* qatar/master: Move id3v2 tag writing to a separate file. swscale: add missing colons to x86 assembly yuv2planeX. g722: split decoder and encoder into separate files cosmetics: remove extra spaces before end-of-statement semi-colons vorbisdec: check output buffer size before writing output wavpack: calculate bpp using av_get_bytes_per_sample() ac3enc: Set max value for mode options correctly lavc: move get_b_cbp() from h263.h to mpeg4videoenc.c mpeg12: move closed_gop from MpegEncContext to Mpeg1Context mpeg12: move full_pel from MpegEncContext to Mpeg1Context mpeg12: move Mpeg1Context from mpeg12.c to mpeg12.h mpegvideo: remove some unused variables from MpegEncContext. Conflicts: libavcodec/mpeg12.c libavformat/mp3enc.c Merged-by: Michael Niedermayer <michaelni@gmx.at>tags/n0.9
| @@ -519,8 +519,8 @@ OBJS-$(CONFIG_ADPCM_EA_R1_DECODER) += adpcm.o | |||
| OBJS-$(CONFIG_ADPCM_EA_R2_DECODER) += adpcm.o | |||
| OBJS-$(CONFIG_ADPCM_EA_R3_DECODER) += adpcm.o | |||
| OBJS-$(CONFIG_ADPCM_EA_XAS_DECODER) += adpcm.o | |||
| OBJS-$(CONFIG_ADPCM_G722_DECODER) += g722.o | |||
| OBJS-$(CONFIG_ADPCM_G722_ENCODER) += g722.o | |||
| OBJS-$(CONFIG_ADPCM_G722_DECODER) += g722.o g722dec.o | |||
| OBJS-$(CONFIG_ADPCM_G722_ENCODER) += g722.o g722enc.o | |||
| OBJS-$(CONFIG_ADPCM_G726_DECODER) += g726.o | |||
| OBJS-$(CONFIG_ADPCM_G726_ENCODER) += g726.o | |||
| OBJS-$(CONFIG_ADPCM_IMA_AMV_DECODER) += adpcm.o adpcm_data.o | |||
| @@ -45,7 +45,7 @@ static const AVOption eac3_options[] = { | |||
| /* other metadata options */ | |||
| {"copyright", "Copyright Bit", OFFSET(copyright), AV_OPT_TYPE_INT, {.dbl = AC3ENC_OPT_NONE }, AC3ENC_OPT_NONE, 1, AC3ENC_PARAM}, | |||
| {"dialnorm", "Dialogue Level (dB)", OFFSET(dialogue_level), AV_OPT_TYPE_INT, {.dbl = -31 }, -31, -1, AC3ENC_PARAM}, | |||
| {"dsur_mode", "Dolby Surround Mode", OFFSET(dolby_surround_mode), AV_OPT_TYPE_INT, {.dbl = AC3ENC_OPT_NONE }, AC3ENC_OPT_NONE, AC3ENC_OPT_MODE_OFF, AC3ENC_PARAM, "dsur_mode"}, | |||
| {"dsur_mode", "Dolby Surround Mode", OFFSET(dolby_surround_mode), AV_OPT_TYPE_INT, {.dbl = AC3ENC_OPT_NONE }, AC3ENC_OPT_NONE, AC3ENC_OPT_MODE_ON, AC3ENC_PARAM, "dsur_mode"}, | |||
| {"notindicated", "Not Indicated (default)", 0, AV_OPT_TYPE_CONST, {.dbl = AC3ENC_OPT_NOT_INDICATED }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dsur_mode"}, | |||
| {"on", "Dolby Surround Encoded", 0, AV_OPT_TYPE_CONST, {.dbl = AC3ENC_OPT_MODE_ON }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dsur_mode"}, | |||
| {"off", "Not Dolby Surround Encoded", 0, AV_OPT_TYPE_CONST, {.dbl = AC3ENC_OPT_MODE_OFF }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dsur_mode"}, | |||
| @@ -59,11 +59,11 @@ static const AVOption eac3_options[] = { | |||
| {"ltrt_surmixlev", "Lt/Rt Surround Mix Level", OFFSET(ltrt_surround_mix_level), AV_OPT_TYPE_FLOAT, {.dbl = -1.0 }, -1.0, 2.0, AC3ENC_PARAM}, | |||
| {"loro_cmixlev", "Lo/Ro Center Mix Level", OFFSET(loro_center_mix_level), AV_OPT_TYPE_FLOAT, {.dbl = -1.0 }, -1.0, 2.0, AC3ENC_PARAM}, | |||
| {"loro_surmixlev", "Lo/Ro Surround Mix Level", OFFSET(loro_surround_mix_level), AV_OPT_TYPE_FLOAT, {.dbl = -1.0 }, -1.0, 2.0, AC3ENC_PARAM}, | |||
| {"dsurex_mode", "Dolby Surround EX Mode", OFFSET(dolby_surround_ex_mode), AV_OPT_TYPE_INT, {.dbl = AC3ENC_OPT_NONE }, AC3ENC_OPT_NONE, AC3ENC_OPT_MODE_OFF, AC3ENC_PARAM, "dsurex_mode"}, | |||
| {"dsurex_mode", "Dolby Surround EX Mode", OFFSET(dolby_surround_ex_mode), AV_OPT_TYPE_INT, {.dbl = AC3ENC_OPT_NONE }, AC3ENC_OPT_NONE, AC3ENC_OPT_MODE_ON, AC3ENC_PARAM, "dsurex_mode"}, | |||
| {"notindicated", "Not Indicated (default)", 0, AV_OPT_TYPE_CONST, {.dbl = AC3ENC_OPT_NOT_INDICATED }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dsurex_mode"}, | |||
| {"on", "Dolby Surround EX Encoded", 0, AV_OPT_TYPE_CONST, {.dbl = AC3ENC_OPT_MODE_ON }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dsurex_mode"}, | |||
| {"off", "Not Dolby Surround EX Encoded", 0, AV_OPT_TYPE_CONST, {.dbl = AC3ENC_OPT_MODE_OFF }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dsurex_mode"}, | |||
| {"dheadphone_mode", "Dolby Headphone Mode", OFFSET(dolby_headphone_mode), AV_OPT_TYPE_INT, {.dbl = AC3ENC_OPT_NONE }, AC3ENC_OPT_NONE, AC3ENC_OPT_MODE_OFF, AC3ENC_PARAM, "dheadphone_mode"}, | |||
| {"dheadphone_mode", "Dolby Headphone Mode", OFFSET(dolby_headphone_mode), AV_OPT_TYPE_INT, {.dbl = AC3ENC_OPT_NONE }, AC3ENC_OPT_NONE, AC3ENC_OPT_MODE_ON, AC3ENC_PARAM, "dheadphone_mode"}, | |||
| {"notindicated", "Not Indicated (default)", 0, AV_OPT_TYPE_CONST, {.dbl = AC3ENC_OPT_NOT_INDICATED }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dheadphone_mode"}, | |||
| {"on", "Dolby Headphone Encoded", 0, AV_OPT_TYPE_CONST, {.dbl = AC3ENC_OPT_MODE_ON }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dheadphone_mode"}, | |||
| {"off", "Not Dolby Headphone Encoded", 0, AV_OPT_TYPE_CONST, {.dbl = AC3ENC_OPT_MODE_OFF }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dheadphone_mode"}, | |||
| @@ -29,11 +29,11 @@ | |||
| #endif | |||
| /* MpegEncContext */ | |||
| #define Y_DC_SCALE 0xac | |||
| #define C_DC_SCALE 0xb0 | |||
| #define AC_PRED 0xb4 | |||
| #define BLOCK_LAST_INDEX 0xb8 | |||
| #define H263_AIC 0xe8 | |||
| #define INTER_SCANTAB_RASTER_END 0x130 | |||
| #define Y_DC_SCALE 0xa8 | |||
| #define C_DC_SCALE 0xac | |||
| #define AC_PRED 0xb0 | |||
| #define BLOCK_LAST_INDEX 0xb4 | |||
| #define H263_AIC 0xe4 | |||
| #define INTER_SCANTAB_RASTER_END 0x12c | |||
| #endif /* AVCODEC_ARM_ASM_OFFSETS_H */ | |||
| @@ -36,45 +36,8 @@ | |||
| * respectively of each byte are ignored. | |||
| */ | |||
| #include "avcodec.h" | |||
| #include "mathops.h" | |||
| #include "get_bits.h" | |||
| #define PREV_SAMPLES_BUF_SIZE 1024 | |||
| #define FREEZE_INTERVAL 128 | |||
| typedef struct { | |||
| int16_t prev_samples[PREV_SAMPLES_BUF_SIZE]; ///< memory of past decoded samples | |||
| int prev_samples_pos; ///< the number of values in prev_samples | |||
| /** | |||
| * The band[0] and band[1] correspond respectively to the lower band and higher band. | |||
| */ | |||
| struct G722Band { | |||
| int16_t s_predictor; ///< predictor output value | |||
| int32_t s_zero; ///< previous output signal from zero predictor | |||
| int8_t part_reconst_mem[2]; ///< signs of previous partially reconstructed signals | |||
| int16_t prev_qtzd_reconst; ///< previous quantized reconstructed signal (internal value, using low_inv_quant4) | |||
| int16_t pole_mem[2]; ///< second-order pole section coefficient buffer | |||
| int32_t diff_mem[6]; ///< quantizer difference signal memory | |||
| int16_t zero_mem[6]; ///< Seventh-order zero section coefficient buffer | |||
| int16_t log_factor; ///< delayed 2-logarithmic quantizer factor | |||
| int16_t scale_factor; ///< delayed quantizer scale factor | |||
| } band[2]; | |||
| struct TrellisNode { | |||
| struct G722Band state; | |||
| uint32_t ssd; | |||
| int path; | |||
| } *node_buf[2], **nodep_buf[2]; | |||
| struct TrellisPath { | |||
| int value; | |||
| int prev; | |||
| } *paths[2]; | |||
| } G722Context; | |||
| #include "g722.h" | |||
| static const int8_t sign_lookup[2] = { -1, 1 }; | |||
| @@ -85,7 +48,7 @@ static const int16_t inv_log2_table[32] = { | |||
| 3444, 3520, 3597, 3676, 3756, 3838, 3922, 4008 | |||
| }; | |||
| static const int16_t high_log_factor_step[2] = { 798, -214 }; | |||
| static const int16_t high_inv_quant[4] = { -926, -202, 926, 202 }; | |||
| const int16_t ff_g722_high_inv_quant[4] = { -926, -202, 926, 202 }; | |||
| /** | |||
| * low_log_factor_step[index] == wl[rl42[index]] | |||
| */ | |||
| @@ -93,11 +56,11 @@ static const int16_t low_log_factor_step[16] = { | |||
| -60, 3042, 1198, 538, 334, 172, 58, -30, | |||
| 3042, 1198, 538, 334, 172, 58, -30, -60 | |||
| }; | |||
| static const int16_t low_inv_quant4[16] = { | |||
| const int16_t ff_g722_low_inv_quant4[16] = { | |||
| 0, -2557, -1612, -1121, -786, -530, -323, -150, | |||
| 2557, 1612, 1121, 786, 530, 323, 150, 0 | |||
| }; | |||
| static const int16_t low_inv_quant6[64] = { | |||
| const int16_t ff_g722_low_inv_quant6[64] = { | |||
| -17, -17, -17, -17, -3101, -2738, -2376, -2088, | |||
| -1873, -1689, -1535, -1399, -1279, -1170, -1072, -982, | |||
| -899, -822, -750, -682, -618, -558, -501, -447, | |||
| @@ -173,10 +136,10 @@ static int inline linear_scale_factor(const int log_factor) | |||
| return shift < 0 ? wd1 >> -shift : wd1 << shift; | |||
| } | |||
| static void update_low_predictor(struct G722Band *band, const int ilow) | |||
| void ff_g722_update_low_predictor(struct G722Band *band, const int ilow) | |||
| { | |||
| do_adaptive_prediction(band, | |||
| band->scale_factor * low_inv_quant4[ilow] >> 10); | |||
| band->scale_factor * ff_g722_low_inv_quant4[ilow] >> 10); | |||
| // quantizer adaptation | |||
| band->log_factor = av_clip((band->log_factor * 127 >> 7) + | |||
| @@ -184,7 +147,7 @@ static void update_low_predictor(struct G722Band *band, const int ilow) | |||
| band->scale_factor = linear_scale_factor(band->log_factor - (8 << 11)); | |||
| } | |||
| static void update_high_predictor(struct G722Band *band, const int dhigh, | |||
| void ff_g722_update_high_predictor(struct G722Band *band, const int dhigh, | |||
| const int ihigh) | |||
| { | |||
| do_adaptive_prediction(band, dhigh); | |||
| @@ -195,7 +158,7 @@ static void update_high_predictor(struct G722Band *band, const int dhigh, | |||
| band->scale_factor = linear_scale_factor(band->log_factor - (10 << 11)); | |||
| } | |||
| static void apply_qmf(const int16_t *prev_samples, int *xout1, int *xout2) | |||
| void ff_g722_apply_qmf(const int16_t *prev_samples, int *xout1, int *xout2) | |||
| { | |||
| int i; | |||
| @@ -206,377 +169,3 @@ static void apply_qmf(const int16_t *prev_samples, int *xout1, int *xout2) | |||
| MAC16(*xout1, prev_samples[2*i+1], qmf_coeffs[11-i]); | |||
| } | |||
| } | |||
| static av_cold int g722_init(AVCodecContext * avctx) | |||
| { | |||
| G722Context *c = avctx->priv_data; | |||
| if (avctx->channels != 1) { | |||
| av_log(avctx, AV_LOG_ERROR, "Only mono tracks are allowed.\n"); | |||
| return AVERROR_INVALIDDATA; | |||
| } | |||
| avctx->sample_fmt = AV_SAMPLE_FMT_S16; | |||
| switch (avctx->bits_per_coded_sample) { | |||
| case 8: | |||
| case 7: | |||
| case 6: | |||
| break; | |||
| default: | |||
| av_log(avctx, AV_LOG_WARNING, "Unsupported bits_per_coded_sample [%d], " | |||
| "assuming 8\n", | |||
| avctx->bits_per_coded_sample); | |||
| case 0: | |||
| avctx->bits_per_coded_sample = 8; | |||
| break; | |||
| } | |||
| c->band[0].scale_factor = 8; | |||
| c->band[1].scale_factor = 2; | |||
| c->prev_samples_pos = 22; | |||
| if (avctx->lowres) | |||
| avctx->sample_rate /= 2; | |||
| if (avctx->trellis) { | |||
| int frontier = 1 << avctx->trellis; | |||
| int max_paths = frontier * FREEZE_INTERVAL; | |||
| int i; | |||
| for (i = 0; i < 2; i++) { | |||
| c->paths[i] = av_mallocz(max_paths * sizeof(**c->paths)); | |||
| c->node_buf[i] = av_mallocz(2 * frontier * sizeof(**c->node_buf)); | |||
| c->nodep_buf[i] = av_mallocz(2 * frontier * sizeof(**c->nodep_buf)); | |||
| } | |||
| } | |||
| return 0; | |||
| } | |||
| static av_cold int g722_close(AVCodecContext *avctx) | |||
| { | |||
| G722Context *c = avctx->priv_data; | |||
| int i; | |||
| for (i = 0; i < 2; i++) { | |||
| av_freep(&c->paths[i]); | |||
| av_freep(&c->node_buf[i]); | |||
| av_freep(&c->nodep_buf[i]); | |||
| } | |||
| return 0; | |||
| } | |||
| #if CONFIG_ADPCM_G722_DECODER | |||
| static const int16_t low_inv_quant5[32] = { | |||
| -35, -35, -2919, -2195, -1765, -1458, -1219, -1023, | |||
| -858, -714, -587, -473, -370, -276, -190, -110, | |||
| 2919, 2195, 1765, 1458, 1219, 1023, 858, 714, | |||
| 587, 473, 370, 276, 190, 110, 35, -35 | |||
| }; | |||
| static const int16_t *low_inv_quants[3] = { low_inv_quant6, low_inv_quant5, | |||
| low_inv_quant4 }; | |||
| static int g722_decode_frame(AVCodecContext *avctx, void *data, | |||
| int *data_size, AVPacket *avpkt) | |||
| { | |||
| G722Context *c = avctx->priv_data; | |||
| int16_t *out_buf = data; | |||
| int j, out_len = 0; | |||
| const int skip = 8 - avctx->bits_per_coded_sample; | |||
| const int16_t *quantizer_table = low_inv_quants[skip]; | |||
| GetBitContext gb; | |||
| init_get_bits(&gb, avpkt->data, avpkt->size * 8); | |||
| for (j = 0; j < avpkt->size; j++) { | |||
| int ilow, ihigh, rlow; | |||
| ihigh = get_bits(&gb, 2); | |||
| ilow = get_bits(&gb, 6 - skip); | |||
| skip_bits(&gb, skip); | |||
| rlow = av_clip((c->band[0].scale_factor * quantizer_table[ilow] >> 10) | |||
| + c->band[0].s_predictor, -16384, 16383); | |||
| update_low_predictor(&c->band[0], ilow >> (2 - skip)); | |||
| if (!avctx->lowres) { | |||
| const int dhigh = c->band[1].scale_factor * | |||
| high_inv_quant[ihigh] >> 10; | |||
| const int rhigh = av_clip(dhigh + c->band[1].s_predictor, | |||
| -16384, 16383); | |||
| int xout1, xout2; | |||
| update_high_predictor(&c->band[1], dhigh, ihigh); | |||
| c->prev_samples[c->prev_samples_pos++] = rlow + rhigh; | |||
| c->prev_samples[c->prev_samples_pos++] = rlow - rhigh; | |||
| apply_qmf(c->prev_samples + c->prev_samples_pos - 24, | |||
| &xout1, &xout2); | |||
| out_buf[out_len++] = av_clip_int16(xout1 >> 12); | |||
| out_buf[out_len++] = av_clip_int16(xout2 >> 12); | |||
| if (c->prev_samples_pos >= PREV_SAMPLES_BUF_SIZE) { | |||
| memmove(c->prev_samples, | |||
| c->prev_samples + c->prev_samples_pos - 22, | |||
| 22 * sizeof(c->prev_samples[0])); | |||
| c->prev_samples_pos = 22; | |||
| } | |||
| } else | |||
| out_buf[out_len++] = rlow; | |||
| } | |||
| *data_size = out_len << 1; | |||
| return avpkt->size; | |||
| } | |||
| AVCodec ff_adpcm_g722_decoder = { | |||
| .name = "g722", | |||
| .type = AVMEDIA_TYPE_AUDIO, | |||
| .id = CODEC_ID_ADPCM_G722, | |||
| .priv_data_size = sizeof(G722Context), | |||
| .init = g722_init, | |||
| .decode = g722_decode_frame, | |||
| .long_name = NULL_IF_CONFIG_SMALL("G.722 ADPCM"), | |||
| .max_lowres = 1, | |||
| }; | |||
| #endif | |||
| #if CONFIG_ADPCM_G722_ENCODER | |||
| static const int16_t low_quant[33] = { | |||
| 35, 72, 110, 150, 190, 233, 276, 323, | |||
| 370, 422, 473, 530, 587, 650, 714, 786, | |||
| 858, 940, 1023, 1121, 1219, 1339, 1458, 1612, | |||
| 1765, 1980, 2195, 2557, 2919 | |||
| }; | |||
| static inline void filter_samples(G722Context *c, const int16_t *samples, | |||
| int *xlow, int *xhigh) | |||
| { | |||
| int xout1, xout2; | |||
| c->prev_samples[c->prev_samples_pos++] = samples[0]; | |||
| c->prev_samples[c->prev_samples_pos++] = samples[1]; | |||
| apply_qmf(c->prev_samples + c->prev_samples_pos - 24, &xout1, &xout2); | |||
| *xlow = xout1 + xout2 >> 13; | |||
| *xhigh = xout1 - xout2 >> 13; | |||
| if (c->prev_samples_pos >= PREV_SAMPLES_BUF_SIZE) { | |||
| memmove(c->prev_samples, | |||
| c->prev_samples + c->prev_samples_pos - 22, | |||
| 22 * sizeof(c->prev_samples[0])); | |||
| c->prev_samples_pos = 22; | |||
| } | |||
| } | |||
| static inline int encode_high(const struct G722Band *state, int xhigh) | |||
| { | |||
| int diff = av_clip_int16(xhigh - state->s_predictor); | |||
| int pred = 141 * state->scale_factor >> 8; | |||
| /* = diff >= 0 ? (diff < pred) + 2 : diff >= -pred */ | |||
| return ((diff ^ (diff >> (sizeof(diff)*8-1))) < pred) + 2*(diff >= 0); | |||
| } | |||
| static inline int encode_low(const struct G722Band* state, int xlow) | |||
| { | |||
| int diff = av_clip_int16(xlow - state->s_predictor); | |||
| /* = diff >= 0 ? diff : -(diff + 1) */ | |||
| int limit = diff ^ (diff >> (sizeof(diff)*8-1)); | |||
| int i = 0; | |||
| limit = limit + 1 << 10; | |||
| if (limit > low_quant[8] * state->scale_factor) | |||
| i = 9; | |||
| while (i < 29 && limit > low_quant[i] * state->scale_factor) | |||
| i++; | |||
| return (diff < 0 ? (i < 2 ? 63 : 33) : 61) - i; | |||
| } | |||
| static int g722_encode_trellis(AVCodecContext *avctx, | |||
| uint8_t *dst, int buf_size, void *data) | |||
| { | |||
| G722Context *c = avctx->priv_data; | |||
| const int16_t *samples = data; | |||
| int i, j, k; | |||
| int frontier = 1 << avctx->trellis; | |||
| struct TrellisNode **nodes[2]; | |||
| struct TrellisNode **nodes_next[2]; | |||
| int pathn[2] = {0, 0}, froze = -1; | |||
| struct TrellisPath *p[2]; | |||
| for (i = 0; i < 2; i++) { | |||
| nodes[i] = c->nodep_buf[i]; | |||
| nodes_next[i] = c->nodep_buf[i] + frontier; | |||
| memset(c->nodep_buf[i], 0, 2 * frontier * sizeof(*c->nodep_buf)); | |||
| nodes[i][0] = c->node_buf[i] + frontier; | |||
| nodes[i][0]->ssd = 0; | |||
| nodes[i][0]->path = 0; | |||
| nodes[i][0]->state = c->band[i]; | |||
| } | |||
| for (i = 0; i < buf_size >> 1; i++) { | |||
| int xlow, xhigh; | |||
| struct TrellisNode *next[2]; | |||
| int heap_pos[2] = {0, 0}; | |||
| for (j = 0; j < 2; j++) { | |||
| next[j] = c->node_buf[j] + frontier*(i & 1); | |||
| memset(nodes_next[j], 0, frontier * sizeof(**nodes_next)); | |||
| } | |||
| filter_samples(c, &samples[2*i], &xlow, &xhigh); | |||
| for (j = 0; j < frontier && nodes[0][j]; j++) { | |||
| /* Only k >> 2 affects the future adaptive state, therefore testing | |||
| * small steps that don't change k >> 2 is useless, the orignal | |||
| * value from encode_low is better than them. Since we step k | |||
| * in steps of 4, make sure range is a multiple of 4, so that | |||
| * we don't miss the original value from encode_low. */ | |||
| int range = j < frontier/2 ? 4 : 0; | |||
| struct TrellisNode *cur_node = nodes[0][j]; | |||
| int ilow = encode_low(&cur_node->state, xlow); | |||
| for (k = ilow - range; k <= ilow + range && k <= 63; k += 4) { | |||
| int decoded, dec_diff, pos; | |||
| uint32_t ssd; | |||
| struct TrellisNode* node; | |||
| if (k < 0) | |||
| continue; | |||
| decoded = av_clip((cur_node->state.scale_factor * | |||
| low_inv_quant6[k] >> 10) | |||
| + cur_node->state.s_predictor, -16384, 16383); | |||
| dec_diff = xlow - decoded; | |||
| #define STORE_NODE(index, UPDATE, VALUE)\ | |||
| ssd = cur_node->ssd + dec_diff*dec_diff;\ | |||
| /* Check for wraparound. Using 64 bit ssd counters would \ | |||
| * be simpler, but is slower on x86 32 bit. */\ | |||
| if (ssd < cur_node->ssd)\ | |||
| continue;\ | |||
| if (heap_pos[index] < frontier) {\ | |||
| pos = heap_pos[index]++;\ | |||
| assert(pathn[index] < FREEZE_INTERVAL * frontier);\ | |||
| node = nodes_next[index][pos] = next[index]++;\ | |||
| node->path = pathn[index]++;\ | |||
| } else {\ | |||
| /* Try to replace one of the leaf nodes with the new \ | |||
| * one, but not always testing the same leaf position */\ | |||
| pos = (frontier>>1) + (heap_pos[index] & ((frontier>>1) - 1));\ | |||
| if (ssd >= nodes_next[index][pos]->ssd)\ | |||
| continue;\ | |||
| heap_pos[index]++;\ | |||
| node = nodes_next[index][pos];\ | |||
| }\ | |||
| node->ssd = ssd;\ | |||
| node->state = cur_node->state;\ | |||
| UPDATE;\ | |||
| c->paths[index][node->path].value = VALUE;\ | |||
| c->paths[index][node->path].prev = cur_node->path;\ | |||
| /* Sift the newly inserted node up in the heap to restore \ | |||
| * the heap property */\ | |||
| while (pos > 0) {\ | |||
| int parent = (pos - 1) >> 1;\ | |||
| if (nodes_next[index][parent]->ssd <= ssd)\ | |||
| break;\ | |||
| FFSWAP(struct TrellisNode*, nodes_next[index][parent],\ | |||
| nodes_next[index][pos]);\ | |||
| pos = parent;\ | |||
| } | |||
| STORE_NODE(0, update_low_predictor(&node->state, k >> 2), k); | |||
| } | |||
| } | |||
| for (j = 0; j < frontier && nodes[1][j]; j++) { | |||
| int ihigh; | |||
| struct TrellisNode *cur_node = nodes[1][j]; | |||
| /* We don't try to get any initial guess for ihigh via | |||
| * encode_high - since there's only 4 possible values, test | |||
| * them all. Testing all of these gives a much, much larger | |||
| * gain than testing a larger range around ilow. */ | |||
| for (ihigh = 0; ihigh < 4; ihigh++) { | |||
| int dhigh, decoded, dec_diff, pos; | |||
| uint32_t ssd; | |||
| struct TrellisNode* node; | |||
| dhigh = cur_node->state.scale_factor * | |||
| high_inv_quant[ihigh] >> 10; | |||
| decoded = av_clip(dhigh + cur_node->state.s_predictor, | |||
| -16384, 16383); | |||
| dec_diff = xhigh - decoded; | |||
| STORE_NODE(1, update_high_predictor(&node->state, dhigh, ihigh), ihigh); | |||
| } | |||
| } | |||
| for (j = 0; j < 2; j++) { | |||
| FFSWAP(struct TrellisNode**, nodes[j], nodes_next[j]); | |||
| if (nodes[j][0]->ssd > (1 << 16)) { | |||
| for (k = 1; k < frontier && nodes[j][k]; k++) | |||
| nodes[j][k]->ssd -= nodes[j][0]->ssd; | |||
| nodes[j][0]->ssd = 0; | |||
| } | |||
| } | |||
| if (i == froze + FREEZE_INTERVAL) { | |||
| p[0] = &c->paths[0][nodes[0][0]->path]; | |||
| p[1] = &c->paths[1][nodes[1][0]->path]; | |||
| for (j = i; j > froze; j--) { | |||
| dst[j] = p[1]->value << 6 | p[0]->value; | |||
| p[0] = &c->paths[0][p[0]->prev]; | |||
| p[1] = &c->paths[1][p[1]->prev]; | |||
| } | |||
| froze = i; | |||
| pathn[0] = pathn[1] = 0; | |||
| memset(nodes[0] + 1, 0, (frontier - 1)*sizeof(**nodes)); | |||
| memset(nodes[1] + 1, 0, (frontier - 1)*sizeof(**nodes)); | |||
| } | |||
| } | |||
| p[0] = &c->paths[0][nodes[0][0]->path]; | |||
| p[1] = &c->paths[1][nodes[1][0]->path]; | |||
| for (j = i; j > froze; j--) { | |||
| dst[j] = p[1]->value << 6 | p[0]->value; | |||
| p[0] = &c->paths[0][p[0]->prev]; | |||
| p[1] = &c->paths[1][p[1]->prev]; | |||
| } | |||
| c->band[0] = nodes[0][0]->state; | |||
| c->band[1] = nodes[1][0]->state; | |||
| return i; | |||
| } | |||
| static int g722_encode_frame(AVCodecContext *avctx, | |||
| uint8_t *dst, int buf_size, void *data) | |||
| { | |||
| G722Context *c = avctx->priv_data; | |||
| const int16_t *samples = data; | |||
| int i; | |||
| if (avctx->trellis) | |||
| return g722_encode_trellis(avctx, dst, buf_size, data); | |||
| for (i = 0; i < buf_size >> 1; i++) { | |||
| int xlow, xhigh, ihigh, ilow; | |||
| filter_samples(c, &samples[2*i], &xlow, &xhigh); | |||
| ihigh = encode_high(&c->band[1], xhigh); | |||
| ilow = encode_low(&c->band[0], xlow); | |||
| update_high_predictor(&c->band[1], c->band[1].scale_factor * | |||
| high_inv_quant[ihigh] >> 10, ihigh); | |||
| update_low_predictor(&c->band[0], ilow >> 2); | |||
| *dst++ = ihigh << 6 | ilow; | |||
| } | |||
| return i; | |||
| } | |||
| AVCodec ff_adpcm_g722_encoder = { | |||
| .name = "g722", | |||
| .type = AVMEDIA_TYPE_AUDIO, | |||
| .id = CODEC_ID_ADPCM_G722, | |||
| .priv_data_size = sizeof(G722Context), | |||
| .init = g722_init, | |||
| .close = g722_close, | |||
| .encode = g722_encode_frame, | |||
| .long_name = NULL_IF_CONFIG_SMALL("G.722 ADPCM"), | |||
| .sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE}, | |||
| }; | |||
| #endif | |||
| @@ -0,0 +1,74 @@ | |||
| /* | |||
| * Copyright (c) CMU 1993 Computer Science, Speech Group | |||
| * Chengxiang Lu and Alex Hauptmann | |||
| * Copyright (c) 2005 Steve Underwood <steveu at coppice.org> | |||
| * Copyright (c) 2009 Kenan Gillet | |||
| * Copyright (c) 2010 Martin Storsjo | |||
| * | |||
| * This file is part of Libav. | |||
| * | |||
| * Libav is free software; you can redistribute it and/or | |||
| * modify it under the terms of the GNU Lesser General Public | |||
| * License as published by the Free Software Foundation; either | |||
| * version 2.1 of the License, or (at your option) any later version. | |||
| * | |||
| * Libav is distributed in the hope that it will be useful, | |||
| * but WITHOUT ANY WARRANTY; without even the implied warranty of | |||
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |||
| * Lesser General Public License for more details. | |||
| * | |||
| * You should have received a copy of the GNU Lesser General Public | |||
| * License along with Libav; if not, write to the Free Software | |||
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |||
| */ | |||
| #ifndef AVCODEC_G722_H | |||
| #define AVCODEC_G722_H | |||
| #include <stdint.h> | |||
| #define PREV_SAMPLES_BUF_SIZE 1024 | |||
| typedef struct { | |||
| int16_t prev_samples[PREV_SAMPLES_BUF_SIZE]; ///< memory of past decoded samples | |||
| int prev_samples_pos; ///< the number of values in prev_samples | |||
| /** | |||
| * The band[0] and band[1] correspond respectively to the lower band and higher band. | |||
| */ | |||
| struct G722Band { | |||
| int16_t s_predictor; ///< predictor output value | |||
| int32_t s_zero; ///< previous output signal from zero predictor | |||
| int8_t part_reconst_mem[2]; ///< signs of previous partially reconstructed signals | |||
| int16_t prev_qtzd_reconst; ///< previous quantized reconstructed signal (internal value, using low_inv_quant4) | |||
| int16_t pole_mem[2]; ///< second-order pole section coefficient buffer | |||
| int32_t diff_mem[6]; ///< quantizer difference signal memory | |||
| int16_t zero_mem[6]; ///< Seventh-order zero section coefficient buffer | |||
| int16_t log_factor; ///< delayed 2-logarithmic quantizer factor | |||
| int16_t scale_factor; ///< delayed quantizer scale factor | |||
| } band[2]; | |||
| struct TrellisNode { | |||
| struct G722Band state; | |||
| uint32_t ssd; | |||
| int path; | |||
| } *node_buf[2], **nodep_buf[2]; | |||
| struct TrellisPath { | |||
| int value; | |||
| int prev; | |||
| } *paths[2]; | |||
| } G722Context; | |||
| extern const int16_t ff_g722_high_inv_quant[4]; | |||
| extern const int16_t ff_g722_low_inv_quant4[16]; | |||
| extern const int16_t ff_g722_low_inv_quant6[64]; | |||
| void ff_g722_update_low_predictor(struct G722Band *band, const int ilow); | |||
| void ff_g722_update_high_predictor(struct G722Band *band, const int dhigh, | |||
| const int ihigh); | |||
| void ff_g722_apply_qmf(const int16_t *prev_samples, int *xout1, int *xout2); | |||
| #endif /* AVCODEC_G722_H */ | |||
| @@ -0,0 +1,147 @@ | |||
| /* | |||
| * Copyright (c) CMU 1993 Computer Science, Speech Group | |||
| * Chengxiang Lu and Alex Hauptmann | |||
| * Copyright (c) 2005 Steve Underwood <steveu at coppice.org> | |||
| * Copyright (c) 2009 Kenan Gillet | |||
| * Copyright (c) 2010 Martin Storsjo | |||
| * | |||
| * This file is part of Libav. | |||
| * | |||
| * Libav is free software; you can redistribute it and/or | |||
| * modify it under the terms of the GNU Lesser General Public | |||
| * License as published by the Free Software Foundation; either | |||
| * version 2.1 of the License, or (at your option) any later version. | |||
| * | |||
| * Libav is distributed in the hope that it will be useful, | |||
| * but WITHOUT ANY WARRANTY; without even the implied warranty of | |||
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |||
| * Lesser General Public License for more details. | |||
| * | |||
| * You should have received a copy of the GNU Lesser General Public | |||
| * License along with Libav; if not, write to the Free Software | |||
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |||
| */ | |||
| /** | |||
| * @file | |||
| * G.722 ADPCM audio decoder | |||
| * | |||
| * This G.722 decoder is a bit-exact implementation of the ITU G.722 | |||
| * specification for all three specified bitrates - 64000bps, 56000bps | |||
| * and 48000bps. It passes the ITU tests. | |||
| * | |||
| * @note For the 56000bps and 48000bps bitrates, the lowest 1 or 2 bits | |||
| * respectively of each byte are ignored. | |||
| */ | |||
| #include "avcodec.h" | |||
| #include "get_bits.h" | |||
| #include "g722.h" | |||
| static av_cold int g722_decode_init(AVCodecContext * avctx) | |||
| { | |||
| G722Context *c = avctx->priv_data; | |||
| if (avctx->channels != 1) { | |||
| av_log(avctx, AV_LOG_ERROR, "Only mono tracks are allowed.\n"); | |||
| return AVERROR_INVALIDDATA; | |||
| } | |||
| avctx->sample_fmt = AV_SAMPLE_FMT_S16; | |||
| switch (avctx->bits_per_coded_sample) { | |||
| case 8: | |||
| case 7: | |||
| case 6: | |||
| break; | |||
| default: | |||
| av_log(avctx, AV_LOG_WARNING, "Unsupported bits_per_coded_sample [%d], " | |||
| "assuming 8\n", | |||
| avctx->bits_per_coded_sample); | |||
| case 0: | |||
| avctx->bits_per_coded_sample = 8; | |||
| break; | |||
| } | |||
| c->band[0].scale_factor = 8; | |||
| c->band[1].scale_factor = 2; | |||
| c->prev_samples_pos = 22; | |||
| if (avctx->lowres) | |||
| avctx->sample_rate /= 2; | |||
| return 0; | |||
| } | |||
| static const int16_t low_inv_quant5[32] = { | |||
| -35, -35, -2919, -2195, -1765, -1458, -1219, -1023, | |||
| -858, -714, -587, -473, -370, -276, -190, -110, | |||
| 2919, 2195, 1765, 1458, 1219, 1023, 858, 714, | |||
| 587, 473, 370, 276, 190, 110, 35, -35 | |||
| }; | |||
| static const int16_t *low_inv_quants[3] = { ff_g722_low_inv_quant6, | |||
| low_inv_quant5, | |||
| ff_g722_low_inv_quant4 }; | |||
| static int g722_decode_frame(AVCodecContext *avctx, void *data, | |||
| int *data_size, AVPacket *avpkt) | |||
| { | |||
| G722Context *c = avctx->priv_data; | |||
| int16_t *out_buf = data; | |||
| int j, out_len = 0; | |||
| const int skip = 8 - avctx->bits_per_coded_sample; | |||
| const int16_t *quantizer_table = low_inv_quants[skip]; | |||
| GetBitContext gb; | |||
| init_get_bits(&gb, avpkt->data, avpkt->size * 8); | |||
| for (j = 0; j < avpkt->size; j++) { | |||
| int ilow, ihigh, rlow; | |||
| ihigh = get_bits(&gb, 2); | |||
| ilow = get_bits(&gb, 6 - skip); | |||
| skip_bits(&gb, skip); | |||
| rlow = av_clip((c->band[0].scale_factor * quantizer_table[ilow] >> 10) | |||
| + c->band[0].s_predictor, -16384, 16383); | |||
| ff_g722_update_low_predictor(&c->band[0], ilow >> (2 - skip)); | |||
| if (!avctx->lowres) { | |||
| const int dhigh = c->band[1].scale_factor * | |||
| ff_g722_high_inv_quant[ihigh] >> 10; | |||
| const int rhigh = av_clip(dhigh + c->band[1].s_predictor, | |||
| -16384, 16383); | |||
| int xout1, xout2; | |||
| ff_g722_update_high_predictor(&c->band[1], dhigh, ihigh); | |||
| c->prev_samples[c->prev_samples_pos++] = rlow + rhigh; | |||
| c->prev_samples[c->prev_samples_pos++] = rlow - rhigh; | |||
| ff_g722_apply_qmf(c->prev_samples + c->prev_samples_pos - 24, | |||
| &xout1, &xout2); | |||
| out_buf[out_len++] = av_clip_int16(xout1 >> 12); | |||
| out_buf[out_len++] = av_clip_int16(xout2 >> 12); | |||
| if (c->prev_samples_pos >= PREV_SAMPLES_BUF_SIZE) { | |||
| memmove(c->prev_samples, | |||
| c->prev_samples + c->prev_samples_pos - 22, | |||
| 22 * sizeof(c->prev_samples[0])); | |||
| c->prev_samples_pos = 22; | |||
| } | |||
| } else | |||
| out_buf[out_len++] = rlow; | |||
| } | |||
| *data_size = out_len << 1; | |||
| return avpkt->size; | |||
| } | |||
| AVCodec ff_adpcm_g722_decoder = { | |||
| .name = "g722", | |||
| .type = AVMEDIA_TYPE_AUDIO, | |||
| .id = CODEC_ID_ADPCM_G722, | |||
| .priv_data_size = sizeof(G722Context), | |||
| .init = g722_decode_init, | |||
| .decode = g722_decode_frame, | |||
| .long_name = NULL_IF_CONFIG_SMALL("G.722 ADPCM"), | |||
| .max_lowres = 1, | |||
| }; | |||
| @@ -0,0 +1,311 @@ | |||
| /* | |||
| * Copyright (c) CMU 1993 Computer Science, Speech Group | |||
| * Chengxiang Lu and Alex Hauptmann | |||
| * Copyright (c) 2005 Steve Underwood <steveu at coppice.org> | |||
| * Copyright (c) 2009 Kenan Gillet | |||
| * Copyright (c) 2010 Martin Storsjo | |||
| * | |||
| * This file is part of Libav. | |||
| * | |||
| * Libav is free software; you can redistribute it and/or | |||
| * modify it under the terms of the GNU Lesser General Public | |||
| * License as published by the Free Software Foundation; either | |||
| * version 2.1 of the License, or (at your option) any later version. | |||
| * | |||
| * Libav is distributed in the hope that it will be useful, | |||
| * but WITHOUT ANY WARRANTY; without even the implied warranty of | |||
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |||
| * Lesser General Public License for more details. | |||
| * | |||
| * You should have received a copy of the GNU Lesser General Public | |||
| * License along with Libav; if not, write to the Free Software | |||
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |||
| */ | |||
| /** | |||
| * @file | |||
| * G.722 ADPCM audio encoder | |||
| */ | |||
| #include "avcodec.h" | |||
| #include "g722.h" | |||
| #define FREEZE_INTERVAL 128 | |||
| static av_cold int g722_encode_init(AVCodecContext * avctx) | |||
| { | |||
| G722Context *c = avctx->priv_data; | |||
| if (avctx->channels != 1) { | |||
| av_log(avctx, AV_LOG_ERROR, "Only mono tracks are allowed.\n"); | |||
| return AVERROR_INVALIDDATA; | |||
| } | |||
| c->band[0].scale_factor = 8; | |||
| c->band[1].scale_factor = 2; | |||
| c->prev_samples_pos = 22; | |||
| if (avctx->trellis) { | |||
| int frontier = 1 << avctx->trellis; | |||
| int max_paths = frontier * FREEZE_INTERVAL; | |||
| int i; | |||
| for (i = 0; i < 2; i++) { | |||
| c->paths[i] = av_mallocz(max_paths * sizeof(**c->paths)); | |||
| c->node_buf[i] = av_mallocz(2 * frontier * sizeof(**c->node_buf)); | |||
| c->nodep_buf[i] = av_mallocz(2 * frontier * sizeof(**c->nodep_buf)); | |||
| } | |||
| } | |||
| return 0; | |||
| } | |||
| static av_cold int g722_encode_close(AVCodecContext *avctx) | |||
| { | |||
| G722Context *c = avctx->priv_data; | |||
| int i; | |||
| for (i = 0; i < 2; i++) { | |||
| av_freep(&c->paths[i]); | |||
| av_freep(&c->node_buf[i]); | |||
| av_freep(&c->nodep_buf[i]); | |||
| } | |||
| return 0; | |||
| } | |||
| static const int16_t low_quant[33] = { | |||
| 35, 72, 110, 150, 190, 233, 276, 323, | |||
| 370, 422, 473, 530, 587, 650, 714, 786, | |||
| 858, 940, 1023, 1121, 1219, 1339, 1458, 1612, | |||
| 1765, 1980, 2195, 2557, 2919 | |||
| }; | |||
| static inline void filter_samples(G722Context *c, const int16_t *samples, | |||
| int *xlow, int *xhigh) | |||
| { | |||
| int xout1, xout2; | |||
| c->prev_samples[c->prev_samples_pos++] = samples[0]; | |||
| c->prev_samples[c->prev_samples_pos++] = samples[1]; | |||
| ff_g722_apply_qmf(c->prev_samples + c->prev_samples_pos - 24, &xout1, &xout2); | |||
| *xlow = xout1 + xout2 >> 13; | |||
| *xhigh = xout1 - xout2 >> 13; | |||
| if (c->prev_samples_pos >= PREV_SAMPLES_BUF_SIZE) { | |||
| memmove(c->prev_samples, | |||
| c->prev_samples + c->prev_samples_pos - 22, | |||
| 22 * sizeof(c->prev_samples[0])); | |||
| c->prev_samples_pos = 22; | |||
| } | |||
| } | |||
| static inline int encode_high(const struct G722Band *state, int xhigh) | |||
| { | |||
| int diff = av_clip_int16(xhigh - state->s_predictor); | |||
| int pred = 141 * state->scale_factor >> 8; | |||
| /* = diff >= 0 ? (diff < pred) + 2 : diff >= -pred */ | |||
| return ((diff ^ (diff >> (sizeof(diff)*8-1))) < pred) + 2*(diff >= 0); | |||
| } | |||
| static inline int encode_low(const struct G722Band* state, int xlow) | |||
| { | |||
| int diff = av_clip_int16(xlow - state->s_predictor); | |||
| /* = diff >= 0 ? diff : -(diff + 1) */ | |||
| int limit = diff ^ (diff >> (sizeof(diff)*8-1)); | |||
| int i = 0; | |||
| limit = limit + 1 << 10; | |||
| if (limit > low_quant[8] * state->scale_factor) | |||
| i = 9; | |||
| while (i < 29 && limit > low_quant[i] * state->scale_factor) | |||
| i++; | |||
| return (diff < 0 ? (i < 2 ? 63 : 33) : 61) - i; | |||
| } | |||
| static int g722_encode_trellis(AVCodecContext *avctx, | |||
| uint8_t *dst, int buf_size, void *data) | |||
| { | |||
| G722Context *c = avctx->priv_data; | |||
| const int16_t *samples = data; | |||
| int i, j, k; | |||
| int frontier = 1 << avctx->trellis; | |||
| struct TrellisNode **nodes[2]; | |||
| struct TrellisNode **nodes_next[2]; | |||
| int pathn[2] = {0, 0}, froze = -1; | |||
| struct TrellisPath *p[2]; | |||
| for (i = 0; i < 2; i++) { | |||
| nodes[i] = c->nodep_buf[i]; | |||
| nodes_next[i] = c->nodep_buf[i] + frontier; | |||
| memset(c->nodep_buf[i], 0, 2 * frontier * sizeof(*c->nodep_buf)); | |||
| nodes[i][0] = c->node_buf[i] + frontier; | |||
| nodes[i][0]->ssd = 0; | |||
| nodes[i][0]->path = 0; | |||
| nodes[i][0]->state = c->band[i]; | |||
| } | |||
| for (i = 0; i < buf_size >> 1; i++) { | |||
| int xlow, xhigh; | |||
| struct TrellisNode *next[2]; | |||
| int heap_pos[2] = {0, 0}; | |||
| for (j = 0; j < 2; j++) { | |||
| next[j] = c->node_buf[j] + frontier*(i & 1); | |||
| memset(nodes_next[j], 0, frontier * sizeof(**nodes_next)); | |||
| } | |||
| filter_samples(c, &samples[2*i], &xlow, &xhigh); | |||
| for (j = 0; j < frontier && nodes[0][j]; j++) { | |||
| /* Only k >> 2 affects the future adaptive state, therefore testing | |||
| * small steps that don't change k >> 2 is useless, the orignal | |||
| * value from encode_low is better than them. Since we step k | |||
| * in steps of 4, make sure range is a multiple of 4, so that | |||
| * we don't miss the original value from encode_low. */ | |||
| int range = j < frontier/2 ? 4 : 0; | |||
| struct TrellisNode *cur_node = nodes[0][j]; | |||
| int ilow = encode_low(&cur_node->state, xlow); | |||
| for (k = ilow - range; k <= ilow + range && k <= 63; k += 4) { | |||
| int decoded, dec_diff, pos; | |||
| uint32_t ssd; | |||
| struct TrellisNode* node; | |||
| if (k < 0) | |||
| continue; | |||
| decoded = av_clip((cur_node->state.scale_factor * | |||
| ff_g722_low_inv_quant6[k] >> 10) | |||
| + cur_node->state.s_predictor, -16384, 16383); | |||
| dec_diff = xlow - decoded; | |||
| #define STORE_NODE(index, UPDATE, VALUE)\ | |||
| ssd = cur_node->ssd + dec_diff*dec_diff;\ | |||
| /* Check for wraparound. Using 64 bit ssd counters would \ | |||
| * be simpler, but is slower on x86 32 bit. */\ | |||
| if (ssd < cur_node->ssd)\ | |||
| continue;\ | |||
| if (heap_pos[index] < frontier) {\ | |||
| pos = heap_pos[index]++;\ | |||
| assert(pathn[index] < FREEZE_INTERVAL * frontier);\ | |||
| node = nodes_next[index][pos] = next[index]++;\ | |||
| node->path = pathn[index]++;\ | |||
| } else {\ | |||
| /* Try to replace one of the leaf nodes with the new \ | |||
| * one, but not always testing the same leaf position */\ | |||
| pos = (frontier>>1) + (heap_pos[index] & ((frontier>>1) - 1));\ | |||
| if (ssd >= nodes_next[index][pos]->ssd)\ | |||
| continue;\ | |||
| heap_pos[index]++;\ | |||
| node = nodes_next[index][pos];\ | |||
| }\ | |||
| node->ssd = ssd;\ | |||
| node->state = cur_node->state;\ | |||
| UPDATE;\ | |||
| c->paths[index][node->path].value = VALUE;\ | |||
| c->paths[index][node->path].prev = cur_node->path;\ | |||
| /* Sift the newly inserted node up in the heap to restore \ | |||
| * the heap property */\ | |||
| while (pos > 0) {\ | |||
| int parent = (pos - 1) >> 1;\ | |||
| if (nodes_next[index][parent]->ssd <= ssd)\ | |||
| break;\ | |||
| FFSWAP(struct TrellisNode*, nodes_next[index][parent],\ | |||
| nodes_next[index][pos]);\ | |||
| pos = parent;\ | |||
| } | |||
| STORE_NODE(0, ff_g722_update_low_predictor(&node->state, k >> 2), k); | |||
| } | |||
| } | |||
| for (j = 0; j < frontier && nodes[1][j]; j++) { | |||
| int ihigh; | |||
| struct TrellisNode *cur_node = nodes[1][j]; | |||
| /* We don't try to get any initial guess for ihigh via | |||
| * encode_high - since there's only 4 possible values, test | |||
| * them all. Testing all of these gives a much, much larger | |||
| * gain than testing a larger range around ilow. */ | |||
| for (ihigh = 0; ihigh < 4; ihigh++) { | |||
| int dhigh, decoded, dec_diff, pos; | |||
| uint32_t ssd; | |||
| struct TrellisNode* node; | |||
| dhigh = cur_node->state.scale_factor * | |||
| ff_g722_high_inv_quant[ihigh] >> 10; | |||
| decoded = av_clip(dhigh + cur_node->state.s_predictor, | |||
| -16384, 16383); | |||
| dec_diff = xhigh - decoded; | |||
| STORE_NODE(1, ff_g722_update_high_predictor(&node->state, dhigh, ihigh), ihigh); | |||
| } | |||
| } | |||
| for (j = 0; j < 2; j++) { | |||
| FFSWAP(struct TrellisNode**, nodes[j], nodes_next[j]); | |||
| if (nodes[j][0]->ssd > (1 << 16)) { | |||
| for (k = 1; k < frontier && nodes[j][k]; k++) | |||
| nodes[j][k]->ssd -= nodes[j][0]->ssd; | |||
| nodes[j][0]->ssd = 0; | |||
| } | |||
| } | |||
| if (i == froze + FREEZE_INTERVAL) { | |||
| p[0] = &c->paths[0][nodes[0][0]->path]; | |||
| p[1] = &c->paths[1][nodes[1][0]->path]; | |||
| for (j = i; j > froze; j--) { | |||
| dst[j] = p[1]->value << 6 | p[0]->value; | |||
| p[0] = &c->paths[0][p[0]->prev]; | |||
| p[1] = &c->paths[1][p[1]->prev]; | |||
| } | |||
| froze = i; | |||
| pathn[0] = pathn[1] = 0; | |||
| memset(nodes[0] + 1, 0, (frontier - 1)*sizeof(**nodes)); | |||
| memset(nodes[1] + 1, 0, (frontier - 1)*sizeof(**nodes)); | |||
| } | |||
| } | |||
| p[0] = &c->paths[0][nodes[0][0]->path]; | |||
| p[1] = &c->paths[1][nodes[1][0]->path]; | |||
| for (j = i; j > froze; j--) { | |||
| dst[j] = p[1]->value << 6 | p[0]->value; | |||
| p[0] = &c->paths[0][p[0]->prev]; | |||
| p[1] = &c->paths[1][p[1]->prev]; | |||
| } | |||
| c->band[0] = nodes[0][0]->state; | |||
| c->band[1] = nodes[1][0]->state; | |||
| return i; | |||
| } | |||
| static int g722_encode_frame(AVCodecContext *avctx, | |||
| uint8_t *dst, int buf_size, void *data) | |||
| { | |||
| G722Context *c = avctx->priv_data; | |||
| const int16_t *samples = data; | |||
| int i; | |||
| if (avctx->trellis) | |||
| return g722_encode_trellis(avctx, dst, buf_size, data); | |||
| for (i = 0; i < buf_size >> 1; i++) { | |||
| int xlow, xhigh, ihigh, ilow; | |||
| filter_samples(c, &samples[2*i], &xlow, &xhigh); | |||
| ihigh = encode_high(&c->band[1], xhigh); | |||
| ilow = encode_low(&c->band[0], xlow); | |||
| ff_g722_update_high_predictor(&c->band[1], c->band[1].scale_factor * | |||
| ff_g722_high_inv_quant[ihigh] >> 10, ihigh); | |||
| ff_g722_update_low_predictor(&c->band[0], ilow >> 2); | |||
| *dst++ = ihigh << 6 | ilow; | |||
| } | |||
| return i; | |||
| } | |||
| AVCodec ff_adpcm_g722_encoder = { | |||
| .name = "g722", | |||
| .type = AVMEDIA_TYPE_AUDIO, | |||
| .id = CODEC_ID_ADPCM_G722, | |||
| .priv_data_size = sizeof(G722Context), | |||
| .init = g722_encode_init, | |||
| .close = g722_encode_close, | |||
| .encode = g722_encode_frame, | |||
| .long_name = NULL_IF_CONFIG_SMALL("G.722 ADPCM"), | |||
| .sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE}, | |||
| }; | |||
| @@ -200,48 +200,6 @@ static inline int get_p_cbp(MpegEncContext * s, | |||
| return cbp; | |||
| } | |||
| static inline int get_b_cbp(MpegEncContext * s, DCTELEM block[6][64], | |||
| int motion_x, int motion_y, int mb_type){ | |||
| int cbp=0, i; | |||
| if(s->flags & CODEC_FLAG_CBP_RD){ | |||
| int score=0; | |||
| const int lambda= s->lambda2 >> (FF_LAMBDA_SHIFT - 6); | |||
| for(i=0; i<6; i++){ | |||
| if(s->coded_score[i] < 0){ | |||
| score += s->coded_score[i]; | |||
| cbp |= 1 << (5 - i); | |||
| } | |||
| } | |||
| if(cbp){ | |||
| int zero_score= -6; | |||
| if ((motion_x | motion_y | s->dquant | mb_type) == 0){ | |||
| zero_score-= 4; //2*MV + mb_type + cbp bit | |||
| } | |||
| zero_score*= lambda; | |||
| if(zero_score <= score){ | |||
| cbp=0; | |||
| } | |||
| } | |||
| for (i = 0; i < 6; i++) { | |||
| if (s->block_last_index[i] >= 0 && ((cbp >> (5 - i))&1)==0 ){ | |||
| s->block_last_index[i]= -1; | |||
| s->dsp.clear_block(s->block[i]); | |||
| } | |||
| } | |||
| }else{ | |||
| for (i = 0; i < 6; i++) { | |||
| if (s->block_last_index[i] >= 0) | |||
| cbp |= 1 << (5 - i); | |||
| } | |||
| } | |||
| return cbp; | |||
| } | |||
| static inline void memsetw(short *tab, int val, int n) | |||
| { | |||
| int i; | |||
| @@ -1060,7 +1060,6 @@ static av_cold void common_init(H264Context *h){ | |||
| h->dequant_coeff_pps= -1; | |||
| s->unrestricted_mv=1; | |||
| s->decode=1; //FIXME | |||
| s->dsp.dct_bits = 16; | |||
| dsputil_init(&s->dsp, s->avctx); // needed so that idct permutation is known early | |||
| @@ -735,8 +735,9 @@ static void exchange_uv(MpegEncContext *s) | |||
| #define MT_16X8 2 | |||
| #define MT_DMV 3 | |||
| static int mpeg_decode_mb(MpegEncContext *s, DCTELEM block[12][64]) | |||
| static int mpeg_decode_mb(Mpeg1Context *s1, DCTELEM block[12][64]) | |||
| { | |||
| MpegEncContext *s = &s1->mpeg_enc_ctx; | |||
| int i, j, k, cbp, val, mb_type, motion_type; | |||
| const int mb_block_count = 4 + (1 << s->chroma_format); | |||
| @@ -910,7 +911,7 @@ static int mpeg_decode_mb(MpegEncContext *s, DCTELEM block[12][64]) | |||
| s->mv[i][0][1]= s->last_mv[i][0][1]= s->last_mv[i][1][1] = | |||
| mpeg_decode_motion(s, s->mpeg_f_code[i][1], s->last_mv[i][0][1]); | |||
| /* full_pel: only for MPEG-1 */ | |||
| if (s->full_pel[i]) { | |||
| if (s1->full_pel[i]) { | |||
| s->mv[i][0][0] <<= 1; | |||
| s->mv[i][0][1] <<= 1; | |||
| } | |||
| @@ -1112,20 +1113,6 @@ static int mpeg_decode_mb(MpegEncContext *s, DCTELEM block[12][64]) | |||
| return 0; | |||
| } | |||
| typedef struct Mpeg1Context { | |||
| MpegEncContext mpeg_enc_ctx; | |||
| int mpeg_enc_ctx_allocated; /* true if decoding context allocated */ | |||
| int repeat_field; /* true if we must repeat the field */ | |||
| AVPanScan pan_scan; /**< some temporary storage for the panscan */ | |||
| int slice_count; | |||
| int swap_uv;//indicate VCR2 | |||
| int save_aspect_info; | |||
| int save_width, save_height, save_progressive_seq; | |||
| AVRational frame_rate_ext; ///< MPEG-2 specific framerate modificator | |||
| int sync; ///< Did we reach a sync point like a GOP/SEQ/KEYFrame? | |||
| int tmpgexs; | |||
| } Mpeg1Context; | |||
| static av_cold int mpeg_decode_init(AVCodecContext *avctx) | |||
| { | |||
| Mpeg1Context *s = avctx->priv_data; | |||
| @@ -1376,7 +1363,7 @@ static int mpeg1_decode_picture(AVCodecContext *avctx, | |||
| vbv_delay = get_bits(&s->gb, 16); | |||
| if (s->pict_type == AV_PICTURE_TYPE_P || s->pict_type == AV_PICTURE_TYPE_B) { | |||
| s->full_pel[0] = get_bits1(&s->gb); | |||
| s1->full_pel[0] = get_bits1(&s->gb); | |||
| f_code = get_bits(&s->gb, 3); | |||
| if (f_code == 0 && (avctx->err_recognition & AV_EF_BITSTREAM)) | |||
| return -1; | |||
| @@ -1384,7 +1371,7 @@ static int mpeg1_decode_picture(AVCodecContext *avctx, | |||
| s->mpeg_f_code[0][1] = f_code; | |||
| } | |||
| if (s->pict_type == AV_PICTURE_TYPE_B) { | |||
| s->full_pel[1] = get_bits1(&s->gb); | |||
| s1->full_pel[1] = get_bits1(&s->gb); | |||
| f_code = get_bits(&s->gb, 3); | |||
| if (f_code == 0 && (avctx->err_recognition & AV_EF_BITSTREAM)) | |||
| return -1; | |||
| @@ -1532,7 +1519,7 @@ static void mpeg_decode_picture_coding_extension(Mpeg1Context *s1) | |||
| { | |||
| MpegEncContext *s = &s1->mpeg_enc_ctx; | |||
| s->full_pel[0] = s->full_pel[1] = 0; | |||
| s1->full_pel[0] = s1->full_pel[1] = 0; | |||
| s->mpeg_f_code[0][0] = get_bits(&s->gb, 4); | |||
| s->mpeg_f_code[0][1] = get_bits(&s->gb, 4); | |||
| s->mpeg_f_code[1][0] = get_bits(&s->gb, 4); | |||
| @@ -1763,7 +1750,7 @@ static int mpeg_decode_slice(Mpeg1Context *s1, int mb_y, | |||
| if (CONFIG_MPEG_XVMC_DECODER && s->avctx->xvmc_acceleration > 1) | |||
| ff_xvmc_init_block(s); // set s->block | |||
| if (mpeg_decode_mb(s, s->block) < 0) | |||
| if (mpeg_decode_mb(s1, s->block) < 0) | |||
| return -1; | |||
| if (s->current_picture.f.motion_val[0] && !s->encoding) { // note motion_val is normally NULL unless we want to extract the MVs | |||
| @@ -2171,7 +2158,7 @@ static void mpeg_decode_gop(AVCodecContext *avctx, | |||
| time_code_seconds = get_bits(&s->gb, 6); | |||
| time_code_pictures = get_bits(&s->gb, 6); | |||
| s->closed_gop = get_bits1(&s->gb); | |||
| s1->closed_gop = get_bits1(&s->gb); | |||
| /*broken_link indicate that after editing the | |||
| reference frames of the first B-Frames after GOP I-Frame | |||
| are missing (open gop)*/ | |||
| @@ -2321,7 +2308,8 @@ static int decode_chunks(AVCodecContext *avctx, | |||
| } | |||
| if (CONFIG_VDPAU && uses_vdpau(avctx)) | |||
| ff_vdpau_mpeg_picture_complete(s2, buf, buf_size, s->slice_count); | |||
| ff_vdpau_mpeg_picture_complete(s, buf, buf_size, s->slice_count); | |||
| if (slice_end(avctx, picture)) { | |||
| if (s2->last_picture_ptr || s2->low_delay) //FIXME merge with the stuff in mpeg_decode_slice | |||
| @@ -2450,7 +2438,7 @@ static int decode_chunks(AVCodecContext *avctx, | |||
| if (s2->last_picture_ptr == NULL) { | |||
| /* Skip B-frames if we do not have reference frames and gop is not closed */ | |||
| if (s2->pict_type == AV_PICTURE_TYPE_B) { | |||
| if (!s2->closed_gop) | |||
| if (!s->closed_gop) | |||
| break; | |||
| } | |||
| } | |||
| @@ -2535,6 +2523,7 @@ static void flush(AVCodecContext *avctx) | |||
| Mpeg1Context *s = avctx->priv_data; | |||
| s->sync=0; | |||
| s->closed_gop = 0; | |||
| ff_mpeg_flush(avctx); | |||
| } | |||
| @@ -30,6 +30,22 @@ | |||
| extern VLC ff_dc_lum_vlc; | |||
| extern VLC ff_dc_chroma_vlc; | |||
| typedef struct Mpeg1Context { | |||
| MpegEncContext mpeg_enc_ctx; | |||
| int mpeg_enc_ctx_allocated; /* true if decoding context allocated */ | |||
| int repeat_field; /* true if we must repeat the field */ | |||
| AVPanScan pan_scan; /**< some temporary storage for the panscan */ | |||
| int slice_count; | |||
| int swap_uv;//indicate VCR2 | |||
| int save_aspect_info; | |||
| int save_width, save_height, save_progressive_seq; | |||
| AVRational frame_rate_ext; ///< MPEG-2 specific framerate modificator | |||
| int sync; ///< Did we reach a sync point like a GOP/SEQ/KEYFrame? | |||
| int full_pel[2]; | |||
| int closed_gop; ///< GOP is closed | |||
| int tmpgexs; | |||
| } Mpeg1Context; | |||
| extern uint8_t ff_mpeg12_static_rl_table_store[2][2][2*MAX_RUN + MAX_LEVEL + 3]; | |||
| void ff_mpeg12_common_init(MpegEncContext *s); | |||
| @@ -425,6 +425,46 @@ static inline void mpeg4_encode_blocks(MpegEncContext * s, DCTELEM block[6][64], | |||
| } | |||
| } | |||
| static inline int get_b_cbp(MpegEncContext * s, DCTELEM block[6][64], | |||
| int motion_x, int motion_y, int mb_type) | |||
| { | |||
| int cbp = 0, i; | |||
| if (s->flags & CODEC_FLAG_CBP_RD) { | |||
| int score = 0; | |||
| const int lambda = s->lambda2 >> (FF_LAMBDA_SHIFT - 6); | |||
| for (i = 0; i < 6; i++) | |||
| if (s->coded_score[i] < 0) { | |||
| score += s->coded_score[i]; | |||
| cbp |= 1 << (5 - i); | |||
| } | |||
| if (cbp) { | |||
| int zero_score = -6; | |||
| if ((motion_x | motion_y | s->dquant | mb_type) == 0) | |||
| zero_score -= 4; //2*MV + mb_type + cbp bit | |||
| zero_score *= lambda; | |||
| if (zero_score <= score) | |||
| cbp = 0; | |||
| } | |||
| for (i = 0; i < 6; i++) { | |||
| if (s->block_last_index[i] >= 0 && ((cbp >> (5 - i)) & 1) == 0) { | |||
| s->block_last_index[i] = -1; | |||
| s->dsp.clear_block(s->block[i]); | |||
| } | |||
| } | |||
| } else { | |||
| for (i = 0; i < 6; i++) { | |||
| if (s->block_last_index[i] >= 0) | |||
| cbp |= 1 << (5 - i); | |||
| } | |||
| } | |||
| return cbp; | |||
| } | |||
| //FIXME this is duplicated to h263.c | |||
| static const int dquant_code[5]= {1,0,9,2,3}; | |||
| @@ -1213,7 +1253,6 @@ static av_cold int encode_init(AVCodecContext *avctx) | |||
| s->inter_ac_vlc_length = uni_mpeg4_inter_rl_len; | |||
| s->inter_ac_vlc_last_length= uni_mpeg4_inter_rl_len + 128*64; | |||
| s->luma_dc_vlc_length= uni_DCtab_lum_len; | |||
| s->chroma_dc_vlc_length= uni_DCtab_chrom_len; | |||
| s->ac_esc_length= 7+2+1+6+1+12+1; | |||
| s->y_dc_scale_table= ff_mpeg4_y_dc_scale_table; | |||
| s->c_dc_scale_table= ff_mpeg4_c_dc_scale_table; | |||
| @@ -2425,7 +2425,6 @@ void ff_mpeg_flush(AVCodecContext *avctx){ | |||
| s->current_picture_ptr = s->last_picture_ptr = s->next_picture_ptr = NULL; | |||
| s->mb_x= s->mb_y= 0; | |||
| s->closed_gop= 0; | |||
| s->parse_context.state= -1; | |||
| s->parse_context.frame_start_found= 0; | |||
| @@ -236,7 +236,6 @@ typedef struct MpegEncContext { | |||
| int coded_picture_number; ///< used to set pic->coded_picture_number, should not be used for/by anything else | |||
| int picture_number; //FIXME remove, unclear definition | |||
| int picture_in_gop_number; ///< 0-> first pic in gop, ... | |||
| int b_frames_since_non_b; ///< used for encoding, relative to not yet reordered input | |||
| int mb_width, mb_height; ///< number of MBs horizontally & vertically | |||
| int mb_stride; ///< mb_width+1 used for some arrays to allow simple addressing of left & top MBs without sig11 | |||
| int b8_stride; ///< 2*mb_width+1 used for some 8x8 block arrays to allow simple addressing | |||
| @@ -305,7 +304,6 @@ typedef struct MpegEncContext { | |||
| int last_dc[3]; ///< last DC values for MPEG1 | |||
| int16_t *dc_val_base; | |||
| int16_t *dc_val[3]; ///< used for mpeg4 DC prediction, all 3 arrays must be continuous | |||
| int16_t dc_cache[4*5]; | |||
| const uint8_t *y_dc_scale_table; ///< qscale -> y_dc_scale table | |||
| const uint8_t *c_dc_scale_table; ///< qscale -> c_dc_scale table | |||
| const uint8_t *chroma_qscale_table; ///< qscale -> chroma_qscale (h263) | |||
| @@ -333,7 +331,6 @@ typedef struct MpegEncContext { | |||
| int *lambda_table; | |||
| int adaptive_quant; ///< use adaptive quantization | |||
| int dquant; ///< qscale difference to prev qscale | |||
| int closed_gop; ///< MPEG1/2 GOP is closed | |||
| int pict_type; ///< AV_PICTURE_TYPE_I, AV_PICTURE_TYPE_P, AV_PICTURE_TYPE_B, ... | |||
| int last_pict_type; //FIXME removes | |||
| int last_non_b_pict_type; ///< used for mpeg4 gmc b-frames & ratecontrol | |||
| @@ -345,7 +342,6 @@ typedef struct MpegEncContext { | |||
| /* motion compensation */ | |||
| int unrestricted_mv; ///< mv can point outside of the coded picture | |||
| int h263_long_vectors; ///< use horrible h263v1 long vector mode | |||
| int decode; ///< if 0 then decoding will be skipped (for encoding b frames for example) | |||
| DSPContext dsp; ///< pointers for accelerated dsp functions | |||
| int f_code; ///< forward MV resolution | |||
| @@ -440,7 +436,6 @@ typedef struct MpegEncContext { | |||
| uint8_t *inter_ac_vlc_length; | |||
| uint8_t *inter_ac_vlc_last_length; | |||
| uint8_t *luma_dc_vlc_length; | |||
| uint8_t *chroma_dc_vlc_length; | |||
| #define UNI_AC_ENC_INDEX(run,level) ((run)*128 + (level)) | |||
| int coded_score[8]; | |||
| @@ -462,7 +457,6 @@ typedef struct MpegEncContext { | |||
| void *opaque; ///< private data for the user | |||
| /* bit rate control */ | |||
| int64_t wanted_bits; | |||
| int64_t total_bits; | |||
| int frame_bits; ///< bits used for the current frame | |||
| int next_lambda; ///< next lambda used for retrying to encode a frame | |||
| @@ -643,7 +637,6 @@ typedef struct MpegEncContext { | |||
| int chroma_y_shift; | |||
| int progressive_frame; | |||
| int full_pel[2]; | |||
| int interlaced_dct; | |||
| int first_slice; | |||
| int first_field; ///< is 1 for the first field of a field picture 0 otherwise | |||
| @@ -190,9 +190,10 @@ void ff_vdpau_h264_picture_complete(MpegEncContext *s) | |||
| render->bitstream_buffers_used = 0; | |||
| } | |||
| void ff_vdpau_mpeg_picture_complete(MpegEncContext *s, const uint8_t *buf, | |||
| void ff_vdpau_mpeg_picture_complete(Mpeg1Context *s1, const uint8_t *buf, | |||
| int buf_size, int slice_count) | |||
| { | |||
| MpegEncContext *s = &s1->mpeg_enc_ctx; | |||
| struct vdpau_render_state *render, *last, *next; | |||
| int i; | |||
| @@ -211,8 +212,8 @@ void ff_vdpau_mpeg_picture_complete(MpegEncContext *s, const uint8_t *buf, | |||
| render->info.mpeg.alternate_scan = s->alternate_scan; | |||
| render->info.mpeg.q_scale_type = s->q_scale_type; | |||
| render->info.mpeg.top_field_first = s->top_field_first; | |||
| render->info.mpeg.full_pel_forward_vector = s->full_pel[0]; // MPEG-1 only. Set 0 for MPEG-2 | |||
| render->info.mpeg.full_pel_backward_vector = s->full_pel[1]; // MPEG-1 only. Set 0 for MPEG-2 | |||
| render->info.mpeg.full_pel_forward_vector = s1->full_pel[0]; // MPEG-1 only. Set 0 for MPEG-2 | |||
| render->info.mpeg.full_pel_backward_vector = s1->full_pel[1]; // MPEG-1 only. Set 0 for MPEG-2 | |||
| render->info.mpeg.f_code[0][0] = s->mpeg_f_code[0][0]; // For MPEG-1 fill both horiz. & vert. | |||
| render->info.mpeg.f_code[0][1] = s->mpeg_f_code[0][1]; | |||
| render->info.mpeg.f_code[1][0] = s->mpeg_f_code[1][0]; | |||
| @@ -26,11 +26,12 @@ | |||
| #include <stdint.h> | |||
| #include "mpegvideo.h" | |||
| #include "mpeg12.h" | |||
| void ff_vdpau_add_data_chunk(MpegEncContext *s, const uint8_t *buf, | |||
| int buf_size); | |||
| void ff_vdpau_mpeg_picture_complete(MpegEncContext *s, const uint8_t *buf, | |||
| void ff_vdpau_mpeg_picture_complete(Mpeg1Context *s1, const uint8_t *buf, | |||
| int buf_size, int slice_count); | |||
| void ff_vdpau_h264_picture_start(MpegEncContext *s); | |||
| @@ -966,7 +966,7 @@ static int vorbis_parse_id_hdr(vorbis_context *vc) | |||
| static av_cold int vorbis_decode_init(AVCodecContext *avccontext) | |||
| { | |||
| vorbis_context *vc = avccontext->priv_data ; | |||
| vorbis_context *vc = avccontext->priv_data; | |||
| uint8_t *headers = avccontext->extradata; | |||
| int headers_len = avccontext->extradata_size; | |||
| uint8_t *header_start[3]; | |||
| @@ -1030,7 +1030,7 @@ static av_cold int vorbis_decode_init(AVCodecContext *avccontext) | |||
| avccontext->sample_rate = vc->audio_samplerate; | |||
| avccontext->frame_size = FFMIN(vc->blocksize[0], vc->blocksize[1]) >> 2; | |||
| return 0 ; | |||
| return 0; | |||
| } | |||
| // Decode audiopackets ------------------------------------------------- | |||
| @@ -1608,10 +1608,10 @@ static int vorbis_decode_frame(AVCodecContext *avccontext, | |||
| { | |||
| const uint8_t *buf = avpkt->data; | |||
| int buf_size = avpkt->size; | |||
| vorbis_context *vc = avccontext->priv_data ; | |||
| vorbis_context *vc = avccontext->priv_data; | |||
| GetBitContext *gb = &(vc->gb); | |||
| const float *channel_ptrs[255]; | |||
| int i, len; | |||
| int i, len, out_size; | |||
| if (!buf_size) | |||
| return 0; | |||
| @@ -1630,12 +1630,19 @@ static int vorbis_decode_frame(AVCodecContext *avccontext, | |||
| if (!vc->first_frame) { | |||
| vc->first_frame = 1; | |||
| *data_size = 0; | |||
| return buf_size ; | |||
| return buf_size; | |||
| } | |||
| av_dlog(NULL, "parsed %d bytes %d bits, returned %d samples (*ch*bits) \n", | |||
| get_bits_count(gb) / 8, get_bits_count(gb) % 8, len); | |||
| out_size = len * vc->audio_channels * | |||
| av_get_bytes_per_sample(avccontext->sample_fmt); | |||
| if (*data_size < out_size) { | |||
| av_log(avccontext, AV_LOG_ERROR, "output buffer is too small\n"); | |||
| return AVERROR(EINVAL); | |||
| } | |||
| if (vc->audio_channels > 8) { | |||
| for (i = 0; i < vc->audio_channels; i++) | |||
| channel_ptrs[i] = vc->channel_floors + i * len; | |||
| @@ -1651,10 +1658,9 @@ static int vorbis_decode_frame(AVCodecContext *avccontext, | |||
| vc->fmt_conv.float_to_int16_interleave(data, channel_ptrs, len, | |||
| vc->audio_channels); | |||
| *data_size = len * vc->audio_channels * | |||
| av_get_bytes_per_sample(avccontext->sample_fmt); | |||
| *data_size = out_size; | |||
| return buf_size ; | |||
| return buf_size; | |||
| } | |||
| // Close decoder | |||
| @@ -1665,7 +1671,7 @@ static av_cold int vorbis_decode_close(AVCodecContext *avccontext) | |||
| vorbis_free(vc); | |||
| return 0 ; | |||
| return 0; | |||
| } | |||
| AVCodec ff_vorbis_decoder = { | |||
| @@ -808,15 +808,13 @@ static int wavpack_decode_block(AVCodecContext *avctx, int block_no, | |||
| } | |||
| s->frame_flags = AV_RL32(buf); buf += 4; | |||
| if(s->frame_flags&0x80){ | |||
| bpp = sizeof(float); | |||
| avctx->sample_fmt = AV_SAMPLE_FMT_FLT; | |||
| } else if((s->frame_flags&0x03) <= 1){ | |||
| bpp = 2; | |||
| avctx->sample_fmt = AV_SAMPLE_FMT_S16; | |||
| } else { | |||
| bpp = 4; | |||
| avctx->sample_fmt = AV_SAMPLE_FMT_S32; | |||
| } | |||
| bpp = av_get_bytes_per_sample(avctx->sample_fmt); | |||
| samples = (uint8_t*)samples + bpp * wc->ch_offset; | |||
| s->stereo = !(s->frame_flags & WV_MONO); | |||
| @@ -147,7 +147,7 @@ OBJS-$(CONFIG_MOV_MUXER) += movenc.o riff.o isom.o avc.o \ | |||
| movenchint.o rtpenc_chain.o | |||
| OBJS-$(CONFIG_MP2_MUXER) += mp3enc.o rawenc.o | |||
| OBJS-$(CONFIG_MP3_DEMUXER) += mp3dec.o | |||
| OBJS-$(CONFIG_MP3_MUXER) += mp3enc.o rawenc.o | |||
| OBJS-$(CONFIG_MP3_MUXER) += mp3enc.o rawenc.o id3v2enc.o | |||
| OBJS-$(CONFIG_MPC_DEMUXER) += mpc.o apetag.o | |||
| OBJS-$(CONFIG_MPC8_DEMUXER) += mpc8.o | |||
| OBJS-$(CONFIG_MPEG1SYSTEM_MUXER) += mpegenc.o | |||
| @@ -86,6 +86,14 @@ void ff_id3v2_read(AVFormatContext *s, const char *magic); | |||
| */ | |||
| void ff_id3v2_read_all(AVFormatContext *s, const char *magic, ID3v2ExtraMeta **extra_meta); | |||
| /** | |||
| * Write an ID3v2 tag. | |||
| * @param id3v2_version Subversion of ID3v2; supported values are 3 and 4 | |||
| * @param magic magic bytes to identify the header | |||
| * If in doubt, use ID3v2_DEFAULT_MAGIC. | |||
| */ | |||
| int ff_id3v2_write(struct AVFormatContext *s, int id3v2_version, const char *magic); | |||
| /** | |||
| * Free memory allocated parsing special (non-text) metadata. | |||
| * @param extra_meta Pointer to a pointer to the head of a ID3v2ExtraMeta list, *extra_meta is set to NULL. | |||
| @@ -0,0 +1,146 @@ | |||
| /* | |||
| * ID3v2 header writer | |||
| * | |||
| * This file is part of FFmpeg. | |||
| * | |||
| * FFmpeg is free software; you can redistribute it and/or | |||
| * modify it under the terms of the GNU Lesser General Public | |||
| * License as published by the Free Software Foundation; either | |||
| * version 2.1 of the License, or (at your option) any later version. | |||
| * | |||
| * FFmpeg is distributed in the hope that it will be useful, | |||
| * but WITHOUT ANY WARRANTY; without even the implied warranty of | |||
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |||
| * Lesser General Public License for more details. | |||
| * | |||
| * You should have received a copy of the GNU Lesser General Public | |||
| * License along with FFmpeg; if not, write to the Free Software | |||
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |||
| */ | |||
| #include <stdint.h> | |||
| #include "libavutil/dict.h" | |||
| #include "libavutil/intreadwrite.h" | |||
| #include "avformat.h" | |||
| #include "avio.h" | |||
| #include "id3v2.h" | |||
| static void id3v2_put_size(AVFormatContext *s, int size) | |||
| { | |||
| avio_w8(s->pb, size >> 21 & 0x7f); | |||
| avio_w8(s->pb, size >> 14 & 0x7f); | |||
| avio_w8(s->pb, size >> 7 & 0x7f); | |||
| avio_w8(s->pb, size & 0x7f); | |||
| } | |||
| static int string_is_ascii(const uint8_t *str) | |||
| { | |||
| while (*str && *str < 128) str++; | |||
| return !*str; | |||
| } | |||
| /** | |||
| * Write a text frame with one (normal frames) or two (TXXX frames) strings | |||
| * according to encoding (only UTF-8 or UTF-16+BOM supported). | |||
| * @return number of bytes written or a negative error code. | |||
| */ | |||
| static int id3v2_put_ttag(AVFormatContext *s, const char *str1, const char *str2, | |||
| uint32_t tag, enum ID3v2Encoding enc) | |||
| { | |||
| int len; | |||
| uint8_t *pb; | |||
| int (*put)(AVIOContext*, const char*); | |||
| AVIOContext *dyn_buf; | |||
| if (avio_open_dyn_buf(&dyn_buf) < 0) | |||
| return AVERROR(ENOMEM); | |||
| /* check if the strings are ASCII-only and use UTF16 only if | |||
| * they're not */ | |||
| if (enc == ID3v2_ENCODING_UTF16BOM && string_is_ascii(str1) && | |||
| (!str2 || string_is_ascii(str2))) | |||
| enc = ID3v2_ENCODING_ISO8859; | |||
| avio_w8(dyn_buf, enc); | |||
| if (enc == ID3v2_ENCODING_UTF16BOM) { | |||
| avio_wl16(dyn_buf, 0xFEFF); /* BOM */ | |||
| put = avio_put_str16le; | |||
| } else | |||
| put = avio_put_str; | |||
| put(dyn_buf, str1); | |||
| if (str2) | |||
| put(dyn_buf, str2); | |||
| len = avio_close_dyn_buf(dyn_buf, &pb); | |||
| avio_wb32(s->pb, tag); | |||
| id3v2_put_size(s, len); | |||
| avio_wb16(s->pb, 0); | |||
| avio_write(s->pb, pb, len); | |||
| av_freep(&pb); | |||
| return len + ID3v2_HEADER_SIZE; | |||
| } | |||
| static int id3v2_check_write_tag(AVFormatContext *s, AVDictionaryEntry *t, const char table[][4], | |||
| enum ID3v2Encoding enc) | |||
| { | |||
| uint32_t tag; | |||
| int i; | |||
| if (t->key[0] != 'T' || strlen(t->key) != 4) | |||
| return -1; | |||
| tag = AV_RB32(t->key); | |||
| for (i = 0; *table[i]; i++) | |||
| if (tag == AV_RB32(table[i])) | |||
| return id3v2_put_ttag(s, t->value, NULL, tag, enc); | |||
| return -1; | |||
| } | |||
| int ff_id3v2_write(struct AVFormatContext *s, int id3v2_version, | |||
| const char *magic) | |||
| { | |||
| int64_t size_pos, cur_pos; | |||
| AVDictionaryEntry *t = NULL; | |||
| int totlen = 0, enc = id3v2_version == 3 ? ID3v2_ENCODING_UTF16BOM : | |||
| ID3v2_ENCODING_UTF8; | |||
| avio_wb32(s->pb, MKBETAG(magic[0], magic[1], magic[2], id3v2_version)); | |||
| avio_w8(s->pb, 0); | |||
| avio_w8(s->pb, 0); /* flags */ | |||
| /* reserve space for size */ | |||
| size_pos = avio_tell(s->pb); | |||
| avio_wb32(s->pb, 0); | |||
| ff_metadata_conv(&s->metadata, ff_id3v2_34_metadata_conv, NULL); | |||
| if (id3v2_version == 4) | |||
| ff_metadata_conv(&s->metadata, ff_id3v2_4_metadata_conv, NULL); | |||
| while ((t = av_dict_get(s->metadata, "", t, AV_DICT_IGNORE_SUFFIX))) { | |||
| int ret; | |||
| if ((ret = id3v2_check_write_tag(s, t, ff_id3v2_tags, enc)) > 0) { | |||
| totlen += ret; | |||
| continue; | |||
| } | |||
| if ((ret = id3v2_check_write_tag(s, t, id3v2_version == 3 ? | |||
| ff_id3v2_3_tags : ff_id3v2_4_tags, enc)) > 0) { | |||
| totlen += ret; | |||
| continue; | |||
| } | |||
| /* unknown tag, write as TXXX frame */ | |||
| if ((ret = id3v2_put_ttag(s, t->key, t->value, MKBETAG('T', 'X', 'X', 'X'), enc)) < 0) | |||
| return ret; | |||
| totlen += ret; | |||
| } | |||
| cur_pos = avio_tell(s->pb); | |||
| avio_seek(s->pb, size_pos, SEEK_SET); | |||
| id3v2_put_size(s, totlen); | |||
| avio_seek(s->pb, cur_pos, SEEK_SET); | |||
| return 0; | |||
| } | |||
| @@ -78,66 +78,9 @@ static int id3v1_create_tag(AVFormatContext *s, uint8_t *buf) | |||
| return count; | |||
| } | |||
| /* simple formats */ | |||
| static void id3v2_put_size(AVFormatContext *s, int size) | |||
| { | |||
| avio_w8(s->pb, size >> 21 & 0x7f); | |||
| avio_w8(s->pb, size >> 14 & 0x7f); | |||
| avio_w8(s->pb, size >> 7 & 0x7f); | |||
| avio_w8(s->pb, size & 0x7f); | |||
| } | |||
| static int string_is_ascii(const uint8_t *str) | |||
| { | |||
| while (*str && *str < 128) str++; | |||
| return !*str; | |||
| } | |||
| /** | |||
| * Write a text frame with one (normal frames) or two (TXXX frames) strings | |||
| * according to encoding (only UTF-8 or UTF-16+BOM supported). | |||
| * @return number of bytes written or a negative error code. | |||
| */ | |||
| static int id3v2_put_ttag(AVFormatContext *s, const char *str1, const char *str2, | |||
| uint32_t tag, enum ID3v2Encoding enc) | |||
| { | |||
| int len; | |||
| uint8_t *pb; | |||
| int (*put)(AVIOContext*, const char*); | |||
| AVIOContext *dyn_buf; | |||
| if (avio_open_dyn_buf(&dyn_buf) < 0) | |||
| return AVERROR(ENOMEM); | |||
| /* check if the strings are ASCII-only and use UTF16 only if | |||
| * they're not */ | |||
| if (enc == ID3v2_ENCODING_UTF16BOM && string_is_ascii(str1) && | |||
| (!str2 || string_is_ascii(str2))) | |||
| enc = ID3v2_ENCODING_ISO8859; | |||
| avio_w8(dyn_buf, enc); | |||
| if (enc == ID3v2_ENCODING_UTF16BOM) { | |||
| avio_wl16(dyn_buf, 0xFEFF); /* BOM */ | |||
| put = avio_put_str16le; | |||
| } else | |||
| put = avio_put_str; | |||
| put(dyn_buf, str1); | |||
| if (str2) | |||
| put(dyn_buf, str2); | |||
| len = avio_close_dyn_buf(dyn_buf, &pb); | |||
| avio_wb32(s->pb, tag); | |||
| id3v2_put_size(s, len); | |||
| avio_wb16(s->pb, 0); | |||
| avio_write(s->pb, pb, len); | |||
| av_freep(&pb); | |||
| return len + ID3v2_HEADER_SIZE; | |||
| } | |||
| #define VBR_NUM_BAGS 400 | |||
| #define VBR_TOC_SIZE 100 | |||
| typedef struct MP3Context { | |||
| const AVClass *class; | |||
| int id3v2_version; | |||
| @@ -204,21 +147,6 @@ static const AVClass mp3_muxer_class = { | |||
| .version = LIBAVUTIL_VERSION_INT, | |||
| }; | |||
| static int id3v2_check_write_tag(AVFormatContext *s, AVDictionaryEntry *t, const char table[][4], | |||
| enum ID3v2Encoding enc) | |||
| { | |||
| uint32_t tag; | |||
| int i; | |||
| if (t->key[0] != 'T' || strlen(t->key) != 4) | |||
| return -1; | |||
| tag = AV_RB32(t->key); | |||
| for (i = 0; *table[i]; i++) | |||
| if (tag == AV_RB32(table[i])) | |||
| return id3v2_put_ttag(s, t->value, NULL, tag, enc); | |||
| return -1; | |||
| } | |||
| static const int64_t xing_offtbl[2][2] = {{32, 17}, {17,9}}; | |||
| /* | |||
| @@ -363,46 +291,11 @@ static void mp3_fix_xing(AVFormatContext *s) | |||
| static int mp3_write_header(struct AVFormatContext *s) | |||
| { | |||
| MP3Context *mp3 = s->priv_data; | |||
| AVDictionaryEntry *t = NULL; | |||
| int totlen = 0, enc = mp3->id3v2_version == 3 ? ID3v2_ENCODING_UTF16BOM : | |||
| ID3v2_ENCODING_UTF8; | |||
| int64_t size_pos, cur_pos; | |||
| avio_wb32(s->pb, MKBETAG('I', 'D', '3', mp3->id3v2_version)); | |||
| avio_w8(s->pb, 0); | |||
| avio_w8(s->pb, 0); /* flags */ | |||
| /* reserve space for size */ | |||
| size_pos = avio_tell(s->pb); | |||
| avio_wb32(s->pb, 0); | |||
| ff_metadata_conv(&s->metadata, ff_id3v2_34_metadata_conv, NULL); | |||
| if (mp3->id3v2_version == 4) | |||
| ff_metadata_conv(&s->metadata, ff_id3v2_4_metadata_conv, NULL); | |||
| while ((t = av_dict_get(s->metadata, "", t, AV_DICT_IGNORE_SUFFIX))) { | |||
| int ret; | |||
| int ret; | |||
| if ((ret = id3v2_check_write_tag(s, t, ff_id3v2_tags, enc)) > 0) { | |||
| totlen += ret; | |||
| continue; | |||
| } | |||
| if ((ret = id3v2_check_write_tag(s, t, mp3->id3v2_version == 3 ? | |||
| ff_id3v2_3_tags : ff_id3v2_4_tags, enc)) > 0) { | |||
| totlen += ret; | |||
| continue; | |||
| } | |||
| /* unknown tag, write as TXXX frame */ | |||
| if ((ret = id3v2_put_ttag(s, t->key, t->value, MKBETAG('T', 'X', 'X', 'X'), enc)) < 0) | |||
| return ret; | |||
| totlen += ret; | |||
| } | |||
| cur_pos = avio_tell(s->pb); | |||
| avio_seek(s->pb, size_pos, SEEK_SET); | |||
| id3v2_put_size(s, totlen); | |||
| avio_seek(s->pb, cur_pos, SEEK_SET); | |||
| ret = ff_id3v2_write(s, mp3->id3v2_version, ID3v2_DEFAULT_MAGIC); | |||
| if (ret < 0) | |||
| return ret; | |||
| if (s->pb->seekable) | |||
| mp3_write_xing(s); | |||
| @@ -520,7 +520,7 @@ cglobal yuv2planeX_%2_%1, %4, 7, %3 | |||
| xor r5, r5 | |||
| .pixelloop | |||
| .pixelloop: | |||
| %assign %%i 0 | |||
| ; the rep here is for the 8bit output mmx case, where dither covers | |||
| ; 8 pixels but we can only handle 2 pixels per register, and thus 4 | |||
| @@ -543,7 +543,7 @@ cglobal yuv2planeX_%2_%1, %4, 7, %3 | |||
| mova m2, m1 | |||
| %endif ; %2 == 8/9/10/16 | |||
| movsx cntr_reg, r1m | |||
| .filterloop_ %+ %%i | |||
| .filterloop_ %+ %%i: | |||
| ; input pixels | |||
| mov r6, [r2+gprsize*cntr_reg-2*gprsize] | |||
| %if %2 == 16 | |||