|
|
@@ -38,74 +38,6 @@ |
|
|
|
|
|
|
|
#define CNG_RANDOM_SEED 12345 |
|
|
|
|
|
|
|
/** |
|
|
|
* G723.1 frame types |
|
|
|
*/ |
|
|
|
enum FrameType { |
|
|
|
ACTIVE_FRAME, ///< Active speech |
|
|
|
SID_FRAME, ///< Silence Insertion Descriptor frame |
|
|
|
UNTRANSMITTED_FRAME |
|
|
|
}; |
|
|
|
|
|
|
|
enum Rate { |
|
|
|
RATE_6300, |
|
|
|
RATE_5300 |
|
|
|
}; |
|
|
|
|
|
|
|
/** |
|
|
|
* G723.1 unpacked data subframe |
|
|
|
*/ |
|
|
|
typedef struct G723_1_Subframe { |
|
|
|
int ad_cb_lag; ///< adaptive codebook lag |
|
|
|
int ad_cb_gain; |
|
|
|
int dirac_train; |
|
|
|
int pulse_sign; |
|
|
|
int grid_index; |
|
|
|
int amp_index; |
|
|
|
int pulse_pos; |
|
|
|
} G723_1_Subframe; |
|
|
|
|
|
|
|
/** |
|
|
|
* Pitch postfilter parameters |
|
|
|
*/ |
|
|
|
typedef struct PPFParam { |
|
|
|
int index; ///< postfilter backward/forward lag |
|
|
|
int16_t opt_gain; ///< optimal gain |
|
|
|
int16_t sc_gain; ///< scaling gain |
|
|
|
} PPFParam; |
|
|
|
|
|
|
|
typedef struct g723_1_context { |
|
|
|
AVClass *class; |
|
|
|
|
|
|
|
G723_1_Subframe subframe[4]; |
|
|
|
enum FrameType cur_frame_type; |
|
|
|
enum FrameType past_frame_type; |
|
|
|
enum Rate cur_rate; |
|
|
|
uint8_t lsp_index[LSP_BANDS]; |
|
|
|
int pitch_lag[2]; |
|
|
|
int erased_frames; |
|
|
|
|
|
|
|
int16_t prev_lsp[LPC_ORDER]; |
|
|
|
int16_t sid_lsp[LPC_ORDER]; |
|
|
|
int16_t prev_excitation[PITCH_MAX]; |
|
|
|
int16_t excitation[PITCH_MAX + FRAME_LEN + 4]; |
|
|
|
int16_t synth_mem[LPC_ORDER]; |
|
|
|
int16_t fir_mem[LPC_ORDER]; |
|
|
|
int iir_mem[LPC_ORDER]; |
|
|
|
|
|
|
|
int random_seed; |
|
|
|
int cng_random_seed; |
|
|
|
int interp_index; |
|
|
|
int interp_gain; |
|
|
|
int sid_gain; |
|
|
|
int cur_gain; |
|
|
|
int reflection_coef; |
|
|
|
int pf_gain; |
|
|
|
int postfilter; |
|
|
|
|
|
|
|
int16_t audio[FRAME_LEN + LPC_ORDER + PITCH_MAX + 4]; |
|
|
|
} G723_1_Context; |
|
|
|
|
|
|
|
static av_cold int g723_1_decode_init(AVCodecContext *avctx) |
|
|
|
{ |
|
|
|
G723_1_Context *p = avctx->priv_data; |
|
|
@@ -262,108 +194,6 @@ static int16_t square_root(int val) |
|
|
|
return res; |
|
|
|
} |
|
|
|
|
|
|
|
/** |
|
|
|
* Calculate the number of left-shifts required for normalizing the input. |
|
|
|
* |
|
|
|
* @param num input number |
|
|
|
* @param width width of the input, 16 bits(0) / 32 bits(1) |
|
|
|
*/ |
|
|
|
static int normalize_bits(int num, int width) |
|
|
|
{ |
|
|
|
return width - av_log2(num) - 1; |
|
|
|
} |
|
|
|
|
|
|
|
/** |
|
|
|
* Scale vector contents based on the largest of their absolutes. |
|
|
|
*/ |
|
|
|
static int scale_vector(int16_t *dst, const int16_t *vector, int length) |
|
|
|
{ |
|
|
|
int bits, max = 0; |
|
|
|
int i; |
|
|
|
|
|
|
|
|
|
|
|
for (i = 0; i < length; i++) |
|
|
|
max |= FFABS(vector[i]); |
|
|
|
|
|
|
|
max = FFMIN(max, 0x7FFF); |
|
|
|
bits = normalize_bits(max, 15); |
|
|
|
|
|
|
|
for (i = 0; i < length; i++) |
|
|
|
dst[i] = vector[i] << bits >> 3; |
|
|
|
|
|
|
|
return bits - 3; |
|
|
|
} |
|
|
|
|
|
|
|
/** |
|
|
|
* Perform inverse quantization of LSP frequencies. |
|
|
|
* |
|
|
|
* @param cur_lsp the current LSP vector |
|
|
|
* @param prev_lsp the previous LSP vector |
|
|
|
* @param lsp_index VQ indices |
|
|
|
* @param bad_frame bad frame flag |
|
|
|
*/ |
|
|
|
static void inverse_quant(int16_t *cur_lsp, int16_t *prev_lsp, |
|
|
|
uint8_t *lsp_index, int bad_frame) |
|
|
|
{ |
|
|
|
int min_dist, pred; |
|
|
|
int i, j, temp, stable; |
|
|
|
|
|
|
|
/* Check for frame erasure */ |
|
|
|
if (!bad_frame) { |
|
|
|
min_dist = 0x100; |
|
|
|
pred = 12288; |
|
|
|
} else { |
|
|
|
min_dist = 0x200; |
|
|
|
pred = 23552; |
|
|
|
lsp_index[0] = lsp_index[1] = lsp_index[2] = 0; |
|
|
|
} |
|
|
|
|
|
|
|
/* Get the VQ table entry corresponding to the transmitted index */ |
|
|
|
cur_lsp[0] = lsp_band0[lsp_index[0]][0]; |
|
|
|
cur_lsp[1] = lsp_band0[lsp_index[0]][1]; |
|
|
|
cur_lsp[2] = lsp_band0[lsp_index[0]][2]; |
|
|
|
cur_lsp[3] = lsp_band1[lsp_index[1]][0]; |
|
|
|
cur_lsp[4] = lsp_band1[lsp_index[1]][1]; |
|
|
|
cur_lsp[5] = lsp_band1[lsp_index[1]][2]; |
|
|
|
cur_lsp[6] = lsp_band2[lsp_index[2]][0]; |
|
|
|
cur_lsp[7] = lsp_band2[lsp_index[2]][1]; |
|
|
|
cur_lsp[8] = lsp_band2[lsp_index[2]][2]; |
|
|
|
cur_lsp[9] = lsp_band2[lsp_index[2]][3]; |
|
|
|
|
|
|
|
/* Add predicted vector & DC component to the previously quantized vector */ |
|
|
|
for (i = 0; i < LPC_ORDER; i++) { |
|
|
|
temp = ((prev_lsp[i] - dc_lsp[i]) * pred + (1 << 14)) >> 15; |
|
|
|
cur_lsp[i] += dc_lsp[i] + temp; |
|
|
|
} |
|
|
|
|
|
|
|
for (i = 0; i < LPC_ORDER; i++) { |
|
|
|
cur_lsp[0] = FFMAX(cur_lsp[0], 0x180); |
|
|
|
cur_lsp[LPC_ORDER - 1] = FFMIN(cur_lsp[LPC_ORDER - 1], 0x7e00); |
|
|
|
|
|
|
|
/* Stability check */ |
|
|
|
for (j = 1; j < LPC_ORDER; j++) { |
|
|
|
temp = min_dist + cur_lsp[j - 1] - cur_lsp[j]; |
|
|
|
if (temp > 0) { |
|
|
|
temp >>= 1; |
|
|
|
cur_lsp[j - 1] -= temp; |
|
|
|
cur_lsp[j] += temp; |
|
|
|
} |
|
|
|
} |
|
|
|
stable = 1; |
|
|
|
for (j = 1; j < LPC_ORDER; j++) { |
|
|
|
temp = cur_lsp[j - 1] + min_dist - cur_lsp[j] - 4; |
|
|
|
if (temp > 0) { |
|
|
|
stable = 0; |
|
|
|
break; |
|
|
|
} |
|
|
|
} |
|
|
|
if (stable) |
|
|
|
break; |
|
|
|
} |
|
|
|
if (!stable) |
|
|
|
memcpy(cur_lsp, prev_lsp, LPC_ORDER * sizeof(*cur_lsp)); |
|
|
|
} |
|
|
|
|
|
|
|
/** |
|
|
|
* Bitexact implementation of 2ab scaled by 1/2^16. |
|
|
|
* |
|
|
@@ -373,116 +203,6 @@ static void inverse_quant(int16_t *cur_lsp, int16_t *prev_lsp, |
|
|
|
#define MULL2(a, b) \ |
|
|
|
((((a) >> 16) * (b) << 1) + (((a) & 0xffff) * (b) >> 15)) |
|
|
|
|
|
|
|
/** |
|
|
|
* Convert LSP frequencies to LPC coefficients. |
|
|
|
* |
|
|
|
* @param lpc buffer for LPC coefficients |
|
|
|
*/ |
|
|
|
static void lsp2lpc(int16_t *lpc) |
|
|
|
{ |
|
|
|
int f1[LPC_ORDER / 2 + 1]; |
|
|
|
int f2[LPC_ORDER / 2 + 1]; |
|
|
|
int i, j; |
|
|
|
|
|
|
|
/* Calculate negative cosine */ |
|
|
|
for (j = 0; j < LPC_ORDER; j++) { |
|
|
|
int index = (lpc[j] >> 7) & 0x1FF; |
|
|
|
int offset = lpc[j] & 0x7f; |
|
|
|
int temp1 = cos_tab[index] << 16; |
|
|
|
int temp2 = (cos_tab[index + 1] - cos_tab[index]) * |
|
|
|
((offset << 8) + 0x80) << 1; |
|
|
|
|
|
|
|
lpc[j] = -(av_sat_dadd32(1 << 15, temp1 + temp2) >> 16); |
|
|
|
} |
|
|
|
|
|
|
|
/* |
|
|
|
* Compute sum and difference polynomial coefficients |
|
|
|
* (bitexact alternative to lsp2poly() in lsp.c) |
|
|
|
*/ |
|
|
|
/* Initialize with values in Q28 */ |
|
|
|
f1[0] = 1 << 28; |
|
|
|
f1[1] = (lpc[0] << 14) + (lpc[2] << 14); |
|
|
|
f1[2] = lpc[0] * lpc[2] + (2 << 28); |
|
|
|
|
|
|
|
f2[0] = 1 << 28; |
|
|
|
f2[1] = (lpc[1] << 14) + (lpc[3] << 14); |
|
|
|
f2[2] = lpc[1] * lpc[3] + (2 << 28); |
|
|
|
|
|
|
|
/* |
|
|
|
* Calculate and scale the coefficients by 1/2 in |
|
|
|
* each iteration for a final scaling factor of Q25 |
|
|
|
*/ |
|
|
|
for (i = 2; i < LPC_ORDER / 2; i++) { |
|
|
|
f1[i + 1] = f1[i - 1] + MULL2(f1[i], lpc[2 * i]); |
|
|
|
f2[i + 1] = f2[i - 1] + MULL2(f2[i], lpc[2 * i + 1]); |
|
|
|
|
|
|
|
for (j = i; j >= 2; j--) { |
|
|
|
f1[j] = MULL2(f1[j - 1], lpc[2 * i]) + |
|
|
|
(f1[j] >> 1) + (f1[j - 2] >> 1); |
|
|
|
f2[j] = MULL2(f2[j - 1], lpc[2 * i + 1]) + |
|
|
|
(f2[j] >> 1) + (f2[j - 2] >> 1); |
|
|
|
} |
|
|
|
|
|
|
|
f1[0] >>= 1; |
|
|
|
f2[0] >>= 1; |
|
|
|
f1[1] = ((lpc[2 * i] << 16 >> i) + f1[1]) >> 1; |
|
|
|
f2[1] = ((lpc[2 * i + 1] << 16 >> i) + f2[1]) >> 1; |
|
|
|
} |
|
|
|
|
|
|
|
/* Convert polynomial coefficients to LPC coefficients */ |
|
|
|
for (i = 0; i < LPC_ORDER / 2; i++) { |
|
|
|
int64_t ff1 = f1[i + 1] + f1[i]; |
|
|
|
int64_t ff2 = f2[i + 1] - f2[i]; |
|
|
|
|
|
|
|
lpc[i] = av_clipl_int32(((ff1 + ff2) << 3) + (1 << 15)) >> 16; |
|
|
|
lpc[LPC_ORDER - i - 1] = av_clipl_int32(((ff1 - ff2) << 3) + |
|
|
|
(1 << 15)) >> 16; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
/** |
|
|
|
* Quantize LSP frequencies by interpolation and convert them to |
|
|
|
* the corresponding LPC coefficients. |
|
|
|
* |
|
|
|
* @param lpc buffer for LPC coefficients |
|
|
|
* @param cur_lsp the current LSP vector |
|
|
|
* @param prev_lsp the previous LSP vector |
|
|
|
*/ |
|
|
|
static void lsp_interpolate(int16_t *lpc, int16_t *cur_lsp, int16_t *prev_lsp) |
|
|
|
{ |
|
|
|
int i; |
|
|
|
int16_t *lpc_ptr = lpc; |
|
|
|
|
|
|
|
/* cur_lsp * 0.25 + prev_lsp * 0.75 */ |
|
|
|
ff_acelp_weighted_vector_sum(lpc, cur_lsp, prev_lsp, |
|
|
|
4096, 12288, 1 << 13, 14, LPC_ORDER); |
|
|
|
ff_acelp_weighted_vector_sum(lpc + LPC_ORDER, cur_lsp, prev_lsp, |
|
|
|
8192, 8192, 1 << 13, 14, LPC_ORDER); |
|
|
|
ff_acelp_weighted_vector_sum(lpc + 2 * LPC_ORDER, cur_lsp, prev_lsp, |
|
|
|
12288, 4096, 1 << 13, 14, LPC_ORDER); |
|
|
|
memcpy(lpc + 3 * LPC_ORDER, cur_lsp, LPC_ORDER * sizeof(*lpc)); |
|
|
|
|
|
|
|
for (i = 0; i < SUBFRAMES; i++) { |
|
|
|
lsp2lpc(lpc_ptr); |
|
|
|
lpc_ptr += LPC_ORDER; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
/** |
|
|
|
* Generate a train of dirac functions with period as pitch lag. |
|
|
|
*/ |
|
|
|
static void gen_dirac_train(int16_t *buf, int pitch_lag) |
|
|
|
{ |
|
|
|
int16_t vector[SUBFRAME_LEN]; |
|
|
|
int i, j; |
|
|
|
|
|
|
|
memcpy(vector, buf, SUBFRAME_LEN * sizeof(*vector)); |
|
|
|
for (i = pitch_lag; i < SUBFRAME_LEN; i += pitch_lag) { |
|
|
|
for (j = 0; j < SUBFRAME_LEN - i; j++) |
|
|
|
buf[i + j] += vector[j]; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
/** |
|
|
|
* Generate fixed codebook excitation vector. |
|
|
|
* |
|
|
@@ -522,7 +242,7 @@ static void gen_fcb_excitation(int16_t *vector, G723_1_Subframe *subfrm, |
|
|
|
break; |
|
|
|
} |
|
|
|
if (subfrm->dirac_train == 1) |
|
|
|
gen_dirac_train(vector, pitch_lag); |
|
|
|
ff_g723_1_gen_dirac_train(vector, pitch_lag); |
|
|
|
} else { /* 5300 bps */ |
|
|
|
int cb_gain = fixed_cb_gain[subfrm->amp_index]; |
|
|
|
int cb_shift = subfrm->grid_index; |
|
|
@@ -549,63 +269,6 @@ static void gen_fcb_excitation(int16_t *vector, G723_1_Subframe *subfrm, |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
/** |
|
|
|
* Get delayed contribution from the previous excitation vector. |
|
|
|
*/ |
|
|
|
static void get_residual(int16_t *residual, int16_t *prev_excitation, int lag) |
|
|
|
{ |
|
|
|
int offset = PITCH_MAX - PITCH_ORDER / 2 - lag; |
|
|
|
int i; |
|
|
|
|
|
|
|
residual[0] = prev_excitation[offset]; |
|
|
|
residual[1] = prev_excitation[offset + 1]; |
|
|
|
|
|
|
|
offset += 2; |
|
|
|
for (i = 2; i < SUBFRAME_LEN + PITCH_ORDER - 1; i++) |
|
|
|
residual[i] = prev_excitation[offset + (i - 2) % lag]; |
|
|
|
} |
|
|
|
|
|
|
|
static int dot_product(const int16_t *a, const int16_t *b, int length) |
|
|
|
{ |
|
|
|
int i, sum = 0; |
|
|
|
|
|
|
|
for (i = 0; i < length; i++) { |
|
|
|
int prod = a[i] * b[i]; |
|
|
|
sum = av_sat_dadd32(sum, prod); |
|
|
|
} |
|
|
|
return sum; |
|
|
|
} |
|
|
|
|
|
|
|
/** |
|
|
|
* Generate adaptive codebook excitation. |
|
|
|
*/ |
|
|
|
static void gen_acb_excitation(int16_t *vector, int16_t *prev_excitation, |
|
|
|
int pitch_lag, G723_1_Subframe *subfrm, |
|
|
|
enum Rate cur_rate) |
|
|
|
{ |
|
|
|
int16_t residual[SUBFRAME_LEN + PITCH_ORDER - 1]; |
|
|
|
const int16_t *cb_ptr; |
|
|
|
int lag = pitch_lag + subfrm->ad_cb_lag - 1; |
|
|
|
|
|
|
|
int i; |
|
|
|
int sum; |
|
|
|
|
|
|
|
get_residual(residual, prev_excitation, lag); |
|
|
|
|
|
|
|
/* Select quantization table */ |
|
|
|
if (cur_rate == RATE_6300 && pitch_lag < SUBFRAME_LEN - 2) |
|
|
|
cb_ptr = adaptive_cb_gain85; |
|
|
|
else |
|
|
|
cb_ptr = adaptive_cb_gain170; |
|
|
|
|
|
|
|
/* Calculate adaptive vector */ |
|
|
|
cb_ptr += subfrm->ad_cb_gain * 20; |
|
|
|
for (i = 0; i < SUBFRAME_LEN; i++) { |
|
|
|
sum = dot_product(residual + i, cb_ptr, PITCH_ORDER); |
|
|
|
vector[i] = av_sat_dadd32(1 << 15, sum) >> 16; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
/** |
|
|
|
* Estimate maximum auto-correlation around pitch lag. |
|
|
|
* |
|
|
@@ -629,7 +292,7 @@ static int autocorr_max(const int16_t *buf, int offset, int *ccr_max, |
|
|
|
limit = pitch_lag + 3; |
|
|
|
|
|
|
|
for (i = pitch_lag - 3; i <= limit; i++) { |
|
|
|
ccr = dot_product(buf, buf + dir * i, length); |
|
|
|
ccr = ff_g723_1_dot_product(buf, buf + dir * i, length); |
|
|
|
|
|
|
|
if (ccr > *ccr_max) { |
|
|
|
*ccr_max = ccr; |
|
|
@@ -728,22 +391,24 @@ static void comp_ppf_coeff(G723_1_Context *p, int offset, int pitch_lag, |
|
|
|
return; |
|
|
|
|
|
|
|
/* Compute target energy */ |
|
|
|
energy[0] = dot_product(buf, buf, SUBFRAME_LEN); |
|
|
|
energy[0] = ff_g723_1_dot_product(buf, buf, SUBFRAME_LEN); |
|
|
|
|
|
|
|
/* Compute forward residual energy */ |
|
|
|
if (fwd_lag) |
|
|
|
energy[2] = dot_product(buf + fwd_lag, buf + fwd_lag, SUBFRAME_LEN); |
|
|
|
energy[2] = ff_g723_1_dot_product(buf + fwd_lag, buf + fwd_lag, |
|
|
|
SUBFRAME_LEN); |
|
|
|
|
|
|
|
/* Compute backward residual energy */ |
|
|
|
if (back_lag) |
|
|
|
energy[4] = dot_product(buf - back_lag, buf - back_lag, SUBFRAME_LEN); |
|
|
|
energy[4] = ff_g723_1_dot_product(buf - back_lag, buf - back_lag, |
|
|
|
SUBFRAME_LEN); |
|
|
|
|
|
|
|
/* Normalize and shorten */ |
|
|
|
temp1 = 0; |
|
|
|
for (i = 0; i < 5; i++) |
|
|
|
temp1 = FFMAX(energy[i], temp1); |
|
|
|
|
|
|
|
scale = normalize_bits(temp1, 31); |
|
|
|
scale = ff_g723_1_normalize_bits(temp1, 31); |
|
|
|
for (i = 0; i < 5; i++) |
|
|
|
energy[i] = (energy[i] << scale) >> 16; |
|
|
|
|
|
|
@@ -789,7 +454,7 @@ static int comp_interp_index(G723_1_Context *p, int pitch_lag, |
|
|
|
|
|
|
|
int index, ccr, tgt_eng, best_eng, temp; |
|
|
|
|
|
|
|
*scale = scale_vector(buf, p->excitation, FRAME_LEN + PITCH_MAX); |
|
|
|
*scale = ff_g723_1_scale_vector(buf, p->excitation, FRAME_LEN + PITCH_MAX); |
|
|
|
buf += offset; |
|
|
|
|
|
|
|
/* Compute maximum backward cross-correlation */ |
|
|
@@ -798,14 +463,15 @@ static int comp_interp_index(G723_1_Context *p, int pitch_lag, |
|
|
|
ccr = av_sat_add32(ccr, 1 << 15) >> 16; |
|
|
|
|
|
|
|
/* Compute target energy */ |
|
|
|
tgt_eng = dot_product(buf, buf, SUBFRAME_LEN * 2); |
|
|
|
tgt_eng = ff_g723_1_dot_product(buf, buf, SUBFRAME_LEN * 2); |
|
|
|
*exc_eng = av_sat_add32(tgt_eng, 1 << 15) >> 16; |
|
|
|
|
|
|
|
if (ccr <= 0) |
|
|
|
return 0; |
|
|
|
|
|
|
|
/* Compute best energy */ |
|
|
|
best_eng = dot_product(buf - index, buf - index, SUBFRAME_LEN * 2); |
|
|
|
best_eng = ff_g723_1_dot_product(buf - index, buf - index, |
|
|
|
SUBFRAME_LEN * 2); |
|
|
|
best_eng = av_sat_add32(best_eng, 1 << 15) >> 16; |
|
|
|
|
|
|
|
temp = best_eng * *exc_eng >> 3; |
|
|
@@ -853,8 +519,8 @@ static void residual_interp(int16_t *buf, int16_t *out, int lag, |
|
|
|
* @param src source vector |
|
|
|
* @param dest destination vector |
|
|
|
*/ |
|
|
|
static inline void iir_filter(int16_t *fir_coef, int16_t *iir_coef, |
|
|
|
int16_t *src, int *dest) |
|
|
|
static void iir_filter(int16_t *fir_coef, int16_t *iir_coef, |
|
|
|
int16_t *src, int *dest) |
|
|
|
{ |
|
|
|
int m, n; |
|
|
|
|
|
|
@@ -890,8 +556,8 @@ static void gain_scale(G723_1_Context *p, int16_t * buf, int energy) |
|
|
|
} |
|
|
|
|
|
|
|
if (num && denom) { |
|
|
|
bits1 = normalize_bits(num, 31); |
|
|
|
bits2 = normalize_bits(denom, 31); |
|
|
|
bits1 = ff_g723_1_normalize_bits(num, 31); |
|
|
|
bits2 = ff_g723_1_normalize_bits(denom, 31); |
|
|
|
num = num << bits1 >> 1; |
|
|
|
denom <<= bits2; |
|
|
|
|
|
|
@@ -936,8 +602,7 @@ static void formant_postfilter(G723_1_Context *p, int16_t *lpc, |
|
|
|
filter_coef[1][k] = (-lpc[k] * postfilter_tbl[1][k] + |
|
|
|
(1 << 14)) >> 15; |
|
|
|
} |
|
|
|
iir_filter(filter_coef[0], filter_coef[1], buf + i, |
|
|
|
filter_signal + i); |
|
|
|
iir_filter(filter_coef[0], filter_coef[1], buf + i, filter_signal + i); |
|
|
|
lpc += LPC_ORDER; |
|
|
|
} |
|
|
|
|
|
|
@@ -953,11 +618,11 @@ static void formant_postfilter(G723_1_Context *p, int16_t *lpc, |
|
|
|
int scale, energy; |
|
|
|
|
|
|
|
/* Normalize */ |
|
|
|
scale = scale_vector(dst, buf, SUBFRAME_LEN); |
|
|
|
scale = ff_g723_1_scale_vector(dst, buf, SUBFRAME_LEN); |
|
|
|
|
|
|
|
/* Compute auto correlation coefficients */ |
|
|
|
auto_corr[0] = dot_product(dst, dst + 1, SUBFRAME_LEN - 1); |
|
|
|
auto_corr[1] = dot_product(dst, dst, SUBFRAME_LEN); |
|
|
|
auto_corr[0] = ff_g723_1_dot_product(dst, dst + 1, SUBFRAME_LEN - 1); |
|
|
|
auto_corr[1] = ff_g723_1_dot_product(dst, dst, SUBFRAME_LEN); |
|
|
|
|
|
|
|
/* Compute reflection coefficient */ |
|
|
|
temp = auto_corr[1] >> 16; |
|
|
@@ -1104,13 +769,13 @@ static void generate_noise(G723_1_Context *p) |
|
|
|
memcpy(vector_ptr, p->prev_excitation, |
|
|
|
PITCH_MAX * sizeof(*p->excitation)); |
|
|
|
for (i = 0; i < SUBFRAMES; i += 2) { |
|
|
|
gen_acb_excitation(vector_ptr, vector_ptr, |
|
|
|
p->pitch_lag[i >> 1], &p->subframe[i], |
|
|
|
p->cur_rate); |
|
|
|
gen_acb_excitation(vector_ptr + SUBFRAME_LEN, |
|
|
|
vector_ptr + SUBFRAME_LEN, |
|
|
|
p->pitch_lag[i >> 1], &p->subframe[i + 1], |
|
|
|
p->cur_rate); |
|
|
|
ff_g723_1_gen_acb_excitation(vector_ptr, vector_ptr, |
|
|
|
p->pitch_lag[i >> 1], &p->subframe[i], |
|
|
|
p->cur_rate); |
|
|
|
ff_g723_1_gen_acb_excitation(vector_ptr + SUBFRAME_LEN, |
|
|
|
vector_ptr + SUBFRAME_LEN, |
|
|
|
p->pitch_lag[i >> 1], &p->subframe[i + 1], |
|
|
|
p->cur_rate); |
|
|
|
|
|
|
|
t = 0; |
|
|
|
for (j = 0; j < SUBFRAME_LEN * 2; j++) |
|
|
@@ -1231,8 +896,8 @@ static int g723_1_decode_frame(AVCodecContext *avctx, void *data, |
|
|
|
else if (p->erased_frames != 3) |
|
|
|
p->erased_frames++; |
|
|
|
|
|
|
|
inverse_quant(cur_lsp, p->prev_lsp, p->lsp_index, bad_frame); |
|
|
|
lsp_interpolate(lpc, cur_lsp, p->prev_lsp); |
|
|
|
ff_g723_1_inverse_quant(cur_lsp, p->prev_lsp, p->lsp_index, bad_frame); |
|
|
|
ff_g723_1_lsp_interpolate(lpc, cur_lsp, p->prev_lsp); |
|
|
|
|
|
|
|
/* Save the lsp_vector for the next frame */ |
|
|
|
memcpy(p->prev_lsp, cur_lsp, LPC_ORDER * sizeof(*p->prev_lsp)); |
|
|
@@ -1249,9 +914,10 @@ static int g723_1_decode_frame(AVCodecContext *avctx, void *data, |
|
|
|
for (i = 0; i < SUBFRAMES; i++) { |
|
|
|
gen_fcb_excitation(vector_ptr, &p->subframe[i], p->cur_rate, |
|
|
|
p->pitch_lag[i >> 1], i); |
|
|
|
gen_acb_excitation(acb_vector, &p->excitation[SUBFRAME_LEN * i], |
|
|
|
p->pitch_lag[i >> 1], &p->subframe[i], |
|
|
|
p->cur_rate); |
|
|
|
ff_g723_1_gen_acb_excitation(acb_vector, |
|
|
|
&p->excitation[SUBFRAME_LEN * i], |
|
|
|
p->pitch_lag[i >> 1], |
|
|
|
&p->subframe[i], p->cur_rate); |
|
|
|
/* Get the total excitation */ |
|
|
|
for (j = 0; j < SUBFRAME_LEN; j++) { |
|
|
|
int v = av_clip_int16(vector_ptr[j] << 1); |
|
|
@@ -1312,7 +978,7 @@ static int g723_1_decode_frame(AVCodecContext *avctx, void *data, |
|
|
|
} else { |
|
|
|
if (p->cur_frame_type == SID_FRAME) { |
|
|
|
p->sid_gain = sid_gain_to_lsp_index(p->subframe[0].amp_index); |
|
|
|
inverse_quant(p->sid_lsp, p->prev_lsp, p->lsp_index, 0); |
|
|
|
ff_g723_1_inverse_quant(p->sid_lsp, p->prev_lsp, p->lsp_index, 0); |
|
|
|
} else if (p->past_frame_type == ACTIVE_FRAME) { |
|
|
|
p->sid_gain = estimate_sid_gain(p); |
|
|
|
} |
|
|
@@ -1322,7 +988,7 @@ static int g723_1_decode_frame(AVCodecContext *avctx, void *data, |
|
|
|
else |
|
|
|
p->cur_gain = (p->cur_gain * 7 + p->sid_gain) >> 3; |
|
|
|
generate_noise(p); |
|
|
|
lsp_interpolate(lpc, p->sid_lsp, p->prev_lsp); |
|
|
|
ff_g723_1_lsp_interpolate(lpc, p->sid_lsp, p->prev_lsp); |
|
|
|
/* Save the lsp_vector for the next frame */ |
|
|
|
memcpy(p->prev_lsp, p->sid_lsp, LPC_ORDER * sizeof(*p->prev_lsp)); |
|
|
|
} |
|
|
|