per context DCT selection Originally committed as revision 878 to svn://svn.ffmpeg.org/ffmpeg/trunktags/v0.5
@@ -11,7 +11,7 @@ CFLAGS= $(OPTFLAGS) -Wall -g -DHAVE_AV_CONFIG_H -I.. -D_FILE_OFFSET_BITS=64 -D_L | |||||
LDFLAGS= -g | LDFLAGS= -g | ||||
OBJS= common.o utils.o mem.o allcodecs.o \ | OBJS= common.o utils.o mem.o allcodecs.o \ | ||||
mpegvideo.o h263.o jrevdct.o jfdctfst.o \ | |||||
mpegvideo.o h263.o jrevdct.o jfdctfst.o jfdctint.o\ | |||||
mpegaudio.o ac3enc.o mjpeg.o resample.o dsputil.o \ | mpegaudio.o ac3enc.o mjpeg.o resample.o dsputil.o \ | ||||
motion_est.o imgconvert.o imgresample.o msmpeg4.o \ | motion_est.o imgconvert.o imgresample.o msmpeg4.o \ | ||||
mpeg12.o h263dec.o svq1.o rv10.o mpegaudiodec.o pcm.o simple_idct.o \ | mpeg12.o h263dec.o svq1.o rv10.o mpegaudiodec.o pcm.o simple_idct.o \ | ||||
@@ -5,8 +5,8 @@ | |||||
#define LIBAVCODEC_VERSION_INT 0x000406 | #define LIBAVCODEC_VERSION_INT 0x000406 | ||||
#define LIBAVCODEC_VERSION "0.4.6" | #define LIBAVCODEC_VERSION "0.4.6" | ||||
#define LIBAVCODEC_BUILD 4620 | |||||
#define LIBAVCODEC_BUILD_STR "4620" | |||||
#define LIBAVCODEC_BUILD 4621 | |||||
#define LIBAVCODEC_BUILD_STR "4621" | |||||
enum CodecID { | enum CodecID { | ||||
CODEC_ID_NONE, | CODEC_ID_NONE, | ||||
@@ -96,6 +96,7 @@ extern int motion_estimation_method; | |||||
static const int Motion_Est_QTab[] = { ME_ZERO, ME_PHODS, ME_LOG, | static const int Motion_Est_QTab[] = { ME_ZERO, ME_PHODS, ME_LOG, | ||||
ME_X1, ME_EPZS, ME_FULL }; | ME_X1, ME_EPZS, ME_FULL }; | ||||
#define FF_MAX_B_FRAMES 4 | #define FF_MAX_B_FRAMES 4 | ||||
/* encoding support */ | /* encoding support */ | ||||
@@ -308,6 +309,12 @@ typedef struct AVCodecContext { | |||||
int aspected_width; | int aspected_width; | ||||
int aspected_height; | int aspected_height; | ||||
int dct_algo; | |||||
#define FF_DCT_AUTO 0 | |||||
#define FF_DCT_FASTINT 1 | |||||
#define FF_DCT_INT 2 | |||||
#define FF_DCT_MMX 3 | |||||
//FIXME this should be reordered after kabis API is finished ... | //FIXME this should be reordered after kabis API is finished ... | ||||
//TODO kill kabi | //TODO kill kabi | ||||
/* | /* | ||||
@@ -338,7 +345,7 @@ typedef struct AVCodecContext { | |||||
uc_res6,uc_res7,uc_res8,uc_res9,uc_res10,uc_res11,uc_res12; | uc_res6,uc_res7,uc_res8,uc_res9,uc_res10,uc_res11,uc_res12; | ||||
unsigned int | unsigned int | ||||
ui_res0,ui_res1,ui_res2,ui_res3,ui_res4,ui_res5,ui_res6,ui_res7,ui_res8,ui_res9, | ui_res0,ui_res1,ui_res2,ui_res3,ui_res4,ui_res5,ui_res6,ui_res7,ui_res8,ui_res9, | ||||
ui_res10,ui_res11,ui_res12,ui_res13,ui_res14,ui_res15,ui_res16,ui_res17; | |||||
ui_res10,ui_res11,ui_res12,ui_res13,ui_res14,ui_res15,ui_res16; | |||||
} AVCodecContext; | } AVCodecContext; | ||||
typedef struct AVCodec { | typedef struct AVCodec { | ||||
@@ -25,7 +25,6 @@ | |||||
void (*ff_idct)(DCTELEM *block); | void (*ff_idct)(DCTELEM *block); | ||||
void (*ff_idct_put)(UINT8 *dest, int line_size, DCTELEM *block); | void (*ff_idct_put)(UINT8 *dest, int line_size, DCTELEM *block); | ||||
void (*ff_idct_add)(UINT8 *dest, int line_size, DCTELEM *block); | void (*ff_idct_add)(UINT8 *dest, int line_size, DCTELEM *block); | ||||
void (*av_fdct)(DCTELEM *block); | |||||
void (*get_pixels)(DCTELEM *block, const UINT8 *pixels, int line_size); | void (*get_pixels)(DCTELEM *block, const UINT8 *pixels, int line_size); | ||||
void (*diff_pixels)(DCTELEM *block, const UINT8 *s1, const UINT8 *s2, int stride); | void (*diff_pixels)(DCTELEM *block, const UINT8 *s1, const UINT8 *s2, int stride); | ||||
void (*put_pixels_clamped)(const DCTELEM *block, UINT8 *pixels, int line_size); | void (*put_pixels_clamped)(const DCTELEM *block, UINT8 *pixels, int line_size); | ||||
@@ -1323,7 +1322,6 @@ void dsputil_init(void) | |||||
pix_abs8x8_x2 = pix_abs8x8_x2_c; | pix_abs8x8_x2 = pix_abs8x8_x2_c; | ||||
pix_abs8x8_y2 = pix_abs8x8_y2_c; | pix_abs8x8_y2 = pix_abs8x8_y2_c; | ||||
pix_abs8x8_xy2 = pix_abs8x8_xy2_c; | pix_abs8x8_xy2 = pix_abs8x8_xy2_c; | ||||
av_fdct = fdct_ifast; | |||||
use_permuted_idct = 1; | use_permuted_idct = 1; | ||||
@@ -27,13 +27,12 @@ | |||||
typedef short DCTELEM; | typedef short DCTELEM; | ||||
void fdct_ifast (DCTELEM *data); | void fdct_ifast (DCTELEM *data); | ||||
void ff_jpeg_fdct_islow (DCTELEM *data); | |||||
void j_rev_dct (DCTELEM *data); | void j_rev_dct (DCTELEM *data); | ||||
void fdct_mmx(DCTELEM *block); | void fdct_mmx(DCTELEM *block); | ||||
extern void (*av_fdct)(DCTELEM *block); | |||||
/* encoding scans */ | /* encoding scans */ | ||||
extern UINT8 ff_alternate_horizontal_scan[64]; | extern UINT8 ff_alternate_horizontal_scan[64]; | ||||
extern UINT8 ff_alternate_vertical_scan[64]; | extern UINT8 ff_alternate_vertical_scan[64]; | ||||
@@ -424,8 +424,6 @@ void dsputil_init_mmx(void) | |||||
pix_abs8x8_y2 = pix_abs8x8_y2_mmx; | pix_abs8x8_y2 = pix_abs8x8_y2_mmx; | ||||
pix_abs8x8_xy2= pix_abs8x8_xy2_mmx; | pix_abs8x8_xy2= pix_abs8x8_xy2_mmx; | ||||
av_fdct = fdct_mmx; | |||||
put_pixels_tab[0] = put_pixels_mmx; | put_pixels_tab[0] = put_pixels_mmx; | ||||
put_pixels_tab[1] = put_pixels_x2_mmx; | put_pixels_tab[1] = put_pixels_x2_mmx; | ||||
put_pixels_tab[2] = put_pixels_y2_mmx; | put_pixels_tab[2] = put_pixels_y2_mmx; | ||||
@@ -552,16 +552,21 @@ void unused_var_warning_killer(){ | |||||
void MPV_common_init_mmx(MpegEncContext *s) | void MPV_common_init_mmx(MpegEncContext *s) | ||||
{ | { | ||||
if (mm_flags & MM_MMX) { | if (mm_flags & MM_MMX) { | ||||
const int dct_algo= s->avctx->dct_algo; | |||||
s->dct_unquantize_h263 = dct_unquantize_h263_mmx; | s->dct_unquantize_h263 = dct_unquantize_h263_mmx; | ||||
s->dct_unquantize_mpeg1 = dct_unquantize_mpeg1_mmx; | s->dct_unquantize_mpeg1 = dct_unquantize_mpeg1_mmx; | ||||
s->dct_unquantize_mpeg2 = dct_unquantize_mpeg2_mmx; | s->dct_unquantize_mpeg2 = dct_unquantize_mpeg2_mmx; | ||||
draw_edges = draw_edges_mmx; | draw_edges = draw_edges_mmx; | ||||
if(mm_flags & MM_MMXEXT){ | |||||
dct_quantize= dct_quantize_MMX2; | |||||
} else { | |||||
dct_quantize= dct_quantize_MMX; | |||||
if(dct_algo==FF_DCT_AUTO || dct_algo==FF_DCT_MMX){ | |||||
s->fdct = fdct_mmx; | |||||
if(mm_flags & MM_MMXEXT){ | |||||
s->dct_quantize= dct_quantize_MMX2; | |||||
} else { | |||||
s->dct_quantize= dct_quantize_MMX; | |||||
} | |||||
} | } | ||||
} | } | ||||
} | } |
@@ -40,7 +40,8 @@ static int RENAME(dct_quantize)(MpegEncContext *s, | |||||
const UINT16 *qmat, *bias; | const UINT16 *qmat, *bias; | ||||
static __align8 INT16 temp_block[64]; | static __align8 INT16 temp_block[64]; | ||||
av_fdct (block); | |||||
//s->fdct (block); | |||||
fdct_mmx (block); //cant be anything else ... | |||||
if (s->mb_intra) { | if (s->mb_intra) { | ||||
int dummy; | int dummy; | ||||
@@ -0,0 +1,290 @@ | |||||
/* | |||||
* jfdctint.c | |||||
* | |||||
* Copyright (C) 1991-1996, Thomas G. Lane. | |||||
* This file is part of the Independent JPEG Group's software. | |||||
* For conditions of distribution and use, see the accompanying README file. | |||||
* | |||||
* This file contains a slow-but-accurate integer implementation of the | |||||
* forward DCT (Discrete Cosine Transform). | |||||
* | |||||
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT | |||||
* on each column. Direct algorithms are also available, but they are | |||||
* much more complex and seem not to be any faster when reduced to code. | |||||
* | |||||
* This implementation is based on an algorithm described in | |||||
* C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT | |||||
* Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, | |||||
* Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. | |||||
* The primary algorithm described there uses 11 multiplies and 29 adds. | |||||
* We use their alternate method with 12 multiplies and 32 adds. | |||||
* The advantage of this method is that no data path contains more than one | |||||
* multiplication; this allows a very simple and accurate implementation in | |||||
* scaled fixed-point arithmetic, with a minimal number of shifts. | |||||
*/ | |||||
#include <stdlib.h> | |||||
#include <stdio.h> | |||||
#include "common.h" | |||||
#include "dsputil.h" | |||||
#define SHIFT_TEMPS | |||||
#define DCTSIZE 8 | |||||
#define GLOBAL(x) x | |||||
#define RIGHT_SHIFT(x, n) ((x) >> (n)) | |||||
#if 1 //def USE_ACCURATE_ROUNDING | |||||
#define DESCALE(x,n) RIGHT_SHIFT((x) + (1 << ((n) - 1)), n) | |||||
#else | |||||
#define DESCALE(x,n) RIGHT_SHIFT(x, n) | |||||
#endif | |||||
/* | |||||
* This module is specialized to the case DCTSIZE = 8. | |||||
*/ | |||||
#if DCTSIZE != 8 | |||||
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ | |||||
#endif | |||||
/* | |||||
* The poop on this scaling stuff is as follows: | |||||
* | |||||
* Each 1-D DCT step produces outputs which are a factor of sqrt(N) | |||||
* larger than the true DCT outputs. The final outputs are therefore | |||||
* a factor of N larger than desired; since N=8 this can be cured by | |||||
* a simple right shift at the end of the algorithm. The advantage of | |||||
* this arrangement is that we save two multiplications per 1-D DCT, | |||||
* because the y0 and y4 outputs need not be divided by sqrt(N). | |||||
* In the IJG code, this factor of 8 is removed by the quantization step | |||||
* (in jcdctmgr.c), NOT in this module. | |||||
* | |||||
* We have to do addition and subtraction of the integer inputs, which | |||||
* is no problem, and multiplication by fractional constants, which is | |||||
* a problem to do in integer arithmetic. We multiply all the constants | |||||
* by CONST_SCALE and convert them to integer constants (thus retaining | |||||
* CONST_BITS bits of precision in the constants). After doing a | |||||
* multiplication we have to divide the product by CONST_SCALE, with proper | |||||
* rounding, to produce the correct output. This division can be done | |||||
* cheaply as a right shift of CONST_BITS bits. We postpone shifting | |||||
* as long as possible so that partial sums can be added together with | |||||
* full fractional precision. | |||||
* | |||||
* The outputs of the first pass are scaled up by PASS1_BITS bits so that | |||||
* they are represented to better-than-integral precision. These outputs | |||||
* require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word | |||||
* with the recommended scaling. (For 12-bit sample data, the intermediate | |||||
* array is INT32 anyway.) | |||||
* | |||||
* To avoid overflow of the 32-bit intermediate results in pass 2, we must | |||||
* have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis | |||||
* shows that the values given below are the most effective. | |||||
*/ | |||||
#if BITS_IN_JSAMPLE == 8 | |||||
#define CONST_BITS 13 | |||||
#define PASS1_BITS 2 | |||||
#else | |||||
#define CONST_BITS 13 | |||||
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */ | |||||
#endif | |||||
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus | |||||
* causing a lot of useless floating-point operations at run time. | |||||
* To get around this we use the following pre-calculated constants. | |||||
* If you change CONST_BITS you may want to add appropriate values. | |||||
* (With a reasonable C compiler, you can just rely on the FIX() macro...) | |||||
*/ | |||||
#if CONST_BITS == 13 | |||||
#define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */ | |||||
#define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */ | |||||
#define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */ | |||||
#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */ | |||||
#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */ | |||||
#define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */ | |||||
#define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */ | |||||
#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */ | |||||
#define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */ | |||||
#define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */ | |||||
#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */ | |||||
#define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */ | |||||
#else | |||||
#define FIX_0_298631336 FIX(0.298631336) | |||||
#define FIX_0_390180644 FIX(0.390180644) | |||||
#define FIX_0_541196100 FIX(0.541196100) | |||||
#define FIX_0_765366865 FIX(0.765366865) | |||||
#define FIX_0_899976223 FIX(0.899976223) | |||||
#define FIX_1_175875602 FIX(1.175875602) | |||||
#define FIX_1_501321110 FIX(1.501321110) | |||||
#define FIX_1_847759065 FIX(1.847759065) | |||||
#define FIX_1_961570560 FIX(1.961570560) | |||||
#define FIX_2_053119869 FIX(2.053119869) | |||||
#define FIX_2_562915447 FIX(2.562915447) | |||||
#define FIX_3_072711026 FIX(3.072711026) | |||||
#endif | |||||
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. | |||||
* For 8-bit samples with the recommended scaling, all the variable | |||||
* and constant values involved are no more than 16 bits wide, so a | |||||
* 16x16->32 bit multiply can be used instead of a full 32x32 multiply. | |||||
* For 12-bit samples, a full 32-bit multiplication will be needed. | |||||
*/ | |||||
#if BITS_IN_JSAMPLE == 8 | |||||
#define MULTIPLY(var,const) MULTIPLY16C16(var,const) | |||||
#else | |||||
#define MULTIPLY(var,const) ((var) * (const)) | |||||
#endif | |||||
/* | |||||
* Perform the forward DCT on one block of samples. | |||||
*/ | |||||
GLOBAL(void) | |||||
ff_jpeg_fdct_islow (DCTELEM * data) | |||||
{ | |||||
INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; | |||||
INT32 tmp10, tmp11, tmp12, tmp13; | |||||
INT32 z1, z2, z3, z4, z5; | |||||
DCTELEM *dataptr; | |||||
int ctr; | |||||
SHIFT_TEMPS | |||||
/* Pass 1: process rows. */ | |||||
/* Note results are scaled up by sqrt(8) compared to a true DCT; */ | |||||
/* furthermore, we scale the results by 2**PASS1_BITS. */ | |||||
dataptr = data; | |||||
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | |||||
tmp0 = dataptr[0] + dataptr[7]; | |||||
tmp7 = dataptr[0] - dataptr[7]; | |||||
tmp1 = dataptr[1] + dataptr[6]; | |||||
tmp6 = dataptr[1] - dataptr[6]; | |||||
tmp2 = dataptr[2] + dataptr[5]; | |||||
tmp5 = dataptr[2] - dataptr[5]; | |||||
tmp3 = dataptr[3] + dataptr[4]; | |||||
tmp4 = dataptr[3] - dataptr[4]; | |||||
/* Even part per LL&M figure 1 --- note that published figure is faulty; | |||||
* rotator "sqrt(2)*c1" should be "sqrt(2)*c6". | |||||
*/ | |||||
tmp10 = tmp0 + tmp3; | |||||
tmp13 = tmp0 - tmp3; | |||||
tmp11 = tmp1 + tmp2; | |||||
tmp12 = tmp1 - tmp2; | |||||
dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS); | |||||
dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS); | |||||
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); | |||||
dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), | |||||
CONST_BITS-PASS1_BITS); | |||||
dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065), | |||||
CONST_BITS-PASS1_BITS); | |||||
/* Odd part per figure 8 --- note paper omits factor of sqrt(2). | |||||
* cK represents cos(K*pi/16). | |||||
* i0..i3 in the paper are tmp4..tmp7 here. | |||||
*/ | |||||
z1 = tmp4 + tmp7; | |||||
z2 = tmp5 + tmp6; | |||||
z3 = tmp4 + tmp6; | |||||
z4 = tmp5 + tmp7; | |||||
z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ | |||||
tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ | |||||
tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ | |||||
tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ | |||||
tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ | |||||
z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ | |||||
z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ | |||||
z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ | |||||
z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ | |||||
z3 += z5; | |||||
z4 += z5; | |||||
dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS); | |||||
dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS); | |||||
dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS); | |||||
dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS); | |||||
dataptr += DCTSIZE; /* advance pointer to next row */ | |||||
} | |||||
/* Pass 2: process columns. | |||||
* We remove the PASS1_BITS scaling, but leave the results scaled up | |||||
* by an overall factor of 8. | |||||
*/ | |||||
dataptr = data; | |||||
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | |||||
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; | |||||
tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; | |||||
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; | |||||
tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; | |||||
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; | |||||
tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; | |||||
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; | |||||
tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; | |||||
/* Even part per LL&M figure 1 --- note that published figure is faulty; | |||||
* rotator "sqrt(2)*c1" should be "sqrt(2)*c6". | |||||
*/ | |||||
tmp10 = tmp0 + tmp3; | |||||
tmp13 = tmp0 - tmp3; | |||||
tmp11 = tmp1 + tmp2; | |||||
tmp12 = tmp1 - tmp2; | |||||
dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS); | |||||
dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS); | |||||
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); | |||||
dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), | |||||
CONST_BITS+PASS1_BITS); | |||||
dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065), | |||||
CONST_BITS+PASS1_BITS); | |||||
/* Odd part per figure 8 --- note paper omits factor of sqrt(2). | |||||
* cK represents cos(K*pi/16). | |||||
* i0..i3 in the paper are tmp4..tmp7 here. | |||||
*/ | |||||
z1 = tmp4 + tmp7; | |||||
z2 = tmp5 + tmp6; | |||||
z3 = tmp4 + tmp6; | |||||
z4 = tmp5 + tmp7; | |||||
z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ | |||||
tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ | |||||
tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ | |||||
tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ | |||||
tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ | |||||
z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ | |||||
z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ | |||||
z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ | |||||
z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ | |||||
z3 += z5; | |||||
z4 += z5; | |||||
dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, | |||||
CONST_BITS+PASS1_BITS); | |||||
dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, | |||||
CONST_BITS+PASS1_BITS); | |||||
dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, | |||||
CONST_BITS+PASS1_BITS); | |||||
dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, | |||||
CONST_BITS+PASS1_BITS); | |||||
dataptr++; /* advance pointer to next column */ | |||||
} | |||||
} |
@@ -36,7 +36,6 @@ static void dct_unquantize_h263_c(MpegEncContext *s, | |||||
static void draw_edges_c(UINT8 *buf, int wrap, int width, int height, int w); | static void draw_edges_c(UINT8 *buf, int wrap, int width, int height, int w); | ||||
static int dct_quantize_c(MpegEncContext *s, DCTELEM *block, int n, int qscale, int *overflow); | static int dct_quantize_c(MpegEncContext *s, DCTELEM *block, int n, int qscale, int *overflow); | ||||
int (*dct_quantize)(MpegEncContext *s, DCTELEM *block, int n, int qscale, int *overflow)= dct_quantize_c; | |||||
void (*draw_edges)(UINT8 *buf, int wrap, int width, int height, int w)= draw_edges_c; | void (*draw_edges)(UINT8 *buf, int wrap, int width, int height, int w)= draw_edges_c; | ||||
static void emulated_edge_mc(MpegEncContext *s, UINT8 *src, int linesize, int block_w, int block_h, | static void emulated_edge_mc(MpegEncContext *s, UINT8 *src, int linesize, int block_w, int block_h, | ||||
int src_x, int src_y, int w, int h); | int src_x, int src_y, int w, int h); | ||||
@@ -76,14 +75,25 @@ extern UINT8 zigzag_end[64]; | |||||
/* default motion estimation */ | /* default motion estimation */ | ||||
int motion_estimation_method = ME_EPZS; | int motion_estimation_method = ME_EPZS; | ||||
static void convert_matrix(int (*qmat)[64], uint16_t (*qmat16)[64], uint16_t (*qmat16_bias)[64], | |||||
static void convert_matrix(MpegEncContext *s, int (*qmat)[64], uint16_t (*qmat16)[64], uint16_t (*qmat16_bias)[64], | |||||
const UINT16 *quant_matrix, int bias) | const UINT16 *quant_matrix, int bias) | ||||
{ | { | ||||
int qscale; | int qscale; | ||||
for(qscale=1; qscale<32; qscale++){ | for(qscale=1; qscale<32; qscale++){ | ||||
int i; | int i; | ||||
if (av_fdct == fdct_ifast) { | |||||
if (s->fdct == ff_jpeg_fdct_islow) { | |||||
for(i=0;i<64;i++) { | |||||
const int j= block_permute_op(i); | |||||
/* 16 <= qscale * quant_matrix[i] <= 7905 */ | |||||
/* 19952 <= aanscales[i] * qscale * quant_matrix[i] <= 249205026 */ | |||||
/* (1<<36)/19952 >= (1<<36)/(aanscales[i] * qscale * quant_matrix[i]) >= (1<<36)/249205026 */ | |||||
/* 3444240 >= (1<<36)/(aanscales[i] * qscale * quant_matrix[i]) >= 275 */ | |||||
qmat[qscale][j] = (int)((UINT64_C(1) << (QMAT_SHIFT-3)) / | |||||
(qscale * quant_matrix[j])); | |||||
} | |||||
} else if (s->fdct == fdct_ifast) { | |||||
for(i=0;i<64;i++) { | for(i=0;i<64;i++) { | ||||
const int j= block_permute_op(i); | const int j= block_permute_op(i); | ||||
/* 16 <= qscale * quant_matrix[i] <= 7905 */ | /* 16 <= qscale * quant_matrix[i] <= 7905 */ | ||||
@@ -130,6 +140,12 @@ int MPV_common_init(MpegEncContext *s) | |||||
s->dct_unquantize_h263 = dct_unquantize_h263_c; | s->dct_unquantize_h263 = dct_unquantize_h263_c; | ||||
s->dct_unquantize_mpeg1 = dct_unquantize_mpeg1_c; | s->dct_unquantize_mpeg1 = dct_unquantize_mpeg1_c; | ||||
s->dct_unquantize_mpeg2 = dct_unquantize_mpeg2_c; | s->dct_unquantize_mpeg2 = dct_unquantize_mpeg2_c; | ||||
s->dct_quantize= dct_quantize_c; | |||||
if(s->avctx->dct_algo==FF_DCT_FASTINT) | |||||
s->fdct = fdct_ifast; | |||||
else | |||||
s->fdct = ff_jpeg_fdct_islow; | |||||
#ifdef HAVE_MMX | #ifdef HAVE_MMX | ||||
MPV_common_init_mmx(s); | MPV_common_init_mmx(s); | ||||
@@ -563,9 +579,9 @@ int MPV_encode_init(AVCodecContext *avctx) | |||||
/* precompute matrix */ | /* precompute matrix */ | ||||
/* for mjpeg, we do include qscale in the matrix */ | /* for mjpeg, we do include qscale in the matrix */ | ||||
if (s->out_format != FMT_MJPEG) { | if (s->out_format != FMT_MJPEG) { | ||||
convert_matrix(s->q_intra_matrix, s->q_intra_matrix16, s->q_intra_matrix16_bias, | |||||
convert_matrix(s, s->q_intra_matrix, s->q_intra_matrix16, s->q_intra_matrix16_bias, | |||||
s->intra_matrix, s->intra_quant_bias); | s->intra_matrix, s->intra_quant_bias); | ||||
convert_matrix(s->q_inter_matrix, s->q_inter_matrix16, s->q_inter_matrix16_bias, | |||||
convert_matrix(s, s->q_inter_matrix, s->q_inter_matrix16, s->q_inter_matrix16_bias, | |||||
s->inter_matrix, s->inter_quant_bias); | s->inter_matrix, s->inter_quant_bias); | ||||
} | } | ||||
@@ -1812,14 +1828,14 @@ static void encode_mb(MpegEncContext *s, int motion_x, int motion_y) | |||||
if(s->out_format==FMT_MJPEG){ | if(s->out_format==FMT_MJPEG){ | ||||
for(i=0;i<6;i++) { | for(i=0;i<6;i++) { | ||||
int overflow; | int overflow; | ||||
s->block_last_index[i] = dct_quantize(s, s->block[i], i, 8, &overflow); | |||||
s->block_last_index[i] = s->dct_quantize(s, s->block[i], i, 8, &overflow); | |||||
if (overflow) clip_coeffs(s, s->block[i], s->block_last_index[i]); | if (overflow) clip_coeffs(s, s->block[i], s->block_last_index[i]); | ||||
} | } | ||||
}else{ | }else{ | ||||
for(i=0;i<6;i++) { | for(i=0;i<6;i++) { | ||||
if(!skip_dct[i]){ | if(!skip_dct[i]){ | ||||
int overflow; | int overflow; | ||||
s->block_last_index[i] = dct_quantize(s, s->block[i], i, s->qscale, &overflow); | |||||
s->block_last_index[i] = s->dct_quantize(s, s->block[i], i, s->qscale, &overflow); | |||||
// FIXME we could decide to change to quantizer instead of clipping | // FIXME we could decide to change to quantizer instead of clipping | ||||
// JS: I don't think that would be a good idea it could lower quality instead | // JS: I don't think that would be a good idea it could lower quality instead | ||||
// of improve it. Just INTRADC clipping deserves changes in quantizer | // of improve it. Just INTRADC clipping deserves changes in quantizer | ||||
@@ -2081,7 +2097,7 @@ static void encode_picture(MpegEncContext *s, int picture_number) | |||||
s->intra_matrix[0] = ff_mpeg1_default_intra_matrix[0]; | s->intra_matrix[0] = ff_mpeg1_default_intra_matrix[0]; | ||||
for(i=1;i<64;i++) | for(i=1;i<64;i++) | ||||
s->intra_matrix[i] = CLAMP_TO_8BIT((ff_mpeg1_default_intra_matrix[i] * s->qscale) >> 3); | s->intra_matrix[i] = CLAMP_TO_8BIT((ff_mpeg1_default_intra_matrix[i] * s->qscale) >> 3); | ||||
convert_matrix(s->q_intra_matrix, s->q_intra_matrix16, | |||||
convert_matrix(s, s->q_intra_matrix, s->q_intra_matrix16, | |||||
s->q_intra_matrix16_bias, s->intra_matrix, s->intra_quant_bias); | s->q_intra_matrix16_bias, s->intra_matrix, s->intra_quant_bias); | ||||
} | } | ||||
@@ -2446,7 +2462,7 @@ static int dct_quantize_c(MpegEncContext *s, | |||||
int max=0; | int max=0; | ||||
unsigned int threshold1, threshold2; | unsigned int threshold1, threshold2; | ||||
av_fdct (block); | |||||
s->fdct (block); | |||||
/* we need this permutation so that we correct the IDCT | /* we need this permutation so that we correct the IDCT | ||||
permutation. will be moved into DCT code */ | permutation. will be moved into DCT code */ | ||||
@@ -465,6 +465,8 @@ typedef struct MpegEncContext { | |||||
DCTELEM *block, int n, int qscale); | DCTELEM *block, int n, int qscale); | ||||
void (*dct_unquantize)(struct MpegEncContext *s, // unquantizer to use (mpeg4 can use both) | void (*dct_unquantize)(struct MpegEncContext *s, // unquantizer to use (mpeg4 can use both) | ||||
DCTELEM *block, int n, int qscale); | DCTELEM *block, int n, int qscale); | ||||
int (*dct_quantize)(struct MpegEncContext *s, DCTELEM *block, int n, int qscale, int *overflow); | |||||
void (*fdct)(DCTELEM *block); | |||||
} MpegEncContext; | } MpegEncContext; | ||||
int MPV_common_init(MpegEncContext *s); | int MPV_common_init(MpegEncContext *s); | ||||
@@ -478,7 +480,6 @@ void MPV_common_init_mmx(MpegEncContext *s); | |||||
#ifdef ARCH_ALPHA | #ifdef ARCH_ALPHA | ||||
void MPV_common_init_axp(MpegEncContext *s); | void MPV_common_init_axp(MpegEncContext *s); | ||||
#endif | #endif | ||||
extern int (*dct_quantize)(MpegEncContext *s, DCTELEM *block, int n, int qscale, int *overflow); | |||||
extern void (*draw_edges)(UINT8 *buf, int wrap, int width, int height, int w); | extern void (*draw_edges)(UINT8 *buf, int wrap, int width, int height, int w); | ||||
void ff_conceal_past_errors(MpegEncContext *s, int conceal_all); | void ff_conceal_past_errors(MpegEncContext *s, int conceal_all); | ||||
void ff_copy_bits(PutBitContext *pb, UINT8 *src, int length); | void ff_copy_bits(PutBitContext *pb, UINT8 *src, int length); | ||||