| @@ -495,8 +495,8 @@ OBJS-$(CONFIG_ADPCM_EA_R1_DECODER) += adpcm.o | |||
| OBJS-$(CONFIG_ADPCM_EA_R2_DECODER) += adpcm.o | |||
| OBJS-$(CONFIG_ADPCM_EA_R3_DECODER) += adpcm.o | |||
| OBJS-$(CONFIG_ADPCM_EA_XAS_DECODER) += adpcm.o | |||
| OBJS-$(CONFIG_ADPCM_G722_DECODER) += g722.o | |||
| OBJS-$(CONFIG_ADPCM_G722_ENCODER) += g722.o | |||
| OBJS-$(CONFIG_ADPCM_G722_DECODER) += g722.o g722dec.o | |||
| OBJS-$(CONFIG_ADPCM_G722_ENCODER) += g722.o g722enc.o | |||
| OBJS-$(CONFIG_ADPCM_G726_DECODER) += g726.o | |||
| OBJS-$(CONFIG_ADPCM_G726_ENCODER) += g726.o | |||
| OBJS-$(CONFIG_ADPCM_IMA_AMV_DECODER) += adpcm.o adpcm_data.o | |||
| @@ -36,45 +36,8 @@ | |||
| * respectively of each byte are ignored. | |||
| */ | |||
| #include "avcodec.h" | |||
| #include "mathops.h" | |||
| #include "get_bits.h" | |||
| #define PREV_SAMPLES_BUF_SIZE 1024 | |||
| #define FREEZE_INTERVAL 128 | |||
| typedef struct { | |||
| int16_t prev_samples[PREV_SAMPLES_BUF_SIZE]; ///< memory of past decoded samples | |||
| int prev_samples_pos; ///< the number of values in prev_samples | |||
| /** | |||
| * The band[0] and band[1] correspond respectively to the lower band and higher band. | |||
| */ | |||
| struct G722Band { | |||
| int16_t s_predictor; ///< predictor output value | |||
| int32_t s_zero; ///< previous output signal from zero predictor | |||
| int8_t part_reconst_mem[2]; ///< signs of previous partially reconstructed signals | |||
| int16_t prev_qtzd_reconst; ///< previous quantized reconstructed signal (internal value, using low_inv_quant4) | |||
| int16_t pole_mem[2]; ///< second-order pole section coefficient buffer | |||
| int32_t diff_mem[6]; ///< quantizer difference signal memory | |||
| int16_t zero_mem[6]; ///< Seventh-order zero section coefficient buffer | |||
| int16_t log_factor; ///< delayed 2-logarithmic quantizer factor | |||
| int16_t scale_factor; ///< delayed quantizer scale factor | |||
| } band[2]; | |||
| struct TrellisNode { | |||
| struct G722Band state; | |||
| uint32_t ssd; | |||
| int path; | |||
| } *node_buf[2], **nodep_buf[2]; | |||
| struct TrellisPath { | |||
| int value; | |||
| int prev; | |||
| } *paths[2]; | |||
| } G722Context; | |||
| #include "g722.h" | |||
| static const int8_t sign_lookup[2] = { -1, 1 }; | |||
| @@ -85,7 +48,7 @@ static const int16_t inv_log2_table[32] = { | |||
| 3444, 3520, 3597, 3676, 3756, 3838, 3922, 4008 | |||
| }; | |||
| static const int16_t high_log_factor_step[2] = { 798, -214 }; | |||
| static const int16_t high_inv_quant[4] = { -926, -202, 926, 202 }; | |||
| const int16_t ff_g722_high_inv_quant[4] = { -926, -202, 926, 202 }; | |||
| /** | |||
| * low_log_factor_step[index] == wl[rl42[index]] | |||
| */ | |||
| @@ -93,11 +56,11 @@ static const int16_t low_log_factor_step[16] = { | |||
| -60, 3042, 1198, 538, 334, 172, 58, -30, | |||
| 3042, 1198, 538, 334, 172, 58, -30, -60 | |||
| }; | |||
| static const int16_t low_inv_quant4[16] = { | |||
| const int16_t ff_g722_low_inv_quant4[16] = { | |||
| 0, -2557, -1612, -1121, -786, -530, -323, -150, | |||
| 2557, 1612, 1121, 786, 530, 323, 150, 0 | |||
| }; | |||
| static const int16_t low_inv_quant6[64] = { | |||
| const int16_t ff_g722_low_inv_quant6[64] = { | |||
| -17, -17, -17, -17, -3101, -2738, -2376, -2088, | |||
| -1873, -1689, -1535, -1399, -1279, -1170, -1072, -982, | |||
| -899, -822, -750, -682, -618, -558, -501, -447, | |||
| @@ -173,10 +136,10 @@ static int inline linear_scale_factor(const int log_factor) | |||
| return shift < 0 ? wd1 >> -shift : wd1 << shift; | |||
| } | |||
| static void update_low_predictor(struct G722Band *band, const int ilow) | |||
| void ff_g722_update_low_predictor(struct G722Band *band, const int ilow) | |||
| { | |||
| do_adaptive_prediction(band, | |||
| band->scale_factor * low_inv_quant4[ilow] >> 10); | |||
| band->scale_factor * ff_g722_low_inv_quant4[ilow] >> 10); | |||
| // quantizer adaptation | |||
| band->log_factor = av_clip((band->log_factor * 127 >> 7) + | |||
| @@ -184,7 +147,7 @@ static void update_low_predictor(struct G722Band *band, const int ilow) | |||
| band->scale_factor = linear_scale_factor(band->log_factor - (8 << 11)); | |||
| } | |||
| static void update_high_predictor(struct G722Band *band, const int dhigh, | |||
| void ff_g722_update_high_predictor(struct G722Band *band, const int dhigh, | |||
| const int ihigh) | |||
| { | |||
| do_adaptive_prediction(band, dhigh); | |||
| @@ -195,7 +158,7 @@ static void update_high_predictor(struct G722Band *band, const int dhigh, | |||
| band->scale_factor = linear_scale_factor(band->log_factor - (10 << 11)); | |||
| } | |||
| static void apply_qmf(const int16_t *prev_samples, int *xout1, int *xout2) | |||
| void ff_g722_apply_qmf(const int16_t *prev_samples, int *xout1, int *xout2) | |||
| { | |||
| int i; | |||
| @@ -206,377 +169,3 @@ static void apply_qmf(const int16_t *prev_samples, int *xout1, int *xout2) | |||
| MAC16(*xout1, prev_samples[2*i+1], qmf_coeffs[11-i]); | |||
| } | |||
| } | |||
| static av_cold int g722_init(AVCodecContext * avctx) | |||
| { | |||
| G722Context *c = avctx->priv_data; | |||
| if (avctx->channels != 1) { | |||
| av_log(avctx, AV_LOG_ERROR, "Only mono tracks are allowed.\n"); | |||
| return AVERROR_INVALIDDATA; | |||
| } | |||
| avctx->sample_fmt = AV_SAMPLE_FMT_S16; | |||
| switch (avctx->bits_per_coded_sample) { | |||
| case 8: | |||
| case 7: | |||
| case 6: | |||
| break; | |||
| default: | |||
| av_log(avctx, AV_LOG_WARNING, "Unsupported bits_per_coded_sample [%d], " | |||
| "assuming 8\n", | |||
| avctx->bits_per_coded_sample); | |||
| case 0: | |||
| avctx->bits_per_coded_sample = 8; | |||
| break; | |||
| } | |||
| c->band[0].scale_factor = 8; | |||
| c->band[1].scale_factor = 2; | |||
| c->prev_samples_pos = 22; | |||
| if (avctx->lowres) | |||
| avctx->sample_rate /= 2; | |||
| if (avctx->trellis) { | |||
| int frontier = 1 << avctx->trellis; | |||
| int max_paths = frontier * FREEZE_INTERVAL; | |||
| int i; | |||
| for (i = 0; i < 2; i++) { | |||
| c->paths[i] = av_mallocz(max_paths * sizeof(**c->paths)); | |||
| c->node_buf[i] = av_mallocz(2 * frontier * sizeof(**c->node_buf)); | |||
| c->nodep_buf[i] = av_mallocz(2 * frontier * sizeof(**c->nodep_buf)); | |||
| } | |||
| } | |||
| return 0; | |||
| } | |||
| static av_cold int g722_close(AVCodecContext *avctx) | |||
| { | |||
| G722Context *c = avctx->priv_data; | |||
| int i; | |||
| for (i = 0; i < 2; i++) { | |||
| av_freep(&c->paths[i]); | |||
| av_freep(&c->node_buf[i]); | |||
| av_freep(&c->nodep_buf[i]); | |||
| } | |||
| return 0; | |||
| } | |||
| #if CONFIG_ADPCM_G722_DECODER | |||
| static const int16_t low_inv_quant5[32] = { | |||
| -35, -35, -2919, -2195, -1765, -1458, -1219, -1023, | |||
| -858, -714, -587, -473, -370, -276, -190, -110, | |||
| 2919, 2195, 1765, 1458, 1219, 1023, 858, 714, | |||
| 587, 473, 370, 276, 190, 110, 35, -35 | |||
| }; | |||
| static const int16_t *low_inv_quants[3] = { low_inv_quant6, low_inv_quant5, | |||
| low_inv_quant4 }; | |||
| static int g722_decode_frame(AVCodecContext *avctx, void *data, | |||
| int *data_size, AVPacket *avpkt) | |||
| { | |||
| G722Context *c = avctx->priv_data; | |||
| int16_t *out_buf = data; | |||
| int j, out_len = 0; | |||
| const int skip = 8 - avctx->bits_per_coded_sample; | |||
| const int16_t *quantizer_table = low_inv_quants[skip]; | |||
| GetBitContext gb; | |||
| init_get_bits(&gb, avpkt->data, avpkt->size * 8); | |||
| for (j = 0; j < avpkt->size; j++) { | |||
| int ilow, ihigh, rlow; | |||
| ihigh = get_bits(&gb, 2); | |||
| ilow = get_bits(&gb, 6 - skip); | |||
| skip_bits(&gb, skip); | |||
| rlow = av_clip((c->band[0].scale_factor * quantizer_table[ilow] >> 10) | |||
| + c->band[0].s_predictor, -16384, 16383); | |||
| update_low_predictor(&c->band[0], ilow >> (2 - skip)); | |||
| if (!avctx->lowres) { | |||
| const int dhigh = c->band[1].scale_factor * | |||
| high_inv_quant[ihigh] >> 10; | |||
| const int rhigh = av_clip(dhigh + c->band[1].s_predictor, | |||
| -16384, 16383); | |||
| int xout1, xout2; | |||
| update_high_predictor(&c->band[1], dhigh, ihigh); | |||
| c->prev_samples[c->prev_samples_pos++] = rlow + rhigh; | |||
| c->prev_samples[c->prev_samples_pos++] = rlow - rhigh; | |||
| apply_qmf(c->prev_samples + c->prev_samples_pos - 24, | |||
| &xout1, &xout2); | |||
| out_buf[out_len++] = av_clip_int16(xout1 >> 12); | |||
| out_buf[out_len++] = av_clip_int16(xout2 >> 12); | |||
| if (c->prev_samples_pos >= PREV_SAMPLES_BUF_SIZE) { | |||
| memmove(c->prev_samples, | |||
| c->prev_samples + c->prev_samples_pos - 22, | |||
| 22 * sizeof(c->prev_samples[0])); | |||
| c->prev_samples_pos = 22; | |||
| } | |||
| } else | |||
| out_buf[out_len++] = rlow; | |||
| } | |||
| *data_size = out_len << 1; | |||
| return avpkt->size; | |||
| } | |||
| AVCodec ff_adpcm_g722_decoder = { | |||
| .name = "g722", | |||
| .type = AVMEDIA_TYPE_AUDIO, | |||
| .id = CODEC_ID_ADPCM_G722, | |||
| .priv_data_size = sizeof(G722Context), | |||
| .init = g722_init, | |||
| .decode = g722_decode_frame, | |||
| .long_name = NULL_IF_CONFIG_SMALL("G.722 ADPCM"), | |||
| .max_lowres = 1, | |||
| }; | |||
| #endif | |||
| #if CONFIG_ADPCM_G722_ENCODER | |||
| static const int16_t low_quant[33] = { | |||
| 35, 72, 110, 150, 190, 233, 276, 323, | |||
| 370, 422, 473, 530, 587, 650, 714, 786, | |||
| 858, 940, 1023, 1121, 1219, 1339, 1458, 1612, | |||
| 1765, 1980, 2195, 2557, 2919 | |||
| }; | |||
| static inline void filter_samples(G722Context *c, const int16_t *samples, | |||
| int *xlow, int *xhigh) | |||
| { | |||
| int xout1, xout2; | |||
| c->prev_samples[c->prev_samples_pos++] = samples[0]; | |||
| c->prev_samples[c->prev_samples_pos++] = samples[1]; | |||
| apply_qmf(c->prev_samples + c->prev_samples_pos - 24, &xout1, &xout2); | |||
| *xlow = xout1 + xout2 >> 13; | |||
| *xhigh = xout1 - xout2 >> 13; | |||
| if (c->prev_samples_pos >= PREV_SAMPLES_BUF_SIZE) { | |||
| memmove(c->prev_samples, | |||
| c->prev_samples + c->prev_samples_pos - 22, | |||
| 22 * sizeof(c->prev_samples[0])); | |||
| c->prev_samples_pos = 22; | |||
| } | |||
| } | |||
| static inline int encode_high(const struct G722Band *state, int xhigh) | |||
| { | |||
| int diff = av_clip_int16(xhigh - state->s_predictor); | |||
| int pred = 141 * state->scale_factor >> 8; | |||
| /* = diff >= 0 ? (diff < pred) + 2 : diff >= -pred */ | |||
| return ((diff ^ (diff >> (sizeof(diff)*8-1))) < pred) + 2*(diff >= 0); | |||
| } | |||
| static inline int encode_low(const struct G722Band* state, int xlow) | |||
| { | |||
| int diff = av_clip_int16(xlow - state->s_predictor); | |||
| /* = diff >= 0 ? diff : -(diff + 1) */ | |||
| int limit = diff ^ (diff >> (sizeof(diff)*8-1)); | |||
| int i = 0; | |||
| limit = limit + 1 << 10; | |||
| if (limit > low_quant[8] * state->scale_factor) | |||
| i = 9; | |||
| while (i < 29 && limit > low_quant[i] * state->scale_factor) | |||
| i++; | |||
| return (diff < 0 ? (i < 2 ? 63 : 33) : 61) - i; | |||
| } | |||
| static int g722_encode_trellis(AVCodecContext *avctx, | |||
| uint8_t *dst, int buf_size, void *data) | |||
| { | |||
| G722Context *c = avctx->priv_data; | |||
| const int16_t *samples = data; | |||
| int i, j, k; | |||
| int frontier = 1 << avctx->trellis; | |||
| struct TrellisNode **nodes[2]; | |||
| struct TrellisNode **nodes_next[2]; | |||
| int pathn[2] = {0, 0}, froze = -1; | |||
| struct TrellisPath *p[2]; | |||
| for (i = 0; i < 2; i++) { | |||
| nodes[i] = c->nodep_buf[i]; | |||
| nodes_next[i] = c->nodep_buf[i] + frontier; | |||
| memset(c->nodep_buf[i], 0, 2 * frontier * sizeof(*c->nodep_buf)); | |||
| nodes[i][0] = c->node_buf[i] + frontier; | |||
| nodes[i][0]->ssd = 0; | |||
| nodes[i][0]->path = 0; | |||
| nodes[i][0]->state = c->band[i]; | |||
| } | |||
| for (i = 0; i < buf_size >> 1; i++) { | |||
| int xlow, xhigh; | |||
| struct TrellisNode *next[2]; | |||
| int heap_pos[2] = {0, 0}; | |||
| for (j = 0; j < 2; j++) { | |||
| next[j] = c->node_buf[j] + frontier*(i & 1); | |||
| memset(nodes_next[j], 0, frontier * sizeof(**nodes_next)); | |||
| } | |||
| filter_samples(c, &samples[2*i], &xlow, &xhigh); | |||
| for (j = 0; j < frontier && nodes[0][j]; j++) { | |||
| /* Only k >> 2 affects the future adaptive state, therefore testing | |||
| * small steps that don't change k >> 2 is useless, the orignal | |||
| * value from encode_low is better than them. Since we step k | |||
| * in steps of 4, make sure range is a multiple of 4, so that | |||
| * we don't miss the original value from encode_low. */ | |||
| int range = j < frontier/2 ? 4 : 0; | |||
| struct TrellisNode *cur_node = nodes[0][j]; | |||
| int ilow = encode_low(&cur_node->state, xlow); | |||
| for (k = ilow - range; k <= ilow + range && k <= 63; k += 4) { | |||
| int decoded, dec_diff, pos; | |||
| uint32_t ssd; | |||
| struct TrellisNode* node; | |||
| if (k < 0) | |||
| continue; | |||
| decoded = av_clip((cur_node->state.scale_factor * | |||
| low_inv_quant6[k] >> 10) | |||
| + cur_node->state.s_predictor, -16384, 16383); | |||
| dec_diff = xlow - decoded; | |||
| #define STORE_NODE(index, UPDATE, VALUE)\ | |||
| ssd = cur_node->ssd + dec_diff*dec_diff;\ | |||
| /* Check for wraparound. Using 64 bit ssd counters would \ | |||
| * be simpler, but is slower on x86 32 bit. */\ | |||
| if (ssd < cur_node->ssd)\ | |||
| continue;\ | |||
| if (heap_pos[index] < frontier) {\ | |||
| pos = heap_pos[index]++;\ | |||
| assert(pathn[index] < FREEZE_INTERVAL * frontier);\ | |||
| node = nodes_next[index][pos] = next[index]++;\ | |||
| node->path = pathn[index]++;\ | |||
| } else {\ | |||
| /* Try to replace one of the leaf nodes with the new \ | |||
| * one, but not always testing the same leaf position */\ | |||
| pos = (frontier>>1) + (heap_pos[index] & ((frontier>>1) - 1));\ | |||
| if (ssd >= nodes_next[index][pos]->ssd)\ | |||
| continue;\ | |||
| heap_pos[index]++;\ | |||
| node = nodes_next[index][pos];\ | |||
| }\ | |||
| node->ssd = ssd;\ | |||
| node->state = cur_node->state;\ | |||
| UPDATE;\ | |||
| c->paths[index][node->path].value = VALUE;\ | |||
| c->paths[index][node->path].prev = cur_node->path;\ | |||
| /* Sift the newly inserted node up in the heap to restore \ | |||
| * the heap property */\ | |||
| while (pos > 0) {\ | |||
| int parent = (pos - 1) >> 1;\ | |||
| if (nodes_next[index][parent]->ssd <= ssd)\ | |||
| break;\ | |||
| FFSWAP(struct TrellisNode*, nodes_next[index][parent],\ | |||
| nodes_next[index][pos]);\ | |||
| pos = parent;\ | |||
| } | |||
| STORE_NODE(0, update_low_predictor(&node->state, k >> 2), k); | |||
| } | |||
| } | |||
| for (j = 0; j < frontier && nodes[1][j]; j++) { | |||
| int ihigh; | |||
| struct TrellisNode *cur_node = nodes[1][j]; | |||
| /* We don't try to get any initial guess for ihigh via | |||
| * encode_high - since there's only 4 possible values, test | |||
| * them all. Testing all of these gives a much, much larger | |||
| * gain than testing a larger range around ilow. */ | |||
| for (ihigh = 0; ihigh < 4; ihigh++) { | |||
| int dhigh, decoded, dec_diff, pos; | |||
| uint32_t ssd; | |||
| struct TrellisNode* node; | |||
| dhigh = cur_node->state.scale_factor * | |||
| high_inv_quant[ihigh] >> 10; | |||
| decoded = av_clip(dhigh + cur_node->state.s_predictor, | |||
| -16384, 16383); | |||
| dec_diff = xhigh - decoded; | |||
| STORE_NODE(1, update_high_predictor(&node->state, dhigh, ihigh), ihigh); | |||
| } | |||
| } | |||
| for (j = 0; j < 2; j++) { | |||
| FFSWAP(struct TrellisNode**, nodes[j], nodes_next[j]); | |||
| if (nodes[j][0]->ssd > (1 << 16)) { | |||
| for (k = 1; k < frontier && nodes[j][k]; k++) | |||
| nodes[j][k]->ssd -= nodes[j][0]->ssd; | |||
| nodes[j][0]->ssd = 0; | |||
| } | |||
| } | |||
| if (i == froze + FREEZE_INTERVAL) { | |||
| p[0] = &c->paths[0][nodes[0][0]->path]; | |||
| p[1] = &c->paths[1][nodes[1][0]->path]; | |||
| for (j = i; j > froze; j--) { | |||
| dst[j] = p[1]->value << 6 | p[0]->value; | |||
| p[0] = &c->paths[0][p[0]->prev]; | |||
| p[1] = &c->paths[1][p[1]->prev]; | |||
| } | |||
| froze = i; | |||
| pathn[0] = pathn[1] = 0; | |||
| memset(nodes[0] + 1, 0, (frontier - 1)*sizeof(**nodes)); | |||
| memset(nodes[1] + 1, 0, (frontier - 1)*sizeof(**nodes)); | |||
| } | |||
| } | |||
| p[0] = &c->paths[0][nodes[0][0]->path]; | |||
| p[1] = &c->paths[1][nodes[1][0]->path]; | |||
| for (j = i; j > froze; j--) { | |||
| dst[j] = p[1]->value << 6 | p[0]->value; | |||
| p[0] = &c->paths[0][p[0]->prev]; | |||
| p[1] = &c->paths[1][p[1]->prev]; | |||
| } | |||
| c->band[0] = nodes[0][0]->state; | |||
| c->band[1] = nodes[1][0]->state; | |||
| return i; | |||
| } | |||
| static int g722_encode_frame(AVCodecContext *avctx, | |||
| uint8_t *dst, int buf_size, void *data) | |||
| { | |||
| G722Context *c = avctx->priv_data; | |||
| const int16_t *samples = data; | |||
| int i; | |||
| if (avctx->trellis) | |||
| return g722_encode_trellis(avctx, dst, buf_size, data); | |||
| for (i = 0; i < buf_size >> 1; i++) { | |||
| int xlow, xhigh, ihigh, ilow; | |||
| filter_samples(c, &samples[2*i], &xlow, &xhigh); | |||
| ihigh = encode_high(&c->band[1], xhigh); | |||
| ilow = encode_low(&c->band[0], xlow); | |||
| update_high_predictor(&c->band[1], c->band[1].scale_factor * | |||
| high_inv_quant[ihigh] >> 10, ihigh); | |||
| update_low_predictor(&c->band[0], ilow >> 2); | |||
| *dst++ = ihigh << 6 | ilow; | |||
| } | |||
| return i; | |||
| } | |||
| AVCodec ff_adpcm_g722_encoder = { | |||
| .name = "g722", | |||
| .type = AVMEDIA_TYPE_AUDIO, | |||
| .id = CODEC_ID_ADPCM_G722, | |||
| .priv_data_size = sizeof(G722Context), | |||
| .init = g722_init, | |||
| .close = g722_close, | |||
| .encode = g722_encode_frame, | |||
| .long_name = NULL_IF_CONFIG_SMALL("G.722 ADPCM"), | |||
| .sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE}, | |||
| }; | |||
| #endif | |||
| @@ -0,0 +1,74 @@ | |||
| /* | |||
| * Copyright (c) CMU 1993 Computer Science, Speech Group | |||
| * Chengxiang Lu and Alex Hauptmann | |||
| * Copyright (c) 2005 Steve Underwood <steveu at coppice.org> | |||
| * Copyright (c) 2009 Kenan Gillet | |||
| * Copyright (c) 2010 Martin Storsjo | |||
| * | |||
| * This file is part of Libav. | |||
| * | |||
| * Libav is free software; you can redistribute it and/or | |||
| * modify it under the terms of the GNU Lesser General Public | |||
| * License as published by the Free Software Foundation; either | |||
| * version 2.1 of the License, or (at your option) any later version. | |||
| * | |||
| * Libav is distributed in the hope that it will be useful, | |||
| * but WITHOUT ANY WARRANTY; without even the implied warranty of | |||
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |||
| * Lesser General Public License for more details. | |||
| * | |||
| * You should have received a copy of the GNU Lesser General Public | |||
| * License along with Libav; if not, write to the Free Software | |||
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |||
| */ | |||
| #ifndef AVCODEC_G722_H | |||
| #define AVCODEC_G722_H | |||
| #include <stdint.h> | |||
| #define PREV_SAMPLES_BUF_SIZE 1024 | |||
| typedef struct { | |||
| int16_t prev_samples[PREV_SAMPLES_BUF_SIZE]; ///< memory of past decoded samples | |||
| int prev_samples_pos; ///< the number of values in prev_samples | |||
| /** | |||
| * The band[0] and band[1] correspond respectively to the lower band and higher band. | |||
| */ | |||
| struct G722Band { | |||
| int16_t s_predictor; ///< predictor output value | |||
| int32_t s_zero; ///< previous output signal from zero predictor | |||
| int8_t part_reconst_mem[2]; ///< signs of previous partially reconstructed signals | |||
| int16_t prev_qtzd_reconst; ///< previous quantized reconstructed signal (internal value, using low_inv_quant4) | |||
| int16_t pole_mem[2]; ///< second-order pole section coefficient buffer | |||
| int32_t diff_mem[6]; ///< quantizer difference signal memory | |||
| int16_t zero_mem[6]; ///< Seventh-order zero section coefficient buffer | |||
| int16_t log_factor; ///< delayed 2-logarithmic quantizer factor | |||
| int16_t scale_factor; ///< delayed quantizer scale factor | |||
| } band[2]; | |||
| struct TrellisNode { | |||
| struct G722Band state; | |||
| uint32_t ssd; | |||
| int path; | |||
| } *node_buf[2], **nodep_buf[2]; | |||
| struct TrellisPath { | |||
| int value; | |||
| int prev; | |||
| } *paths[2]; | |||
| } G722Context; | |||
| extern const int16_t ff_g722_high_inv_quant[4]; | |||
| extern const int16_t ff_g722_low_inv_quant4[16]; | |||
| extern const int16_t ff_g722_low_inv_quant6[64]; | |||
| void ff_g722_update_low_predictor(struct G722Band *band, const int ilow); | |||
| void ff_g722_update_high_predictor(struct G722Band *band, const int dhigh, | |||
| const int ihigh); | |||
| void ff_g722_apply_qmf(const int16_t *prev_samples, int *xout1, int *xout2); | |||
| #endif /* AVCODEC_G722_H */ | |||
| @@ -0,0 +1,147 @@ | |||
| /* | |||
| * Copyright (c) CMU 1993 Computer Science, Speech Group | |||
| * Chengxiang Lu and Alex Hauptmann | |||
| * Copyright (c) 2005 Steve Underwood <steveu at coppice.org> | |||
| * Copyright (c) 2009 Kenan Gillet | |||
| * Copyright (c) 2010 Martin Storsjo | |||
| * | |||
| * This file is part of Libav. | |||
| * | |||
| * Libav is free software; you can redistribute it and/or | |||
| * modify it under the terms of the GNU Lesser General Public | |||
| * License as published by the Free Software Foundation; either | |||
| * version 2.1 of the License, or (at your option) any later version. | |||
| * | |||
| * Libav is distributed in the hope that it will be useful, | |||
| * but WITHOUT ANY WARRANTY; without even the implied warranty of | |||
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |||
| * Lesser General Public License for more details. | |||
| * | |||
| * You should have received a copy of the GNU Lesser General Public | |||
| * License along with Libav; if not, write to the Free Software | |||
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |||
| */ | |||
| /** | |||
| * @file | |||
| * G.722 ADPCM audio decoder | |||
| * | |||
| * This G.722 decoder is a bit-exact implementation of the ITU G.722 | |||
| * specification for all three specified bitrates - 64000bps, 56000bps | |||
| * and 48000bps. It passes the ITU tests. | |||
| * | |||
| * @note For the 56000bps and 48000bps bitrates, the lowest 1 or 2 bits | |||
| * respectively of each byte are ignored. | |||
| */ | |||
| #include "avcodec.h" | |||
| #include "get_bits.h" | |||
| #include "g722.h" | |||
| static av_cold int g722_decode_init(AVCodecContext * avctx) | |||
| { | |||
| G722Context *c = avctx->priv_data; | |||
| if (avctx->channels != 1) { | |||
| av_log(avctx, AV_LOG_ERROR, "Only mono tracks are allowed.\n"); | |||
| return AVERROR_INVALIDDATA; | |||
| } | |||
| avctx->sample_fmt = AV_SAMPLE_FMT_S16; | |||
| switch (avctx->bits_per_coded_sample) { | |||
| case 8: | |||
| case 7: | |||
| case 6: | |||
| break; | |||
| default: | |||
| av_log(avctx, AV_LOG_WARNING, "Unsupported bits_per_coded_sample [%d], " | |||
| "assuming 8\n", | |||
| avctx->bits_per_coded_sample); | |||
| case 0: | |||
| avctx->bits_per_coded_sample = 8; | |||
| break; | |||
| } | |||
| c->band[0].scale_factor = 8; | |||
| c->band[1].scale_factor = 2; | |||
| c->prev_samples_pos = 22; | |||
| if (avctx->lowres) | |||
| avctx->sample_rate /= 2; | |||
| return 0; | |||
| } | |||
| static const int16_t low_inv_quant5[32] = { | |||
| -35, -35, -2919, -2195, -1765, -1458, -1219, -1023, | |||
| -858, -714, -587, -473, -370, -276, -190, -110, | |||
| 2919, 2195, 1765, 1458, 1219, 1023, 858, 714, | |||
| 587, 473, 370, 276, 190, 110, 35, -35 | |||
| }; | |||
| static const int16_t *low_inv_quants[3] = { ff_g722_low_inv_quant6, | |||
| low_inv_quant5, | |||
| ff_g722_low_inv_quant4 }; | |||
| static int g722_decode_frame(AVCodecContext *avctx, void *data, | |||
| int *data_size, AVPacket *avpkt) | |||
| { | |||
| G722Context *c = avctx->priv_data; | |||
| int16_t *out_buf = data; | |||
| int j, out_len = 0; | |||
| const int skip = 8 - avctx->bits_per_coded_sample; | |||
| const int16_t *quantizer_table = low_inv_quants[skip]; | |||
| GetBitContext gb; | |||
| init_get_bits(&gb, avpkt->data, avpkt->size * 8); | |||
| for (j = 0; j < avpkt->size; j++) { | |||
| int ilow, ihigh, rlow; | |||
| ihigh = get_bits(&gb, 2); | |||
| ilow = get_bits(&gb, 6 - skip); | |||
| skip_bits(&gb, skip); | |||
| rlow = av_clip((c->band[0].scale_factor * quantizer_table[ilow] >> 10) | |||
| + c->band[0].s_predictor, -16384, 16383); | |||
| ff_g722_update_low_predictor(&c->band[0], ilow >> (2 - skip)); | |||
| if (!avctx->lowres) { | |||
| const int dhigh = c->band[1].scale_factor * | |||
| ff_g722_high_inv_quant[ihigh] >> 10; | |||
| const int rhigh = av_clip(dhigh + c->band[1].s_predictor, | |||
| -16384, 16383); | |||
| int xout1, xout2; | |||
| ff_g722_update_high_predictor(&c->band[1], dhigh, ihigh); | |||
| c->prev_samples[c->prev_samples_pos++] = rlow + rhigh; | |||
| c->prev_samples[c->prev_samples_pos++] = rlow - rhigh; | |||
| ff_g722_apply_qmf(c->prev_samples + c->prev_samples_pos - 24, | |||
| &xout1, &xout2); | |||
| out_buf[out_len++] = av_clip_int16(xout1 >> 12); | |||
| out_buf[out_len++] = av_clip_int16(xout2 >> 12); | |||
| if (c->prev_samples_pos >= PREV_SAMPLES_BUF_SIZE) { | |||
| memmove(c->prev_samples, | |||
| c->prev_samples + c->prev_samples_pos - 22, | |||
| 22 * sizeof(c->prev_samples[0])); | |||
| c->prev_samples_pos = 22; | |||
| } | |||
| } else | |||
| out_buf[out_len++] = rlow; | |||
| } | |||
| *data_size = out_len << 1; | |||
| return avpkt->size; | |||
| } | |||
| AVCodec ff_adpcm_g722_decoder = { | |||
| .name = "g722", | |||
| .type = AVMEDIA_TYPE_AUDIO, | |||
| .id = CODEC_ID_ADPCM_G722, | |||
| .priv_data_size = sizeof(G722Context), | |||
| .init = g722_decode_init, | |||
| .decode = g722_decode_frame, | |||
| .long_name = NULL_IF_CONFIG_SMALL("G.722 ADPCM"), | |||
| .max_lowres = 1, | |||
| }; | |||
| @@ -0,0 +1,311 @@ | |||
| /* | |||
| * Copyright (c) CMU 1993 Computer Science, Speech Group | |||
| * Chengxiang Lu and Alex Hauptmann | |||
| * Copyright (c) 2005 Steve Underwood <steveu at coppice.org> | |||
| * Copyright (c) 2009 Kenan Gillet | |||
| * Copyright (c) 2010 Martin Storsjo | |||
| * | |||
| * This file is part of Libav. | |||
| * | |||
| * Libav is free software; you can redistribute it and/or | |||
| * modify it under the terms of the GNU Lesser General Public | |||
| * License as published by the Free Software Foundation; either | |||
| * version 2.1 of the License, or (at your option) any later version. | |||
| * | |||
| * Libav is distributed in the hope that it will be useful, | |||
| * but WITHOUT ANY WARRANTY; without even the implied warranty of | |||
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |||
| * Lesser General Public License for more details. | |||
| * | |||
| * You should have received a copy of the GNU Lesser General Public | |||
| * License along with Libav; if not, write to the Free Software | |||
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |||
| */ | |||
| /** | |||
| * @file | |||
| * G.722 ADPCM audio encoder | |||
| */ | |||
| #include "avcodec.h" | |||
| #include "g722.h" | |||
| #define FREEZE_INTERVAL 128 | |||
| static av_cold int g722_encode_init(AVCodecContext * avctx) | |||
| { | |||
| G722Context *c = avctx->priv_data; | |||
| if (avctx->channels != 1) { | |||
| av_log(avctx, AV_LOG_ERROR, "Only mono tracks are allowed.\n"); | |||
| return AVERROR_INVALIDDATA; | |||
| } | |||
| c->band[0].scale_factor = 8; | |||
| c->band[1].scale_factor = 2; | |||
| c->prev_samples_pos = 22; | |||
| if (avctx->trellis) { | |||
| int frontier = 1 << avctx->trellis; | |||
| int max_paths = frontier * FREEZE_INTERVAL; | |||
| int i; | |||
| for (i = 0; i < 2; i++) { | |||
| c->paths[i] = av_mallocz(max_paths * sizeof(**c->paths)); | |||
| c->node_buf[i] = av_mallocz(2 * frontier * sizeof(**c->node_buf)); | |||
| c->nodep_buf[i] = av_mallocz(2 * frontier * sizeof(**c->nodep_buf)); | |||
| } | |||
| } | |||
| return 0; | |||
| } | |||
| static av_cold int g722_encode_close(AVCodecContext *avctx) | |||
| { | |||
| G722Context *c = avctx->priv_data; | |||
| int i; | |||
| for (i = 0; i < 2; i++) { | |||
| av_freep(&c->paths[i]); | |||
| av_freep(&c->node_buf[i]); | |||
| av_freep(&c->nodep_buf[i]); | |||
| } | |||
| return 0; | |||
| } | |||
| static const int16_t low_quant[33] = { | |||
| 35, 72, 110, 150, 190, 233, 276, 323, | |||
| 370, 422, 473, 530, 587, 650, 714, 786, | |||
| 858, 940, 1023, 1121, 1219, 1339, 1458, 1612, | |||
| 1765, 1980, 2195, 2557, 2919 | |||
| }; | |||
| static inline void filter_samples(G722Context *c, const int16_t *samples, | |||
| int *xlow, int *xhigh) | |||
| { | |||
| int xout1, xout2; | |||
| c->prev_samples[c->prev_samples_pos++] = samples[0]; | |||
| c->prev_samples[c->prev_samples_pos++] = samples[1]; | |||
| ff_g722_apply_qmf(c->prev_samples + c->prev_samples_pos - 24, &xout1, &xout2); | |||
| *xlow = xout1 + xout2 >> 13; | |||
| *xhigh = xout1 - xout2 >> 13; | |||
| if (c->prev_samples_pos >= PREV_SAMPLES_BUF_SIZE) { | |||
| memmove(c->prev_samples, | |||
| c->prev_samples + c->prev_samples_pos - 22, | |||
| 22 * sizeof(c->prev_samples[0])); | |||
| c->prev_samples_pos = 22; | |||
| } | |||
| } | |||
| static inline int encode_high(const struct G722Band *state, int xhigh) | |||
| { | |||
| int diff = av_clip_int16(xhigh - state->s_predictor); | |||
| int pred = 141 * state->scale_factor >> 8; | |||
| /* = diff >= 0 ? (diff < pred) + 2 : diff >= -pred */ | |||
| return ((diff ^ (diff >> (sizeof(diff)*8-1))) < pred) + 2*(diff >= 0); | |||
| } | |||
| static inline int encode_low(const struct G722Band* state, int xlow) | |||
| { | |||
| int diff = av_clip_int16(xlow - state->s_predictor); | |||
| /* = diff >= 0 ? diff : -(diff + 1) */ | |||
| int limit = diff ^ (diff >> (sizeof(diff)*8-1)); | |||
| int i = 0; | |||
| limit = limit + 1 << 10; | |||
| if (limit > low_quant[8] * state->scale_factor) | |||
| i = 9; | |||
| while (i < 29 && limit > low_quant[i] * state->scale_factor) | |||
| i++; | |||
| return (diff < 0 ? (i < 2 ? 63 : 33) : 61) - i; | |||
| } | |||
| static int g722_encode_trellis(AVCodecContext *avctx, | |||
| uint8_t *dst, int buf_size, void *data) | |||
| { | |||
| G722Context *c = avctx->priv_data; | |||
| const int16_t *samples = data; | |||
| int i, j, k; | |||
| int frontier = 1 << avctx->trellis; | |||
| struct TrellisNode **nodes[2]; | |||
| struct TrellisNode **nodes_next[2]; | |||
| int pathn[2] = {0, 0}, froze = -1; | |||
| struct TrellisPath *p[2]; | |||
| for (i = 0; i < 2; i++) { | |||
| nodes[i] = c->nodep_buf[i]; | |||
| nodes_next[i] = c->nodep_buf[i] + frontier; | |||
| memset(c->nodep_buf[i], 0, 2 * frontier * sizeof(*c->nodep_buf)); | |||
| nodes[i][0] = c->node_buf[i] + frontier; | |||
| nodes[i][0]->ssd = 0; | |||
| nodes[i][0]->path = 0; | |||
| nodes[i][0]->state = c->band[i]; | |||
| } | |||
| for (i = 0; i < buf_size >> 1; i++) { | |||
| int xlow, xhigh; | |||
| struct TrellisNode *next[2]; | |||
| int heap_pos[2] = {0, 0}; | |||
| for (j = 0; j < 2; j++) { | |||
| next[j] = c->node_buf[j] + frontier*(i & 1); | |||
| memset(nodes_next[j], 0, frontier * sizeof(**nodes_next)); | |||
| } | |||
| filter_samples(c, &samples[2*i], &xlow, &xhigh); | |||
| for (j = 0; j < frontier && nodes[0][j]; j++) { | |||
| /* Only k >> 2 affects the future adaptive state, therefore testing | |||
| * small steps that don't change k >> 2 is useless, the orignal | |||
| * value from encode_low is better than them. Since we step k | |||
| * in steps of 4, make sure range is a multiple of 4, so that | |||
| * we don't miss the original value from encode_low. */ | |||
| int range = j < frontier/2 ? 4 : 0; | |||
| struct TrellisNode *cur_node = nodes[0][j]; | |||
| int ilow = encode_low(&cur_node->state, xlow); | |||
| for (k = ilow - range; k <= ilow + range && k <= 63; k += 4) { | |||
| int decoded, dec_diff, pos; | |||
| uint32_t ssd; | |||
| struct TrellisNode* node; | |||
| if (k < 0) | |||
| continue; | |||
| decoded = av_clip((cur_node->state.scale_factor * | |||
| ff_g722_low_inv_quant6[k] >> 10) | |||
| + cur_node->state.s_predictor, -16384, 16383); | |||
| dec_diff = xlow - decoded; | |||
| #define STORE_NODE(index, UPDATE, VALUE)\ | |||
| ssd = cur_node->ssd + dec_diff*dec_diff;\ | |||
| /* Check for wraparound. Using 64 bit ssd counters would \ | |||
| * be simpler, but is slower on x86 32 bit. */\ | |||
| if (ssd < cur_node->ssd)\ | |||
| continue;\ | |||
| if (heap_pos[index] < frontier) {\ | |||
| pos = heap_pos[index]++;\ | |||
| assert(pathn[index] < FREEZE_INTERVAL * frontier);\ | |||
| node = nodes_next[index][pos] = next[index]++;\ | |||
| node->path = pathn[index]++;\ | |||
| } else {\ | |||
| /* Try to replace one of the leaf nodes with the new \ | |||
| * one, but not always testing the same leaf position */\ | |||
| pos = (frontier>>1) + (heap_pos[index] & ((frontier>>1) - 1));\ | |||
| if (ssd >= nodes_next[index][pos]->ssd)\ | |||
| continue;\ | |||
| heap_pos[index]++;\ | |||
| node = nodes_next[index][pos];\ | |||
| }\ | |||
| node->ssd = ssd;\ | |||
| node->state = cur_node->state;\ | |||
| UPDATE;\ | |||
| c->paths[index][node->path].value = VALUE;\ | |||
| c->paths[index][node->path].prev = cur_node->path;\ | |||
| /* Sift the newly inserted node up in the heap to restore \ | |||
| * the heap property */\ | |||
| while (pos > 0) {\ | |||
| int parent = (pos - 1) >> 1;\ | |||
| if (nodes_next[index][parent]->ssd <= ssd)\ | |||
| break;\ | |||
| FFSWAP(struct TrellisNode*, nodes_next[index][parent],\ | |||
| nodes_next[index][pos]);\ | |||
| pos = parent;\ | |||
| } | |||
| STORE_NODE(0, ff_g722_update_low_predictor(&node->state, k >> 2), k); | |||
| } | |||
| } | |||
| for (j = 0; j < frontier && nodes[1][j]; j++) { | |||
| int ihigh; | |||
| struct TrellisNode *cur_node = nodes[1][j]; | |||
| /* We don't try to get any initial guess for ihigh via | |||
| * encode_high - since there's only 4 possible values, test | |||
| * them all. Testing all of these gives a much, much larger | |||
| * gain than testing a larger range around ilow. */ | |||
| for (ihigh = 0; ihigh < 4; ihigh++) { | |||
| int dhigh, decoded, dec_diff, pos; | |||
| uint32_t ssd; | |||
| struct TrellisNode* node; | |||
| dhigh = cur_node->state.scale_factor * | |||
| ff_g722_high_inv_quant[ihigh] >> 10; | |||
| decoded = av_clip(dhigh + cur_node->state.s_predictor, | |||
| -16384, 16383); | |||
| dec_diff = xhigh - decoded; | |||
| STORE_NODE(1, ff_g722_update_high_predictor(&node->state, dhigh, ihigh), ihigh); | |||
| } | |||
| } | |||
| for (j = 0; j < 2; j++) { | |||
| FFSWAP(struct TrellisNode**, nodes[j], nodes_next[j]); | |||
| if (nodes[j][0]->ssd > (1 << 16)) { | |||
| for (k = 1; k < frontier && nodes[j][k]; k++) | |||
| nodes[j][k]->ssd -= nodes[j][0]->ssd; | |||
| nodes[j][0]->ssd = 0; | |||
| } | |||
| } | |||
| if (i == froze + FREEZE_INTERVAL) { | |||
| p[0] = &c->paths[0][nodes[0][0]->path]; | |||
| p[1] = &c->paths[1][nodes[1][0]->path]; | |||
| for (j = i; j > froze; j--) { | |||
| dst[j] = p[1]->value << 6 | p[0]->value; | |||
| p[0] = &c->paths[0][p[0]->prev]; | |||
| p[1] = &c->paths[1][p[1]->prev]; | |||
| } | |||
| froze = i; | |||
| pathn[0] = pathn[1] = 0; | |||
| memset(nodes[0] + 1, 0, (frontier - 1)*sizeof(**nodes)); | |||
| memset(nodes[1] + 1, 0, (frontier - 1)*sizeof(**nodes)); | |||
| } | |||
| } | |||
| p[0] = &c->paths[0][nodes[0][0]->path]; | |||
| p[1] = &c->paths[1][nodes[1][0]->path]; | |||
| for (j = i; j > froze; j--) { | |||
| dst[j] = p[1]->value << 6 | p[0]->value; | |||
| p[0] = &c->paths[0][p[0]->prev]; | |||
| p[1] = &c->paths[1][p[1]->prev]; | |||
| } | |||
| c->band[0] = nodes[0][0]->state; | |||
| c->band[1] = nodes[1][0]->state; | |||
| return i; | |||
| } | |||
| static int g722_encode_frame(AVCodecContext *avctx, | |||
| uint8_t *dst, int buf_size, void *data) | |||
| { | |||
| G722Context *c = avctx->priv_data; | |||
| const int16_t *samples = data; | |||
| int i; | |||
| if (avctx->trellis) | |||
| return g722_encode_trellis(avctx, dst, buf_size, data); | |||
| for (i = 0; i < buf_size >> 1; i++) { | |||
| int xlow, xhigh, ihigh, ilow; | |||
| filter_samples(c, &samples[2*i], &xlow, &xhigh); | |||
| ihigh = encode_high(&c->band[1], xhigh); | |||
| ilow = encode_low(&c->band[0], xlow); | |||
| ff_g722_update_high_predictor(&c->band[1], c->band[1].scale_factor * | |||
| ff_g722_high_inv_quant[ihigh] >> 10, ihigh); | |||
| ff_g722_update_low_predictor(&c->band[0], ilow >> 2); | |||
| *dst++ = ihigh << 6 | ilow; | |||
| } | |||
| return i; | |||
| } | |||
| AVCodec ff_adpcm_g722_encoder = { | |||
| .name = "g722", | |||
| .type = AVMEDIA_TYPE_AUDIO, | |||
| .id = CODEC_ID_ADPCM_G722, | |||
| .priv_data_size = sizeof(G722Context), | |||
| .init = g722_encode_init, | |||
| .close = g722_encode_close, | |||
| .encode = g722_encode_frame, | |||
| .long_name = NULL_IF_CONFIG_SMALL("G.722 ADPCM"), | |||
| .sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE}, | |||
| }; | |||