Originally committed as revision 3228 to svn://svn.ffmpeg.org/ffmpeg/trunktags/v0.5
| @@ -1846,6 +1846,7 @@ extern AVCodec ac3_decoder; | |||
| /* resample.c */ | |||
| struct ReSampleContext; | |||
| struct AVResampleContext; | |||
| typedef struct ReSampleContext ReSampleContext; | |||
| @@ -1854,6 +1855,9 @@ ReSampleContext *audio_resample_init(int output_channels, int input_channels, | |||
| int audio_resample(ReSampleContext *s, short *output, short *input, int nb_samples); | |||
| void audio_resample_close(ReSampleContext *s); | |||
| struct AVResampleContext *av_resample_init(int out_rate, int in_rate); | |||
| int av_resample(struct AVResampleContext *c, short *dst, short *src, int *consumed, int src_size, int dst_size, int update_ctx); | |||
| /* YUV420 format is assumed ! */ | |||
| struct ImgReSampleContext; | |||
| @@ -55,6 +55,8 @@ struct ImgReSampleContext { | |||
| uint8_t *line_buf; | |||
| }; | |||
| void av_build_filter(int16_t *filter, double factor, int tap_count, int phase_count, int scale, int type); | |||
| static inline int get_phase(int pos) | |||
| { | |||
| return ((pos) >> (POS_FRAC_BITS - PHASE_BITS)) & ((1 << PHASE_BITS) - 1); | |||
| @@ -540,48 +542,6 @@ static void component_resample(ImgReSampleContext *s, | |||
| } | |||
| } | |||
| /* XXX: the following filter is quite naive, but it seems to suffice | |||
| for 4 taps */ | |||
| static void build_filter(int16_t *filter, float factor) | |||
| { | |||
| int ph, i, v; | |||
| float x, y, tab[NB_TAPS], norm, mult, target; | |||
| /* if upsampling, only need to interpolate, no filter */ | |||
| if (factor > 1.0) | |||
| factor = 1.0; | |||
| for(ph=0;ph<NB_PHASES;ph++) { | |||
| norm = 0; | |||
| for(i=0;i<NB_TAPS;i++) { | |||
| #if 1 | |||
| const float d= -0.5; //first order derivative = -0.5 | |||
| x = fabs(((float)(i - FCENTER) - (float)ph / NB_PHASES) * factor); | |||
| if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*( -x*x + x*x*x); | |||
| else y= d*(-4 + 8*x - 5*x*x + x*x*x); | |||
| #else | |||
| x = M_PI * ((float)(i - FCENTER) - (float)ph / NB_PHASES) * factor; | |||
| if (x == 0) | |||
| y = 1.0; | |||
| else | |||
| y = sin(x) / x; | |||
| #endif | |||
| tab[i] = y; | |||
| norm += y; | |||
| } | |||
| /* normalize so that an uniform color remains the same */ | |||
| target= 1 << FILTER_BITS; | |||
| for(i=0;i<NB_TAPS;i++) { | |||
| mult = target / norm; | |||
| v = lrintf(tab[i] * mult); | |||
| filter[ph * NB_TAPS + i] = v; | |||
| norm -= tab[i]; | |||
| target -= v; | |||
| } | |||
| } | |||
| } | |||
| ImgReSampleContext *img_resample_init(int owidth, int oheight, | |||
| int iwidth, int iheight) | |||
| { | |||
| @@ -626,10 +586,10 @@ ImgReSampleContext *img_resample_full_init(int owidth, int oheight, | |||
| s->h_incr = ((iwidth - leftBand - rightBand) * POS_FRAC) / s->pad_owidth; | |||
| s->v_incr = ((iheight - topBand - bottomBand) * POS_FRAC) / s->pad_oheight; | |||
| build_filter(&s->h_filters[0][0], (float) s->pad_owidth / | |||
| (float) (iwidth - leftBand - rightBand)); | |||
| build_filter(&s->v_filters[0][0], (float) s->pad_oheight / | |||
| (float) (iheight - topBand - bottomBand)); | |||
| av_build_filter(&s->h_filters[0][0], (float) s->pad_owidth / | |||
| (float) (iwidth - leftBand - rightBand), NB_TAPS, NB_PHASES, 1<<FILTER_BITS, 0); | |||
| av_build_filter(&s->v_filters[0][0], (float) s->pad_oheight / | |||
| (float) (iheight - topBand - bottomBand), NB_TAPS, NB_PHASES, 1<<FILTER_BITS, 0); | |||
| return s; | |||
| fail: | |||
| @@ -24,103 +24,17 @@ | |||
| #include "avcodec.h" | |||
| typedef struct { | |||
| /* fractional resampling */ | |||
| uint32_t incr; /* fractional increment */ | |||
| uint32_t frac; | |||
| int last_sample; | |||
| /* integer down sample */ | |||
| int iratio; /* integer divison ratio */ | |||
| int icount, isum; | |||
| int inv; | |||
| } ReSampleChannelContext; | |||
| struct AVResampleContext; | |||
| struct ReSampleContext { | |||
| ReSampleChannelContext channel_ctx[2]; | |||
| struct AVResampleContext *resample_context; | |||
| short *temp[2]; | |||
| int temp_len; | |||
| float ratio; | |||
| /* channel convert */ | |||
| int input_channels, output_channels, filter_channels; | |||
| }; | |||
| #define FRAC_BITS 16 | |||
| #define FRAC (1 << FRAC_BITS) | |||
| static void init_mono_resample(ReSampleChannelContext *s, float ratio) | |||
| { | |||
| ratio = 1.0 / ratio; | |||
| s->iratio = (int)floorf(ratio); | |||
| if (s->iratio == 0) | |||
| s->iratio = 1; | |||
| s->incr = (int)((ratio / s->iratio) * FRAC); | |||
| s->frac = FRAC; | |||
| s->last_sample = 0; | |||
| s->icount = s->iratio; | |||
| s->isum = 0; | |||
| s->inv = (FRAC / s->iratio); | |||
| } | |||
| /* fractional audio resampling */ | |||
| static int fractional_resample(ReSampleChannelContext *s, short *output, short *input, int nb_samples) | |||
| { | |||
| unsigned int frac, incr; | |||
| int l0, l1; | |||
| short *q, *p, *pend; | |||
| l0 = s->last_sample; | |||
| incr = s->incr; | |||
| frac = s->frac; | |||
| p = input; | |||
| pend = input + nb_samples; | |||
| q = output; | |||
| l1 = *p++; | |||
| for(;;) { | |||
| /* interpolate */ | |||
| *q++ = (l0 * (FRAC - frac) + l1 * frac) >> FRAC_BITS; | |||
| frac = frac + s->incr; | |||
| while (frac >= FRAC) { | |||
| frac -= FRAC; | |||
| if (p >= pend) | |||
| goto the_end; | |||
| l0 = l1; | |||
| l1 = *p++; | |||
| } | |||
| } | |||
| the_end: | |||
| s->last_sample = l1; | |||
| s->frac = frac; | |||
| return q - output; | |||
| } | |||
| static int integer_downsample(ReSampleChannelContext *s, short *output, short *input, int nb_samples) | |||
| { | |||
| short *q, *p, *pend; | |||
| int c, sum; | |||
| p = input; | |||
| pend = input + nb_samples; | |||
| q = output; | |||
| c = s->icount; | |||
| sum = s->isum; | |||
| for(;;) { | |||
| sum += *p++; | |||
| if (--c == 0) { | |||
| *q++ = (sum * s->inv) >> FRAC_BITS; | |||
| c = s->iratio; | |||
| sum = 0; | |||
| } | |||
| if (p >= pend) | |||
| break; | |||
| } | |||
| s->isum = sum; | |||
| s->icount = c; | |||
| return q - output; | |||
| } | |||
| /* n1: number of samples */ | |||
| static void stereo_to_mono(short *output, short *input, int n1) | |||
| { | |||
| @@ -210,31 +124,6 @@ static void ac3_5p1_mux(short *output, short *input1, short *input2, int n) | |||
| } | |||
| } | |||
| static int mono_resample(ReSampleChannelContext *s, short *output, short *input, int nb_samples) | |||
| { | |||
| short *buf1; | |||
| short *buftmp; | |||
| buf1= (short*)av_malloc( nb_samples * sizeof(short) ); | |||
| /* first downsample by an integer factor with averaging filter */ | |||
| if (s->iratio > 1) { | |||
| buftmp = buf1; | |||
| nb_samples = integer_downsample(s, buftmp, input, nb_samples); | |||
| } else { | |||
| buftmp = input; | |||
| } | |||
| /* then do a fractional resampling with linear interpolation */ | |||
| if (s->incr != FRAC) { | |||
| nb_samples = fractional_resample(s, output, buftmp, nb_samples); | |||
| } else { | |||
| memcpy(output, buftmp, nb_samples * sizeof(short)); | |||
| } | |||
| av_free(buf1); | |||
| return nb_samples; | |||
| } | |||
| ReSampleContext *audio_resample_init(int output_channels, int input_channels, | |||
| int output_rate, int input_rate) | |||
| { | |||
| @@ -271,16 +160,13 @@ ReSampleContext *audio_resample_init(int output_channels, int input_channels, | |||
| if(s->filter_channels>2) | |||
| s->filter_channels = 2; | |||
| for(i=0;i<s->filter_channels;i++) { | |||
| init_mono_resample(&s->channel_ctx[i], s->ratio); | |||
| } | |||
| s->resample_context= av_resample_init(output_rate, input_rate); | |||
| return s; | |||
| } | |||
| /* resample audio. 'nb_samples' is the number of input samples */ | |||
| /* XXX: optimize it ! */ | |||
| /* XXX: do it with polyphase filters, since the quality here is | |||
| HORRIBLE. Return the number of samples available in output */ | |||
| int audio_resample(ReSampleContext *s, short *output, short *input, int nb_samples) | |||
| { | |||
| int i, nb_samples1; | |||
| @@ -296,8 +182,11 @@ int audio_resample(ReSampleContext *s, short *output, short *input, int nb_sampl | |||
| } | |||
| /* XXX: move those malloc to resample init code */ | |||
| bufin[0]= (short*) av_malloc( nb_samples * sizeof(short) ); | |||
| bufin[1]= (short*) av_malloc( nb_samples * sizeof(short) ); | |||
| for(i=0; i<s->filter_channels; i++){ | |||
| bufin[i]= (short*) av_malloc( (nb_samples + s->temp_len) * sizeof(short) ); | |||
| memcpy(bufin[i], s->temp[i], s->temp_len * sizeof(short)); | |||
| buftmp2[i] = bufin[i] + s->temp_len; | |||
| } | |||
| /* make some zoom to avoid round pb */ | |||
| lenout= (int)(nb_samples * s->ratio) + 16; | |||
| @@ -306,27 +195,32 @@ int audio_resample(ReSampleContext *s, short *output, short *input, int nb_sampl | |||
| if (s->input_channels == 2 && | |||
| s->output_channels == 1) { | |||
| buftmp2[0] = bufin[0]; | |||
| buftmp3[0] = output; | |||
| stereo_to_mono(buftmp2[0], input, nb_samples); | |||
| } else if (s->output_channels >= 2 && s->input_channels == 1) { | |||
| buftmp2[0] = input; | |||
| buftmp3[0] = bufout[0]; | |||
| memcpy(buftmp2[0], input, nb_samples*sizeof(short)); | |||
| } else if (s->output_channels >= 2) { | |||
| buftmp2[0] = bufin[0]; | |||
| buftmp2[1] = bufin[1]; | |||
| buftmp3[0] = bufout[0]; | |||
| buftmp3[1] = bufout[1]; | |||
| stereo_split(buftmp2[0], buftmp2[1], input, nb_samples); | |||
| } else { | |||
| buftmp2[0] = input; | |||
| buftmp3[0] = output; | |||
| memcpy(buftmp2[0], input, nb_samples*sizeof(short)); | |||
| } | |||
| nb_samples += s->temp_len; | |||
| /* resample each channel */ | |||
| nb_samples1 = 0; /* avoid warning */ | |||
| for(i=0;i<s->filter_channels;i++) { | |||
| nb_samples1 = mono_resample(&s->channel_ctx[i], buftmp3[i], buftmp2[i], nb_samples); | |||
| int consumed; | |||
| int is_last= i+1 == s->filter_channels; | |||
| nb_samples1 = av_resample(s->resample_context, buftmp3[i], bufin[i], &consumed, nb_samples, lenout, is_last); | |||
| s->temp_len= nb_samples - consumed; | |||
| s->temp[i]= av_realloc(s->temp[i], s->temp_len*sizeof(short)); | |||
| memcpy(s->temp[i], bufin[i] + consumed, s->temp_len*sizeof(short)); | |||
| } | |||
| if (s->output_channels == 2 && s->input_channels == 1) { | |||
| @@ -347,5 +241,8 @@ int audio_resample(ReSampleContext *s, short *output, short *input, int nb_sampl | |||
| void audio_resample_close(ReSampleContext *s) | |||
| { | |||
| av_resample_close(s->resample_context); | |||
| av_freep(&s->temp[0]); | |||
| av_freep(&s->temp[1]); | |||
| av_free(s); | |||
| } | |||
| @@ -0,0 +1,214 @@ | |||
| /* | |||
| * audio resampling | |||
| * Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at> | |||
| * | |||
| * This library is free software; you can redistribute it and/or | |||
| * modify it under the terms of the GNU Lesser General Public | |||
| * License as published by the Free Software Foundation; either | |||
| * version 2 of the License, or (at your option) any later version. | |||
| * | |||
| * This library is distributed in the hope that it will be useful, | |||
| * but WITHOUT ANY WARRANTY; without even the implied warranty of | |||
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |||
| * Lesser General Public License for more details. | |||
| * | |||
| * You should have received a copy of the GNU Lesser General Public | |||
| * License along with this library; if not, write to the Free Software | |||
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |||
| * | |||
| */ | |||
| /** | |||
| * @file resample2.c | |||
| * audio resampling | |||
| * @author Michael Niedermayer <michaelni@gmx.at> | |||
| */ | |||
| #include "avcodec.h" | |||
| #include "common.h" | |||
| #define PHASE_SHIFT 10 | |||
| #define PHASE_COUNT (1<<PHASE_SHIFT) | |||
| #define PHASE_MASK (PHASE_COUNT-1) | |||
| #define FILTER_SHIFT 15 | |||
| typedef struct AVResampleContext{ | |||
| short *filter_bank; | |||
| int filter_length; | |||
| int ideal_dst_incr; | |||
| int dst_incr; | |||
| int index; | |||
| int frac; | |||
| int src_incr; | |||
| int compensation_distance; | |||
| }AVResampleContext; | |||
| /** | |||
| * 0th order modified bessel function of the first kind. | |||
| */ | |||
| double bessel(double x){ | |||
| double v=1; | |||
| double t=1; | |||
| int i; | |||
| for(i=1; i<50; i++){ | |||
| t *= i; | |||
| v += pow(x*x/4, i)/(t*t); | |||
| } | |||
| return v; | |||
| } | |||
| /** | |||
| * builds a polyphase filterbank. | |||
| * @param factor resampling factor | |||
| * @param scale wanted sum of coefficients for each filter | |||
| * @param type 0->cubic, 1->blackman nuttall windowed sinc, 2->kaiser windowed sinc beta=16 | |||
| */ | |||
| void av_build_filter(int16_t *filter, double factor, int tap_count, int phase_count, int scale, int type){ | |||
| int ph, i, v; | |||
| double x, y, w, tab[tap_count]; | |||
| const int center= (tap_count-1)/2; | |||
| /* if upsampling, only need to interpolate, no filter */ | |||
| if (factor > 1.0) | |||
| factor = 1.0; | |||
| for(ph=0;ph<phase_count;ph++) { | |||
| double norm = 0; | |||
| double e= 0; | |||
| for(i=0;i<tap_count;i++) { | |||
| x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor; | |||
| if (x == 0) y = 1.0; | |||
| else y = sin(x) / x; | |||
| switch(type){ | |||
| case 0:{ | |||
| const float d= -0.5; //first order derivative = -0.5 | |||
| x = fabs(((double)(i - center) - (double)ph / phase_count) * factor); | |||
| if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*( -x*x + x*x*x); | |||
| else y= d*(-4 + 8*x - 5*x*x + x*x*x); | |||
| break;} | |||
| case 1: | |||
| w = 2.0*x / (factor*tap_count) + M_PI; | |||
| y *= 0.3635819 - 0.4891775 * cos(w) + 0.1365995 * cos(2*w) - 0.0106411 * cos(3*w); | |||
| break; | |||
| case 2: | |||
| w = 2.0*x / (factor*tap_count*M_PI); | |||
| y *= bessel(16*sqrt(FFMAX(1-w*w, 0))) / bessel(16); | |||
| break; | |||
| } | |||
| tab[i] = y; | |||
| norm += y; | |||
| } | |||
| /* normalize so that an uniform color remains the same */ | |||
| for(i=0;i<tap_count;i++) { | |||
| v = clip(lrintf(tab[i] * scale / norm) + e, -32768, 32767); | |||
| filter[ph * tap_count + i] = v; | |||
| e += tab[i] * scale / norm - v; | |||
| } | |||
| } | |||
| } | |||
| /** | |||
| * initalizes a audio resampler. | |||
| * note, if either rate is not a integer then simply scale both rates up so they are | |||
| */ | |||
| AVResampleContext *av_resample_init(int out_rate, int in_rate){ | |||
| AVResampleContext *c= av_mallocz(sizeof(AVResampleContext)); | |||
| double factor= FFMIN(out_rate / (double)in_rate, 1.0); | |||
| memset(c, 0, sizeof(AVResampleContext)); | |||
| c->filter_length= ceil(16.0/factor); | |||
| c->filter_bank= av_mallocz(c->filter_length*(PHASE_COUNT+1)*sizeof(short)); | |||
| av_build_filter(c->filter_bank, factor, c->filter_length, PHASE_COUNT, 1<<FILTER_SHIFT, 1); | |||
| c->filter_bank[c->filter_length*PHASE_COUNT + (c->filter_length-1) + 1]= (1<<FILTER_SHIFT)-1; | |||
| c->filter_bank[c->filter_length*PHASE_COUNT + (c->filter_length-1) + 2]= 1; | |||
| c->src_incr= out_rate; | |||
| c->ideal_dst_incr= c->dst_incr= in_rate * PHASE_COUNT; | |||
| c->index= -PHASE_COUNT*((c->filter_length-1)/2); | |||
| return c; | |||
| } | |||
| void av_resample_close(AVResampleContext *c){ | |||
| av_freep(&c->filter_bank); | |||
| av_freep(&c); | |||
| } | |||
| void av_resample_compensate(AVResampleContext *c, int sample_delta, int compensation_distance){ | |||
| assert(!c->compensation_distance); //FIXME | |||
| c->compensation_distance= compensation_distance; | |||
| c->dst_incr-= c->ideal_dst_incr * sample_delta / compensation_distance; | |||
| } | |||
| /** | |||
| * resamples. | |||
| * @param src an array of unconsumed samples | |||
| * @param consumed the number of samples of src which have been consumed are returned here | |||
| * @param src_size the number of unconsumed samples available | |||
| * @param dst_size the amount of space in samples available in dst | |||
| * @param update_ctx if this is 0 then the context wont be modified, that way several channels can be resampled with the same context | |||
| * @return the number of samples written in dst or -1 if an error occured | |||
| */ | |||
| int av_resample(AVResampleContext *c, short *dst, short *src, int *consumed, int src_size, int dst_size, int update_ctx){ | |||
| int dst_index, i; | |||
| int index= c->index; | |||
| int frac= c->frac; | |||
| int dst_incr_frac= c->dst_incr % c->src_incr; | |||
| int dst_incr= c->dst_incr / c->src_incr; | |||
| if(c->compensation_distance && c->compensation_distance < dst_size) | |||
| dst_size= c->compensation_distance; | |||
| for(dst_index=0; dst_index < dst_size; dst_index++){ | |||
| short *filter= c->filter_bank + c->filter_length*(index & PHASE_MASK); | |||
| int sample_index= index >> PHASE_SHIFT; | |||
| int val=0; | |||
| if(sample_index < 0){ | |||
| for(i=0; i<c->filter_length; i++) | |||
| val += src[ABS(sample_index + i)] * filter[i]; | |||
| }else if(sample_index + c->filter_length > src_size){ | |||
| break; | |||
| }else{ | |||
| #if 0 | |||
| int64_t v=0; | |||
| int sub_phase= (frac<<12) / c->src_incr; | |||
| for(i=0; i<c->filter_length; i++){ | |||
| int64_t coeff= filter[i]*(4096 - sub_phase) + filter[i + c->filter_length]*sub_phase; | |||
| v += src[sample_index + i] * coeff; | |||
| } | |||
| val= v>>12; | |||
| #else | |||
| for(i=0; i<c->filter_length; i++){ | |||
| val += src[sample_index + i] * filter[i]; | |||
| } | |||
| #endif | |||
| } | |||
| val = (val + (1<<(FILTER_SHIFT-1)))>>FILTER_SHIFT; | |||
| dst[dst_index] = (unsigned)(val + 32768) > 65535 ? (val>>31) ^ 32767 : val; | |||
| frac += dst_incr_frac; | |||
| index += dst_incr; | |||
| if(frac >= c->src_incr){ | |||
| frac -= c->src_incr; | |||
| index++; | |||
| } | |||
| } | |||
| if(update_ctx){ | |||
| if(c->compensation_distance){ | |||
| c->compensation_distance -= index; | |||
| if(!c->compensation_distance) | |||
| c->dst_incr= c->ideal_dst_incr; | |||
| } | |||
| c->frac= frac; | |||
| c->index=0; | |||
| } | |||
| *consumed= index >> PHASE_SHIFT; | |||
| return dst_index; | |||
| } | |||