|
|
|
@@ -0,0 +1,144 @@ |
|
|
|
/* |
|
|
|
* linear least squares model |
|
|
|
* |
|
|
|
* Copyright (c) 2006 Michael Niedermayer <michaelni@gmx.at> |
|
|
|
* |
|
|
|
* This library is free software; you can redistribute it and/or |
|
|
|
* modify it under the terms of the GNU Lesser General Public |
|
|
|
* License as published by the Free Software Foundation; either |
|
|
|
* version 2 of the License, or (at your option) any later version. |
|
|
|
* |
|
|
|
* This library is distributed in the hope that it will be useful, |
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
|
|
* Lesser General Public License for more details. |
|
|
|
* |
|
|
|
* You should have received a copy of the GNU Lesser General Public |
|
|
|
* License along with this library; if not, write to the Free Software |
|
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
|
|
|
*/ |
|
|
|
|
|
|
|
/** |
|
|
|
* @file lls.c |
|
|
|
* linear least squares model |
|
|
|
*/ |
|
|
|
|
|
|
|
#include <math.h> |
|
|
|
#include <string.h> |
|
|
|
|
|
|
|
#include "lls.h" |
|
|
|
|
|
|
|
#undef NDEBUG // allways check asserts, the speed effect is far too small to disable them |
|
|
|
#include <assert.h> |
|
|
|
|
|
|
|
#ifdef TEST |
|
|
|
#define av_log(a,b,...) printf(__VA_ARGS__) |
|
|
|
#endif |
|
|
|
|
|
|
|
void av_init_lls(LLSModel *m, int indep_count){ |
|
|
|
memset(m, 0, sizeof(LLSModel)); |
|
|
|
|
|
|
|
m->indep_count= indep_count; |
|
|
|
} |
|
|
|
|
|
|
|
void av_update_lls(LLSModel *m, double *var, double decay){ |
|
|
|
int i,j; |
|
|
|
|
|
|
|
for(i=0; i<=m->indep_count; i++){ |
|
|
|
for(j=i; j<=m->indep_count; j++){ |
|
|
|
m->covariance[i][j] *= decay; |
|
|
|
m->covariance[i][j] += var[i]*var[j]; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
double av_solve_lls(LLSModel *m, double threshold){ |
|
|
|
int i,j,k; |
|
|
|
double (*factor)[MAX_VARS+1]= &m->covariance[1][0]; |
|
|
|
double (*covar )[MAX_VARS+1]= &m->covariance[1][1]; |
|
|
|
double *covar_y = m->covariance[0]; |
|
|
|
double variance; |
|
|
|
int count= m->indep_count; |
|
|
|
|
|
|
|
for(i=0; i<count; i++){ |
|
|
|
for(j=i; j<count; j++){ |
|
|
|
double sum= covar[i][j]; |
|
|
|
|
|
|
|
for(k=i-1; k>=0; k--) |
|
|
|
sum -= factor[i][k]*factor[j][k]; |
|
|
|
|
|
|
|
if(i==j){ |
|
|
|
if(sum < threshold) |
|
|
|
sum= 1.0; |
|
|
|
factor[i][i]= sqrt(sum); |
|
|
|
}else |
|
|
|
factor[j][i]= sum / factor[i][i]; |
|
|
|
} |
|
|
|
} |
|
|
|
for(i=0; i<count; i++){ |
|
|
|
double sum= covar_y[i+1]; |
|
|
|
for(k=i-1; k>=0; k--) |
|
|
|
sum -= factor[i][k]*m->coeff[k]; |
|
|
|
m->coeff[i]= sum / factor[i][i]; |
|
|
|
} |
|
|
|
|
|
|
|
for(i=count-1; i>=0; i--){ |
|
|
|
double sum= m->coeff[i]; |
|
|
|
for(k=i+1; k<count; k++) |
|
|
|
sum -= factor[k][i]*m->coeff[k]; |
|
|
|
m->coeff[i]= sum / factor[i][i]; |
|
|
|
} |
|
|
|
|
|
|
|
variance= covar_y[0]; |
|
|
|
for(i=0; i<count; i++){ |
|
|
|
double sum= m->coeff[i]*covar[i][i] - 2*covar_y[i+1]; |
|
|
|
for(j=0; j<i; j++) |
|
|
|
sum += 2*m->coeff[j]*covar[j][i]; |
|
|
|
variance += m->coeff[i]*sum; |
|
|
|
} |
|
|
|
return variance; |
|
|
|
} |
|
|
|
|
|
|
|
double av_evaluate_lls(LLSModel *m, double *param){ |
|
|
|
int i; |
|
|
|
double out= 0; |
|
|
|
|
|
|
|
for(i=0; i<m->indep_count; i++) |
|
|
|
out+= param[i]*m->coeff[i]; |
|
|
|
|
|
|
|
return out; |
|
|
|
} |
|
|
|
|
|
|
|
#ifdef TEST |
|
|
|
|
|
|
|
#include <stdlib.h> |
|
|
|
#include <stdio.h> |
|
|
|
|
|
|
|
int main(){ |
|
|
|
LLSModel m; |
|
|
|
int i; |
|
|
|
|
|
|
|
av_init_lls(&m, 3); |
|
|
|
|
|
|
|
for(i=0; i<100; i++){ |
|
|
|
double var[4]; |
|
|
|
double eval, variance; |
|
|
|
var[1] = rand() / (double)RAND_MAX; |
|
|
|
var[2] = rand() / (double)RAND_MAX; |
|
|
|
var[3] = rand() / (double)RAND_MAX; |
|
|
|
|
|
|
|
var[2]= var[1] + var[3]; |
|
|
|
|
|
|
|
var[0] = var[1] + var[2] + var[3] + var[1]*var[2]/100; |
|
|
|
|
|
|
|
eval= av_evaluate_lls(&m, var+1); |
|
|
|
av_update_lls(&m, var, 0.99); |
|
|
|
variance= av_solve_lls(&m, 0.001); |
|
|
|
av_log(NULL, AV_LOG_DEBUG, "real:%f pred:%f var:%f coeffs:%f %f %f\n", |
|
|
|
var[0], eval, sqrt(variance / (i+1)), |
|
|
|
m.coeff[0], m.coeff[1], m.coeff[2]); |
|
|
|
} |
|
|
|
return 0; |
|
|
|
} |
|
|
|
|
|
|
|
#endif |