| @@ -43,7 +43,8 @@ | |||
| typedef struct MySofa { /* contains data of one SOFA file */ | |||
| struct MYSOFA_EASY *easy; | |||
| int n_samples; /* length of one impulse response (IR) */ | |||
| int ir_samples; /* length of one impulse response (IR) */ | |||
| int n_samples; /* ir_samples to next power of 2 */ | |||
| float *lir, *rir; /* IRs (time-domain) */ | |||
| int max_delay; | |||
| } MySofa; | |||
| @@ -126,7 +127,8 @@ static int preload_sofa(AVFilterContext *ctx, char *filename, int *samplingrate) | |||
| if (mysofa->DataSamplingRate.elements != 1) | |||
| return AVERROR(EINVAL); | |||
| *samplingrate = mysofa->DataSamplingRate.values[0]; | |||
| s->sofa.n_samples = mysofa->N; | |||
| s->sofa.ir_samples = mysofa->N; | |||
| s->sofa.n_samples = 1 << (32 - ff_clz(s->sofa.ir_samples)); | |||
| license = mysofa_getAttribute(mysofa->attributes, (char *)"License"); | |||
| if (license) | |||
| av_log(ctx, AV_LOG_INFO, "SOFA license: %s\n", license); | |||
| @@ -291,7 +293,8 @@ static int sofalizer_convolute(AVFilterContext *ctx, void *arg, int jobnr, int n | |||
| int *n_clippings = &td->n_clippings[jobnr]; | |||
| float *ringbuffer = td->ringbuffer[jobnr]; | |||
| float *temp_src = td->temp_src[jobnr]; | |||
| const int n_samples = s->sofa.n_samples; /* length of one IR */ | |||
| const int ir_samples = s->sofa.ir_samples; /* length of one IR */ | |||
| const int n_samples = s->sofa.n_samples; | |||
| const float *src = (const float *)in->data[0]; /* get pointer to audio input buffer */ | |||
| float *dst = (float *)out->data[0]; /* get pointer to audio output buffer */ | |||
| const int in_channels = s->n_conv; /* number of input channels */ | |||
| @@ -327,7 +330,7 @@ static int sofalizer_convolute(AVFilterContext *ctx, void *arg, int jobnr, int n | |||
| /* LFE is an input channel but requires no convolution */ | |||
| /* apply gain to LFE signal and add to output buffer */ | |||
| *dst += *(buffer[s->lfe_channel] + wr) * s->gain_lfe; | |||
| temp_ir += FFALIGN(n_samples, 32); | |||
| temp_ir += n_samples; | |||
| continue; | |||
| } | |||
| @@ -346,8 +349,8 @@ static int sofalizer_convolute(AVFilterContext *ctx, void *arg, int jobnr, int n | |||
| } | |||
| /* multiply signal and IR, and add up the results */ | |||
| dst[0] += s->fdsp->scalarproduct_float(temp_ir, temp_src, n_samples); | |||
| temp_ir += FFALIGN(n_samples, 32); | |||
| dst[0] += s->fdsp->scalarproduct_float(temp_ir, temp_src, FFALIGN(ir_samples, 32)); | |||
| temp_ir += n_samples; | |||
| } | |||
| /* clippings counter */ | |||
| @@ -563,6 +566,7 @@ static int load_data(AVFilterContext *ctx, int azim, int elev, float radius, int | |||
| { | |||
| struct SOFAlizerContext *s = ctx->priv; | |||
| int n_samples; | |||
| int ir_samples; | |||
| int n_conv = s->n_conv; /* no. channels to convolve */ | |||
| int n_fft; | |||
| float delay_l; /* broadband delay for each IR */ | |||
| @@ -588,9 +592,10 @@ static int load_data(AVFilterContext *ctx, int azim, int elev, float radius, int | |||
| } | |||
| n_samples = s->sofa.n_samples; | |||
| ir_samples = s->sofa.ir_samples; | |||
| s->data_ir[0] = av_calloc(FFALIGN(n_samples, 32), sizeof(float) * s->n_conv); | |||
| s->data_ir[1] = av_calloc(FFALIGN(n_samples, 32), sizeof(float) * s->n_conv); | |||
| s->data_ir[0] = av_calloc(n_samples, sizeof(float) * s->n_conv); | |||
| s->data_ir[1] = av_calloc(n_samples, sizeof(float) * s->n_conv); | |||
| s->delay[0] = av_calloc(s->n_conv, sizeof(int)); | |||
| s->delay[1] = av_calloc(s->n_conv, sizeof(int)); | |||
| @@ -600,16 +605,16 @@ static int load_data(AVFilterContext *ctx, int azim, int elev, float radius, int | |||
| } | |||
| /* get temporary IR for L and R channel */ | |||
| data_ir_l = av_calloc(n_conv * FFALIGN(n_samples, 32), sizeof(*data_ir_l)); | |||
| data_ir_r = av_calloc(n_conv * FFALIGN(n_samples, 32), sizeof(*data_ir_r)); | |||
| data_ir_l = av_calloc(n_conv * n_samples, sizeof(*data_ir_l)); | |||
| data_ir_r = av_calloc(n_conv * n_samples, sizeof(*data_ir_r)); | |||
| if (!data_ir_r || !data_ir_l) { | |||
| ret = AVERROR(ENOMEM); | |||
| goto fail; | |||
| } | |||
| if (s->type == TIME_DOMAIN) { | |||
| s->temp_src[0] = av_calloc(FFALIGN(n_samples, 32), sizeof(float)); | |||
| s->temp_src[1] = av_calloc(FFALIGN(n_samples, 32), sizeof(float)); | |||
| s->temp_src[0] = av_calloc(n_samples, sizeof(float)); | |||
| s->temp_src[1] = av_calloc(n_samples, sizeof(float)); | |||
| if (!s->temp_src[0] || !s->temp_src[1]) { | |||
| ret = AVERROR(ENOMEM); | |||
| goto fail; | |||
| @@ -644,8 +649,8 @@ static int load_data(AVFilterContext *ctx, int azim, int elev, float radius, int | |||
| /* get id of IR closest to desired position */ | |||
| mysofa_getfilter_float(s->sofa.easy, coordinates[0], coordinates[1], coordinates[2], | |||
| data_ir_l + FFALIGN(n_samples, 32) * i, | |||
| data_ir_r + FFALIGN(n_samples, 32) * i, | |||
| data_ir_l + n_samples * i, | |||
| data_ir_r + n_samples * i, | |||
| &delay_l, &delay_r); | |||
| s->delay[0][i] = delay_l * sample_rate; | |||
| @@ -656,7 +661,7 @@ static int load_data(AVFilterContext *ctx, int azim, int elev, float radius, int | |||
| /* get size of ringbuffer (longest IR plus max. delay) */ | |||
| /* then choose next power of 2 for performance optimization */ | |||
| n_current = s->sofa.n_samples + s->sofa.max_delay; | |||
| n_current = n_samples + s->sofa.max_delay; | |||
| /* length of longest IR plus max. delay */ | |||
| n_max = FFMAX(n_max, n_current); | |||
| @@ -721,24 +726,24 @@ static int load_data(AVFilterContext *ctx, int azim, int elev, float radius, int | |||
| for (i = 0; i < s->n_conv; i++) { | |||
| float *lir, *rir; | |||
| offset = i * FFALIGN(n_samples, 32); /* no. samples already written */ | |||
| offset = i * n_samples; /* no. samples already written */ | |||
| lir = data_ir_l + offset; | |||
| rir = data_ir_r + offset; | |||
| if (s->type == TIME_DOMAIN) { | |||
| for (j = 0; j < n_samples; j++) { | |||
| for (j = 0; j < ir_samples; j++) { | |||
| /* load reversed IRs of the specified source position | |||
| * sample-by-sample for left and right ear; and apply gain */ | |||
| s->data_ir[0][offset + j] = lir[n_samples - 1 - j] * gain_lin; | |||
| s->data_ir[1][offset + j] = rir[n_samples - 1 - j] * gain_lin; | |||
| s->data_ir[0][offset + j] = lir[ir_samples - 1 - j] * gain_lin; | |||
| s->data_ir[1][offset + j] = rir[ir_samples - 1 - j] * gain_lin; | |||
| } | |||
| } else { | |||
| memset(fft_in_l, 0, n_fft * sizeof(*fft_in_l)); | |||
| memset(fft_in_r, 0, n_fft * sizeof(*fft_in_r)); | |||
| offset = i * n_fft; /* no. samples already written */ | |||
| for (j = 0; j < n_samples; j++) { | |||
| for (j = 0; j < ir_samples; j++) { | |||
| /* load non-reversed IRs of the specified source position | |||
| * sample-by-sample and apply gain, | |||
| * L channel is loaded to real part, R channel to imag part, | |||