| @@ -42,24 +42,406 @@ | |||
| #define M_E 2.718281828 | |||
| #endif | |||
| static int init_pass2(MpegEncContext *s); | |||
| static inline double qp2bits(RateControlEntry *rce, double qp) | |||
| { | |||
| if (qp <= 0.0) { | |||
| av_log(NULL, AV_LOG_ERROR, "qp<=0.0\n"); | |||
| } | |||
| return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits + 1) / qp; | |||
| } | |||
| static inline double bits2qp(RateControlEntry *rce, double bits) | |||
| { | |||
| if (bits < 0.9) { | |||
| av_log(NULL, AV_LOG_ERROR, "bits<0.9\n"); | |||
| } | |||
| return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits + 1) / bits; | |||
| } | |||
| static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, double q) | |||
| { | |||
| RateControlContext *rcc = &s->rc_context; | |||
| AVCodecContext *a = s->avctx; | |||
| const int pict_type = rce->new_pict_type; | |||
| const double last_p_q = rcc->last_qscale_for[AV_PICTURE_TYPE_P]; | |||
| const double last_non_b_q = rcc->last_qscale_for[rcc->last_non_b_pict_type]; | |||
| if (pict_type == AV_PICTURE_TYPE_I && | |||
| (a->i_quant_factor > 0.0 || rcc->last_non_b_pict_type == AV_PICTURE_TYPE_P)) | |||
| q = last_p_q * FFABS(a->i_quant_factor) + a->i_quant_offset; | |||
| else if (pict_type == AV_PICTURE_TYPE_B && | |||
| a->b_quant_factor > 0.0) | |||
| q = last_non_b_q * a->b_quant_factor + a->b_quant_offset; | |||
| if (q < 1) | |||
| q = 1; | |||
| /* last qscale / qdiff stuff */ | |||
| if (rcc->last_non_b_pict_type == pict_type || pict_type != AV_PICTURE_TYPE_I) { | |||
| double last_q = rcc->last_qscale_for[pict_type]; | |||
| const int maxdiff = FF_QP2LAMBDA * a->max_qdiff; | |||
| if (q > last_q + maxdiff) | |||
| q = last_q + maxdiff; | |||
| else if (q < last_q - maxdiff) | |||
| q = last_q - maxdiff; | |||
| } | |||
| rcc->last_qscale_for[pict_type] = q; // Note we cannot do that after blurring | |||
| if (pict_type != AV_PICTURE_TYPE_B) | |||
| rcc->last_non_b_pict_type = pict_type; | |||
| return q; | |||
| } | |||
| /** | |||
| * Get the qmin & qmax for pict_type. | |||
| */ | |||
| static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type) | |||
| { | |||
| int qmin = s->lmin; | |||
| int qmax = s->lmax; | |||
| assert(qmin <= qmax); | |||
| switch (pict_type) { | |||
| case AV_PICTURE_TYPE_B: | |||
| qmin = (int)(qmin * FFABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset + 0.5); | |||
| qmax = (int)(qmax * FFABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset + 0.5); | |||
| break; | |||
| case AV_PICTURE_TYPE_I: | |||
| qmin = (int)(qmin * FFABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset + 0.5); | |||
| qmax = (int)(qmax * FFABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset + 0.5); | |||
| break; | |||
| } | |||
| qmin = av_clip(qmin, 1, FF_LAMBDA_MAX); | |||
| qmax = av_clip(qmax, 1, FF_LAMBDA_MAX); | |||
| if (qmax < qmin) | |||
| qmax = qmin; | |||
| *qmin_ret = qmin; | |||
| *qmax_ret = qmax; | |||
| } | |||
| static double modify_qscale(MpegEncContext *s, RateControlEntry *rce, | |||
| double q, int frame_num) | |||
| { | |||
| RateControlContext *rcc = &s->rc_context; | |||
| const double buffer_size = s->avctx->rc_buffer_size; | |||
| const double fps = 1 / av_q2d(s->avctx->time_base); | |||
| const double min_rate = s->avctx->rc_min_rate / fps; | |||
| const double max_rate = s->avctx->rc_max_rate / fps; | |||
| const int pict_type = rce->new_pict_type; | |||
| int qmin, qmax; | |||
| get_qminmax(&qmin, &qmax, s, pict_type); | |||
| /* modulation */ | |||
| if (s->rc_qmod_freq && | |||
| frame_num % s->rc_qmod_freq == 0 && | |||
| pict_type == AV_PICTURE_TYPE_P) | |||
| q *= s->rc_qmod_amp; | |||
| /* buffer overflow/underflow protection */ | |||
| if (buffer_size) { | |||
| double expected_size = rcc->buffer_index; | |||
| double q_limit; | |||
| if (min_rate) { | |||
| double d = 2 * (buffer_size - expected_size) / buffer_size; | |||
| if (d > 1.0) | |||
| d = 1.0; | |||
| else if (d < 0.0001) | |||
| d = 0.0001; | |||
| q *= pow(d, 1.0 / s->rc_buffer_aggressivity); | |||
| q_limit = bits2qp(rce, | |||
| FFMAX((min_rate - buffer_size + rcc->buffer_index) * | |||
| s->avctx->rc_min_vbv_overflow_use, 1)); | |||
| if (q > q_limit) { | |||
| if (s->avctx->debug & FF_DEBUG_RC) | |||
| av_log(s->avctx, AV_LOG_DEBUG, | |||
| "limiting QP %f -> %f\n", q, q_limit); | |||
| q = q_limit; | |||
| } | |||
| } | |||
| if (max_rate) { | |||
| double d = 2 * expected_size / buffer_size; | |||
| if (d > 1.0) | |||
| d = 1.0; | |||
| else if (d < 0.0001) | |||
| d = 0.0001; | |||
| q /= pow(d, 1.0 / s->rc_buffer_aggressivity); | |||
| q_limit = bits2qp(rce, | |||
| FFMAX(rcc->buffer_index * | |||
| s->avctx->rc_max_available_vbv_use, | |||
| 1)); | |||
| if (q < q_limit) { | |||
| if (s->avctx->debug & FF_DEBUG_RC) | |||
| av_log(s->avctx, AV_LOG_DEBUG, | |||
| "limiting QP %f -> %f\n", q, q_limit); | |||
| q = q_limit; | |||
| } | |||
| } | |||
| } | |||
| ff_dlog(s, "q:%f max:%f min:%f size:%f index:%f agr:%f\n", | |||
| q, max_rate, min_rate, buffer_size, rcc->buffer_index, | |||
| s->rc_buffer_aggressivity); | |||
| if (s->rc_qsquish == 0.0 || qmin == qmax) { | |||
| if (q < qmin) | |||
| q = qmin; | |||
| else if (q > qmax) | |||
| q = qmax; | |||
| } else { | |||
| double min2 = log(qmin); | |||
| double max2 = log(qmax); | |||
| q = log(q); | |||
| q = (q - min2) / (max2 - min2) - 0.5; | |||
| q *= -4.0; | |||
| q = 1.0 / (1.0 + exp(q)); | |||
| q = q * (max2 - min2) + min2; | |||
| q = exp(q); | |||
| } | |||
| return q; | |||
| } | |||
| /** | |||
| * Modify the bitrate curve from pass1 for one frame. | |||
| */ | |||
| static double get_qscale(MpegEncContext *s, RateControlEntry *rce, | |||
| double rate_factor, int frame_num); | |||
| double rate_factor, int frame_num) | |||
| { | |||
| RateControlContext *rcc = &s->rc_context; | |||
| AVCodecContext *a = s->avctx; | |||
| const int pict_type = rce->new_pict_type; | |||
| const double mb_num = s->mb_num; | |||
| double q, bits; | |||
| int i; | |||
| double const_values[] = { | |||
| M_PI, | |||
| M_E, | |||
| rce->i_tex_bits * rce->qscale, | |||
| rce->p_tex_bits * rce->qscale, | |||
| (rce->i_tex_bits + rce->p_tex_bits) * (double)rce->qscale, | |||
| rce->mv_bits / mb_num, | |||
| rce->pict_type == AV_PICTURE_TYPE_B ? (rce->f_code + rce->b_code) * 0.5 : rce->f_code, | |||
| rce->i_count / mb_num, | |||
| rce->mc_mb_var_sum / mb_num, | |||
| rce->mb_var_sum / mb_num, | |||
| rce->pict_type == AV_PICTURE_TYPE_I, | |||
| rce->pict_type == AV_PICTURE_TYPE_P, | |||
| rce->pict_type == AV_PICTURE_TYPE_B, | |||
| rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type], | |||
| a->qcompress, | |||
| rcc->i_cplx_sum[AV_PICTURE_TYPE_I] / (double)rcc->frame_count[AV_PICTURE_TYPE_I], | |||
| rcc->i_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P], | |||
| rcc->p_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P], | |||
| rcc->p_cplx_sum[AV_PICTURE_TYPE_B] / (double)rcc->frame_count[AV_PICTURE_TYPE_B], | |||
| (rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type], | |||
| 0 | |||
| }; | |||
| bits = av_expr_eval(rcc->rc_eq_eval, const_values, rce); | |||
| if (isnan(bits)) { | |||
| av_log(s->avctx, AV_LOG_ERROR, "Error evaluating rc_eq \"%s\"\n", s->rc_eq); | |||
| return -1; | |||
| } | |||
| rcc->pass1_rc_eq_output_sum += bits; | |||
| bits *= rate_factor; | |||
| if (bits < 0.0) | |||
| bits = 0.0; | |||
| bits += 1.0; // avoid 1/0 issues | |||
| /* user override */ | |||
| for (i = 0; i < s->avctx->rc_override_count; i++) { | |||
| RcOverride *rco = s->avctx->rc_override; | |||
| if (rco[i].start_frame > frame_num) | |||
| continue; | |||
| if (rco[i].end_frame < frame_num) | |||
| continue; | |||
| if (rco[i].qscale) | |||
| bits = qp2bits(rce, rco[i].qscale); // FIXME move at end to really force it? | |||
| else | |||
| bits *= rco[i].quality_factor; | |||
| } | |||
| q = bits2qp(rce, bits); | |||
| /* I/B difference */ | |||
| if (pict_type == AV_PICTURE_TYPE_I && s->avctx->i_quant_factor < 0.0) | |||
| q = -q * s->avctx->i_quant_factor + s->avctx->i_quant_offset; | |||
| else if (pict_type == AV_PICTURE_TYPE_B && s->avctx->b_quant_factor < 0.0) | |||
| q = -q * s->avctx->b_quant_factor + s->avctx->b_quant_offset; | |||
| if (q < 1) | |||
| q = 1; | |||
| return q; | |||
| } | |||
| static int init_pass2(MpegEncContext *s) | |||
| { | |||
| RateControlContext *rcc = &s->rc_context; | |||
| AVCodecContext *a = s->avctx; | |||
| int i, toobig; | |||
| double fps = 1 / av_q2d(s->avctx->time_base); | |||
| double complexity[5] = { 0 }; // approximate bits at quant=1 | |||
| uint64_t const_bits[5] = { 0 }; // quantizer independent bits | |||
| uint64_t all_const_bits; | |||
| uint64_t all_available_bits = (uint64_t)(s->bit_rate * | |||
| (double)rcc->num_entries / fps); | |||
| double rate_factor = 0; | |||
| double step; | |||
| const int filter_size = (int)(a->qblur * 4) | 1; | |||
| double expected_bits; | |||
| double *qscale, *blurred_qscale, qscale_sum; | |||
| /* find complexity & const_bits & decide the pict_types */ | |||
| for (i = 0; i < rcc->num_entries; i++) { | |||
| RateControlEntry *rce = &rcc->entry[i]; | |||
| rce->new_pict_type = rce->pict_type; | |||
| rcc->i_cplx_sum[rce->pict_type] += rce->i_tex_bits * rce->qscale; | |||
| rcc->p_cplx_sum[rce->pict_type] += rce->p_tex_bits * rce->qscale; | |||
| rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits; | |||
| rcc->frame_count[rce->pict_type]++; | |||
| complexity[rce->new_pict_type] += (rce->i_tex_bits + rce->p_tex_bits) * | |||
| (double)rce->qscale; | |||
| const_bits[rce->new_pict_type] += rce->mv_bits + rce->misc_bits; | |||
| } | |||
| all_const_bits = const_bits[AV_PICTURE_TYPE_I] + | |||
| const_bits[AV_PICTURE_TYPE_P] + | |||
| const_bits[AV_PICTURE_TYPE_B]; | |||
| if (all_available_bits < all_const_bits) { | |||
| av_log(s->avctx, AV_LOG_ERROR, "requested bitrate is too low\n"); | |||
| return -1; | |||
| } | |||
| qscale = av_malloc(sizeof(double) * rcc->num_entries); | |||
| blurred_qscale = av_malloc(sizeof(double) * rcc->num_entries); | |||
| if (!qscale || !blurred_qscale) { | |||
| av_free(qscale); | |||
| av_free(blurred_qscale); | |||
| return AVERROR(ENOMEM); | |||
| } | |||
| toobig = 0; | |||
| for (step = 256 * 256; step > 0.0000001; step *= 0.5) { | |||
| expected_bits = 0; | |||
| rate_factor += step; | |||
| rcc->buffer_index = s->avctx->rc_buffer_size / 2; | |||
| /* find qscale */ | |||
| for (i = 0; i < rcc->num_entries; i++) { | |||
| RateControlEntry *rce = &rcc->entry[i]; | |||
| qscale[i] = get_qscale(s, &rcc->entry[i], rate_factor, i); | |||
| rcc->last_qscale_for[rce->pict_type] = qscale[i]; | |||
| } | |||
| assert(filter_size % 2 == 1); | |||
| /* fixed I/B QP relative to P mode */ | |||
| for (i = rcc->num_entries - 1; i >= 0; i--) { | |||
| RateControlEntry *rce = &rcc->entry[i]; | |||
| qscale[i] = get_diff_limited_q(s, rce, qscale[i]); | |||
| } | |||
| /* smooth curve */ | |||
| for (i = 0; i < rcc->num_entries; i++) { | |||
| RateControlEntry *rce = &rcc->entry[i]; | |||
| const int pict_type = rce->new_pict_type; | |||
| int j; | |||
| double q = 0.0, sum = 0.0; | |||
| for (j = 0; j < filter_size; j++) { | |||
| int index = i + j - filter_size / 2; | |||
| double d = index - i; | |||
| double coeff = a->qblur == 0 ? 1.0 : exp(-d * d / (a->qblur * a->qblur)); | |||
| if (index < 0 || index >= rcc->num_entries) | |||
| continue; | |||
| if (pict_type != rcc->entry[index].new_pict_type) | |||
| continue; | |||
| q += qscale[index] * coeff; | |||
| sum += coeff; | |||
| } | |||
| blurred_qscale[i] = q / sum; | |||
| } | |||
| /* find expected bits */ | |||
| for (i = 0; i < rcc->num_entries; i++) { | |||
| RateControlEntry *rce = &rcc->entry[i]; | |||
| double bits; | |||
| rce->new_qscale = modify_qscale(s, rce, blurred_qscale[i], i); | |||
| bits = qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits; | |||
| bits += 8 * ff_vbv_update(s, bits); | |||
| rce->expected_bits = expected_bits; | |||
| expected_bits += bits; | |||
| } | |||
| static inline double qp2bits(RateControlEntry *rce, double qp) | |||
| { | |||
| if (qp <= 0.0) { | |||
| av_log(NULL, AV_LOG_ERROR, "qp<=0.0\n"); | |||
| ff_dlog(s->avctx, | |||
| "expected_bits: %f all_available_bits: %d rate_factor: %f\n", | |||
| expected_bits, (int)all_available_bits, rate_factor); | |||
| if (expected_bits > all_available_bits) { | |||
| rate_factor -= step; | |||
| ++toobig; | |||
| } | |||
| } | |||
| return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits + 1) / qp; | |||
| } | |||
| av_free(qscale); | |||
| av_free(blurred_qscale); | |||
| static inline double bits2qp(RateControlEntry *rce, double bits) | |||
| { | |||
| if (bits < 0.9) { | |||
| av_log(NULL, AV_LOG_ERROR, "bits<0.9\n"); | |||
| /* check bitrate calculations and print info */ | |||
| qscale_sum = 0.0; | |||
| for (i = 0; i < rcc->num_entries; i++) { | |||
| ff_dlog(s, "[lavc rc] entry[%d].new_qscale = %.3f qp = %.3f\n", | |||
| i, | |||
| rcc->entry[i].new_qscale, | |||
| rcc->entry[i].new_qscale / FF_QP2LAMBDA); | |||
| qscale_sum += av_clip(rcc->entry[i].new_qscale / FF_QP2LAMBDA, | |||
| s->avctx->qmin, s->avctx->qmax); | |||
| } | |||
| return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits + 1) / bits; | |||
| assert(toobig <= 40); | |||
| av_log(s->avctx, AV_LOG_DEBUG, | |||
| "[lavc rc] requested bitrate: %d bps expected bitrate: %d bps\n", | |||
| s->bit_rate, | |||
| (int)(expected_bits / ((double)all_available_bits / s->bit_rate))); | |||
| av_log(s->avctx, AV_LOG_DEBUG, | |||
| "[lavc rc] estimated target average qp: %.3f\n", | |||
| (float)qscale_sum / rcc->num_entries); | |||
| if (toobig == 0) { | |||
| av_log(s->avctx, AV_LOG_INFO, | |||
| "[lavc rc] Using all of requested bitrate is not " | |||
| "necessary for this video with these parameters.\n"); | |||
| } else if (toobig == 40) { | |||
| av_log(s->avctx, AV_LOG_ERROR, | |||
| "[lavc rc] Error: bitrate too low for this video " | |||
| "with these parameters.\n"); | |||
| return -1; | |||
| } else if (fabs(expected_bits / all_available_bits - 1.0) > 0.01) { | |||
| av_log(s->avctx, AV_LOG_ERROR, | |||
| "[lavc rc] Error: 2pass curve failed to converge\n"); | |||
| return -1; | |||
| } | |||
| return 0; | |||
| } | |||
| av_cold int ff_rate_control_init(MpegEncContext *s) | |||
| @@ -253,288 +635,54 @@ av_cold int ff_rate_control_init(MpegEncContext *s) | |||
| return 0; | |||
| } | |||
| av_cold void ff_rate_control_uninit(MpegEncContext *s) | |||
| { | |||
| RateControlContext *rcc = &s->rc_context; | |||
| emms_c(); | |||
| av_expr_free(rcc->rc_eq_eval); | |||
| av_freep(&rcc->entry); | |||
| } | |||
| int ff_vbv_update(MpegEncContext *s, int frame_size) | |||
| { | |||
| RateControlContext *rcc = &s->rc_context; | |||
| const double fps = 1 / av_q2d(s->avctx->time_base); | |||
| const int buffer_size = s->avctx->rc_buffer_size; | |||
| const double min_rate = s->avctx->rc_min_rate / fps; | |||
| const double max_rate = s->avctx->rc_max_rate / fps; | |||
| ff_dlog(s, "%d %f %d %f %f\n", | |||
| buffer_size, rcc->buffer_index, frame_size, min_rate, max_rate); | |||
| if (buffer_size) { | |||
| int left; | |||
| rcc->buffer_index -= frame_size; | |||
| if (rcc->buffer_index < 0) { | |||
| av_log(s->avctx, AV_LOG_ERROR, "rc buffer underflow\n"); | |||
| rcc->buffer_index = 0; | |||
| } | |||
| left = buffer_size - rcc->buffer_index - 1; | |||
| rcc->buffer_index += av_clip(left, min_rate, max_rate); | |||
| if (rcc->buffer_index > buffer_size) { | |||
| int stuffing = ceil((rcc->buffer_index - buffer_size) / 8); | |||
| if (stuffing < 4 && s->codec_id == AV_CODEC_ID_MPEG4) | |||
| stuffing = 4; | |||
| rcc->buffer_index -= 8 * stuffing; | |||
| if (s->avctx->debug & FF_DEBUG_RC) | |||
| av_log(s->avctx, AV_LOG_DEBUG, "stuffing %d bytes\n", stuffing); | |||
| return stuffing; | |||
| } | |||
| } | |||
| return 0; | |||
| } | |||
| /** | |||
| * Modify the bitrate curve from pass1 for one frame. | |||
| */ | |||
| static double get_qscale(MpegEncContext *s, RateControlEntry *rce, | |||
| double rate_factor, int frame_num) | |||
| { | |||
| RateControlContext *rcc = &s->rc_context; | |||
| AVCodecContext *a = s->avctx; | |||
| const int pict_type = rce->new_pict_type; | |||
| const double mb_num = s->mb_num; | |||
| double q, bits; | |||
| int i; | |||
| double const_values[] = { | |||
| M_PI, | |||
| M_E, | |||
| rce->i_tex_bits * rce->qscale, | |||
| rce->p_tex_bits * rce->qscale, | |||
| (rce->i_tex_bits + rce->p_tex_bits) * (double)rce->qscale, | |||
| rce->mv_bits / mb_num, | |||
| rce->pict_type == AV_PICTURE_TYPE_B ? (rce->f_code + rce->b_code) * 0.5 : rce->f_code, | |||
| rce->i_count / mb_num, | |||
| rce->mc_mb_var_sum / mb_num, | |||
| rce->mb_var_sum / mb_num, | |||
| rce->pict_type == AV_PICTURE_TYPE_I, | |||
| rce->pict_type == AV_PICTURE_TYPE_P, | |||
| rce->pict_type == AV_PICTURE_TYPE_B, | |||
| rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type], | |||
| a->qcompress, | |||
| rcc->i_cplx_sum[AV_PICTURE_TYPE_I] / (double)rcc->frame_count[AV_PICTURE_TYPE_I], | |||
| rcc->i_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P], | |||
| rcc->p_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P], | |||
| rcc->p_cplx_sum[AV_PICTURE_TYPE_B] / (double)rcc->frame_count[AV_PICTURE_TYPE_B], | |||
| (rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type], | |||
| 0 | |||
| }; | |||
| bits = av_expr_eval(rcc->rc_eq_eval, const_values, rce); | |||
| if (isnan(bits)) { | |||
| av_log(s->avctx, AV_LOG_ERROR, "Error evaluating rc_eq \"%s\"\n", s->rc_eq); | |||
| return -1; | |||
| } | |||
| rcc->pass1_rc_eq_output_sum += bits; | |||
| bits *= rate_factor; | |||
| if (bits < 0.0) | |||
| bits = 0.0; | |||
| bits += 1.0; // avoid 1/0 issues | |||
| /* user override */ | |||
| for (i = 0; i < s->avctx->rc_override_count; i++) { | |||
| RcOverride *rco = s->avctx->rc_override; | |||
| if (rco[i].start_frame > frame_num) | |||
| continue; | |||
| if (rco[i].end_frame < frame_num) | |||
| continue; | |||
| if (rco[i].qscale) | |||
| bits = qp2bits(rce, rco[i].qscale); // FIXME move at end to really force it? | |||
| else | |||
| bits *= rco[i].quality_factor; | |||
| } | |||
| q = bits2qp(rce, bits); | |||
| /* I/B difference */ | |||
| if (pict_type == AV_PICTURE_TYPE_I && s->avctx->i_quant_factor < 0.0) | |||
| q = -q * s->avctx->i_quant_factor + s->avctx->i_quant_offset; | |||
| else if (pict_type == AV_PICTURE_TYPE_B && s->avctx->b_quant_factor < 0.0) | |||
| q = -q * s->avctx->b_quant_factor + s->avctx->b_quant_offset; | |||
| if (q < 1) | |||
| q = 1; | |||
| return q; | |||
| } | |||
| static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, double q) | |||
| { | |||
| RateControlContext *rcc = &s->rc_context; | |||
| AVCodecContext *a = s->avctx; | |||
| const int pict_type = rce->new_pict_type; | |||
| const double last_p_q = rcc->last_qscale_for[AV_PICTURE_TYPE_P]; | |||
| const double last_non_b_q = rcc->last_qscale_for[rcc->last_non_b_pict_type]; | |||
| if (pict_type == AV_PICTURE_TYPE_I && | |||
| (a->i_quant_factor > 0.0 || rcc->last_non_b_pict_type == AV_PICTURE_TYPE_P)) | |||
| q = last_p_q * FFABS(a->i_quant_factor) + a->i_quant_offset; | |||
| else if (pict_type == AV_PICTURE_TYPE_B && | |||
| a->b_quant_factor > 0.0) | |||
| q = last_non_b_q * a->b_quant_factor + a->b_quant_offset; | |||
| if (q < 1) | |||
| q = 1; | |||
| /* last qscale / qdiff stuff */ | |||
| if (rcc->last_non_b_pict_type == pict_type || pict_type != AV_PICTURE_TYPE_I) { | |||
| double last_q = rcc->last_qscale_for[pict_type]; | |||
| const int maxdiff = FF_QP2LAMBDA * a->max_qdiff; | |||
| if (q > last_q + maxdiff) | |||
| q = last_q + maxdiff; | |||
| else if (q < last_q - maxdiff) | |||
| q = last_q - maxdiff; | |||
| } | |||
| rcc->last_qscale_for[pict_type] = q; // Note we cannot do that after blurring | |||
| if (pict_type != AV_PICTURE_TYPE_B) | |||
| rcc->last_non_b_pict_type = pict_type; | |||
| return q; | |||
| } | |||
| /** | |||
| * Get the qmin & qmax for pict_type. | |||
| */ | |||
| static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type) | |||
| { | |||
| int qmin = s->lmin; | |||
| int qmax = s->lmax; | |||
| assert(qmin <= qmax); | |||
| switch (pict_type) { | |||
| case AV_PICTURE_TYPE_B: | |||
| qmin = (int)(qmin * FFABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset + 0.5); | |||
| qmax = (int)(qmax * FFABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset + 0.5); | |||
| break; | |||
| case AV_PICTURE_TYPE_I: | |||
| qmin = (int)(qmin * FFABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset + 0.5); | |||
| qmax = (int)(qmax * FFABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset + 0.5); | |||
| break; | |||
| } | |||
| qmin = av_clip(qmin, 1, FF_LAMBDA_MAX); | |||
| qmax = av_clip(qmax, 1, FF_LAMBDA_MAX); | |||
| if (qmax < qmin) | |||
| qmax = qmin; | |||
| *qmin_ret = qmin; | |||
| *qmax_ret = qmax; | |||
| } | |||
| static double modify_qscale(MpegEncContext *s, RateControlEntry *rce, | |||
| double q, int frame_num) | |||
| { | |||
| RateControlContext *rcc = &s->rc_context; | |||
| const double buffer_size = s->avctx->rc_buffer_size; | |||
| const double fps = 1 / av_q2d(s->avctx->time_base); | |||
| const double min_rate = s->avctx->rc_min_rate / fps; | |||
| const double max_rate = s->avctx->rc_max_rate / fps; | |||
| const int pict_type = rce->new_pict_type; | |||
| int qmin, qmax; | |||
| get_qminmax(&qmin, &qmax, s, pict_type); | |||
| av_cold void ff_rate_control_uninit(MpegEncContext *s) | |||
| { | |||
| RateControlContext *rcc = &s->rc_context; | |||
| emms_c(); | |||
| /* modulation */ | |||
| if (s->rc_qmod_freq && | |||
| frame_num % s->rc_qmod_freq == 0 && | |||
| pict_type == AV_PICTURE_TYPE_P) | |||
| q *= s->rc_qmod_amp; | |||
| av_expr_free(rcc->rc_eq_eval); | |||
| av_freep(&rcc->entry); | |||
| } | |||
| /* buffer overflow/underflow protection */ | |||
| if (buffer_size) { | |||
| double expected_size = rcc->buffer_index; | |||
| double q_limit; | |||
| int ff_vbv_update(MpegEncContext *s, int frame_size) | |||
| { | |||
| RateControlContext *rcc = &s->rc_context; | |||
| const double fps = 1 / av_q2d(s->avctx->time_base); | |||
| const int buffer_size = s->avctx->rc_buffer_size; | |||
| const double min_rate = s->avctx->rc_min_rate / fps; | |||
| const double max_rate = s->avctx->rc_max_rate / fps; | |||
| if (min_rate) { | |||
| double d = 2 * (buffer_size - expected_size) / buffer_size; | |||
| if (d > 1.0) | |||
| d = 1.0; | |||
| else if (d < 0.0001) | |||
| d = 0.0001; | |||
| q *= pow(d, 1.0 / s->rc_buffer_aggressivity); | |||
| ff_dlog(s, "%d %f %d %f %f\n", | |||
| buffer_size, rcc->buffer_index, frame_size, min_rate, max_rate); | |||
| q_limit = bits2qp(rce, | |||
| FFMAX((min_rate - buffer_size + rcc->buffer_index) * | |||
| s->avctx->rc_min_vbv_overflow_use, 1)); | |||
| if (buffer_size) { | |||
| int left; | |||
| if (q > q_limit) { | |||
| if (s->avctx->debug & FF_DEBUG_RC) | |||
| av_log(s->avctx, AV_LOG_DEBUG, | |||
| "limiting QP %f -> %f\n", q, q_limit); | |||
| q = q_limit; | |||
| } | |||
| rcc->buffer_index -= frame_size; | |||
| if (rcc->buffer_index < 0) { | |||
| av_log(s->avctx, AV_LOG_ERROR, "rc buffer underflow\n"); | |||
| rcc->buffer_index = 0; | |||
| } | |||
| if (max_rate) { | |||
| double d = 2 * expected_size / buffer_size; | |||
| if (d > 1.0) | |||
| d = 1.0; | |||
| else if (d < 0.0001) | |||
| d = 0.0001; | |||
| q /= pow(d, 1.0 / s->rc_buffer_aggressivity); | |||
| left = buffer_size - rcc->buffer_index - 1; | |||
| rcc->buffer_index += av_clip(left, min_rate, max_rate); | |||
| q_limit = bits2qp(rce, | |||
| FFMAX(rcc->buffer_index * | |||
| s->avctx->rc_max_available_vbv_use, | |||
| 1)); | |||
| if (q < q_limit) { | |||
| if (s->avctx->debug & FF_DEBUG_RC) | |||
| av_log(s->avctx, AV_LOG_DEBUG, | |||
| "limiting QP %f -> %f\n", q, q_limit); | |||
| q = q_limit; | |||
| } | |||
| } | |||
| } | |||
| ff_dlog(s, "q:%f max:%f min:%f size:%f index:%f agr:%f\n", | |||
| q, max_rate, min_rate, buffer_size, rcc->buffer_index, | |||
| s->rc_buffer_aggressivity); | |||
| if (s->rc_qsquish == 0.0 || qmin == qmax) { | |||
| if (q < qmin) | |||
| q = qmin; | |||
| else if (q > qmax) | |||
| q = qmax; | |||
| } else { | |||
| double min2 = log(qmin); | |||
| double max2 = log(qmax); | |||
| if (rcc->buffer_index > buffer_size) { | |||
| int stuffing = ceil((rcc->buffer_index - buffer_size) / 8); | |||
| q = log(q); | |||
| q = (q - min2) / (max2 - min2) - 0.5; | |||
| q *= -4.0; | |||
| q = 1.0 / (1.0 + exp(q)); | |||
| q = q * (max2 - min2) + min2; | |||
| if (stuffing < 4 && s->codec_id == AV_CODEC_ID_MPEG4) | |||
| stuffing = 4; | |||
| rcc->buffer_index -= 8 * stuffing; | |||
| q = exp(q); | |||
| } | |||
| if (s->avctx->debug & FF_DEBUG_RC) | |||
| av_log(s->avctx, AV_LOG_DEBUG, "stuffing %d bytes\n", stuffing); | |||
| return q; | |||
| return stuffing; | |||
| } | |||
| } | |||
| return 0; | |||
| } | |||
| // ---------------------------------- | |||
| // 1 Pass Code | |||
| static double predict_size(Predictor *p, double q, double var) | |||
| { | |||
| return p->coeff * var / (q * p->count); | |||
| @@ -836,161 +984,3 @@ float ff_rate_estimate_qscale(MpegEncContext *s, int dry_run) | |||
| } | |||
| return q; | |||
| } | |||
| // ---------------------------------------------- | |||
| // 2-Pass code | |||
| static int init_pass2(MpegEncContext *s) | |||
| { | |||
| RateControlContext *rcc = &s->rc_context; | |||
| AVCodecContext *a = s->avctx; | |||
| int i, toobig; | |||
| double fps = 1 / av_q2d(s->avctx->time_base); | |||
| double complexity[5] = { 0 }; // approximate bits at quant=1 | |||
| uint64_t const_bits[5] = { 0 }; // quantizer independent bits | |||
| uint64_t all_const_bits; | |||
| uint64_t all_available_bits = (uint64_t)(s->bit_rate * | |||
| (double)rcc->num_entries / fps); | |||
| double rate_factor = 0; | |||
| double step; | |||
| const int filter_size = (int)(a->qblur * 4) | 1; | |||
| double expected_bits; | |||
| double *qscale, *blurred_qscale, qscale_sum; | |||
| /* find complexity & const_bits & decide the pict_types */ | |||
| for (i = 0; i < rcc->num_entries; i++) { | |||
| RateControlEntry *rce = &rcc->entry[i]; | |||
| rce->new_pict_type = rce->pict_type; | |||
| rcc->i_cplx_sum[rce->pict_type] += rce->i_tex_bits * rce->qscale; | |||
| rcc->p_cplx_sum[rce->pict_type] += rce->p_tex_bits * rce->qscale; | |||
| rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits; | |||
| rcc->frame_count[rce->pict_type]++; | |||
| complexity[rce->new_pict_type] += (rce->i_tex_bits + rce->p_tex_bits) * | |||
| (double)rce->qscale; | |||
| const_bits[rce->new_pict_type] += rce->mv_bits + rce->misc_bits; | |||
| } | |||
| all_const_bits = const_bits[AV_PICTURE_TYPE_I] + | |||
| const_bits[AV_PICTURE_TYPE_P] + | |||
| const_bits[AV_PICTURE_TYPE_B]; | |||
| if (all_available_bits < all_const_bits) { | |||
| av_log(s->avctx, AV_LOG_ERROR, "requested bitrate is too low\n"); | |||
| return -1; | |||
| } | |||
| qscale = av_malloc(sizeof(double) * rcc->num_entries); | |||
| blurred_qscale = av_malloc(sizeof(double) * rcc->num_entries); | |||
| if (!qscale || !blurred_qscale) { | |||
| av_free(qscale); | |||
| av_free(blurred_qscale); | |||
| return AVERROR(ENOMEM); | |||
| } | |||
| toobig = 0; | |||
| for (step = 256 * 256; step > 0.0000001; step *= 0.5) { | |||
| expected_bits = 0; | |||
| rate_factor += step; | |||
| rcc->buffer_index = s->avctx->rc_buffer_size / 2; | |||
| /* find qscale */ | |||
| for (i = 0; i < rcc->num_entries; i++) { | |||
| RateControlEntry *rce = &rcc->entry[i]; | |||
| qscale[i] = get_qscale(s, &rcc->entry[i], rate_factor, i); | |||
| rcc->last_qscale_for[rce->pict_type] = qscale[i]; | |||
| } | |||
| assert(filter_size % 2 == 1); | |||
| /* fixed I/B QP relative to P mode */ | |||
| for (i = rcc->num_entries - 1; i >= 0; i--) { | |||
| RateControlEntry *rce = &rcc->entry[i]; | |||
| qscale[i] = get_diff_limited_q(s, rce, qscale[i]); | |||
| } | |||
| /* smooth curve */ | |||
| for (i = 0; i < rcc->num_entries; i++) { | |||
| RateControlEntry *rce = &rcc->entry[i]; | |||
| const int pict_type = rce->new_pict_type; | |||
| int j; | |||
| double q = 0.0, sum = 0.0; | |||
| for (j = 0; j < filter_size; j++) { | |||
| int index = i + j - filter_size / 2; | |||
| double d = index - i; | |||
| double coeff = a->qblur == 0 ? 1.0 : exp(-d * d / (a->qblur * a->qblur)); | |||
| if (index < 0 || index >= rcc->num_entries) | |||
| continue; | |||
| if (pict_type != rcc->entry[index].new_pict_type) | |||
| continue; | |||
| q += qscale[index] * coeff; | |||
| sum += coeff; | |||
| } | |||
| blurred_qscale[i] = q / sum; | |||
| } | |||
| /* find expected bits */ | |||
| for (i = 0; i < rcc->num_entries; i++) { | |||
| RateControlEntry *rce = &rcc->entry[i]; | |||
| double bits; | |||
| rce->new_qscale = modify_qscale(s, rce, blurred_qscale[i], i); | |||
| bits = qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits; | |||
| bits += 8 * ff_vbv_update(s, bits); | |||
| rce->expected_bits = expected_bits; | |||
| expected_bits += bits; | |||
| } | |||
| ff_dlog(s->avctx, | |||
| "expected_bits: %f all_available_bits: %d rate_factor: %f\n", | |||
| expected_bits, (int)all_available_bits, rate_factor); | |||
| if (expected_bits > all_available_bits) { | |||
| rate_factor -= step; | |||
| ++toobig; | |||
| } | |||
| } | |||
| av_free(qscale); | |||
| av_free(blurred_qscale); | |||
| /* check bitrate calculations and print info */ | |||
| qscale_sum = 0.0; | |||
| for (i = 0; i < rcc->num_entries; i++) { | |||
| ff_dlog(s, "[lavc rc] entry[%d].new_qscale = %.3f qp = %.3f\n", | |||
| i, | |||
| rcc->entry[i].new_qscale, | |||
| rcc->entry[i].new_qscale / FF_QP2LAMBDA); | |||
| qscale_sum += av_clip(rcc->entry[i].new_qscale / FF_QP2LAMBDA, | |||
| s->avctx->qmin, s->avctx->qmax); | |||
| } | |||
| assert(toobig <= 40); | |||
| av_log(s->avctx, AV_LOG_DEBUG, | |||
| "[lavc rc] requested bitrate: %d bps expected bitrate: %d bps\n", | |||
| s->bit_rate, | |||
| (int)(expected_bits / ((double)all_available_bits / s->bit_rate))); | |||
| av_log(s->avctx, AV_LOG_DEBUG, | |||
| "[lavc rc] estimated target average qp: %.3f\n", | |||
| (float)qscale_sum / rcc->num_entries); | |||
| if (toobig == 0) { | |||
| av_log(s->avctx, AV_LOG_INFO, | |||
| "[lavc rc] Using all of requested bitrate is not " | |||
| "necessary for this video with these parameters.\n"); | |||
| } else if (toobig == 40) { | |||
| av_log(s->avctx, AV_LOG_ERROR, | |||
| "[lavc rc] Error: bitrate too low for this video " | |||
| "with these parameters.\n"); | |||
| return -1; | |||
| } else if (fabs(expected_bits / all_available_bits - 1.0) > 0.01) { | |||
| av_log(s->avctx, AV_LOG_ERROR, | |||
| "[lavc rc] Error: 2pass curve failed to converge\n"); | |||
| return -1; | |||
| } | |||
| return 0; | |||
| } | |||