[] = "Tanh"; |
|
|
|
static const char sigmoid[] = "Sigmoid"; |
|
|
|
static const char relu[] = "Relu"; |
|
|
|
|
|
|
|
static const float *srcnn_consts[] = { |
|
|
|
srcnn_conv1_kernel, |
|
|
|
srcnn_conv1_bias, |
|
|
|
srcnn_conv2_kernel, |
|
|
|
srcnn_conv2_bias, |
|
|
|
srcnn_conv3_kernel, |
|
|
|
srcnn_conv3_bias |
|
|
|
}; |
|
|
|
static const long int *srcnn_consts_dims[] = { |
|
|
|
srcnn_conv1_kernel_dims, |
|
|
|
srcnn_conv1_bias_dims, |
|
|
|
srcnn_conv2_kernel_dims, |
|
|
|
srcnn_conv2_bias_dims, |
|
|
|
srcnn_conv3_kernel_dims, |
|
|
|
srcnn_conv3_bias_dims |
|
|
|
}; |
|
|
|
static const int srcnn_consts_dims_len[] = { |
|
|
|
4, |
|
|
|
1, |
|
|
|
4, |
|
|
|
1, |
|
|
|
4, |
|
|
|
1 |
|
|
|
}; |
|
|
|
static const char *srcnn_activations[] = { |
|
|
|
relu, |
|
|
|
relu, |
|
|
|
relu |
|
|
|
}; |
|
|
|
|
|
|
|
static const float *espcn_consts[] = { |
|
|
|
espcn_conv1_kernel, |
|
|
|
espcn_conv1_bias, |
|
|
|
espcn_conv2_kernel, |
|
|
|
espcn_conv2_bias, |
|
|
|
espcn_conv3_kernel, |
|
|
|
espcn_conv3_bias |
|
|
|
}; |
|
|
|
static const long int *espcn_consts_dims[] = { |
|
|
|
espcn_conv1_kernel_dims, |
|
|
|
espcn_conv1_bias_dims, |
|
|
|
espcn_conv2_kernel_dims, |
|
|
|
espcn_conv2_bias_dims, |
|
|
|
espcn_conv3_kernel_dims, |
|
|
|
espcn_conv3_bias_dims |
|
|
|
}; |
|
|
|
static const int espcn_consts_dims_len[] = { |
|
|
|
4, |
|
|
|
1, |
|
|
|
4, |
|
|
|
1, |
|
|
|
4, |
|
|
|
1 |
|
|
|
}; |
|
|
|
static const char *espcn_activations[] = { |
|
|
|
tanh, |
|
|
|
tanh, |
|
|
|
sigmoid |
|
|
|
}; |
|
|
|
|
|
|
|
input.index = 0; |
|
|
|
|
|
|
|
model = av_malloc(sizeof(DNNModel)); |
|
|
|
if (!model){ |
|
|
@@ -457,70 +490,13 @@ DNNModel *ff_dnn_load_default_model_tf(DNNDefaultModel model_type) |
|
|
|
tf_model->input_tensor = NULL; |
|
|
|
tf_model->output_data = NULL; |
|
|
|
|
|
|
|
tf_model->graph = TF_NewGraph(); |
|
|
|
tf_model->status = TF_NewStatus(); |
|
|
|
|
|
|
|
#define CLEANUP_ON_ERROR(tf_model, model) { \ |
|
|
|
TF_DeleteGraph(tf_model->graph); \ |
|
|
|
TF_DeleteStatus(tf_model->status); \ |
|
|
|
av_freep(&tf_model); \ |
|
|
|
av_freep(&model); \ |
|
|
|
return NULL; \ |
|
|
|
} |
|
|
|
|
|
|
|
op_desc = TF_NewOperation(tf_model->graph, "Placeholder", "x"); |
|
|
|
TF_SetAttrType(op_desc, "dtype", TF_FLOAT); |
|
|
|
TF_SetAttrShape(op_desc, "shape", input_shape, 4); |
|
|
|
op = TF_FinishOperation(op_desc, tf_model->status); |
|
|
|
if (TF_GetCode(tf_model->status) != TF_OK){ |
|
|
|
CLEANUP_ON_ERROR(tf_model, model); |
|
|
|
} |
|
|
|
|
|
|
|
switch (model_type){ |
|
|
|
case DNN_SRCNN: |
|
|
|
op = add_pad_op(tf_model, op, 6); |
|
|
|
if (!op){ |
|
|
|
CLEANUP_ON_ERROR(tf_model, model); |
|
|
|
} |
|
|
|
op = add_conv_layers(tf_model, srcnn_consts, |
|
|
|
srcnn_consts_dims, srcnn_consts_dims_len, |
|
|
|
srcnn_activations, op, 3); |
|
|
|
if (!op){ |
|
|
|
CLEANUP_ON_ERROR(tf_model, model); |
|
|
|
} |
|
|
|
break; |
|
|
|
case DNN_ESPCN: |
|
|
|
op = add_pad_op(tf_model, op, 4); |
|
|
|
if (!op){ |
|
|
|
CLEANUP_ON_ERROR(tf_model, model); |
|
|
|
} |
|
|
|
op = add_conv_layers(tf_model, espcn_consts, |
|
|
|
espcn_consts_dims, espcn_consts_dims_len, |
|
|
|
espcn_activations, op, 3); |
|
|
|
if (!op){ |
|
|
|
CLEANUP_ON_ERROR(tf_model, model); |
|
|
|
} |
|
|
|
if (load_tf_model(tf_model, model_filename) != DNN_SUCCESS){ |
|
|
|
if (load_native_model(tf_model, model_filename) != DNN_SUCCESS){ |
|
|
|
av_freep(&tf_model); |
|
|
|
av_freep(&model); |
|
|
|
|
|
|
|
op_desc = TF_NewOperation(tf_model->graph, "DepthToSpace", "depth_to_space"); |
|
|
|
input.oper = op; |
|
|
|
TF_AddInput(op_desc, input); |
|
|
|
TF_SetAttrType(op_desc, "T", TF_FLOAT); |
|
|
|
TF_SetAttrInt(op_desc, "block_size", 2); |
|
|
|
op = TF_FinishOperation(op_desc, tf_model->status); |
|
|
|
if (TF_GetCode(tf_model->status) != TF_OK){ |
|
|
|
CLEANUP_ON_ERROR(tf_model, model); |
|
|
|
return NULL; |
|
|
|
} |
|
|
|
break; |
|
|
|
default: |
|
|
|
CLEANUP_ON_ERROR(tf_model, model); |
|
|
|
} |
|
|
|
|
|
|
|
op_desc = TF_NewOperation(tf_model->graph, "Identity", "y"); |
|
|
|
input.oper = op; |
|
|
|
TF_AddInput(op_desc, input); |
|
|
|
TF_FinishOperation(op_desc, tf_model->status); |
|
|
|
if (TF_GetCode(tf_model->status) != TF_OK){ |
|
|
|
CLEANUP_ON_ERROR(tf_model, model); |
|
|
|
} |
|
|
|
|
|
|
|
model->model = (void *)tf_model; |
|
|
@@ -529,6 +505,8 @@ DNNModel *ff_dnn_load_default_model_tf(DNNDefaultModel model_type) |
|
|
|
return model; |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model) |
|
|
|
{ |
|
|
|
TFModel *tf_model = (TFModel *)model->model; |
|
|
@@ -572,7 +550,7 @@ void ff_dnn_free_model_tf(DNNModel **model) |
|
|
|
TF_DeleteTensor(tf_model->input_tensor); |
|
|
|
} |
|
|
|
if (tf_model->output_data){ |
|
|
|
av_freep(&(tf_model->output_data->data)); |
|
|
|
av_freep(&tf_model->output_data->data); |
|
|
|
} |
|
|
|
av_freep(&tf_model); |
|
|
|
av_freep(model); |
|
|
|