Signed-off-by: Pedro Arthur <bygrandao@gmail.com>tags/n4.1
@@ -260,7 +260,7 @@ External library support: | |||
--enable-libsrt enable Haivision SRT protocol via libsrt [no] | |||
--enable-libssh enable SFTP protocol via libssh [no] | |||
--enable-libtensorflow enable TensorFlow as a DNN module backend | |||
for DNN based filters like srcnn [no] | |||
for DNN based filters like sr [no] | |||
--enable-libtesseract enable Tesseract, needed for ocr filter [no] | |||
--enable-libtheora enable Theora encoding via libtheora [no] | |||
--enable-libtls enable LibreSSL (via libtls), needed for https support | |||
@@ -3402,8 +3402,8 @@ spectrumsynth_filter_deps="avcodec" | |||
spectrumsynth_filter_select="fft" | |||
spp_filter_deps="gpl avcodec" | |||
spp_filter_select="fft idctdsp fdctdsp me_cmp pixblockdsp" | |||
srcnn_filter_deps="avformat" | |||
srcnn_filter_select="dnn" | |||
sr_filter_deps="avformat swscale" | |||
sr_filter_select="dnn" | |||
stereo3d_filter_deps="gpl" | |||
subtitles_filter_deps="avformat avcodec libass" | |||
super2xsai_filter_deps="gpl" | |||
@@ -6823,7 +6823,7 @@ enabled signature_filter && prepend avfilter_deps "avcodec avformat" | |||
enabled smartblur_filter && prepend avfilter_deps "swscale" | |||
enabled spectrumsynth_filter && prepend avfilter_deps "avcodec" | |||
enabled spp_filter && prepend avfilter_deps "avcodec" | |||
enabled srcnn_filter && prepend avfilter_deps "avformat" | |||
enabled sr_filter && prepend avfilter_deps "avformat" | |||
enabled subtitles_filter && prepend avfilter_deps "avformat avcodec" | |||
enabled uspp_filter && prepend avfilter_deps "avcodec" | |||
enabled zoompan_filter && prepend avfilter_deps "swscale" | |||
@@ -340,7 +340,7 @@ OBJS-$(CONFIG_SMARTBLUR_FILTER) += vf_smartblur.o | |||
OBJS-$(CONFIG_SOBEL_FILTER) += vf_convolution.o | |||
OBJS-$(CONFIG_SPLIT_FILTER) += split.o | |||
OBJS-$(CONFIG_SPP_FILTER) += vf_spp.o | |||
OBJS-$(CONFIG_SRCNN_FILTER) += vf_srcnn.o | |||
OBJS-$(CONFIG_SR_FILTER) += vf_sr.o | |||
OBJS-$(CONFIG_SSIM_FILTER) += vf_ssim.o framesync.o | |||
OBJS-$(CONFIG_STEREO3D_FILTER) += vf_stereo3d.o | |||
OBJS-$(CONFIG_STREAMSELECT_FILTER) += f_streamselect.o framesync.o | |||
@@ -328,7 +328,7 @@ extern AVFilter ff_vf_smartblur; | |||
extern AVFilter ff_vf_sobel; | |||
extern AVFilter ff_vf_split; | |||
extern AVFilter ff_vf_spp; | |||
extern AVFilter ff_vf_srcnn; | |||
extern AVFilter ff_vf_sr; | |||
extern AVFilter ff_vf_ssim; | |||
extern AVFilter ff_vf_stereo3d; | |||
extern AVFilter ff_vf_streamselect; | |||
@@ -25,9 +25,12 @@ | |||
#include "dnn_backend_native.h" | |||
#include "dnn_srcnn.h" | |||
#include "dnn_espcn.h" | |||
#include "libavformat/avio.h" | |||
typedef enum {INPUT, CONV} LayerType; | |||
typedef enum {INPUT, CONV, DEPTH_TO_SPACE} LayerType; | |||
typedef enum {RELU, TANH, SIGMOID} ActivationFunc; | |||
typedef struct Layer{ | |||
LayerType type; | |||
@@ -37,6 +40,7 @@ typedef struct Layer{ | |||
typedef struct ConvolutionalParams{ | |||
int32_t input_num, output_num, kernel_size; | |||
ActivationFunc activation; | |||
float* kernel; | |||
float* biases; | |||
} ConvolutionalParams; | |||
@@ -45,17 +49,22 @@ typedef struct InputParams{ | |||
int height, width, channels; | |||
} InputParams; | |||
typedef struct DepthToSpaceParams{ | |||
int block_size; | |||
} DepthToSpaceParams; | |||
// Represents simple feed-forward convolutional network. | |||
typedef struct ConvolutionalNetwork{ | |||
Layer* layers; | |||
int32_t layers_num; | |||
} ConvolutionalNetwork; | |||
static DNNReturnType set_input_output_native(void* model, const DNNData* input, const DNNData* output) | |||
static DNNReturnType set_input_output_native(void* model, DNNData* input, DNNData* output) | |||
{ | |||
ConvolutionalNetwork* network = (ConvolutionalNetwork*)model; | |||
InputParams* input_params; | |||
ConvolutionalParams* conv_params; | |||
DepthToSpaceParams* depth_to_space_params; | |||
int cur_width, cur_height, cur_channels; | |||
int32_t layer; | |||
@@ -63,11 +72,17 @@ static DNNReturnType set_input_output_native(void* model, const DNNData* input, | |||
return DNN_ERROR; | |||
} | |||
else{ | |||
network->layers[0].output = input->data; | |||
input_params = (InputParams*)network->layers[0].params; | |||
input_params->width = cur_width = input->width; | |||
input_params->height = cur_height = input->height; | |||
input_params->channels = cur_channels = input->channels; | |||
if (input->data){ | |||
av_freep(&input->data); | |||
} | |||
network->layers[0].output = input->data = av_malloc(cur_height * cur_width * cur_channels * sizeof(float)); | |||
if (!network->layers[0].output){ | |||
return DNN_ERROR; | |||
} | |||
} | |||
for (layer = 1; layer < network->layers_num; ++layer){ | |||
@@ -78,32 +93,40 @@ static DNNReturnType set_input_output_native(void* model, const DNNData* input, | |||
return DNN_ERROR; | |||
} | |||
cur_channels = conv_params->output_num; | |||
if (layer < network->layers_num - 1){ | |||
if (!network->layers[layer].output){ | |||
av_freep(&network->layers[layer].output); | |||
} | |||
network->layers[layer].output = av_malloc(cur_height * cur_width * cur_channels * sizeof(float)); | |||
if (!network->layers[layer].output){ | |||
return DNN_ERROR; | |||
} | |||
} | |||
else{ | |||
network->layers[layer].output = output->data; | |||
if (output->width != cur_width || output->height != cur_height || output->channels != cur_channels){ | |||
return DNN_ERROR; | |||
} | |||
break; | |||
case DEPTH_TO_SPACE: | |||
depth_to_space_params = (DepthToSpaceParams*)network->layers[layer].params; | |||
if (cur_channels % (depth_to_space_params->block_size * depth_to_space_params->block_size) != 0){ | |||
return DNN_ERROR; | |||
} | |||
cur_channels = cur_channels / (depth_to_space_params->block_size * depth_to_space_params->block_size); | |||
cur_height *= depth_to_space_params->block_size; | |||
cur_width *= depth_to_space_params->block_size; | |||
break; | |||
default: | |||
return DNN_ERROR; | |||
} | |||
if (network->layers[layer].output){ | |||
av_freep(&network->layers[layer].output); | |||
} | |||
network->layers[layer].output = av_malloc(cur_height * cur_width * cur_channels * sizeof(float)); | |||
if (!network->layers[layer].output){ | |||
return DNN_ERROR; | |||
} | |||
} | |||
output->data = network->layers[network->layers_num - 1].output; | |||
output->height = cur_height; | |||
output->width = cur_width; | |||
output->channels = cur_channels; | |||
return DNN_SUCCESS; | |||
} | |||
// Loads model and its parameters that are stored in a binary file with following structure: | |||
// layers_num,conv_input_num,conv_output_num,conv_kernel_size,conv_kernel,conv_biases,conv_input_num... | |||
// layers_num,layer_type,layer_parameterss,layer_type,layer_parameters... | |||
// For CONV layer: activation_function, input_num, output_num, kernel_size, kernel, biases | |||
// For DEPTH_TO_SPACE layer: block_size | |||
DNNModel* ff_dnn_load_model_native(const char* model_filename) | |||
{ | |||
DNNModel* model = NULL; | |||
@@ -111,7 +134,9 @@ DNNModel* ff_dnn_load_model_native(const char* model_filename) | |||
AVIOContext* model_file_context; | |||
int file_size, dnn_size, kernel_size, i; | |||
int32_t layer; | |||
LayerType layer_type; | |||
ConvolutionalParams* conv_params; | |||
DepthToSpaceParams* depth_to_space_params; | |||
model = av_malloc(sizeof(DNNModel)); | |||
if (!model){ | |||
@@ -156,39 +181,62 @@ DNNModel* ff_dnn_load_model_native(const char* model_filename) | |||
} | |||
for (layer = 1; layer < network->layers_num; ++layer){ | |||
conv_params = av_malloc(sizeof(ConvolutionalParams)); | |||
if (!conv_params){ | |||
avio_closep(&model_file_context); | |||
ff_dnn_free_model_native(&model); | |||
return NULL; | |||
} | |||
conv_params->input_num = (int32_t)avio_rl32(model_file_context); | |||
conv_params->output_num = (int32_t)avio_rl32(model_file_context); | |||
conv_params->kernel_size = (int32_t)avio_rl32(model_file_context); | |||
kernel_size = conv_params->input_num * conv_params->output_num * | |||
conv_params->kernel_size * conv_params->kernel_size; | |||
dnn_size += 12 + (kernel_size + conv_params->output_num << 2); | |||
if (dnn_size > file_size || conv_params->input_num <= 0 || | |||
conv_params->output_num <= 0 || conv_params->kernel_size <= 0){ | |||
avio_closep(&model_file_context); | |||
ff_dnn_free_model_native(&model); | |||
return NULL; | |||
} | |||
conv_params->kernel = av_malloc(kernel_size * sizeof(float)); | |||
conv_params->biases = av_malloc(conv_params->output_num * sizeof(float)); | |||
if (!conv_params->kernel || !conv_params->biases){ | |||
layer_type = (int32_t)avio_rl32(model_file_context); | |||
dnn_size += 4; | |||
switch (layer_type){ | |||
case CONV: | |||
conv_params = av_malloc(sizeof(ConvolutionalParams)); | |||
if (!conv_params){ | |||
avio_closep(&model_file_context); | |||
ff_dnn_free_model_native(&model); | |||
return NULL; | |||
} | |||
conv_params->activation = (int32_t)avio_rl32(model_file_context); | |||
conv_params->input_num = (int32_t)avio_rl32(model_file_context); | |||
conv_params->output_num = (int32_t)avio_rl32(model_file_context); | |||
conv_params->kernel_size = (int32_t)avio_rl32(model_file_context); | |||
kernel_size = conv_params->input_num * conv_params->output_num * | |||
conv_params->kernel_size * conv_params->kernel_size; | |||
dnn_size += 16 + (kernel_size + conv_params->output_num << 2); | |||
if (dnn_size > file_size || conv_params->input_num <= 0 || | |||
conv_params->output_num <= 0 || conv_params->kernel_size <= 0){ | |||
avio_closep(&model_file_context); | |||
ff_dnn_free_model_native(&model); | |||
return NULL; | |||
} | |||
conv_params->kernel = av_malloc(kernel_size * sizeof(float)); | |||
conv_params->biases = av_malloc(conv_params->output_num * sizeof(float)); | |||
if (!conv_params->kernel || !conv_params->biases){ | |||
avio_closep(&model_file_context); | |||
ff_dnn_free_model_native(&model); | |||
return NULL; | |||
} | |||
for (i = 0; i < kernel_size; ++i){ | |||
conv_params->kernel[i] = av_int2float(avio_rl32(model_file_context)); | |||
} | |||
for (i = 0; i < conv_params->output_num; ++i){ | |||
conv_params->biases[i] = av_int2float(avio_rl32(model_file_context)); | |||
} | |||
network->layers[layer].type = CONV; | |||
network->layers[layer].params = conv_params; | |||
break; | |||
case DEPTH_TO_SPACE: | |||
depth_to_space_params = av_malloc(sizeof(DepthToSpaceParams)); | |||
if (!depth_to_space_params){ | |||
avio_closep(&model_file_context); | |||
ff_dnn_free_model_native(&model); | |||
return NULL; | |||
} | |||
depth_to_space_params->block_size = (int32_t)avio_rl32(model_file_context); | |||
dnn_size += 4; | |||
network->layers[layer].type = DEPTH_TO_SPACE; | |||
network->layers[layer].params = depth_to_space_params; | |||
break; | |||
default: | |||
avio_closep(&model_file_context); | |||
ff_dnn_free_model_native(&model); | |||
return NULL; | |||
} | |||
for (i = 0; i < kernel_size; ++i){ | |||
conv_params->kernel[i] = av_int2float(avio_rl32(model_file_context)); | |||
} | |||
for (i = 0; i < conv_params->output_num; ++i){ | |||
conv_params->biases[i] = av_int2float(avio_rl32(model_file_context)); | |||
} | |||
network->layers[layer].type = CONV; | |||
network->layers[layer].params = conv_params; | |||
} | |||
avio_closep(&model_file_context); | |||
@@ -203,7 +251,8 @@ DNNModel* ff_dnn_load_model_native(const char* model_filename) | |||
return model; | |||
} | |||
static int set_up_conv_layer(Layer* layer, const float* kernel, const float* biases, int32_t input_num, int32_t output_num, int32_t size) | |||
static int set_up_conv_layer(Layer* layer, const float* kernel, const float* biases, ActivationFunc activation, | |||
int32_t input_num, int32_t output_num, int32_t size) | |||
{ | |||
ConvolutionalParams* conv_params; | |||
int kernel_size; | |||
@@ -212,6 +261,7 @@ static int set_up_conv_layer(Layer* layer, const float* kernel, const float* bia | |||
if (!conv_params){ | |||
return DNN_ERROR; | |||
} | |||
conv_params->activation = activation; | |||
conv_params->input_num = input_num; | |||
conv_params->output_num = output_num; | |||
conv_params->kernel_size = size; | |||
@@ -236,6 +286,7 @@ DNNModel* ff_dnn_load_default_model_native(DNNDefaultModel model_type) | |||
{ | |||
DNNModel* model = NULL; | |||
ConvolutionalNetwork* network = NULL; | |||
DepthToSpaceParams* depth_to_space_params; | |||
int32_t layer; | |||
model = av_malloc(sizeof(DNNModel)); | |||
@@ -253,45 +304,68 @@ DNNModel* ff_dnn_load_default_model_native(DNNDefaultModel model_type) | |||
switch (model_type){ | |||
case DNN_SRCNN: | |||
network->layers_num = 4; | |||
break; | |||
case DNN_ESPCN: | |||
network->layers_num = 5; | |||
break; | |||
default: | |||
av_freep(&network); | |||
av_freep(&model); | |||
return NULL; | |||
} | |||
network->layers = av_malloc(network->layers_num * sizeof(Layer)); | |||
if (!network->layers){ | |||
av_freep(&network); | |||
av_freep(&model); | |||
return NULL; | |||
} | |||
network->layers = av_malloc(network->layers_num * sizeof(Layer)); | |||
if (!network->layers){ | |||
av_freep(&network); | |||
av_freep(&model); | |||
return NULL; | |||
} | |||
for (layer = 0; layer < network->layers_num; ++layer){ | |||
network->layers[layer].output = NULL; | |||
network->layers[layer].params = NULL; | |||
for (layer = 0; layer < network->layers_num; ++layer){ | |||
network->layers[layer].output = NULL; | |||
network->layers[layer].params = NULL; | |||
} | |||
network->layers[0].type = INPUT; | |||
network->layers[0].params = av_malloc(sizeof(InputParams)); | |||
if (!network->layers[0].params){ | |||
ff_dnn_free_model_native(&model); | |||
return NULL; | |||
} | |||
switch (model_type){ | |||
case DNN_SRCNN: | |||
if (set_up_conv_layer(network->layers + 1, srcnn_conv1_kernel, srcnn_conv1_biases, RELU, 1, 64, 9) != DNN_SUCCESS || | |||
set_up_conv_layer(network->layers + 2, srcnn_conv2_kernel, srcnn_conv2_biases, RELU, 64, 32, 1) != DNN_SUCCESS || | |||
set_up_conv_layer(network->layers + 3, srcnn_conv3_kernel, srcnn_conv3_biases, RELU, 32, 1, 5) != DNN_SUCCESS){ | |||
ff_dnn_free_model_native(&model); | |||
return NULL; | |||
} | |||
network->layers[0].type = INPUT; | |||
network->layers[0].params = av_malloc(sizeof(InputParams)); | |||
if (!network->layers[0].params){ | |||
break; | |||
case DNN_ESPCN: | |||
if (set_up_conv_layer(network->layers + 1, espcn_conv1_kernel, espcn_conv1_biases, TANH, 1, 64, 5) != DNN_SUCCESS || | |||
set_up_conv_layer(network->layers + 2, espcn_conv2_kernel, espcn_conv2_biases, TANH, 64, 32, 3) != DNN_SUCCESS || | |||
set_up_conv_layer(network->layers + 3, espcn_conv3_kernel, espcn_conv3_biases, SIGMOID, 32, 4, 3) != DNN_SUCCESS){ | |||
ff_dnn_free_model_native(&model); | |||
return NULL; | |||
} | |||
if (set_up_conv_layer(network->layers + 1, conv1_kernel, conv1_biases, 1, 64, 9) != DNN_SUCCESS || | |||
set_up_conv_layer(network->layers + 2, conv2_kernel, conv2_biases, 64, 32, 1) != DNN_SUCCESS || | |||
set_up_conv_layer(network->layers + 3, conv3_kernel, conv3_biases, 32, 1, 5) != DNN_SUCCESS){ | |||
network->layers[4].type = DEPTH_TO_SPACE; | |||
depth_to_space_params = av_malloc(sizeof(DepthToSpaceParams)); | |||
if (!depth_to_space_params){ | |||
ff_dnn_free_model_native(&model); | |||
return NULL; | |||
} | |||
depth_to_space_params->block_size = 2; | |||
network->layers[4].params = depth_to_space_params; | |||
} | |||
model->set_input_output = &set_input_output_native; | |||
model->set_input_output = &set_input_output_native; | |||
return model; | |||
default: | |||
av_freep(&network); | |||
av_freep(&model); | |||
return NULL; | |||
} | |||
return model; | |||
} | |||
#define CLAMP_TO_EDGE(x, w) ((x) < 0 ? 0 : ((x) >= (w) ? (w - 1) : (x))) | |||
static void convolve(const float* input, float* output, const ConvolutionalParams* conv_params, int32_t width, int32_t height) | |||
static void convolve(const float* input, float* output, const ConvolutionalParams* conv_params, int width, int height) | |||
{ | |||
int y, x, n_filter, ch, kernel_y, kernel_x; | |||
int radius = conv_params->kernel_size >> 1; | |||
@@ -313,19 +387,53 @@ static void convolve(const float* input, float* output, const ConvolutionalParam | |||
} | |||
} | |||
} | |||
output[n_filter] = FFMAX(output[n_filter], 0.0); | |||
switch (conv_params->activation){ | |||
case RELU: | |||
output[n_filter] = FFMAX(output[n_filter], 0.0); | |||
break; | |||
case TANH: | |||
output[n_filter] = 2.0f / (1.0f + exp(-2.0f * output[n_filter])) - 1.0f; | |||
break; | |||
case SIGMOID: | |||
output[n_filter] = 1.0f / (1.0f + exp(-output[n_filter])); | |||
} | |||
} | |||
output += conv_params->output_num; | |||
} | |||
} | |||
} | |||
static void depth_to_space(const float* input, float* output, int block_size, int width, int height, int channels) | |||
{ | |||
int y, x, by, bx, ch; | |||
int new_channels = channels / (block_size * block_size); | |||
int output_linesize = width * channels; | |||
int by_linesize = output_linesize / block_size; | |||
int x_linesize = new_channels * block_size; | |||
for (y = 0; y < height; ++y){ | |||
for (x = 0; x < width; ++x){ | |||
for (by = 0; by < block_size; ++by){ | |||
for (bx = 0; bx < block_size; ++bx){ | |||
for (ch = 0; ch < new_channels; ++ch){ | |||
output[by * by_linesize + x * x_linesize + bx * new_channels + ch] = input[ch]; | |||
} | |||
input += new_channels; | |||
} | |||
} | |||
} | |||
output += output_linesize; | |||
} | |||
} | |||
DNNReturnType ff_dnn_execute_model_native(const DNNModel* model) | |||
{ | |||
ConvolutionalNetwork* network = (ConvolutionalNetwork*)model->model; | |||
InputParams* input_params; | |||
int cur_width, cur_height; | |||
int cur_width, cur_height, cur_channels; | |||
int32_t layer; | |||
InputParams* input_params; | |||
ConvolutionalParams* conv_params; | |||
DepthToSpaceParams* depth_to_space_params; | |||
if (network->layers_num <= 0 || network->layers[0].type != INPUT || !network->layers[0].output){ | |||
return DNN_ERROR; | |||
@@ -334,6 +442,7 @@ DNNReturnType ff_dnn_execute_model_native(const DNNModel* model) | |||
input_params = (InputParams*)network->layers[0].params; | |||
cur_width = input_params->width; | |||
cur_height = input_params->height; | |||
cur_channels = input_params->channels; | |||
} | |||
for (layer = 1; layer < network->layers_num; ++layer){ | |||
@@ -342,7 +451,17 @@ DNNReturnType ff_dnn_execute_model_native(const DNNModel* model) | |||
} | |||
switch (network->layers[layer].type){ | |||
case CONV: | |||
convolve(network->layers[layer - 1].output, network->layers[layer].output, (ConvolutionalParams*)network->layers[layer].params, cur_width, cur_height); | |||
conv_params = (ConvolutionalParams*)network->layers[layer].params; | |||
convolve(network->layers[layer - 1].output, network->layers[layer].output, conv_params, cur_width, cur_height); | |||
cur_channels = conv_params->output_num; | |||
break; | |||
case DEPTH_TO_SPACE: | |||
depth_to_space_params = (DepthToSpaceParams*)network->layers[layer].params; | |||
depth_to_space(network->layers[layer - 1].output, network->layers[layer].output, | |||
depth_to_space_params->block_size, cur_width, cur_height, cur_channels); | |||
cur_height *= depth_to_space_params->block_size; | |||
cur_width *= depth_to_space_params->block_size; | |||
cur_channels /= depth_to_space_params->block_size * depth_to_space_params->block_size; | |||
break; | |||
case INPUT: | |||
return DNN_ERROR; | |||
@@ -362,19 +481,13 @@ void ff_dnn_free_model_native(DNNModel** model) | |||
{ | |||
network = (ConvolutionalNetwork*)(*model)->model; | |||
for (layer = 0; layer < network->layers_num; ++layer){ | |||
switch (network->layers[layer].type){ | |||
case CONV: | |||
if (layer < network->layers_num - 1){ | |||
av_freep(&network->layers[layer].output); | |||
} | |||
av_freep(&network->layers[layer].output); | |||
if (network->layers[layer].type == CONV){ | |||
conv_params = (ConvolutionalParams*)network->layers[layer].params; | |||
av_freep(&conv_params->kernel); | |||
av_freep(&conv_params->biases); | |||
av_freep(&conv_params); | |||
break; | |||
case INPUT: | |||
av_freep(&network->layers[layer].params); | |||
} | |||
av_freep(&network->layers[layer].params); | |||
} | |||
av_freep(network); | |||
av_freep(model); | |||
@@ -25,6 +25,7 @@ | |||
#include "dnn_backend_tf.h" | |||
#include "dnn_srcnn.h" | |||
#include "dnn_espcn.h" | |||
#include "libavformat/avio.h" | |||
#include <tensorflow/c/c_api.h> | |||
@@ -35,9 +36,7 @@ typedef struct TFModel{ | |||
TF_Status* status; | |||
TF_Output input, output; | |||
TF_Tensor* input_tensor; | |||
TF_Tensor* output_tensor; | |||
const DNNData* input_data; | |||
const DNNData* output_data; | |||
DNNData* output_data; | |||
} TFModel; | |||
static void free_buffer(void* data, size_t length) | |||
@@ -78,13 +77,13 @@ static TF_Buffer* read_graph(const char* model_filename) | |||
return graph_buf; | |||
} | |||
static DNNReturnType set_input_output_tf(void* model, const DNNData* input, const DNNData* output) | |||
static DNNReturnType set_input_output_tf(void* model, DNNData* input, DNNData* output) | |||
{ | |||
TFModel* tf_model = (TFModel*)model; | |||
int64_t input_dims[] = {1, input->height, input->width, input->channels}; | |||
int64_t output_dims[] = {1, output->height, output->width, output->channels}; | |||
TF_SessionOptions* sess_opts; | |||
const TF_Operation* init_op = TF_GraphOperationByName(tf_model->graph, "init"); | |||
TF_Tensor* output_tensor; | |||
// Input operation should be named 'x' | |||
tf_model->input.oper = TF_GraphOperationByName(tf_model->graph, "x"); | |||
@@ -100,6 +99,7 @@ static DNNReturnType set_input_output_tf(void* model, const DNNData* input, cons | |||
if (!tf_model->input_tensor){ | |||
return DNN_ERROR; | |||
} | |||
input->data = (float*)TF_TensorData(tf_model->input_tensor); | |||
// Output operation should be named 'y' | |||
tf_model->output.oper = TF_GraphOperationByName(tf_model->graph, "y"); | |||
@@ -107,17 +107,6 @@ static DNNReturnType set_input_output_tf(void* model, const DNNData* input, cons | |||
return DNN_ERROR; | |||
} | |||
tf_model->output.index = 0; | |||
if (tf_model->output_tensor){ | |||
TF_DeleteTensor(tf_model->output_tensor); | |||
} | |||
tf_model->output_tensor = TF_AllocateTensor(TF_FLOAT, output_dims, 4, | |||
output_dims[1] * output_dims[2] * output_dims[3] * sizeof(float)); | |||
if (!tf_model->output_tensor){ | |||
return DNN_ERROR; | |||
} | |||
tf_model->input_data = input; | |||
tf_model->output_data = output; | |||
if (tf_model->session){ | |||
TF_CloseSession(tf_model->session, tf_model->status); | |||
@@ -144,6 +133,26 @@ static DNNReturnType set_input_output_tf(void* model, const DNNData* input, cons | |||
} | |||
} | |||
// Execute network to get output height, width and number of channels | |||
TF_SessionRun(tf_model->session, NULL, | |||
&tf_model->input, &tf_model->input_tensor, 1, | |||
&tf_model->output, &output_tensor, 1, | |||
NULL, 0, NULL, tf_model->status); | |||
if (TF_GetCode(tf_model->status) != TF_OK){ | |||
return DNN_ERROR; | |||
} | |||
else{ | |||
output->height = TF_Dim(output_tensor, 1); | |||
output->width = TF_Dim(output_tensor, 2); | |||
output->channels = TF_Dim(output_tensor, 3); | |||
output->data = av_malloc(output->height * output->width * output->channels * sizeof(float)); | |||
if (!output->data){ | |||
return DNN_ERROR; | |||
} | |||
tf_model->output_data = output; | |||
TF_DeleteTensor(output_tensor); | |||
} | |||
return DNN_SUCCESS; | |||
} | |||
@@ -166,7 +175,7 @@ DNNModel* ff_dnn_load_model_tf(const char* model_filename) | |||
} | |||
tf_model->session = NULL; | |||
tf_model->input_tensor = NULL; | |||
tf_model->output_tensor = NULL; | |||
tf_model->output_data = NULL; | |||
graph_def = read_graph(model_filename); | |||
if (!graph_def){ | |||
@@ -215,6 +224,17 @@ DNNModel* ff_dnn_load_default_model_tf(DNNDefaultModel model_type) | |||
graph_def->length = srcnn_tf_size; | |||
graph_def->data_deallocator = free_buffer; | |||
break; | |||
case DNN_ESPCN: | |||
graph_data = av_malloc(espcn_tf_size); | |||
if (!graph_data){ | |||
TF_DeleteBuffer(graph_def); | |||
return NULL; | |||
} | |||
memcpy(graph_data, espcn_tf_model, espcn_tf_size); | |||
graph_def->data = (void*)graph_data; | |||
graph_def->length = espcn_tf_size; | |||
graph_def->data_deallocator = free_buffer; | |||
break; | |||
default: | |||
TF_DeleteBuffer(graph_def); | |||
return NULL; | |||
@@ -234,7 +254,7 @@ DNNModel* ff_dnn_load_default_model_tf(DNNDefaultModel model_type) | |||
} | |||
tf_model->session = NULL; | |||
tf_model->input_tensor = NULL; | |||
tf_model->output_tensor = NULL; | |||
tf_model->output_data = NULL; | |||
tf_model->graph = TF_NewGraph(); | |||
tf_model->status = TF_NewStatus(); | |||
@@ -259,23 +279,21 @@ DNNModel* ff_dnn_load_default_model_tf(DNNDefaultModel model_type) | |||
DNNReturnType ff_dnn_execute_model_tf(const DNNModel* model) | |||
{ | |||
TFModel* tf_model = (TFModel*)model->model; | |||
memcpy(TF_TensorData(tf_model->input_tensor), tf_model->input_data->data, | |||
tf_model->input_data->height * tf_model->input_data->width * | |||
tf_model->input_data->channels * sizeof(float)); | |||
TF_Tensor* output_tensor; | |||
TF_SessionRun(tf_model->session, NULL, | |||
&tf_model->input, &tf_model->input_tensor, 1, | |||
&tf_model->output, &tf_model->output_tensor, 1, | |||
&tf_model->output, &output_tensor, 1, | |||
NULL, 0, NULL, tf_model->status); | |||
if (TF_GetCode(tf_model->status) != TF_OK){ | |||
return DNN_ERROR; | |||
} | |||
else{ | |||
memcpy(tf_model->output_data->data, TF_TensorData(tf_model->output_tensor), | |||
tf_model->output_data->height * tf_model->output_data->width * | |||
tf_model->output_data->channels * sizeof(float)); | |||
memcpy(tf_model->output_data->data, TF_TensorData(output_tensor), | |||
tf_model->output_data->height * tf_model->output_data->width * | |||
tf_model->output_data->channels * sizeof(float)); | |||
TF_DeleteTensor(output_tensor); | |||
return DNN_SUCCESS; | |||
} | |||
@@ -300,9 +318,7 @@ void ff_dnn_free_model_tf(DNNModel** model) | |||
if (tf_model->input_tensor){ | |||
TF_DeleteTensor(tf_model->input_tensor); | |||
} | |||
if (tf_model->output_tensor){ | |||
TF_DeleteTensor(tf_model->output_tensor); | |||
} | |||
av_freep(&tf_model->output_data->data); | |||
av_freep(&tf_model); | |||
av_freep(model); | |||
} | |||
@@ -30,7 +30,7 @@ typedef enum {DNN_SUCCESS, DNN_ERROR} DNNReturnType; | |||
typedef enum {DNN_NATIVE, DNN_TF} DNNBackendType; | |||
typedef enum {DNN_SRCNN} DNNDefaultModel; | |||
typedef enum {DNN_SRCNN, DNN_ESPCN} DNNDefaultModel; | |||
typedef struct DNNData{ | |||
float* data; | |||
@@ -42,7 +42,7 @@ typedef struct DNNModel{ | |||
void* model; | |||
// Sets model input and output, while allocating additional memory for intermediate calculations. | |||
// Should be called at least once before model execution. | |||
DNNReturnType (*set_input_output)(void* model, const DNNData* input, const DNNData* output); | |||
DNNReturnType (*set_input_output)(void* model, DNNData* input, DNNData* output); | |||
} DNNModel; | |||
// Stores pointers to functions for loading, executing, freeing DNN models for one of the backends. | |||
@@ -20,13 +20,13 @@ | |||
/** | |||
* @file | |||
* Default cnn weights for x2 upsampling with srcnn filter. | |||
* Default cnn weights for x2 upsampling with srcnn model. | |||
*/ | |||
#ifndef AVFILTER_DNN_SRCNN_H | |||
#define AVFILTER_DNN_SRCNN_H | |||
static const float conv1_kernel[] = { | |||
static const float srcnn_conv1_kernel[] = { | |||
-0.08866338f, 0.055409566f, 0.037196506f, -0.11961404f, | |||
-0.12341991f, 0.29963422f, -0.0911817f, -0.00013613555f, | |||
-0.049023595f, 0.038421184f, -0.077267796f, 0.027273094f, | |||
@@ -1325,7 +1325,7 @@ static const float conv1_kernel[] = { | |||
-0.013759381f, 0.026358005f, 0.088238746f, 0.082134426f | |||
}; | |||
static const float conv1_biases[] = { | |||
static const float srcnn_conv1_biases[] = { | |||
-0.016606892f, -0.011107335f, -0.0048309686f, -0.04867378f, | |||
-0.030040957f, -0.07297248f, -0.019458665f, -0.009738028f, | |||
0.6951231f, -0.07369442f, -0.01354204f, 0.010336088f, | |||
@@ -1344,7 +1344,7 @@ static const float conv1_biases[] = { | |||
0.054407462f, -0.08068252f, -0.009446503f, -0.04663234f | |||
}; | |||
static const float conv2_kernel[] = { | |||
static const float srcnn_conv2_kernel[] = { | |||
-0.24004751f, 0.1037138f, 0.11173403f, 0.04352092f, | |||
-0.23728481f, 0.12153747f, -0.23676059f, -0.28548065f, | |||
-0.612738f, -0.12218937f, -0.06005159f, 0.1850652f, | |||
@@ -1859,7 +1859,7 @@ static const float conv2_kernel[] = { | |||
0.11089696f, -0.08941251f, -0.3529318f, 0.0654588f | |||
}; | |||
static const float conv2_biases[] = { | |||
static const float srcnn_conv2_biases[] = { | |||
0.12326373f, 0.13270757f, 0.07082674f, 0.051456157f, | |||
0.058445618f, 0.13153197f, 0.0809729f, 0.10153213f, | |||
0.055915363f, 0.05228166f, -0.11212896f, 0.07462141f, | |||
@@ -1870,7 +1870,7 @@ static const float conv2_biases[] = { | |||
-0.086404406f, 0.06046943f, -0.1733751f, 0.2654999f | |||
}; | |||
static const float conv3_kernel[] = { | |||
static const float srcnn_conv3_kernel[] = { | |||
-0.01733648f, 0.01492609f, 0.019393086f, -0.004445322f, | |||
0.026939709f, 0.00038831023f, 0.004221528f, 0.0050745453f, | |||
0.0129861f, 0.008007169f, 0.008950762f, 0.005279691f, | |||
@@ -2073,7 +2073,7 @@ static const float conv3_kernel[] = { | |||
0.012931146f, 0.0046948805f, 0.013098622f, -0.015422701f | |||
}; | |||
static const float conv3_biases[] = { | |||
static const float srcnn_conv3_biases[] = { | |||
0.05037664f | |||
}; | |||
@@ -0,0 +1,354 @@ | |||
/* | |||
* Copyright (c) 2018 Sergey Lavrushkin | |||
* | |||
* This file is part of FFmpeg. | |||
* | |||
* FFmpeg is free software; you can redistribute it and/or | |||
* modify it under the terms of the GNU Lesser General Public | |||
* License as published by the Free Software Foundation; either | |||
* version 2.1 of the License, or (at your option) any later version. | |||
* | |||
* FFmpeg is distributed in the hope that it will be useful, | |||
* but WITHOUT ANY WARRANTY; without even the implied warranty of | |||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |||
* Lesser General Public License for more details. | |||
* | |||
* You should have received a copy of the GNU Lesser General Public | |||
* License along with FFmpeg; if not, write to the Free Software | |||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |||
*/ | |||
/** | |||
* @file | |||
* Filter implementing image super-resolution using deep convolutional networks. | |||
* https://arxiv.org/abs/1501.00092 | |||
* https://arxiv.org/abs/1609.05158 | |||
*/ | |||
#include "avfilter.h" | |||
#include "formats.h" | |||
#include "internal.h" | |||
#include "libavutil/opt.h" | |||
#include "libavformat/avio.h" | |||
#include "libswscale/swscale.h" | |||
#include "dnn_interface.h" | |||
typedef enum {SRCNN, ESPCN} SRModel; | |||
typedef struct SRContext { | |||
const AVClass *class; | |||
SRModel model_type; | |||
char* model_filename; | |||
DNNBackendType backend_type; | |||
DNNModule* dnn_module; | |||
DNNModel* model; | |||
DNNData input, output; | |||
int scale_factor; | |||
struct SwsContext* sws_context; | |||
int sws_slice_h; | |||
} SRContext; | |||
#define OFFSET(x) offsetof(SRContext, x) | |||
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM | |||
static const AVOption sr_options[] = { | |||
{ "model", "specifies what DNN model to use", OFFSET(model_type), AV_OPT_TYPE_FLAGS, { .i64 = 0 }, 0, 1, FLAGS, "model_type" }, | |||
{ "srcnn", "Super-Resolution Convolutional Neural Network model (scale factor should be specified for custom SRCNN model)", 0, AV_OPT_TYPE_CONST, { .i64 = 0 }, 0, 0, FLAGS, "model_type" }, | |||
{ "espcn", "Efficient Sub-Pixel Convolutional Neural Network model", 0, AV_OPT_TYPE_CONST, { .i64 = 1 }, 0, 0, FLAGS, "model_type" }, | |||
{ "dnn_backend", "DNN backend used for model execution", OFFSET(backend_type), AV_OPT_TYPE_FLAGS, { .i64 = 0 }, 0, 1, FLAGS, "backend" }, | |||
{ "native", "native backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 0 }, 0, 0, FLAGS, "backend" }, | |||
#if (CONFIG_LIBTENSORFLOW == 1) | |||
{ "tensorflow", "tensorflow backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 1 }, 0, 0, FLAGS, "backend" }, | |||
#endif | |||
{"scale_factor", "scale factor for SRCNN model", OFFSET(scale_factor), AV_OPT_TYPE_INT, { .i64 = 2 }, 2, 4, FLAGS}, | |||
{ "model_filename", "path to model file specifying network architecture and its parameters", OFFSET(model_filename), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS }, | |||
{ NULL } | |||
}; | |||
AVFILTER_DEFINE_CLASS(sr); | |||
static av_cold int init(AVFilterContext* context) | |||
{ | |||
SRContext* sr_context = context->priv; | |||
sr_context->dnn_module = ff_get_dnn_module(sr_context->backend_type); | |||
if (!sr_context->dnn_module){ | |||
av_log(context, AV_LOG_ERROR, "could not create DNN module for requested backend\n"); | |||
return AVERROR(ENOMEM); | |||
} | |||
if (!sr_context->model_filename){ | |||
av_log(context, AV_LOG_VERBOSE, "model file for network was not specified, using default network for x2 upsampling\n"); | |||
sr_context->scale_factor = 2; | |||
switch (sr_context->model_type){ | |||
case SRCNN: | |||
sr_context->model = (sr_context->dnn_module->load_default_model)(DNN_SRCNN); | |||
break; | |||
case ESPCN: | |||
sr_context->model = (sr_context->dnn_module->load_default_model)(DNN_ESPCN); | |||
} | |||
} | |||
else{ | |||
sr_context->model = (sr_context->dnn_module->load_model)(sr_context->model_filename); | |||
} | |||
if (!sr_context->model){ | |||
av_log(context, AV_LOG_ERROR, "could not load DNN model\n"); | |||
return AVERROR(EIO); | |||
} | |||
return 0; | |||
} | |||
static int query_formats(AVFilterContext* context) | |||
{ | |||
const enum AVPixelFormat pixel_formats[] = {AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P, | |||
AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_GRAY8, | |||
AV_PIX_FMT_NONE}; | |||
AVFilterFormats* formats_list; | |||
formats_list = ff_make_format_list(pixel_formats); | |||
if (!formats_list){ | |||
av_log(context, AV_LOG_ERROR, "could not create formats list\n"); | |||
return AVERROR(ENOMEM); | |||
} | |||
return ff_set_common_formats(context, formats_list); | |||
} | |||
static int config_props(AVFilterLink* inlink) | |||
{ | |||
AVFilterContext* context = inlink->dst; | |||
SRContext* sr_context = context->priv; | |||
AVFilterLink* outlink = context->outputs[0]; | |||
DNNReturnType result; | |||
int sws_src_h, sws_src_w, sws_dst_h, sws_dst_w; | |||
switch (sr_context->model_type){ | |||
case SRCNN: | |||
sr_context->input.width = inlink->w * sr_context->scale_factor; | |||
sr_context->input.height = inlink->h * sr_context->scale_factor; | |||
break; | |||
case ESPCN: | |||
sr_context->input.width = inlink->w; | |||
sr_context->input.height = inlink->h; | |||
} | |||
sr_context->input.channels = 1; | |||
result = (sr_context->model->set_input_output)(sr_context->model->model, &sr_context->input, &sr_context->output); | |||
if (result != DNN_SUCCESS){ | |||
av_log(context, AV_LOG_ERROR, "could not set input and output for the model\n"); | |||
return AVERROR(EIO); | |||
} | |||
else{ | |||
outlink->h = sr_context->output.height; | |||
outlink->w = sr_context->output.width; | |||
switch (sr_context->model_type){ | |||
case SRCNN: | |||
sr_context->sws_context = sws_getContext(inlink->w, inlink->h, inlink->format, | |||
outlink->w, outlink->h, outlink->format, SWS_BICUBIC, NULL, NULL, NULL); | |||
if (!sr_context->sws_context){ | |||
av_log(context, AV_LOG_ERROR, "could not create SwsContext\n"); | |||
return AVERROR(ENOMEM); | |||
} | |||
sr_context->sws_slice_h = inlink->h; | |||
break; | |||
case ESPCN: | |||
if (inlink->format == AV_PIX_FMT_GRAY8){ | |||
sr_context->sws_context = NULL; | |||
} | |||
else{ | |||
sws_src_h = sr_context->input.height; | |||
sws_src_w = sr_context->input.width; | |||
sws_dst_h = sr_context->output.height; | |||
sws_dst_w = sr_context->output.width; | |||
switch (inlink->format){ | |||
case AV_PIX_FMT_YUV420P: | |||
sws_src_h = (sws_src_h >> 1) + (sws_src_h % 2 != 0 ? 1 : 0); | |||
sws_src_w = (sws_src_w >> 1) + (sws_src_w % 2 != 0 ? 1 : 0); | |||
sws_dst_h = (sws_dst_h >> 1) + (sws_dst_h % 2 != 0 ? 1 : 0); | |||
sws_dst_w = (sws_dst_w >> 1) + (sws_dst_w % 2 != 0 ? 1 : 0); | |||
break; | |||
case AV_PIX_FMT_YUV422P: | |||
sws_src_w = (sws_src_w >> 1) + (sws_src_w % 2 != 0 ? 1 : 0); | |||
sws_dst_w = (sws_dst_w >> 1) + (sws_dst_w % 2 != 0 ? 1 : 0); | |||
break; | |||
case AV_PIX_FMT_YUV444P: | |||
break; | |||
case AV_PIX_FMT_YUV410P: | |||
sws_src_h = (sws_src_h >> 2) + (sws_src_h % 4 != 0 ? 1 : 0); | |||
sws_src_w = (sws_src_w >> 2) + (sws_src_w % 4 != 0 ? 1 : 0); | |||
sws_dst_h = (sws_dst_h >> 2) + (sws_dst_h % 4 != 0 ? 1 : 0); | |||
sws_dst_w = (sws_dst_w >> 2) + (sws_dst_w % 4 != 0 ? 1 : 0); | |||
break; | |||
case AV_PIX_FMT_YUV411P: | |||
sws_src_w = (sws_src_w >> 2) + (sws_src_w % 4 != 0 ? 1 : 0); | |||
sws_dst_w = (sws_dst_w >> 2) + (sws_dst_w % 4 != 0 ? 1 : 0); | |||
break; | |||
default: | |||
av_log(context, AV_LOG_ERROR, "could not create SwsContext for input pixel format"); | |||
return AVERROR(EIO); | |||
} | |||
sr_context->sws_context = sws_getContext(sws_src_w, sws_src_h, AV_PIX_FMT_GRAY8, | |||
sws_dst_w, sws_dst_h, AV_PIX_FMT_GRAY8, SWS_BICUBIC, NULL, NULL, NULL); | |||
if (!sr_context->sws_context){ | |||
av_log(context, AV_LOG_ERROR, "could not create SwsContext\n"); | |||
return AVERROR(ENOMEM); | |||
} | |||
sr_context->sws_slice_h = sws_src_h; | |||
} | |||
} | |||
return 0; | |||
} | |||
} | |||
typedef struct ThreadData{ | |||
uint8_t* data; | |||
int data_linesize, height, width; | |||
} ThreadData; | |||
static int uint8_to_float(AVFilterContext* context, void* arg, int jobnr, int nb_jobs) | |||
{ | |||
SRContext* sr_context = context->priv; | |||
const ThreadData* td = arg; | |||
const int slice_start = (td->height * jobnr ) / nb_jobs; | |||
const int slice_end = (td->height * (jobnr + 1)) / nb_jobs; | |||
const uint8_t* src = td->data + slice_start * td->data_linesize; | |||
float* dst = sr_context->input.data + slice_start * td->width; | |||
int y, x; | |||
for (y = slice_start; y < slice_end; ++y){ | |||
for (x = 0; x < td->width; ++x){ | |||
dst[x] = (float)src[x] / 255.0f; | |||
} | |||
src += td->data_linesize; | |||
dst += td->width; | |||
} | |||
return 0; | |||
} | |||
static int float_to_uint8(AVFilterContext* context, void* arg, int jobnr, int nb_jobs) | |||
{ | |||
SRContext* sr_context = context->priv; | |||
const ThreadData* td = arg; | |||
const int slice_start = (td->height * jobnr ) / nb_jobs; | |||
const int slice_end = (td->height * (jobnr + 1)) / nb_jobs; | |||
const float* src = sr_context->output.data + slice_start * td->width; | |||
uint8_t* dst = td->data + slice_start * td->data_linesize; | |||
int y, x; | |||
for (y = slice_start; y < slice_end; ++y){ | |||
for (x = 0; x < td->width; ++x){ | |||
dst[x] = (uint8_t)(255.0f * FFMIN(src[x], 1.0f)); | |||
} | |||
src += td->width; | |||
dst += td->data_linesize; | |||
} | |||
return 0; | |||
} | |||
static int filter_frame(AVFilterLink* inlink, AVFrame* in) | |||
{ | |||
AVFilterContext* context = inlink->dst; | |||
SRContext* sr_context = context->priv; | |||
AVFilterLink* outlink = context->outputs[0]; | |||
AVFrame* out = ff_get_video_buffer(outlink, outlink->w, outlink->h); | |||
ThreadData td; | |||
int nb_threads; | |||
DNNReturnType dnn_result; | |||
if (!out){ | |||
av_log(context, AV_LOG_ERROR, "could not allocate memory for output frame\n"); | |||
av_frame_free(&in); | |||
return AVERROR(ENOMEM); | |||
} | |||
av_frame_copy_props(out, in); | |||
out->height = sr_context->output.height; | |||
out->width = sr_context->output.width; | |||
switch (sr_context->model_type){ | |||
case SRCNN: | |||
sws_scale(sr_context->sws_context, in->data, in->linesize, | |||
0, sr_context->sws_slice_h, out->data, out->linesize); | |||
td.data = out->data[0]; | |||
td.data_linesize = out->linesize[0]; | |||
td.height = out->height; | |||
td.width = out->width; | |||
break; | |||
case ESPCN: | |||
if (sr_context->sws_context){ | |||
sws_scale(sr_context->sws_context, in->data + 1, in->linesize + 1, | |||
0, sr_context->sws_slice_h, out->data + 1, out->linesize + 1); | |||
sws_scale(sr_context->sws_context, in->data + 2, in->linesize + 2, | |||
0, sr_context->sws_slice_h, out->data + 2, out->linesize + 2); | |||
} | |||
td.data = in->data[0]; | |||
td.data_linesize = in->linesize[0]; | |||
td.height = in->height; | |||
td.width = in->width; | |||
} | |||
nb_threads = ff_filter_get_nb_threads(context); | |||
context->internal->execute(context, uint8_to_float, &td, NULL, FFMIN(td.height, nb_threads)); | |||
av_frame_free(&in); | |||
dnn_result = (sr_context->dnn_module->execute_model)(sr_context->model); | |||
if (dnn_result != DNN_SUCCESS){ | |||
av_log(context, AV_LOG_ERROR, "failed to execute loaded model\n"); | |||
return AVERROR(EIO); | |||
} | |||
td.data = out->data[0]; | |||
td.data_linesize = out->linesize[0]; | |||
td.height = out->height; | |||
td.width = out->width; | |||
context->internal->execute(context, float_to_uint8, &td, NULL, FFMIN(td.height, nb_threads)); | |||
return ff_filter_frame(outlink, out); | |||
} | |||
static av_cold void uninit(AVFilterContext* context) | |||
{ | |||
SRContext* sr_context = context->priv; | |||
if (sr_context->dnn_module){ | |||
(sr_context->dnn_module->free_model)(&sr_context->model); | |||
av_freep(&sr_context->dnn_module); | |||
} | |||
if (sr_context->sws_context){ | |||
sws_freeContext(sr_context->sws_context); | |||
} | |||
} | |||
static const AVFilterPad sr_inputs[] = { | |||
{ | |||
.name = "default", | |||
.type = AVMEDIA_TYPE_VIDEO, | |||
.config_props = config_props, | |||
.filter_frame = filter_frame, | |||
}, | |||
{ NULL } | |||
}; | |||
static const AVFilterPad sr_outputs[] = { | |||
{ | |||
.name = "default", | |||
.type = AVMEDIA_TYPE_VIDEO, | |||
}, | |||
{ NULL } | |||
}; | |||
AVFilter ff_vf_sr = { | |||
.name = "sr", | |||
.description = NULL_IF_CONFIG_SMALL("Apply DNN-based image super resolution to the input."), | |||
.priv_size = sizeof(SRContext), | |||
.init = init, | |||
.uninit = uninit, | |||
.query_formats = query_formats, | |||
.inputs = sr_inputs, | |||
.outputs = sr_outputs, | |||
.priv_class = &sr_class, | |||
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS, | |||
}; | |||
@@ -1,250 +0,0 @@ | |||
/* | |||
* Copyright (c) 2018 Sergey Lavrushkin | |||
* | |||
* This file is part of FFmpeg. | |||
* | |||
* FFmpeg is free software; you can redistribute it and/or | |||
* modify it under the terms of the GNU Lesser General Public | |||
* License as published by the Free Software Foundation; either | |||
* version 2.1 of the License, or (at your option) any later version. | |||
* | |||
* FFmpeg is distributed in the hope that it will be useful, | |||
* but WITHOUT ANY WARRANTY; without even the implied warranty of | |||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |||
* Lesser General Public License for more details. | |||
* | |||
* You should have received a copy of the GNU Lesser General Public | |||
* License along with FFmpeg; if not, write to the Free Software | |||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |||
*/ | |||
/** | |||
* @file | |||
* Filter implementing image super-resolution using deep convolutional networks. | |||
* https://arxiv.org/abs/1501.00092 | |||
*/ | |||
#include "avfilter.h" | |||
#include "formats.h" | |||
#include "internal.h" | |||
#include "libavutil/opt.h" | |||
#include "libavformat/avio.h" | |||
#include "dnn_interface.h" | |||
typedef struct SRCNNContext { | |||
const AVClass *class; | |||
char* model_filename; | |||
float* input_output_buf; | |||
DNNBackendType backend_type; | |||
DNNModule* dnn_module; | |||
DNNModel* model; | |||
DNNData input_output; | |||
} SRCNNContext; | |||
#define OFFSET(x) offsetof(SRCNNContext, x) | |||
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM | |||
static const AVOption srcnn_options[] = { | |||
{ "dnn_backend", "DNN backend used for model execution", OFFSET(backend_type), AV_OPT_TYPE_FLAGS, { .i64 = 0 }, 0, 1, FLAGS, "backend" }, | |||
{ "native", "native backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 0 }, 0, 0, FLAGS, "backend" }, | |||
#if (CONFIG_LIBTENSORFLOW == 1) | |||
{ "tensorflow", "tensorflow backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 1 }, 0, 0, FLAGS, "backend" }, | |||
#endif | |||
{ "model_filename", "path to model file specifying network architecture and its parameters", OFFSET(model_filename), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS }, | |||
{ NULL } | |||
}; | |||
AVFILTER_DEFINE_CLASS(srcnn); | |||
static av_cold int init(AVFilterContext* context) | |||
{ | |||
SRCNNContext* srcnn_context = context->priv; | |||
srcnn_context->dnn_module = ff_get_dnn_module(srcnn_context->backend_type); | |||
if (!srcnn_context->dnn_module){ | |||
av_log(context, AV_LOG_ERROR, "could not create DNN module for requested backend\n"); | |||
return AVERROR(ENOMEM); | |||
} | |||
if (!srcnn_context->model_filename){ | |||
av_log(context, AV_LOG_VERBOSE, "model file for network was not specified, using default network for x2 upsampling\n"); | |||
srcnn_context->model = (srcnn_context->dnn_module->load_default_model)(DNN_SRCNN); | |||
} | |||
else{ | |||
srcnn_context->model = (srcnn_context->dnn_module->load_model)(srcnn_context->model_filename); | |||
} | |||
if (!srcnn_context->model){ | |||
av_log(context, AV_LOG_ERROR, "could not load DNN model\n"); | |||
return AVERROR(EIO); | |||
} | |||
return 0; | |||
} | |||
static int query_formats(AVFilterContext* context) | |||
{ | |||
const enum AVPixelFormat pixel_formats[] = {AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P, | |||
AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_GRAY8, | |||
AV_PIX_FMT_NONE}; | |||
AVFilterFormats* formats_list; | |||
formats_list = ff_make_format_list(pixel_formats); | |||
if (!formats_list){ | |||
av_log(context, AV_LOG_ERROR, "could not create formats list\n"); | |||
return AVERROR(ENOMEM); | |||
} | |||
return ff_set_common_formats(context, formats_list); | |||
} | |||
static int config_props(AVFilterLink* inlink) | |||
{ | |||
AVFilterContext* context = inlink->dst; | |||
SRCNNContext* srcnn_context = context->priv; | |||
DNNReturnType result; | |||
srcnn_context->input_output_buf = av_malloc(inlink->h * inlink->w * sizeof(float)); | |||
if (!srcnn_context->input_output_buf){ | |||
av_log(context, AV_LOG_ERROR, "could not allocate memory for input/output buffer\n"); | |||
return AVERROR(ENOMEM); | |||
} | |||
srcnn_context->input_output.data = srcnn_context->input_output_buf; | |||
srcnn_context->input_output.width = inlink->w; | |||
srcnn_context->input_output.height = inlink->h; | |||
srcnn_context->input_output.channels = 1; | |||
result = (srcnn_context->model->set_input_output)(srcnn_context->model->model, &srcnn_context->input_output, &srcnn_context->input_output); | |||
if (result != DNN_SUCCESS){ | |||
av_log(context, AV_LOG_ERROR, "could not set input and output for the model\n"); | |||
return AVERROR(EIO); | |||
} | |||
else{ | |||
return 0; | |||
} | |||
} | |||
typedef struct ThreadData{ | |||
uint8_t* out; | |||
int out_linesize, height, width; | |||
} ThreadData; | |||
static int uint8_to_float(AVFilterContext* context, void* arg, int jobnr, int nb_jobs) | |||
{ | |||
SRCNNContext* srcnn_context = context->priv; | |||
const ThreadData* td = arg; | |||
const int slice_start = (td->height * jobnr ) / nb_jobs; | |||
const int slice_end = (td->height * (jobnr + 1)) / nb_jobs; | |||
const uint8_t* src = td->out + slice_start * td->out_linesize; | |||
float* dst = srcnn_context->input_output_buf + slice_start * td->width; | |||
int y, x; | |||
for (y = slice_start; y < slice_end; ++y){ | |||
for (x = 0; x < td->width; ++x){ | |||
dst[x] = (float)src[x] / 255.0f; | |||
} | |||
src += td->out_linesize; | |||
dst += td->width; | |||
} | |||
return 0; | |||
} | |||
static int float_to_uint8(AVFilterContext* context, void* arg, int jobnr, int nb_jobs) | |||
{ | |||
SRCNNContext* srcnn_context = context->priv; | |||
const ThreadData* td = arg; | |||
const int slice_start = (td->height * jobnr ) / nb_jobs; | |||
const int slice_end = (td->height * (jobnr + 1)) / nb_jobs; | |||
const float* src = srcnn_context->input_output_buf + slice_start * td->width; | |||
uint8_t* dst = td->out + slice_start * td->out_linesize; | |||
int y, x; | |||
for (y = slice_start; y < slice_end; ++y){ | |||
for (x = 0; x < td->width; ++x){ | |||
dst[x] = (uint8_t)(255.0f * FFMIN(src[x], 1.0f)); | |||
} | |||
src += td->width; | |||
dst += td->out_linesize; | |||
} | |||
return 0; | |||
} | |||
static int filter_frame(AVFilterLink* inlink, AVFrame* in) | |||
{ | |||
AVFilterContext* context = inlink->dst; | |||
SRCNNContext* srcnn_context = context->priv; | |||
AVFilterLink* outlink = context->outputs[0]; | |||
AVFrame* out = ff_get_video_buffer(outlink, outlink->w, outlink->h); | |||
ThreadData td; | |||
int nb_threads; | |||
DNNReturnType dnn_result; | |||
if (!out){ | |||
av_log(context, AV_LOG_ERROR, "could not allocate memory for output frame\n"); | |||
av_frame_free(&in); | |||
return AVERROR(ENOMEM); | |||
} | |||
av_frame_copy_props(out, in); | |||
av_frame_copy(out, in); | |||
av_frame_free(&in); | |||
td.out = out->data[0]; | |||
td.out_linesize = out->linesize[0]; | |||
td.height = out->height; | |||
td.width = out->width; | |||
nb_threads = ff_filter_get_nb_threads(context); | |||
context->internal->execute(context, uint8_to_float, &td, NULL, FFMIN(td.height, nb_threads)); | |||
dnn_result = (srcnn_context->dnn_module->execute_model)(srcnn_context->model); | |||
if (dnn_result != DNN_SUCCESS){ | |||
av_log(context, AV_LOG_ERROR, "failed to execute loaded model\n"); | |||
return AVERROR(EIO); | |||
} | |||
context->internal->execute(context, float_to_uint8, &td, NULL, FFMIN(td.height, nb_threads)); | |||
return ff_filter_frame(outlink, out); | |||
} | |||
static av_cold void uninit(AVFilterContext* context) | |||
{ | |||
SRCNNContext* srcnn_context = context->priv; | |||
if (srcnn_context->dnn_module){ | |||
(srcnn_context->dnn_module->free_model)(&srcnn_context->model); | |||
av_freep(&srcnn_context->dnn_module); | |||
} | |||
av_freep(&srcnn_context->input_output_buf); | |||
} | |||
static const AVFilterPad srcnn_inputs[] = { | |||
{ | |||
.name = "default", | |||
.type = AVMEDIA_TYPE_VIDEO, | |||
.config_props = config_props, | |||
.filter_frame = filter_frame, | |||
}, | |||
{ NULL } | |||
}; | |||
static const AVFilterPad srcnn_outputs[] = { | |||
{ | |||
.name = "default", | |||
.type = AVMEDIA_TYPE_VIDEO, | |||
}, | |||
{ NULL } | |||
}; | |||
AVFilter ff_vf_srcnn = { | |||
.name = "srcnn", | |||
.description = NULL_IF_CONFIG_SMALL("Apply super resolution convolutional neural network to the input. Use bicubic upsamping with corresponding scaling factor before."), | |||
.priv_size = sizeof(SRCNNContext), | |||
.init = init, | |||
.uninit = uninit, | |||
.query_formats = query_formats, | |||
.inputs = srcnn_inputs, | |||
.outputs = srcnn_outputs, | |||
.priv_class = &srcnn_class, | |||
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS, | |||
}; | |||