it can be tested with model file generated with below python script:
import tensorflow as tf
import numpy as np
import imageio
in_img = imageio.imread('input.jpg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]
x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
x1 = tf.minimum(0.7, x)
x2 = tf.maximum(x1, 0.4)
y = tf.identity(x2, name='dnn_out')
sess=tf.Session()
sess.run(tf.global_variables_initializer())
graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)
print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")
output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
tags/n4.3
| @@ -150,6 +150,19 @@ int dnn_execute_layer_math_binary(DnnOperand *operands, const int32_t *input_ope | |||||
| } | } | ||||
| } | } | ||||
| return 0; | return 0; | ||||
| case DMBO_MINIMUM: | |||||
| if (params->input0_broadcast || params->input1_broadcast) { | |||||
| for (int i = 0; i < dims_count; ++i) { | |||||
| dst[i] = FFMIN(params->v, src[i]); | |||||
| } | |||||
| } else { | |||||
| const DnnOperand *input1 = &operands[input_operand_indexes[1]]; | |||||
| const float *src1 = input1->data; | |||||
| for (int i = 0; i < dims_count; ++i) { | |||||
| dst[i] = FFMIN(src[i], src1[i]); | |||||
| } | |||||
| } | |||||
| return 0; | |||||
| default: | default: | ||||
| return -1; | return -1; | ||||
| } | } | ||||
| @@ -35,6 +35,7 @@ typedef enum { | |||||
| DMBO_ADD = 1, | DMBO_ADD = 1, | ||||
| DMBO_MUL = 2, | DMBO_MUL = 2, | ||||
| DMBO_REALDIV = 3, | DMBO_REALDIV = 3, | ||||
| DMBO_MINIMUM = 4, | |||||
| DMBO_COUNT | DMBO_COUNT | ||||
| } DNNMathBinaryOperation; | } DNNMathBinaryOperation; | ||||
| @@ -71,7 +71,7 @@ class TFConverter: | |||||
| self.conv2d_scope_names = set() | self.conv2d_scope_names = set() | ||||
| self.conv2d_scopename_inputname_dict = {} | self.conv2d_scopename_inputname_dict = {} | ||||
| self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3, 'Maximum':4, 'MathBinary':5} | self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3, 'Maximum':4, 'MathBinary':5} | ||||
| self.mathbin2code = {'Sub':0, 'Add':1, 'Mul':2, 'RealDiv':3} | |||||
| self.mathbin2code = {'Sub':0, 'Add':1, 'Mul':2, 'RealDiv':3, 'Minimum':4} | |||||
| self.mirrorpad_mode = {'CONSTANT':0, 'REFLECT':1, 'SYMMETRIC':2} | self.mirrorpad_mode = {'CONSTANT':0, 'REFLECT':1, 'SYMMETRIC':2} | ||||
| self.name_operand_dict = {} | self.name_operand_dict = {} | ||||
| @@ -305,15 +305,10 @@ class TFConverter: | |||||
| self.dump_mirrorpad_to_file(node, f) | self.dump_mirrorpad_to_file(node, f) | ||||
| elif node.op == 'Maximum': | elif node.op == 'Maximum': | ||||
| self.dump_maximum_to_file(node, f) | self.dump_maximum_to_file(node, f) | ||||
| elif node.op == 'Sub': | |||||
| self.dump_mathbinary_to_file(node, f) | |||||
| elif node.op == 'Add': | |||||
| self.dump_mathbinary_to_file(node, f) | |||||
| elif node.op == 'Mul': | |||||
| self.dump_mathbinary_to_file(node, f) | |||||
| elif node.op == 'RealDiv': | |||||
| elif node.op in self.mathbin2code: | |||||
| self.dump_mathbinary_to_file(node, f) | self.dump_mathbinary_to_file(node, f) | ||||
| def dump_operands_to_file(self, f): | def dump_operands_to_file(self, f): | ||||
| operands = sorted(self.name_operand_dict.values()) | operands = sorted(self.name_operand_dict.values()) | ||||
| for operand in operands: | for operand in operands: | ||||
| @@ -23,4 +23,4 @@ str = 'FFMPEGDNNNATIVE' | |||||
| major = 1 | major = 1 | ||||
| # increase minor when we don't have to re-convert the model file | # increase minor when we don't have to re-convert the model file | ||||
| minor = 4 | |||||
| minor = 5 | |||||