|
|
@@ -294,8 +294,8 @@ static void find_motion(DeshakeContext *deshake, uint8_t *src1, uint8_t *src2, |
|
|
|
for (x = 0; x < deshake->rx * 2 + 1; x++) { |
|
|
|
//av_log(NULL, AV_LOG_ERROR, "%5d ", deshake->counts[x][y]); |
|
|
|
if (deshake->counts[x][y] > count_max_value) { |
|
|
|
t->vector.x = x - deshake->rx; |
|
|
|
t->vector.y = y - deshake->ry; |
|
|
|
t->vec.x = x - deshake->rx; |
|
|
|
t->vec.y = y - deshake->ry; |
|
|
|
count_max_value = deshake->counts[x][y]; |
|
|
|
} |
|
|
|
} |
|
|
@@ -304,12 +304,12 @@ static void find_motion(DeshakeContext *deshake, uint8_t *src1, uint8_t *src2, |
|
|
|
|
|
|
|
p_x = (center_x - width / 2.0); |
|
|
|
p_y = (center_y - height / 2.0); |
|
|
|
t->vector.x += (cos(t->angle)-1)*p_x - sin(t->angle)*p_y; |
|
|
|
t->vector.y += sin(t->angle)*p_x + (cos(t->angle)-1)*p_y; |
|
|
|
t->vec.x += (cos(t->angle)-1)*p_x - sin(t->angle)*p_y; |
|
|
|
t->vec.y += sin(t->angle)*p_x + (cos(t->angle)-1)*p_y; |
|
|
|
|
|
|
|
// Clamp max shift & rotation? |
|
|
|
t->vector.x = av_clipf(t->vector.x, -deshake->rx * 2, deshake->rx * 2); |
|
|
|
t->vector.y = av_clipf(t->vector.y, -deshake->ry * 2, deshake->ry * 2); |
|
|
|
t->vec.x = av_clipf(t->vec.x, -deshake->rx * 2, deshake->rx * 2); |
|
|
|
t->vec.y = av_clipf(t->vec.y, -deshake->ry * 2, deshake->ry * 2); |
|
|
|
t->angle = av_clipf(t->angle, -0.1, 0.1); |
|
|
|
|
|
|
|
//av_log(NULL, AV_LOG_ERROR, "%d x %d\n", avg->x, avg->y); |
|
|
@@ -407,8 +407,8 @@ static int config_props(AVFilterLink *link) |
|
|
|
DeshakeContext *deshake = link->dst->priv; |
|
|
|
|
|
|
|
deshake->ref = NULL; |
|
|
|
deshake->last.vector.x = 0; |
|
|
|
deshake->last.vector.y = 0; |
|
|
|
deshake->last.vec.x = 0; |
|
|
|
deshake->last.vec.y = 0; |
|
|
|
deshake->last.angle = 0; |
|
|
|
deshake->last.zoom = 0; |
|
|
|
|
|
|
@@ -476,57 +476,57 @@ static int filter_frame(AVFilterLink *link, AVFrame *in) |
|
|
|
|
|
|
|
|
|
|
|
// Copy transform so we can output it later to compare to the smoothed value |
|
|
|
orig.vector.x = t.vector.x; |
|
|
|
orig.vector.y = t.vector.y; |
|
|
|
orig.vec.x = t.vec.x; |
|
|
|
orig.vec.y = t.vec.y; |
|
|
|
orig.angle = t.angle; |
|
|
|
orig.zoom = t.zoom; |
|
|
|
|
|
|
|
// Generate a one-sided moving exponential average |
|
|
|
deshake->avg.vector.x = alpha * t.vector.x + (1.0 - alpha) * deshake->avg.vector.x; |
|
|
|
deshake->avg.vector.y = alpha * t.vector.y + (1.0 - alpha) * deshake->avg.vector.y; |
|
|
|
deshake->avg.vec.x = alpha * t.vec.x + (1.0 - alpha) * deshake->avg.vec.x; |
|
|
|
deshake->avg.vec.y = alpha * t.vec.y + (1.0 - alpha) * deshake->avg.vec.y; |
|
|
|
deshake->avg.angle = alpha * t.angle + (1.0 - alpha) * deshake->avg.angle; |
|
|
|
deshake->avg.zoom = alpha * t.zoom + (1.0 - alpha) * deshake->avg.zoom; |
|
|
|
|
|
|
|
// Remove the average from the current motion to detect the motion that |
|
|
|
// is not on purpose, just as jitter from bumping the camera |
|
|
|
t.vector.x -= deshake->avg.vector.x; |
|
|
|
t.vector.y -= deshake->avg.vector.y; |
|
|
|
t.vec.x -= deshake->avg.vec.x; |
|
|
|
t.vec.y -= deshake->avg.vec.y; |
|
|
|
t.angle -= deshake->avg.angle; |
|
|
|
t.zoom -= deshake->avg.zoom; |
|
|
|
|
|
|
|
// Invert the motion to undo it |
|
|
|
t.vector.x *= -1; |
|
|
|
t.vector.y *= -1; |
|
|
|
t.vec.x *= -1; |
|
|
|
t.vec.y *= -1; |
|
|
|
t.angle *= -1; |
|
|
|
|
|
|
|
// Write statistics to file |
|
|
|
if (deshake->fp) { |
|
|
|
snprintf(tmp, 256, "%f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f\n", orig.vector.x, deshake->avg.vector.x, t.vector.x, orig.vector.y, deshake->avg.vector.y, t.vector.y, orig.angle, deshake->avg.angle, t.angle, orig.zoom, deshake->avg.zoom, t.zoom); |
|
|
|
snprintf(tmp, 256, "%f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f\n", orig.vec.x, deshake->avg.vec.x, t.vec.x, orig.vec.y, deshake->avg.vec.y, t.vec.y, orig.angle, deshake->avg.angle, t.angle, orig.zoom, deshake->avg.zoom, t.zoom); |
|
|
|
fwrite(tmp, sizeof(char), strlen(tmp), deshake->fp); |
|
|
|
} |
|
|
|
|
|
|
|
// Turn relative current frame motion into absolute by adding it to the |
|
|
|
// last absolute motion |
|
|
|
t.vector.x += deshake->last.vector.x; |
|
|
|
t.vector.y += deshake->last.vector.y; |
|
|
|
t.vec.x += deshake->last.vec.x; |
|
|
|
t.vec.y += deshake->last.vec.y; |
|
|
|
t.angle += deshake->last.angle; |
|
|
|
t.zoom += deshake->last.zoom; |
|
|
|
|
|
|
|
// Shrink motion by 10% to keep things centered in the camera frame |
|
|
|
t.vector.x *= 0.9; |
|
|
|
t.vector.y *= 0.9; |
|
|
|
t.vec.x *= 0.9; |
|
|
|
t.vec.y *= 0.9; |
|
|
|
t.angle *= 0.9; |
|
|
|
|
|
|
|
// Store the last absolute motion information |
|
|
|
deshake->last.vector.x = t.vector.x; |
|
|
|
deshake->last.vector.y = t.vector.y; |
|
|
|
deshake->last.vec.x = t.vec.x; |
|
|
|
deshake->last.vec.y = t.vec.y; |
|
|
|
deshake->last.angle = t.angle; |
|
|
|
deshake->last.zoom = t.zoom; |
|
|
|
|
|
|
|
// Generate a luma transformation matrix |
|
|
|
avfilter_get_matrix(t.vector.x, t.vector.y, t.angle, 1.0 + t.zoom / 100.0, matrix_y); |
|
|
|
avfilter_get_matrix(t.vec.x, t.vec.y, t.angle, 1.0 + t.zoom / 100.0, matrix_y); |
|
|
|
// Generate a chroma transformation matrix |
|
|
|
avfilter_get_matrix(t.vector.x / (link->w / CHROMA_WIDTH(link)), t.vector.y / (link->h / CHROMA_HEIGHT(link)), t.angle, 1.0 + t.zoom / 100.0, matrix_uv); |
|
|
|
avfilter_get_matrix(t.vec.x / (link->w / CHROMA_WIDTH(link)), t.vec.y / (link->h / CHROMA_HEIGHT(link)), t.angle, 1.0 + t.zoom / 100.0, matrix_uv); |
|
|
|
// Transform the luma and chroma planes |
|
|
|
ret = deshake->transform(link->dst, link->w, link->h, CHROMA_WIDTH(link), CHROMA_HEIGHT(link), |
|
|
|
matrix_y, matrix_uv, INTERPOLATE_BILINEAR, deshake->edge, in, out); |
|
|
|