|
|
|
@@ -37,6 +37,7 @@ |
|
|
|
typedef struct OVOptions{ |
|
|
|
char *device_type; |
|
|
|
int nireq; |
|
|
|
int batch_size; |
|
|
|
} OVOptions; |
|
|
|
|
|
|
|
typedef struct OVContext { |
|
|
|
@@ -70,7 +71,8 @@ typedef struct TaskItem { |
|
|
|
|
|
|
|
typedef struct RequestItem { |
|
|
|
ie_infer_request_t *infer_request; |
|
|
|
TaskItem *task; |
|
|
|
TaskItem **tasks; |
|
|
|
int task_count; |
|
|
|
ie_complete_call_back_t callback; |
|
|
|
} RequestItem; |
|
|
|
|
|
|
|
@@ -83,6 +85,7 @@ typedef struct RequestItem { |
|
|
|
static const AVOption dnn_openvino_options[] = { |
|
|
|
{ "device", "device to run model", OFFSET(options.device_type), AV_OPT_TYPE_STRING, { .str = "CPU" }, 0, 0, FLAGS }, |
|
|
|
{ "nireq", "number of request", OFFSET(options.nireq), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, INT_MAX, FLAGS }, |
|
|
|
{ "batch_size", "batch size per request", OFFSET(options.batch_size), AV_OPT_TYPE_INT, { .i64 = 1 }, 1, 1000, FLAGS}, |
|
|
|
{ NULL } |
|
|
|
}; |
|
|
|
|
|
|
|
@@ -100,7 +103,19 @@ static DNNDataType precision_to_datatype(precision_e precision) |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
static DNNReturnType fill_model_input_ov(OVModel *ov_model, TaskItem *task, RequestItem *request) |
|
|
|
static int get_datatype_size(DNNDataType dt) |
|
|
|
{ |
|
|
|
switch (dt) |
|
|
|
{ |
|
|
|
case DNN_FLOAT: |
|
|
|
return sizeof(float); |
|
|
|
default: |
|
|
|
av_assert0(!"not supported yet."); |
|
|
|
return 1; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
static DNNReturnType fill_model_input_ov(OVModel *ov_model, RequestItem *request) |
|
|
|
{ |
|
|
|
dimensions_t dims; |
|
|
|
precision_e precision; |
|
|
|
@@ -109,6 +124,7 @@ static DNNReturnType fill_model_input_ov(OVModel *ov_model, TaskItem *task, Requ |
|
|
|
IEStatusCode status; |
|
|
|
DNNData input; |
|
|
|
ie_blob_t *input_blob = NULL; |
|
|
|
TaskItem *task = request->tasks[0]; |
|
|
|
|
|
|
|
status = ie_infer_request_get_blob(request->infer_request, task->input_name, &input_blob); |
|
|
|
if (status != OK) { |
|
|
|
@@ -134,12 +150,19 @@ static DNNReturnType fill_model_input_ov(OVModel *ov_model, TaskItem *task, Requ |
|
|
|
input.channels = dims.dims[1]; |
|
|
|
input.data = blob_buffer.buffer; |
|
|
|
input.dt = precision_to_datatype(precision); |
|
|
|
if (task->do_ioproc) { |
|
|
|
if (ov_model->model->pre_proc != NULL) { |
|
|
|
ov_model->model->pre_proc(task->in_frame, &input, ov_model->model->filter_ctx); |
|
|
|
} else { |
|
|
|
proc_from_frame_to_dnn(task->in_frame, &input, ctx); |
|
|
|
|
|
|
|
av_assert0(request->task_count <= dims.dims[0]); |
|
|
|
for (int i = 0; i < request->task_count; ++i) { |
|
|
|
task = request->tasks[i]; |
|
|
|
if (task->do_ioproc) { |
|
|
|
if (ov_model->model->pre_proc != NULL) { |
|
|
|
ov_model->model->pre_proc(task->in_frame, &input, ov_model->model->filter_ctx); |
|
|
|
} else { |
|
|
|
proc_from_frame_to_dnn(task->in_frame, &input, ctx); |
|
|
|
} |
|
|
|
} |
|
|
|
input.data = (uint8_t *)input.data |
|
|
|
+ input.width * input.height * input.channels * get_datatype_size(input.dt); |
|
|
|
} |
|
|
|
ie_blob_free(&input_blob); |
|
|
|
|
|
|
|
@@ -152,7 +175,7 @@ static void infer_completion_callback(void *args) |
|
|
|
precision_e precision; |
|
|
|
IEStatusCode status; |
|
|
|
RequestItem *request = args; |
|
|
|
TaskItem *task = request->task; |
|
|
|
TaskItem *task = request->tasks[0]; |
|
|
|
ie_blob_t *output_blob = NULL; |
|
|
|
ie_blob_buffer_t blob_buffer; |
|
|
|
DNNData output; |
|
|
|
@@ -194,41 +217,56 @@ static void infer_completion_callback(void *args) |
|
|
|
output.width = dims.dims[3]; |
|
|
|
output.dt = precision_to_datatype(precision); |
|
|
|
output.data = blob_buffer.buffer; |
|
|
|
if (task->do_ioproc) { |
|
|
|
if (task->ov_model->model->post_proc != NULL) { |
|
|
|
task->ov_model->model->post_proc(task->out_frame, &output, task->ov_model->model->filter_ctx); |
|
|
|
|
|
|
|
av_assert0(request->task_count <= dims.dims[0]); |
|
|
|
av_assert0(request->task_count >= 1); |
|
|
|
for (int i = 0; i < request->task_count; ++i) { |
|
|
|
task = request->tasks[i]; |
|
|
|
if (task->do_ioproc) { |
|
|
|
if (task->ov_model->model->post_proc != NULL) { |
|
|
|
task->ov_model->model->post_proc(task->out_frame, &output, task->ov_model->model->filter_ctx); |
|
|
|
} else { |
|
|
|
proc_from_dnn_to_frame(task->out_frame, &output, ctx); |
|
|
|
} |
|
|
|
} else { |
|
|
|
proc_from_dnn_to_frame(task->out_frame, &output, ctx); |
|
|
|
task->out_frame->width = output.width; |
|
|
|
task->out_frame->height = output.height; |
|
|
|
} |
|
|
|
} else { |
|
|
|
task->out_frame->width = output.width; |
|
|
|
task->out_frame->height = output.height; |
|
|
|
task->done = 1; |
|
|
|
output.data = (uint8_t *)output.data |
|
|
|
+ output.width * output.height * output.channels * get_datatype_size(output.dt); |
|
|
|
} |
|
|
|
ie_blob_free(&output_blob); |
|
|
|
|
|
|
|
request->task_count = 0; |
|
|
|
|
|
|
|
if (task->async) { |
|
|
|
request->task = NULL; |
|
|
|
if (ff_safe_queue_push_back(task->ov_model->request_queue, request) < 0) { |
|
|
|
av_log(ctx, AV_LOG_ERROR, "Failed to push back request_queue.\n"); |
|
|
|
return; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
task->done = 1; |
|
|
|
} |
|
|
|
|
|
|
|
static DNNReturnType execute_model_ov(TaskItem *task, RequestItem *request) |
|
|
|
static DNNReturnType execute_model_ov(RequestItem *request) |
|
|
|
{ |
|
|
|
IEStatusCode status; |
|
|
|
DNNReturnType ret; |
|
|
|
TaskItem *task = request->tasks[0]; |
|
|
|
OVContext *ctx = &task->ov_model->ctx; |
|
|
|
|
|
|
|
DNNReturnType ret = fill_model_input_ov(task->ov_model, task, request); |
|
|
|
if (ret != DNN_SUCCESS) { |
|
|
|
return ret; |
|
|
|
} |
|
|
|
|
|
|
|
if (task->async) { |
|
|
|
request->task = task; |
|
|
|
if (request->task_count < ctx->options.batch_size) { |
|
|
|
if (ff_safe_queue_push_front(task->ov_model->request_queue, request) < 0) { |
|
|
|
av_log(ctx, AV_LOG_ERROR, "Failed to push back request_queue.\n"); |
|
|
|
return DNN_ERROR; |
|
|
|
} |
|
|
|
return DNN_SUCCESS; |
|
|
|
} |
|
|
|
ret = fill_model_input_ov(task->ov_model, request); |
|
|
|
if (ret != DNN_SUCCESS) { |
|
|
|
return ret; |
|
|
|
} |
|
|
|
status = ie_infer_set_completion_callback(request->infer_request, &request->callback); |
|
|
|
if (status != OK) { |
|
|
|
av_log(ctx, AV_LOG_ERROR, "Failed to set completion callback for inference\n"); |
|
|
|
@@ -241,12 +279,15 @@ static DNNReturnType execute_model_ov(TaskItem *task, RequestItem *request) |
|
|
|
} |
|
|
|
return DNN_SUCCESS; |
|
|
|
} else { |
|
|
|
ret = fill_model_input_ov(task->ov_model, request); |
|
|
|
if (ret != DNN_SUCCESS) { |
|
|
|
return ret; |
|
|
|
} |
|
|
|
status = ie_infer_request_infer(request->infer_request); |
|
|
|
if (status != OK) { |
|
|
|
av_log(ctx, AV_LOG_ERROR, "Failed to start synchronous model inference\n"); |
|
|
|
return DNN_ERROR; |
|
|
|
} |
|
|
|
request->task = task; |
|
|
|
infer_completion_callback(request); |
|
|
|
return task->done ? DNN_SUCCESS : DNN_ERROR; |
|
|
|
} |
|
|
|
@@ -319,6 +360,7 @@ static DNNReturnType get_output_ov(void *model, const char *input_name, int inpu |
|
|
|
RequestItem request; |
|
|
|
AVFrame *in_frame = av_frame_alloc(); |
|
|
|
AVFrame *out_frame = NULL; |
|
|
|
TaskItem *ptask = &task; |
|
|
|
|
|
|
|
if (!in_frame) { |
|
|
|
av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for input frame\n"); |
|
|
|
@@ -343,8 +385,10 @@ static DNNReturnType get_output_ov(void *model, const char *input_name, int inpu |
|
|
|
task.ov_model = ov_model; |
|
|
|
|
|
|
|
request.infer_request = ov_model->infer_request; |
|
|
|
request.task_count = 1; |
|
|
|
request.tasks = &ptask; |
|
|
|
|
|
|
|
ret = execute_model_ov(&task, &request); |
|
|
|
ret = execute_model_ov(&request); |
|
|
|
*output_width = out_frame->width; |
|
|
|
*output_height = out_frame->height; |
|
|
|
|
|
|
|
@@ -393,6 +437,24 @@ DNNModel *ff_dnn_load_model_ov(const char *model_filename, const char *options, |
|
|
|
if (status != OK) |
|
|
|
goto err; |
|
|
|
|
|
|
|
// batch size |
|
|
|
if (ctx->options.batch_size <= 0) { |
|
|
|
ctx->options.batch_size = 1; |
|
|
|
} |
|
|
|
|
|
|
|
if (ctx->options.batch_size > 1) { |
|
|
|
input_shapes_t input_shapes; |
|
|
|
status = ie_network_get_input_shapes(ov_model->network, &input_shapes); |
|
|
|
if (status != OK) |
|
|
|
goto err; |
|
|
|
for (int i = 0; i < input_shapes.shape_num; i++) |
|
|
|
input_shapes.shapes[i].shape.dims[0] = ctx->options.batch_size; |
|
|
|
status = ie_network_reshape(ov_model->network, input_shapes); |
|
|
|
ie_network_input_shapes_free(&input_shapes); |
|
|
|
if (status != OK) |
|
|
|
goto err; |
|
|
|
} |
|
|
|
|
|
|
|
status = ie_core_load_network(ov_model->core, ov_model->network, ctx->options.device_type, &config, &ov_model->exe_network); |
|
|
|
if (status != OK) { |
|
|
|
av_log(ctx, AV_LOG_ERROR, "Failed to init OpenVINO model\n"); |
|
|
|
@@ -426,17 +488,24 @@ DNNModel *ff_dnn_load_model_ov(const char *model_filename, const char *options, |
|
|
|
} |
|
|
|
|
|
|
|
for (int i = 0; i < ctx->options.nireq; i++) { |
|
|
|
ie_infer_request_t *request; |
|
|
|
RequestItem *item = av_mallocz(sizeof(*item)); |
|
|
|
if (!item) { |
|
|
|
goto err; |
|
|
|
} |
|
|
|
status = ie_exec_network_create_infer_request(ov_model->exe_network, &request); |
|
|
|
|
|
|
|
status = ie_exec_network_create_infer_request(ov_model->exe_network, &item->infer_request); |
|
|
|
if (status != OK) { |
|
|
|
av_freep(&item); |
|
|
|
goto err; |
|
|
|
} |
|
|
|
item->infer_request = request; |
|
|
|
|
|
|
|
item->tasks = av_malloc_array(ctx->options.batch_size, sizeof(*item->tasks)); |
|
|
|
if (!item->tasks) { |
|
|
|
av_freep(&item); |
|
|
|
goto err; |
|
|
|
} |
|
|
|
item->task_count = 0; |
|
|
|
|
|
|
|
item->callback.completeCallBackFunc = infer_completion_callback; |
|
|
|
item->callback.args = item; |
|
|
|
if (ff_safe_queue_push_back(ov_model->request_queue, item) < 0) { |
|
|
|
@@ -469,6 +538,7 @@ DNNReturnType ff_dnn_execute_model_ov(const DNNModel *model, const char *input_n |
|
|
|
OVContext *ctx = &ov_model->ctx; |
|
|
|
TaskItem task; |
|
|
|
RequestItem request; |
|
|
|
TaskItem *ptask = &task; |
|
|
|
|
|
|
|
if (!in_frame) { |
|
|
|
av_log(ctx, AV_LOG_ERROR, "in frame is NULL when execute model.\n"); |
|
|
|
@@ -487,6 +557,11 @@ DNNReturnType ff_dnn_execute_model_ov(const DNNModel *model, const char *input_n |
|
|
|
return DNN_ERROR; |
|
|
|
} |
|
|
|
|
|
|
|
if (ctx->options.batch_size > 1) { |
|
|
|
av_log(ctx, AV_LOG_ERROR, "do not support batch mode for sync execution.\n"); |
|
|
|
return DNN_ERROR; |
|
|
|
} |
|
|
|
|
|
|
|
task.done = 0; |
|
|
|
task.do_ioproc = 1; |
|
|
|
task.async = 0; |
|
|
|
@@ -497,8 +572,10 @@ DNNReturnType ff_dnn_execute_model_ov(const DNNModel *model, const char *input_n |
|
|
|
task.ov_model = ov_model; |
|
|
|
|
|
|
|
request.infer_request = ov_model->infer_request; |
|
|
|
request.task_count = 1; |
|
|
|
request.tasks = &ptask; |
|
|
|
|
|
|
|
return execute_model_ov(&task, &request); |
|
|
|
return execute_model_ov(&request); |
|
|
|
} |
|
|
|
|
|
|
|
DNNReturnType ff_dnn_execute_model_async_ov(const DNNModel *model, const char *input_name, AVFrame *in_frame, |
|
|
|
@@ -545,7 +622,8 @@ DNNReturnType ff_dnn_execute_model_async_ov(const DNNModel *model, const char *i |
|
|
|
return DNN_ERROR; |
|
|
|
} |
|
|
|
|
|
|
|
return execute_model_ov(task, request); |
|
|
|
request->tasks[request->task_count++] = task; |
|
|
|
return execute_model_ov(request); |
|
|
|
} |
|
|
|
|
|
|
|
DNNAsyncStatusType ff_dnn_get_async_result_ov(const DNNModel *model, AVFrame **in, AVFrame **out) |
|
|
|
@@ -569,6 +647,48 @@ DNNAsyncStatusType ff_dnn_get_async_result_ov(const DNNModel *model, AVFrame **i |
|
|
|
return DAST_SUCCESS; |
|
|
|
} |
|
|
|
|
|
|
|
DNNReturnType ff_dnn_flush_ov(const DNNModel *model) |
|
|
|
{ |
|
|
|
OVModel *ov_model = (OVModel *)model->model; |
|
|
|
OVContext *ctx = &ov_model->ctx; |
|
|
|
RequestItem *request; |
|
|
|
IEStatusCode status; |
|
|
|
DNNReturnType ret; |
|
|
|
|
|
|
|
request = ff_safe_queue_pop_front(ov_model->request_queue); |
|
|
|
if (!request) { |
|
|
|
av_log(ctx, AV_LOG_ERROR, "unable to get infer request.\n"); |
|
|
|
return DNN_ERROR; |
|
|
|
} |
|
|
|
|
|
|
|
if (request->task_count == 0) { |
|
|
|
// no pending task need to flush |
|
|
|
if (ff_safe_queue_push_back(ov_model->request_queue, request) < 0) { |
|
|
|
av_log(ctx, AV_LOG_ERROR, "Failed to push back request_queue.\n"); |
|
|
|
return DNN_ERROR; |
|
|
|
} |
|
|
|
return DNN_SUCCESS; |
|
|
|
} |
|
|
|
|
|
|
|
ret = fill_model_input_ov(ov_model, request); |
|
|
|
if (ret != DNN_SUCCESS) { |
|
|
|
av_log(ctx, AV_LOG_ERROR, "Failed to fill model input.\n"); |
|
|
|
return ret; |
|
|
|
} |
|
|
|
status = ie_infer_set_completion_callback(request->infer_request, &request->callback); |
|
|
|
if (status != OK) { |
|
|
|
av_log(ctx, AV_LOG_ERROR, "Failed to set completion callback for inference\n"); |
|
|
|
return DNN_ERROR; |
|
|
|
} |
|
|
|
status = ie_infer_request_infer_async(request->infer_request); |
|
|
|
if (status != OK) { |
|
|
|
av_log(ctx, AV_LOG_ERROR, "Failed to start async inference\n"); |
|
|
|
return DNN_ERROR; |
|
|
|
} |
|
|
|
|
|
|
|
return DNN_SUCCESS; |
|
|
|
} |
|
|
|
|
|
|
|
void ff_dnn_free_model_ov(DNNModel **model) |
|
|
|
{ |
|
|
|
if (*model){ |
|
|
|
@@ -578,12 +698,15 @@ void ff_dnn_free_model_ov(DNNModel **model) |
|
|
|
if (item && item->infer_request) { |
|
|
|
ie_infer_request_free(&item->infer_request); |
|
|
|
} |
|
|
|
av_freep(&item->tasks); |
|
|
|
av_freep(&item); |
|
|
|
} |
|
|
|
ff_safe_queue_destroy(ov_model->request_queue); |
|
|
|
|
|
|
|
while (ff_queue_size(ov_model->task_queue) != 0) { |
|
|
|
TaskItem *item = ff_queue_pop_front(ov_model->task_queue); |
|
|
|
av_frame_free(&item->in_frame); |
|
|
|
av_frame_free(&item->out_frame); |
|
|
|
av_freep(&item); |
|
|
|
} |
|
|
|
ff_queue_destroy(ov_model->task_queue); |
|
|
|
|