| @@ -18,12 +18,15 @@ | |||
| * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | |||
| */ | |||
| #include <math.h> | |||
| #include <string.h> | |||
| #include "checkasm.h" | |||
| #include "libavcodec/vp9data.h" | |||
| #include "libavcodec/vp9dsp.h" | |||
| #include "libavutil/common.h" | |||
| #include "libavutil/internal.h" | |||
| #include "libavutil/intreadwrite.h" | |||
| #include "libavutil/mathematics.h" | |||
| static const uint32_t pixel_mask[3] = { 0xffffffff, 0x03ff03ff, 0x0fff0fff }; | |||
| #define SIZEOF_PIXEL ((bit_depth + 7) / 8) | |||
| @@ -94,6 +97,277 @@ static void check_ipred(void) | |||
| #undef randomize_buffers | |||
| #define randomize_buffers() \ | |||
| do { \ | |||
| uint32_t mask = pixel_mask[(bit_depth - 8) >> 1]; \ | |||
| for (y = 0; y < sz; y++) { \ | |||
| for (x = 0; x < sz * SIZEOF_PIXEL; x += 4) { \ | |||
| uint32_t r = rnd() & mask; \ | |||
| AV_WN32A(dst + y * sz * SIZEOF_PIXEL + x, r); \ | |||
| AV_WN32A(src + y * sz * SIZEOF_PIXEL + x, rnd() & mask); \ | |||
| } \ | |||
| for (x = 0; x < sz; x++) { \ | |||
| if (bit_depth == 8) { \ | |||
| coef[y * sz + x] = src[y * sz + x] - dst[y * sz + x]; \ | |||
| } else { \ | |||
| ((int32_t *) coef)[y * sz + x] = \ | |||
| ((uint16_t *) src)[y * sz + x] - \ | |||
| ((uint16_t *) dst)[y * sz + x]; \ | |||
| } \ | |||
| } \ | |||
| } \ | |||
| } while(0) | |||
| // wht function copied from libvpx | |||
| static void fwht_1d(double *out, const double *in, int sz) | |||
| { | |||
| double t0 = in[0] + in[1]; | |||
| double t3 = in[3] - in[2]; | |||
| double t4 = trunc((t0 - t3) * 0.5); | |||
| double t1 = t4 - in[1]; | |||
| double t2 = t4 - in[2]; | |||
| out[0] = t0 - t2; | |||
| out[1] = t2; | |||
| out[2] = t3 + t1; | |||
| out[3] = t1; | |||
| } | |||
| // standard DCT-II | |||
| static void fdct_1d(double *out, const double *in, int sz) | |||
| { | |||
| int k, n; | |||
| for (k = 0; k < sz; k++) { | |||
| out[k] = 0.0; | |||
| for (n = 0; n < sz; n++) | |||
| out[k] += in[n] * cos(M_PI * (2 * n + 1) * k / (sz * 2.0)); | |||
| } | |||
| out[0] *= M_SQRT1_2; | |||
| } | |||
| // see "Towards jointly optimal spatial prediction and adaptive transform in | |||
| // video/image coding", by J. Han, A. Saxena, and K. Rose | |||
| // IEEE Proc. ICASSP, pp. 726-729, Mar. 2010. | |||
| static void fadst4_1d(double *out, const double *in, int sz) | |||
| { | |||
| int k, n; | |||
| for (k = 0; k < sz; k++) { | |||
| out[k] = 0.0; | |||
| for (n = 0; n < sz; n++) | |||
| out[k] += in[n] * sin(M_PI * (n + 1) * (2 * k + 1) / (sz * 2.0 + 1.0)); | |||
| } | |||
| } | |||
| // see "A Butterfly Structured Design of The Hybrid Transform Coding Scheme", | |||
| // by Jingning Han, Yaowu Xu, and Debargha Mukherjee | |||
| // http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/41418.pdf | |||
| static void fadst_1d(double *out, const double *in, int sz) | |||
| { | |||
| int k, n; | |||
| for (k = 0; k < sz; k++) { | |||
| out[k] = 0.0; | |||
| for (n = 0; n < sz; n++) | |||
| out[k] += in[n] * sin(M_PI * (2 * n + 1) * (2 * k + 1) / (sz * 4.0)); | |||
| } | |||
| } | |||
| typedef void (*ftx1d_fn)(double *out, const double *in, int sz); | |||
| static void ftx_2d(double *out, const double *in, enum TxfmMode tx, | |||
| enum TxfmType txtp, int sz) | |||
| { | |||
| static const double scaling_factors[5][4] = { | |||
| { 4.0, 16.0 * M_SQRT1_2 / 3.0, 16.0 * M_SQRT1_2 / 3.0, 32.0 / 9.0 }, | |||
| { 2.0, 2.0, 2.0, 2.0 }, | |||
| { 1.0, 1.0, 1.0, 1.0 }, | |||
| { 0.25 }, | |||
| { 4.0 } | |||
| }; | |||
| static const ftx1d_fn ftx1d_tbl[5][4][2] = { | |||
| { | |||
| { fdct_1d, fdct_1d }, | |||
| { fadst4_1d, fdct_1d }, | |||
| { fdct_1d, fadst4_1d }, | |||
| { fadst4_1d, fadst4_1d }, | |||
| }, { | |||
| { fdct_1d, fdct_1d }, | |||
| { fadst_1d, fdct_1d }, | |||
| { fdct_1d, fadst_1d }, | |||
| { fadst_1d, fadst_1d }, | |||
| }, { | |||
| { fdct_1d, fdct_1d }, | |||
| { fadst_1d, fdct_1d }, | |||
| { fdct_1d, fadst_1d }, | |||
| { fadst_1d, fadst_1d }, | |||
| }, { | |||
| { fdct_1d, fdct_1d }, | |||
| }, { | |||
| { fwht_1d, fwht_1d }, | |||
| }, | |||
| }; | |||
| double temp[1024]; | |||
| double scaling_factor = scaling_factors[tx][txtp]; | |||
| int i, j; | |||
| // cols | |||
| for (i = 0; i < sz; ++i) { | |||
| double temp_out[32]; | |||
| ftx1d_tbl[tx][txtp][0](temp_out, &in[i * sz], sz); | |||
| // scale and transpose | |||
| for (j = 0; j < sz; ++j) | |||
| temp[j * sz + i] = temp_out[j] * scaling_factor; | |||
| } | |||
| // rows | |||
| for (i = 0; i < sz; i++) | |||
| ftx1d_tbl[tx][txtp][1](&out[i * sz], &temp[i * sz], sz); | |||
| } | |||
| static void ftx(int16_t *buf, enum TxfmMode tx, | |||
| enum TxfmType txtp, int sz, int bit_depth) | |||
| { | |||
| double ind[1024], outd[1024]; | |||
| int n; | |||
| emms_c(); | |||
| for (n = 0; n < sz * sz; n++) { | |||
| if (bit_depth == 8) | |||
| ind[n] = buf[n]; | |||
| else | |||
| ind[n] = ((int32_t *) buf)[n]; | |||
| } | |||
| ftx_2d(outd, ind, tx, txtp, sz); | |||
| for (n = 0; n < sz * sz; n++) { | |||
| if (bit_depth == 8) | |||
| buf[n] = lrint(outd[n]); | |||
| else | |||
| ((int32_t *) buf)[n] = lrint(outd[n]); | |||
| } | |||
| } | |||
| static int copy_subcoefs(int16_t *out, const int16_t *in, enum TxfmMode tx, | |||
| enum TxfmType txtp, int sz, int sub, int bit_depth) | |||
| { | |||
| // copy the topleft coefficients such that the return value (being the | |||
| // coefficient scantable index for the eob token) guarantees that only | |||
| // the topleft $sub out of $sz (where $sz >= $sub) coefficients in both | |||
| // dimensions are non-zero. This leads to braching to specific optimized | |||
| // simd versions (e.g. dc-only) so that we get full asm coverage in this | |||
| // test | |||
| int n; | |||
| const int16_t *scan = vp9_scans[tx][txtp]; | |||
| int eob; | |||
| for (n = 0; n < sz * sz; n++) { | |||
| int rc = scan[n], rcx = rc % sz, rcy = rc / sz; | |||
| // find eob for this sub-idct | |||
| if (rcx >= sub || rcy >= sub) | |||
| break; | |||
| // copy coef | |||
| if (bit_depth == 8) { | |||
| out[rc] = in[rc]; | |||
| } else { | |||
| AV_COPY32(&out[rc * 2], &in[rc * 2]); | |||
| } | |||
| } | |||
| eob = n; | |||
| for (; n < sz * sz; n++) { | |||
| int rc = scan[n]; | |||
| // zero | |||
| if (bit_depth == 8) { | |||
| out[rc] = 0; | |||
| } else { | |||
| AV_ZERO32(&out[rc * 2]); | |||
| } | |||
| } | |||
| return eob; | |||
| } | |||
| static int iszero(const int16_t *c, int sz) | |||
| { | |||
| int n; | |||
| for (n = 0; n < sz; n += 4) | |||
| if (AV_RN32A(&c[n])) | |||
| return 0; | |||
| return 1; | |||
| } | |||
| #define SIZEOF_COEF (2 * ((bit_depth + 7) / 8)) | |||
| static void check_itxfm(void) | |||
| { | |||
| LOCAL_ALIGNED_32(uint8_t, src, [32 * 32 * 2]); | |||
| LOCAL_ALIGNED_32(uint8_t, dst, [32 * 32 * 2]); | |||
| LOCAL_ALIGNED_32(uint8_t, dst0, [32 * 32 * 2]); | |||
| LOCAL_ALIGNED_32(uint8_t, dst1, [32 * 32 * 2]); | |||
| LOCAL_ALIGNED_32(int16_t, coef, [32 * 32 * 2]); | |||
| LOCAL_ALIGNED_32(int16_t, subcoef0, [32 * 32 * 2]); | |||
| LOCAL_ALIGNED_32(int16_t, subcoef1, [32 * 32 * 2]); | |||
| declare_func(void, uint8_t *dst, ptrdiff_t stride, int16_t *block, int eob); | |||
| VP9DSPContext dsp; | |||
| int y, x, tx, txtp, bit_depth, sub; | |||
| static const char *const txtp_types[N_TXFM_TYPES] = { | |||
| [DCT_DCT] = "dct_dct", [DCT_ADST] = "adst_dct", | |||
| [ADST_DCT] = "dct_adst", [ADST_ADST] = "adst_adst" | |||
| }; | |||
| for (bit_depth = 8; bit_depth <= 12; bit_depth += 2) { | |||
| ff_vp9dsp_init(&dsp, bit_depth, 0); | |||
| for (tx = TX_4X4; tx <= N_TXFM_SIZES /* 4 = lossless */; tx++) { | |||
| int sz = 4 << (tx & 3); | |||
| int n_txtps = tx < TX_32X32 ? N_TXFM_TYPES : 1; | |||
| for (txtp = 0; txtp < n_txtps; txtp++) { | |||
| if (check_func(dsp.itxfm_add[tx][txtp], "vp9_inv_%s_%dx%d_add_%d", | |||
| tx == 4 ? "wht_wht" : txtp_types[txtp], sz, sz, | |||
| bit_depth)) { | |||
| randomize_buffers(); | |||
| ftx(coef, tx, txtp, sz, bit_depth); | |||
| for (sub = (txtp == 0) ? 1 : sz; sub <= sz; sub <<= 1) { | |||
| int eob; | |||
| if (sub < sz) { | |||
| eob = copy_subcoefs(subcoef0, coef, tx, txtp, | |||
| sz, sub, bit_depth); | |||
| } else { | |||
| eob = sz * sz; | |||
| memcpy(subcoef0, coef, sz * sz * SIZEOF_COEF); | |||
| } | |||
| memcpy(dst0, dst, sz * sz * SIZEOF_PIXEL); | |||
| memcpy(dst1, dst, sz * sz * SIZEOF_PIXEL); | |||
| memcpy(subcoef1, subcoef0, sz * sz * SIZEOF_COEF); | |||
| call_ref(dst0, sz * SIZEOF_PIXEL, subcoef0, eob); | |||
| call_new(dst1, sz * SIZEOF_PIXEL, subcoef1, eob); | |||
| if (memcmp(dst0, dst1, sz * sz * SIZEOF_PIXEL) || | |||
| !iszero(subcoef0, sz * sz * SIZEOF_COEF) || | |||
| !iszero(subcoef1, sz * sz * SIZEOF_COEF)) | |||
| fail(); | |||
| } | |||
| bench_new(dst, sz * SIZEOF_PIXEL, coef, sz * sz); | |||
| } | |||
| } | |||
| } | |||
| } | |||
| report("itxfm"); | |||
| } | |||
| #undef randomize_buffers | |||
| #define setpx(a,b,c) \ | |||
| do { \ | |||
| if (SIZEOF_PIXEL == 1) { \ | |||
| @@ -343,6 +617,7 @@ static void check_mc(void) | |||
| void checkasm_check_vp9dsp(void) | |||
| { | |||
| check_ipred(); | |||
| check_itxfm(); | |||
| check_loopfilter(); | |||
| check_mc(); | |||
| } | |||