|
|
|
@@ -30,7 +30,6 @@ |
|
|
|
|
|
|
|
/*********************************** |
|
|
|
* TODOs: |
|
|
|
* thresholds linearization after their modifications for attaining given bitrate |
|
|
|
* try other bitrate controlling mechanism (maybe use ratecontrol.c?) |
|
|
|
* control quality for quality-based output |
|
|
|
**********************************/ |
|
|
|
@@ -41,10 +40,51 @@ |
|
|
|
*/ |
|
|
|
#define PSY_3GPP_THR_SPREAD_HI 1.5f // spreading factor for low-to-hi threshold spreading (15 dB/Bark) |
|
|
|
#define PSY_3GPP_THR_SPREAD_LOW 3.0f // spreading factor for hi-to-low threshold spreading (30 dB/Bark) |
|
|
|
/* spreading factor for low-to-hi energy spreading, long block, > 22kbps/channel (20dB/Bark) */ |
|
|
|
#define PSY_3GPP_EN_SPREAD_HI_L1 2.0f |
|
|
|
/* spreading factor for low-to-hi energy spreading, long block, <= 22kbps/channel (15dB/Bark) */ |
|
|
|
#define PSY_3GPP_EN_SPREAD_HI_L2 1.5f |
|
|
|
/* spreading factor for low-to-hi energy spreading, short block (15 dB/Bark) */ |
|
|
|
#define PSY_3GPP_EN_SPREAD_HI_S 1.5f |
|
|
|
/* spreading factor for hi-to-low energy spreading, long block (30dB/Bark) */ |
|
|
|
#define PSY_3GPP_EN_SPREAD_LOW_L 3.0f |
|
|
|
/* spreading factor for hi-to-low energy spreading, short block (20dB/Bark) */ |
|
|
|
#define PSY_3GPP_EN_SPREAD_LOW_S 2.0f |
|
|
|
|
|
|
|
#define PSY_3GPP_RPEMIN 0.01f |
|
|
|
#define PSY_3GPP_RPELEV 2.0f |
|
|
|
|
|
|
|
#define PSY_3GPP_C1 3.0f /* log2(8) */ |
|
|
|
#define PSY_3GPP_C2 1.3219281f /* log2(2.5) */ |
|
|
|
#define PSY_3GPP_C3 0.55935729f /* 1 - C2 / C1 */ |
|
|
|
|
|
|
|
#define PSY_SNR_1DB 7.9432821e-1f /* -1dB */ |
|
|
|
#define PSY_SNR_25DB 3.1622776e-3f /* -25dB */ |
|
|
|
|
|
|
|
#define PSY_3GPP_SAVE_SLOPE_L -0.46666667f |
|
|
|
#define PSY_3GPP_SAVE_SLOPE_S -0.36363637f |
|
|
|
#define PSY_3GPP_SAVE_ADD_L -0.84285712f |
|
|
|
#define PSY_3GPP_SAVE_ADD_S -0.75f |
|
|
|
#define PSY_3GPP_SPEND_SLOPE_L 0.66666669f |
|
|
|
#define PSY_3GPP_SPEND_SLOPE_S 0.81818181f |
|
|
|
#define PSY_3GPP_SPEND_ADD_L -0.35f |
|
|
|
#define PSY_3GPP_SPEND_ADD_S -0.26111111f |
|
|
|
#define PSY_3GPP_CLIP_LO_L 0.2f |
|
|
|
#define PSY_3GPP_CLIP_LO_S 0.2f |
|
|
|
#define PSY_3GPP_CLIP_HI_L 0.95f |
|
|
|
#define PSY_3GPP_CLIP_HI_S 0.75f |
|
|
|
|
|
|
|
#define PSY_3GPP_AH_THR_LONG 0.5f |
|
|
|
#define PSY_3GPP_AH_THR_SHORT 0.63f |
|
|
|
|
|
|
|
enum { |
|
|
|
PSY_3GPP_AH_NONE, |
|
|
|
PSY_3GPP_AH_INACTIVE, |
|
|
|
PSY_3GPP_AH_ACTIVE |
|
|
|
}; |
|
|
|
|
|
|
|
#define PSY_3GPP_BITS_TO_PE(bits) ((bits) * 1.18f) |
|
|
|
|
|
|
|
/* LAME psy model constants */ |
|
|
|
#define PSY_LAME_FIR_LEN 21 ///< LAME psy model FIR order |
|
|
|
#define AAC_BLOCK_SIZE_LONG 1024 ///< long block size |
|
|
|
@@ -63,6 +103,12 @@ typedef struct AacPsyBand{ |
|
|
|
float energy; ///< band energy |
|
|
|
float thr; ///< energy threshold |
|
|
|
float thr_quiet; ///< threshold in quiet |
|
|
|
float nz_lines; ///< number of non-zero spectral lines |
|
|
|
float active_lines; ///< number of active spectral lines |
|
|
|
float pe; ///< perceptual entropy |
|
|
|
float pe_const; ///< constant part of the PE calculation |
|
|
|
float norm_fac; ///< normalization factor for linearization |
|
|
|
int avoid_holes; ///< hole avoidance flag |
|
|
|
}AacPsyBand; |
|
|
|
|
|
|
|
/** |
|
|
|
@@ -97,6 +143,15 @@ typedef struct AacPsyCoeffs{ |
|
|
|
* 3GPP TS26.403-inspired psychoacoustic model specific data |
|
|
|
*/ |
|
|
|
typedef struct AacPsyContext{ |
|
|
|
int chan_bitrate; ///< bitrate per channel |
|
|
|
int frame_bits; ///< average bits per frame |
|
|
|
int fill_level; ///< bit reservoir fill level |
|
|
|
struct { |
|
|
|
float min; ///< minimum allowed PE for bit factor calculation |
|
|
|
float max; ///< maximum allowed PE for bit factor calculation |
|
|
|
float previous; ///< allowed PE of the previous frame |
|
|
|
float correction; ///< PE correction factor |
|
|
|
} pe; |
|
|
|
AacPsyCoeffs psy_coef[2][64]; |
|
|
|
AacPsyChannel *ch; |
|
|
|
}AacPsyContext; |
|
|
|
@@ -235,16 +290,33 @@ static av_cold int psy_3gpp_init(FFPsyContext *ctx) { |
|
|
|
AacPsyContext *pctx; |
|
|
|
float bark; |
|
|
|
int i, j, g, start; |
|
|
|
float prev, minscale, minath; |
|
|
|
float prev, minscale, minath, minsnr, pe_min; |
|
|
|
const int chan_bitrate = ctx->avctx->bit_rate / ctx->avctx->channels; |
|
|
|
const int bandwidth = ctx->avctx->cutoff ? ctx->avctx->cutoff : ctx->avctx->sample_rate / 2; |
|
|
|
const float num_bark = calc_bark((float)bandwidth); |
|
|
|
|
|
|
|
ctx->model_priv_data = av_mallocz(sizeof(AacPsyContext)); |
|
|
|
pctx = (AacPsyContext*) ctx->model_priv_data; |
|
|
|
|
|
|
|
pctx->chan_bitrate = chan_bitrate; |
|
|
|
pctx->frame_bits = chan_bitrate * AAC_BLOCK_SIZE_LONG / ctx->avctx->sample_rate; |
|
|
|
pctx->pe.min = 8.0f * AAC_BLOCK_SIZE_LONG * bandwidth / (ctx->avctx->sample_rate * 2.0f); |
|
|
|
pctx->pe.max = 12.0f * AAC_BLOCK_SIZE_LONG * bandwidth / (ctx->avctx->sample_rate * 2.0f); |
|
|
|
ctx->bitres.size = 6144 - pctx->frame_bits; |
|
|
|
ctx->bitres.size -= ctx->bitres.size % 8; |
|
|
|
pctx->fill_level = ctx->bitres.size; |
|
|
|
minath = ath(3410, ATH_ADD); |
|
|
|
for (j = 0; j < 2; j++) { |
|
|
|
AacPsyCoeffs *coeffs = pctx->psy_coef[j]; |
|
|
|
const uint8_t *band_sizes = ctx->bands[j]; |
|
|
|
float line_to_frequency = ctx->avctx->sample_rate / (j ? 256.f : 2048.0f); |
|
|
|
float avg_chan_bits = chan_bitrate / ctx->avctx->sample_rate * (j ? 128.0f : 1024.0f); |
|
|
|
/* reference encoder uses 2.4% here instead of 60% like the spec says */ |
|
|
|
float bark_pe = 0.024f * PSY_3GPP_BITS_TO_PE(avg_chan_bits) / num_bark; |
|
|
|
float en_spread_low = j ? PSY_3GPP_EN_SPREAD_LOW_S : PSY_3GPP_EN_SPREAD_LOW_L; |
|
|
|
/* High energy spreading for long blocks <= 22kbps/channel and short blocks are the same. */ |
|
|
|
float en_spread_hi = (j || (chan_bitrate <= 22.0f)) ? PSY_3GPP_EN_SPREAD_HI_S : PSY_3GPP_EN_SPREAD_HI_L1; |
|
|
|
|
|
|
|
i = 0; |
|
|
|
prev = 0.0; |
|
|
|
for (g = 0; g < ctx->num_bands[j]; g++) { |
|
|
|
@@ -258,6 +330,11 @@ static av_cold int psy_3gpp_init(FFPsyContext *ctx) { |
|
|
|
float bark_width = coeffs[g+1].barks - coeffs->barks; |
|
|
|
coeff->spread_low[0] = pow(10.0, -bark_width * PSY_3GPP_THR_SPREAD_LOW); |
|
|
|
coeff->spread_hi [0] = pow(10.0, -bark_width * PSY_3GPP_THR_SPREAD_HI); |
|
|
|
coeff->spread_low[1] = pow(10.0, -bark_width * en_spread_low); |
|
|
|
coeff->spread_hi [1] = pow(10.0, -bark_width * en_spread_hi); |
|
|
|
pe_min = bark_pe * bark_width; |
|
|
|
minsnr = pow(2.0f, pe_min / band_sizes[g]) - 1.5f; |
|
|
|
coeff->min_snr = av_clipf(1.0f / minsnr, PSY_SNR_25DB, PSY_SNR_1DB); |
|
|
|
} |
|
|
|
start = 0; |
|
|
|
for (g = 0; g < ctx->num_bands[j]; g++) { |
|
|
|
@@ -385,6 +462,97 @@ static FFPsyWindowInfo psy_3gpp_window(FFPsyContext *ctx, |
|
|
|
return wi; |
|
|
|
} |
|
|
|
|
|
|
|
/* 5.6.1.2 "Calculation of Bit Demand" */ |
|
|
|
static int calc_bit_demand(AacPsyContext *ctx, float pe, int bits, int size, |
|
|
|
int short_window) |
|
|
|
{ |
|
|
|
const float bitsave_slope = short_window ? PSY_3GPP_SAVE_SLOPE_S : PSY_3GPP_SAVE_SLOPE_L; |
|
|
|
const float bitsave_add = short_window ? PSY_3GPP_SAVE_ADD_S : PSY_3GPP_SAVE_ADD_L; |
|
|
|
const float bitspend_slope = short_window ? PSY_3GPP_SPEND_SLOPE_S : PSY_3GPP_SPEND_SLOPE_L; |
|
|
|
const float bitspend_add = short_window ? PSY_3GPP_SPEND_ADD_S : PSY_3GPP_SPEND_ADD_L; |
|
|
|
const float clip_low = short_window ? PSY_3GPP_CLIP_LO_S : PSY_3GPP_CLIP_LO_L; |
|
|
|
const float clip_high = short_window ? PSY_3GPP_CLIP_HI_S : PSY_3GPP_CLIP_HI_L; |
|
|
|
float clipped_pe, bit_save, bit_spend, bit_factor, fill_level; |
|
|
|
|
|
|
|
ctx->fill_level += ctx->frame_bits - bits; |
|
|
|
ctx->fill_level = av_clip(ctx->fill_level, 0, size); |
|
|
|
fill_level = av_clipf((float)ctx->fill_level / size, clip_low, clip_high); |
|
|
|
clipped_pe = av_clipf(pe, ctx->pe.min, ctx->pe.max); |
|
|
|
bit_save = (fill_level + bitsave_add) * bitsave_slope; |
|
|
|
assert(bit_save <= 0.3f && bit_save >= -0.05000001f); |
|
|
|
bit_spend = (fill_level + bitspend_add) * bitspend_slope; |
|
|
|
assert(bit_spend <= 0.5f && bit_spend >= -0.1f); |
|
|
|
/* The bit factor graph in the spec is obviously incorrect. |
|
|
|
* bit_spend + ((bit_spend - bit_spend))... |
|
|
|
* The reference encoder subtracts everything from 1, but also seems incorrect. |
|
|
|
* 1 - bit_save + ((bit_spend + bit_save))... |
|
|
|
* Hopefully below is correct. |
|
|
|
*/ |
|
|
|
bit_factor = 1.0f - bit_save + ((bit_spend - bit_save) / (ctx->pe.max - ctx->pe.min)) * (clipped_pe - ctx->pe.min); |
|
|
|
/* NOTE: The reference encoder attempts to center pe max/min around the current pe. */ |
|
|
|
ctx->pe.max = FFMAX(pe, ctx->pe.max); |
|
|
|
ctx->pe.min = FFMIN(pe, ctx->pe.min); |
|
|
|
|
|
|
|
return FFMIN(ctx->frame_bits * bit_factor, ctx->frame_bits + size - bits); |
|
|
|
} |
|
|
|
|
|
|
|
static float calc_pe_3gpp(AacPsyBand *band) |
|
|
|
{ |
|
|
|
float pe, a; |
|
|
|
|
|
|
|
band->pe = 0.0f; |
|
|
|
band->pe_const = 0.0f; |
|
|
|
band->active_lines = 0.0f; |
|
|
|
if (band->energy > band->thr) { |
|
|
|
a = log2f(band->energy); |
|
|
|
pe = a - log2f(band->thr); |
|
|
|
band->active_lines = band->nz_lines; |
|
|
|
if (pe < PSY_3GPP_C1) { |
|
|
|
pe = pe * PSY_3GPP_C3 + PSY_3GPP_C2; |
|
|
|
a = a * PSY_3GPP_C3 + PSY_3GPP_C2; |
|
|
|
band->active_lines *= PSY_3GPP_C3; |
|
|
|
} |
|
|
|
band->pe = pe * band->nz_lines; |
|
|
|
band->pe_const = a * band->nz_lines; |
|
|
|
} |
|
|
|
|
|
|
|
return band->pe; |
|
|
|
} |
|
|
|
|
|
|
|
static float calc_reduction_3gpp(float a, float desired_pe, float pe, |
|
|
|
float active_lines) |
|
|
|
{ |
|
|
|
float thr_avg, reduction; |
|
|
|
|
|
|
|
thr_avg = powf(2.0f, (a - pe) / (4.0f * active_lines)); |
|
|
|
reduction = powf(2.0f, (a - desired_pe) / (4.0f * active_lines)) - thr_avg; |
|
|
|
|
|
|
|
return FFMAX(reduction, 0.0f); |
|
|
|
} |
|
|
|
|
|
|
|
static float calc_reduced_thr_3gpp(AacPsyBand *band, float min_snr, |
|
|
|
float reduction) |
|
|
|
{ |
|
|
|
float thr = band->thr; |
|
|
|
|
|
|
|
if (band->energy > thr) { |
|
|
|
thr = powf(thr, 0.25f) + reduction; |
|
|
|
thr = powf(thr, 4.0f); |
|
|
|
|
|
|
|
/* This deviates from the 3GPP spec to match the reference encoder. |
|
|
|
* It performs min(thr_reduced, max(thr, energy/min_snr)) only for bands |
|
|
|
* that have hole avoidance on (active or inactive). It always reduces the |
|
|
|
* threshold of bands with hole avoidance off. |
|
|
|
*/ |
|
|
|
if (thr > band->energy * min_snr && band->avoid_holes != PSY_3GPP_AH_NONE) { |
|
|
|
thr = FFMAX(band->thr, band->energy * min_snr); |
|
|
|
band->avoid_holes = PSY_3GPP_AH_ACTIVE; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
return thr; |
|
|
|
} |
|
|
|
|
|
|
|
/** |
|
|
|
* Calculate band thresholds as suggested in 3GPP TS26.403 |
|
|
|
*/ |
|
|
|
@@ -395,18 +563,27 @@ static void psy_3gpp_analyze(FFPsyContext *ctx, int channel, |
|
|
|
AacPsyChannel *pch = &pctx->ch[channel]; |
|
|
|
int start = 0; |
|
|
|
int i, w, g; |
|
|
|
float desired_bits, desired_pe, delta_pe, reduction, spread_en[128] = {0}; |
|
|
|
float a = 0.0f, active_lines = 0.0f, norm_fac = 0.0f; |
|
|
|
float pe = pctx->chan_bitrate > 32000 ? 0.0f : FFMAX(50.0f, 100.0f - pctx->chan_bitrate * 100.0f / 32000.0f); |
|
|
|
const int num_bands = ctx->num_bands[wi->num_windows == 8]; |
|
|
|
const uint8_t *band_sizes = ctx->bands[wi->num_windows == 8]; |
|
|
|
AacPsyCoeffs *coeffs = pctx->psy_coef[wi->num_windows == 8]; |
|
|
|
const float avoid_hole_thr = wi->num_windows == 8 ? PSY_3GPP_AH_THR_SHORT : PSY_3GPP_AH_THR_LONG; |
|
|
|
|
|
|
|
//calculate energies, initial thresholds and related values - 5.4.2 "Threshold Calculation" |
|
|
|
for (w = 0; w < wi->num_windows*16; w += 16) { |
|
|
|
for (g = 0; g < num_bands; g++) { |
|
|
|
AacPsyBand *band = &pch->band[w+g]; |
|
|
|
float form_factor = 0.0f; |
|
|
|
band->energy = 0.0f; |
|
|
|
for (i = 0; i < band_sizes[g]; i++) |
|
|
|
for (i = 0; i < band_sizes[g]; i++) { |
|
|
|
band->energy += coefs[start+i] * coefs[start+i]; |
|
|
|
form_factor += sqrtf(fabs(coefs[start+i])); |
|
|
|
} |
|
|
|
band->thr = band->energy * 0.001258925f; |
|
|
|
band->nz_lines = form_factor / powf(band->energy / band_sizes[g], 0.25f); |
|
|
|
|
|
|
|
start += band_sizes[g]; |
|
|
|
} |
|
|
|
} |
|
|
|
@@ -414,10 +591,15 @@ static void psy_3gpp_analyze(FFPsyContext *ctx, int channel, |
|
|
|
for (w = 0; w < wi->num_windows*16; w += 16) { |
|
|
|
AacPsyBand *bands = &pch->band[w]; |
|
|
|
//5.4.2.3 "Spreading" & 5.4.3 "Spreaded Energy Calculation" |
|
|
|
for (g = 1; g < num_bands; g++) |
|
|
|
spread_en[0] = bands[0].energy; |
|
|
|
for (g = 1; g < num_bands; g++) { |
|
|
|
bands[g].thr = FFMAX(bands[g].thr, bands[g-1].thr * coeffs[g].spread_hi[0]); |
|
|
|
for (g = num_bands - 2; g >= 0; g--) |
|
|
|
spread_en[w+g] = FFMAX(bands[g].energy, spread_en[w+g-1] * coeffs[g].spread_hi[1]); |
|
|
|
} |
|
|
|
for (g = num_bands - 2; g >= 0; g--) { |
|
|
|
bands[g].thr = FFMAX(bands[g].thr, bands[g+1].thr * coeffs[g].spread_low[0]); |
|
|
|
spread_en[w+g] = FFMAX(spread_en[w+g], spread_en[w+g+1] * coeffs[g].spread_low[1]); |
|
|
|
} |
|
|
|
//5.4.2.4 "Threshold in quiet" |
|
|
|
for (g = 0; g < num_bands; g++) { |
|
|
|
AacPsyBand *band = &bands[g]; |
|
|
|
@@ -426,6 +608,119 @@ static void psy_3gpp_analyze(FFPsyContext *ctx, int channel, |
|
|
|
if (!(wi->window_type[0] == LONG_STOP_SEQUENCE || (wi->window_type[1] == LONG_START_SEQUENCE && !w))) |
|
|
|
band->thr = FFMAX(PSY_3GPP_RPEMIN*band->thr, FFMIN(band->thr, |
|
|
|
PSY_3GPP_RPELEV*pch->prev_band[w+g].thr_quiet)); |
|
|
|
|
|
|
|
/* 5.6.1.3.1 "Prepatory steps of the perceptual entropy calculation" */ |
|
|
|
pe += calc_pe_3gpp(band); |
|
|
|
a += band->pe_const; |
|
|
|
active_lines += band->active_lines; |
|
|
|
|
|
|
|
/* 5.6.1.3.3 "Selection of the bands for avoidance of holes" */ |
|
|
|
if (spread_en[w+g] * avoid_hole_thr > band->energy || coeffs[g].min_snr > 1.0f) |
|
|
|
band->avoid_holes = PSY_3GPP_AH_NONE; |
|
|
|
else |
|
|
|
band->avoid_holes = PSY_3GPP_AH_INACTIVE; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
/* 5.6.1.3.2 "Calculation of the desired perceptual entropy" */ |
|
|
|
ctx->pe[channel] = pe; |
|
|
|
desired_bits = calc_bit_demand(pctx, pe, ctx->bitres.bits, ctx->bitres.size, wi->num_windows == 8); |
|
|
|
desired_pe = PSY_3GPP_BITS_TO_PE(desired_bits); |
|
|
|
/* NOTE: PE correction is kept simple. During initial testing it had very |
|
|
|
* little effect on the final bitrate. Probably a good idea to come |
|
|
|
* back and do more testing later. |
|
|
|
*/ |
|
|
|
if (ctx->bitres.bits > 0) |
|
|
|
desired_pe *= av_clipf(pctx->pe.previous / PSY_3GPP_BITS_TO_PE(ctx->bitres.bits), |
|
|
|
0.85f, 1.15f); |
|
|
|
pctx->pe.previous = PSY_3GPP_BITS_TO_PE(desired_bits); |
|
|
|
|
|
|
|
if (desired_pe < pe) { |
|
|
|
/* 5.6.1.3.4 "First Estimation of the reduction value" */ |
|
|
|
for (w = 0; w < wi->num_windows*16; w += 16) { |
|
|
|
reduction = calc_reduction_3gpp(a, desired_pe, pe, active_lines); |
|
|
|
pe = 0.0f; |
|
|
|
a = 0.0f; |
|
|
|
active_lines = 0.0f; |
|
|
|
for (g = 0; g < num_bands; g++) { |
|
|
|
AacPsyBand *band = &pch->band[w+g]; |
|
|
|
|
|
|
|
band->thr = calc_reduced_thr_3gpp(band, coeffs[g].min_snr, reduction); |
|
|
|
/* recalculate PE */ |
|
|
|
pe += calc_pe_3gpp(band); |
|
|
|
a += band->pe_const; |
|
|
|
active_lines += band->active_lines; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
/* 5.6.1.3.5 "Second Estimation of the reduction value" */ |
|
|
|
for (i = 0; i < 2; i++) { |
|
|
|
float pe_no_ah = 0.0f, desired_pe_no_ah; |
|
|
|
active_lines = a = 0.0f; |
|
|
|
for (w = 0; w < wi->num_windows*16; w += 16) { |
|
|
|
for (g = 0; g < num_bands; g++) { |
|
|
|
AacPsyBand *band = &pch->band[w+g]; |
|
|
|
|
|
|
|
if (band->avoid_holes != PSY_3GPP_AH_ACTIVE) { |
|
|
|
pe_no_ah += band->pe; |
|
|
|
a += band->pe_const; |
|
|
|
active_lines += band->active_lines; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
desired_pe_no_ah = FFMAX(desired_pe - (pe - pe_no_ah), 0.0f); |
|
|
|
if (active_lines > 0.0f) |
|
|
|
reduction += calc_reduction_3gpp(a, desired_pe_no_ah, pe_no_ah, active_lines); |
|
|
|
|
|
|
|
pe = 0.0f; |
|
|
|
for (w = 0; w < wi->num_windows*16; w += 16) { |
|
|
|
for (g = 0; g < num_bands; g++) { |
|
|
|
AacPsyBand *band = &pch->band[w+g]; |
|
|
|
|
|
|
|
if (active_lines > 0.0f) |
|
|
|
band->thr = calc_reduced_thr_3gpp(band, coeffs[g].min_snr, reduction); |
|
|
|
pe += calc_pe_3gpp(band); |
|
|
|
band->norm_fac = band->active_lines / band->thr; |
|
|
|
norm_fac += band->norm_fac; |
|
|
|
} |
|
|
|
} |
|
|
|
delta_pe = desired_pe - pe; |
|
|
|
if (fabs(delta_pe) > 0.05f * desired_pe) |
|
|
|
break; |
|
|
|
} |
|
|
|
|
|
|
|
if (pe < 1.15f * desired_pe) { |
|
|
|
/* 6.6.1.3.6 "Final threshold modification by linearization" */ |
|
|
|
norm_fac = 1.0f / norm_fac; |
|
|
|
for (w = 0; w < wi->num_windows*16; w += 16) { |
|
|
|
for (g = 0; g < num_bands; g++) { |
|
|
|
AacPsyBand *band = &pch->band[w+g]; |
|
|
|
|
|
|
|
if (band->active_lines > 0.5f) { |
|
|
|
float delta_sfb_pe = band->norm_fac * norm_fac * delta_pe; |
|
|
|
float thr = band->thr; |
|
|
|
|
|
|
|
thr *= powf(2.0f, delta_sfb_pe / band->active_lines); |
|
|
|
if (thr > coeffs[g].min_snr * band->energy && band->avoid_holes == PSY_3GPP_AH_INACTIVE) |
|
|
|
thr = FFMAX(band->thr, coeffs[g].min_snr * band->energy); |
|
|
|
band->thr = thr; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} else { |
|
|
|
/* 5.6.1.3.7 "Further perceptual entropy reduction" */ |
|
|
|
g = num_bands; |
|
|
|
while (pe > desired_pe && g--) { |
|
|
|
for (w = 0; w < wi->num_windows*16; w+= 16) { |
|
|
|
AacPsyBand *band = &pch->band[w+g]; |
|
|
|
if (band->avoid_holes != PSY_3GPP_AH_NONE && coeffs[g].min_snr < PSY_SNR_1DB) { |
|
|
|
coeffs[g].min_snr = PSY_SNR_1DB; |
|
|
|
band->thr = band->energy * PSY_SNR_1DB; |
|
|
|
pe += band->active_lines * 1.5f - band->pe; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
/* TODO: allow more holes (unused without mid/side) */ |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|