Originally committed as revision 9082 to svn://svn.ffmpeg.org/ffmpeg/trunktags/v0.5
| @@ -19,7 +19,7 @@ OBJS= bitstream.o \ | |||
| motion_est.o \ | |||
| imgconvert.o \ | |||
| mpeg12.o \ | |||
| mpegaudiodec.o mpegaudiodecheader.o mpegaudiodata.o \ | |||
| mpegaudiodec.o mpegaudiodecheader.o mpegaudiodata.o mpegaudio.o \ | |||
| simple_idct.o \ | |||
| ratecontrol.o \ | |||
| eval.o \ | |||
| @@ -108,7 +108,7 @@ OBJS-$(CONFIG_MJPEG_DECODER) += mjpegdec.o mjpeg.o | |||
| OBJS-$(CONFIG_MJPEG_ENCODER) += mjpegenc.o mjpeg.o mpegvideo.o | |||
| OBJS-$(CONFIG_MJPEGB_DECODER) += mjpegbdec.o mjpegdec.o mjpeg.o | |||
| OBJS-$(CONFIG_MMVIDEO_DECODER) += mmvideo.o | |||
| OBJS-$(CONFIG_MP2_ENCODER) += mpegaudio.o mpegaudiodata.o | |||
| OBJS-$(CONFIG_MP2_ENCODER) += mpegaudioenc.o mpegaudio.o mpegaudiodata.o | |||
| OBJS-$(CONFIG_MPC7_DECODER) += mpc.o | |||
| OBJS-$(CONFIG_MSMPEG4V1_DECODER) += msmpeg4.o msmpeg4data.o | |||
| OBJS-$(CONFIG_MSMPEG4V1_ENCODER) += msmpeg4.o msmpeg4data.o | |||
| @@ -1,6 +1,6 @@ | |||
| /* | |||
| * The simplest mpeg audio layer 2 encoder | |||
| * Copyright (c) 2000, 2001 Fabrice Bellard. | |||
| * MPEG Audio common code | |||
| * Copyright (c) 2001, 2002 Fabrice Bellard. | |||
| * | |||
| * This file is part of FFmpeg. | |||
| * | |||
| @@ -21,782 +21,30 @@ | |||
| /** | |||
| * @file mpegaudio.c | |||
| * The simplest mpeg audio layer 2 encoder. | |||
| * MPEG Audio common code. | |||
| */ | |||
| #include "avcodec.h" | |||
| #include "bitstream.h" | |||
| #include "mpegaudio.h" | |||
| /* currently, cannot change these constants (need to modify | |||
| quantization stage) */ | |||
| #define MUL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS) | |||
| #define FIX(a) ((int)((a) * (1 << FRAC_BITS))) | |||
| #define SAMPLES_BUF_SIZE 4096 | |||
| typedef struct MpegAudioContext { | |||
| PutBitContext pb; | |||
| int nb_channels; | |||
| int freq, bit_rate; | |||
| int lsf; /* 1 if mpeg2 low bitrate selected */ | |||
| int bitrate_index; /* bit rate */ | |||
| int freq_index; | |||
| int frame_size; /* frame size, in bits, without padding */ | |||
| int64_t nb_samples; /* total number of samples encoded */ | |||
| /* padding computation */ | |||
| int frame_frac, frame_frac_incr, do_padding; | |||
| short samples_buf[MPA_MAX_CHANNELS][SAMPLES_BUF_SIZE]; /* buffer for filter */ | |||
| int samples_offset[MPA_MAX_CHANNELS]; /* offset in samples_buf */ | |||
| int sb_samples[MPA_MAX_CHANNELS][3][12][SBLIMIT]; | |||
| unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3]; /* scale factors */ | |||
| /* code to group 3 scale factors */ | |||
| unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT]; | |||
| int sblimit; /* number of used subbands */ | |||
| const unsigned char *alloc_table; | |||
| } MpegAudioContext; | |||
| /* define it to use floats in quantization (I don't like floats !) */ | |||
| //#define USE_FLOATS | |||
| #include "mpegaudiodata.h" | |||
| #include "mpegaudiotab.h" | |||
| static int MPA_encode_init(AVCodecContext *avctx) | |||
| /* bitrate is in kb/s */ | |||
| int ff_mpa_l2_select_table(int bitrate, int nb_channels, int freq, int lsf) | |||
| { | |||
| MpegAudioContext *s = avctx->priv_data; | |||
| int freq = avctx->sample_rate; | |||
| int bitrate = avctx->bit_rate; | |||
| int channels = avctx->channels; | |||
| int i, v, table; | |||
| float a; | |||
| if (channels <= 0 || channels > 2){ | |||
| av_log(avctx, AV_LOG_ERROR, "encoding %d channel(s) is not allowed in mp2\n", channels); | |||
| return -1; | |||
| } | |||
| bitrate = bitrate / 1000; | |||
| s->nb_channels = channels; | |||
| s->freq = freq; | |||
| s->bit_rate = bitrate * 1000; | |||
| avctx->frame_size = MPA_FRAME_SIZE; | |||
| /* encoding freq */ | |||
| s->lsf = 0; | |||
| for(i=0;i<3;i++) { | |||
| if (ff_mpa_freq_tab[i] == freq) | |||
| break; | |||
| if ((ff_mpa_freq_tab[i] / 2) == freq) { | |||
| s->lsf = 1; | |||
| break; | |||
| } | |||
| } | |||
| if (i == 3){ | |||
| av_log(avctx, AV_LOG_ERROR, "Sampling rate %d is not allowed in mp2\n", freq); | |||
| return -1; | |||
| } | |||
| s->freq_index = i; | |||
| /* encoding bitrate & frequency */ | |||
| for(i=0;i<15;i++) { | |||
| if (ff_mpa_bitrate_tab[s->lsf][1][i] == bitrate) | |||
| break; | |||
| } | |||
| if (i == 15){ | |||
| av_log(avctx, AV_LOG_ERROR, "bitrate %d is not allowed in mp2\n", bitrate); | |||
| return -1; | |||
| } | |||
| s->bitrate_index = i; | |||
| /* compute total header size & pad bit */ | |||
| a = (float)(bitrate * 1000 * MPA_FRAME_SIZE) / (freq * 8.0); | |||
| s->frame_size = ((int)a) * 8; | |||
| /* frame fractional size to compute padding */ | |||
| s->frame_frac = 0; | |||
| s->frame_frac_incr = (int)((a - floor(a)) * 65536.0); | |||
| /* select the right allocation table */ | |||
| table = l2_select_table(bitrate, s->nb_channels, freq, s->lsf); | |||
| /* number of used subbands */ | |||
| s->sblimit = ff_mpa_sblimit_table[table]; | |||
| s->alloc_table = ff_mpa_alloc_tables[table]; | |||
| int ch_bitrate, table; | |||
| #ifdef DEBUG | |||
| av_log(avctx, AV_LOG_DEBUG, "%d kb/s, %d Hz, frame_size=%d bits, table=%d, padincr=%x\n", | |||
| bitrate, freq, s->frame_size, table, s->frame_frac_incr); | |||
| #endif | |||
| for(i=0;i<s->nb_channels;i++) | |||
| s->samples_offset[i] = 0; | |||
| for(i=0;i<257;i++) { | |||
| int v; | |||
| v = ff_mpa_enwindow[i]; | |||
| #if WFRAC_BITS != 16 | |||
| v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS); | |||
| #endif | |||
| filter_bank[i] = v; | |||
| if ((i & 63) != 0) | |||
| v = -v; | |||
| if (i != 0) | |||
| filter_bank[512 - i] = v; | |||
| } | |||
| for(i=0;i<64;i++) { | |||
| v = (int)(pow(2.0, (3 - i) / 3.0) * (1 << 20)); | |||
| if (v <= 0) | |||
| v = 1; | |||
| scale_factor_table[i] = v; | |||
| #ifdef USE_FLOATS | |||
| scale_factor_inv_table[i] = pow(2.0, -(3 - i) / 3.0) / (float)(1 << 20); | |||
| #else | |||
| #define P 15 | |||
| scale_factor_shift[i] = 21 - P - (i / 3); | |||
| scale_factor_mult[i] = (1 << P) * pow(2.0, (i % 3) / 3.0); | |||
| #endif | |||
| } | |||
| for(i=0;i<128;i++) { | |||
| v = i - 64; | |||
| if (v <= -3) | |||
| v = 0; | |||
| else if (v < 0) | |||
| v = 1; | |||
| else if (v == 0) | |||
| v = 2; | |||
| else if (v < 3) | |||
| v = 3; | |||
| else | |||
| v = 4; | |||
| scale_diff_table[i] = v; | |||
| } | |||
| for(i=0;i<17;i++) { | |||
| v = ff_mpa_quant_bits[i]; | |||
| if (v < 0) | |||
| v = -v; | |||
| ch_bitrate = bitrate / nb_channels; | |||
| if (!lsf) { | |||
| if ((freq == 48000 && ch_bitrate >= 56) || | |||
| (ch_bitrate >= 56 && ch_bitrate <= 80)) | |||
| table = 0; | |||
| else if (freq != 48000 && ch_bitrate >= 96) | |||
| table = 1; | |||
| else if (freq != 32000 && ch_bitrate <= 48) | |||
| table = 2; | |||
| else | |||
| v = v * 3; | |||
| total_quant_bits[i] = 12 * v; | |||
| } | |||
| avctx->coded_frame= avcodec_alloc_frame(); | |||
| avctx->coded_frame->key_frame= 1; | |||
| return 0; | |||
| } | |||
| /* 32 point floating point IDCT without 1/sqrt(2) coef zero scaling */ | |||
| static void idct32(int *out, int *tab) | |||
| { | |||
| int i, j; | |||
| int *t, *t1, xr; | |||
| const int *xp = costab32; | |||
| for(j=31;j>=3;j-=2) tab[j] += tab[j - 2]; | |||
| t = tab + 30; | |||
| t1 = tab + 2; | |||
| do { | |||
| t[0] += t[-4]; | |||
| t[1] += t[1 - 4]; | |||
| t -= 4; | |||
| } while (t != t1); | |||
| t = tab + 28; | |||
| t1 = tab + 4; | |||
| do { | |||
| t[0] += t[-8]; | |||
| t[1] += t[1-8]; | |||
| t[2] += t[2-8]; | |||
| t[3] += t[3-8]; | |||
| t -= 8; | |||
| } while (t != t1); | |||
| t = tab; | |||
| t1 = tab + 32; | |||
| do { | |||
| t[ 3] = -t[ 3]; | |||
| t[ 6] = -t[ 6]; | |||
| t[11] = -t[11]; | |||
| t[12] = -t[12]; | |||
| t[13] = -t[13]; | |||
| t[15] = -t[15]; | |||
| t += 16; | |||
| } while (t != t1); | |||
| t = tab; | |||
| t1 = tab + 8; | |||
| do { | |||
| int x1, x2, x3, x4; | |||
| x3 = MUL(t[16], FIX(SQRT2*0.5)); | |||
| x4 = t[0] - x3; | |||
| x3 = t[0] + x3; | |||
| x2 = MUL(-(t[24] + t[8]), FIX(SQRT2*0.5)); | |||
| x1 = MUL((t[8] - x2), xp[0]); | |||
| x2 = MUL((t[8] + x2), xp[1]); | |||
| t[ 0] = x3 + x1; | |||
| t[ 8] = x4 - x2; | |||
| t[16] = x4 + x2; | |||
| t[24] = x3 - x1; | |||
| t++; | |||
| } while (t != t1); | |||
| xp += 2; | |||
| t = tab; | |||
| t1 = tab + 4; | |||
| do { | |||
| xr = MUL(t[28],xp[0]); | |||
| t[28] = (t[0] - xr); | |||
| t[0] = (t[0] + xr); | |||
| xr = MUL(t[4],xp[1]); | |||
| t[ 4] = (t[24] - xr); | |||
| t[24] = (t[24] + xr); | |||
| xr = MUL(t[20],xp[2]); | |||
| t[20] = (t[8] - xr); | |||
| t[ 8] = (t[8] + xr); | |||
| xr = MUL(t[12],xp[3]); | |||
| t[12] = (t[16] - xr); | |||
| t[16] = (t[16] + xr); | |||
| t++; | |||
| } while (t != t1); | |||
| xp += 4; | |||
| for (i = 0; i < 4; i++) { | |||
| xr = MUL(tab[30-i*4],xp[0]); | |||
| tab[30-i*4] = (tab[i*4] - xr); | |||
| tab[ i*4] = (tab[i*4] + xr); | |||
| xr = MUL(tab[ 2+i*4],xp[1]); | |||
| tab[ 2+i*4] = (tab[28-i*4] - xr); | |||
| tab[28-i*4] = (tab[28-i*4] + xr); | |||
| xr = MUL(tab[31-i*4],xp[0]); | |||
| tab[31-i*4] = (tab[1+i*4] - xr); | |||
| tab[ 1+i*4] = (tab[1+i*4] + xr); | |||
| xr = MUL(tab[ 3+i*4],xp[1]); | |||
| tab[ 3+i*4] = (tab[29-i*4] - xr); | |||
| tab[29-i*4] = (tab[29-i*4] + xr); | |||
| xp += 2; | |||
| } | |||
| t = tab + 30; | |||
| t1 = tab + 1; | |||
| do { | |||
| xr = MUL(t1[0], *xp); | |||
| t1[0] = (t[0] - xr); | |||
| t[0] = (t[0] + xr); | |||
| t -= 2; | |||
| t1 += 2; | |||
| xp++; | |||
| } while (t >= tab); | |||
| for(i=0;i<32;i++) { | |||
| out[i] = tab[bitinv32[i]]; | |||
| } | |||
| } | |||
| #define WSHIFT (WFRAC_BITS + 15 - FRAC_BITS) | |||
| static void filter(MpegAudioContext *s, int ch, short *samples, int incr) | |||
| { | |||
| short *p, *q; | |||
| int sum, offset, i, j; | |||
| int tmp[64]; | |||
| int tmp1[32]; | |||
| int *out; | |||
| // print_pow1(samples, 1152); | |||
| offset = s->samples_offset[ch]; | |||
| out = &s->sb_samples[ch][0][0][0]; | |||
| for(j=0;j<36;j++) { | |||
| /* 32 samples at once */ | |||
| for(i=0;i<32;i++) { | |||
| s->samples_buf[ch][offset + (31 - i)] = samples[0]; | |||
| samples += incr; | |||
| } | |||
| /* filter */ | |||
| p = s->samples_buf[ch] + offset; | |||
| q = filter_bank; | |||
| /* maxsum = 23169 */ | |||
| for(i=0;i<64;i++) { | |||
| sum = p[0*64] * q[0*64]; | |||
| sum += p[1*64] * q[1*64]; | |||
| sum += p[2*64] * q[2*64]; | |||
| sum += p[3*64] * q[3*64]; | |||
| sum += p[4*64] * q[4*64]; | |||
| sum += p[5*64] * q[5*64]; | |||
| sum += p[6*64] * q[6*64]; | |||
| sum += p[7*64] * q[7*64]; | |||
| tmp[i] = sum; | |||
| p++; | |||
| q++; | |||
| } | |||
| tmp1[0] = tmp[16] >> WSHIFT; | |||
| for( i=1; i<=16; i++ ) tmp1[i] = (tmp[i+16]+tmp[16-i]) >> WSHIFT; | |||
| for( i=17; i<=31; i++ ) tmp1[i] = (tmp[i+16]-tmp[80-i]) >> WSHIFT; | |||
| idct32(out, tmp1); | |||
| /* advance of 32 samples */ | |||
| offset -= 32; | |||
| out += 32; | |||
| /* handle the wrap around */ | |||
| if (offset < 0) { | |||
| memmove(s->samples_buf[ch] + SAMPLES_BUF_SIZE - (512 - 32), | |||
| s->samples_buf[ch], (512 - 32) * 2); | |||
| offset = SAMPLES_BUF_SIZE - 512; | |||
| } | |||
| } | |||
| s->samples_offset[ch] = offset; | |||
| // print_pow(s->sb_samples, 1152); | |||
| } | |||
| static void compute_scale_factors(unsigned char scale_code[SBLIMIT], | |||
| unsigned char scale_factors[SBLIMIT][3], | |||
| int sb_samples[3][12][SBLIMIT], | |||
| int sblimit) | |||
| { | |||
| int *p, vmax, v, n, i, j, k, code; | |||
| int index, d1, d2; | |||
| unsigned char *sf = &scale_factors[0][0]; | |||
| for(j=0;j<sblimit;j++) { | |||
| for(i=0;i<3;i++) { | |||
| /* find the max absolute value */ | |||
| p = &sb_samples[i][0][j]; | |||
| vmax = abs(*p); | |||
| for(k=1;k<12;k++) { | |||
| p += SBLIMIT; | |||
| v = abs(*p); | |||
| if (v > vmax) | |||
| vmax = v; | |||
| } | |||
| /* compute the scale factor index using log 2 computations */ | |||
| if (vmax > 0) { | |||
| n = av_log2(vmax); | |||
| /* n is the position of the MSB of vmax. now | |||
| use at most 2 compares to find the index */ | |||
| index = (21 - n) * 3 - 3; | |||
| if (index >= 0) { | |||
| while (vmax <= scale_factor_table[index+1]) | |||
| index++; | |||
| } else { | |||
| index = 0; /* very unlikely case of overflow */ | |||
| } | |||
| } else { | |||
| index = 62; /* value 63 is not allowed */ | |||
| } | |||
| #if 0 | |||
| printf("%2d:%d in=%x %x %d\n", | |||
| j, i, vmax, scale_factor_table[index], index); | |||
| #endif | |||
| /* store the scale factor */ | |||
| assert(index >=0 && index <= 63); | |||
| sf[i] = index; | |||
| } | |||
| /* compute the transmission factor : look if the scale factors | |||
| are close enough to each other */ | |||
| d1 = scale_diff_table[sf[0] - sf[1] + 64]; | |||
| d2 = scale_diff_table[sf[1] - sf[2] + 64]; | |||
| /* handle the 25 cases */ | |||
| switch(d1 * 5 + d2) { | |||
| case 0*5+0: | |||
| case 0*5+4: | |||
| case 3*5+4: | |||
| case 4*5+0: | |||
| case 4*5+4: | |||
| code = 0; | |||
| break; | |||
| case 0*5+1: | |||
| case 0*5+2: | |||
| case 4*5+1: | |||
| case 4*5+2: | |||
| code = 3; | |||
| sf[2] = sf[1]; | |||
| break; | |||
| case 0*5+3: | |||
| case 4*5+3: | |||
| code = 3; | |||
| sf[1] = sf[2]; | |||
| break; | |||
| case 1*5+0: | |||
| case 1*5+4: | |||
| case 2*5+4: | |||
| code = 1; | |||
| sf[1] = sf[0]; | |||
| break; | |||
| case 1*5+1: | |||
| case 1*5+2: | |||
| case 2*5+0: | |||
| case 2*5+1: | |||
| case 2*5+2: | |||
| code = 2; | |||
| sf[1] = sf[2] = sf[0]; | |||
| break; | |||
| case 2*5+3: | |||
| case 3*5+3: | |||
| code = 2; | |||
| sf[0] = sf[1] = sf[2]; | |||
| break; | |||
| case 3*5+0: | |||
| case 3*5+1: | |||
| case 3*5+2: | |||
| code = 2; | |||
| sf[0] = sf[2] = sf[1]; | |||
| break; | |||
| case 1*5+3: | |||
| code = 2; | |||
| if (sf[0] > sf[2]) | |||
| sf[0] = sf[2]; | |||
| sf[1] = sf[2] = sf[0]; | |||
| break; | |||
| default: | |||
| assert(0); //cant happen | |||
| code = 0; /* kill warning */ | |||
| } | |||
| #if 0 | |||
| printf("%d: %2d %2d %2d %d %d -> %d\n", j, | |||
| sf[0], sf[1], sf[2], d1, d2, code); | |||
| #endif | |||
| scale_code[j] = code; | |||
| sf += 3; | |||
| } | |||
| } | |||
| /* The most important function : psycho acoustic module. In this | |||
| encoder there is basically none, so this is the worst you can do, | |||
| but also this is the simpler. */ | |||
| static void psycho_acoustic_model(MpegAudioContext *s, short smr[SBLIMIT]) | |||
| { | |||
| int i; | |||
| for(i=0;i<s->sblimit;i++) { | |||
| smr[i] = (int)(fixed_smr[i] * 10); | |||
| } | |||
| } | |||
| #define SB_NOTALLOCATED 0 | |||
| #define SB_ALLOCATED 1 | |||
| #define SB_NOMORE 2 | |||
| /* Try to maximize the smr while using a number of bits inferior to | |||
| the frame size. I tried to make the code simpler, faster and | |||
| smaller than other encoders :-) */ | |||
| static void compute_bit_allocation(MpegAudioContext *s, | |||
| short smr1[MPA_MAX_CHANNELS][SBLIMIT], | |||
| unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT], | |||
| int *padding) | |||
| { | |||
| int i, ch, b, max_smr, max_ch, max_sb, current_frame_size, max_frame_size; | |||
| int incr; | |||
| short smr[MPA_MAX_CHANNELS][SBLIMIT]; | |||
| unsigned char subband_status[MPA_MAX_CHANNELS][SBLIMIT]; | |||
| const unsigned char *alloc; | |||
| memcpy(smr, smr1, s->nb_channels * sizeof(short) * SBLIMIT); | |||
| memset(subband_status, SB_NOTALLOCATED, s->nb_channels * SBLIMIT); | |||
| memset(bit_alloc, 0, s->nb_channels * SBLIMIT); | |||
| /* compute frame size and padding */ | |||
| max_frame_size = s->frame_size; | |||
| s->frame_frac += s->frame_frac_incr; | |||
| if (s->frame_frac >= 65536) { | |||
| s->frame_frac -= 65536; | |||
| s->do_padding = 1; | |||
| max_frame_size += 8; | |||
| table = 3; | |||
| } else { | |||
| s->do_padding = 0; | |||
| } | |||
| /* compute the header + bit alloc size */ | |||
| current_frame_size = 32; | |||
| alloc = s->alloc_table; | |||
| for(i=0;i<s->sblimit;i++) { | |||
| incr = alloc[0]; | |||
| current_frame_size += incr * s->nb_channels; | |||
| alloc += 1 << incr; | |||
| } | |||
| for(;;) { | |||
| /* look for the subband with the largest signal to mask ratio */ | |||
| max_sb = -1; | |||
| max_ch = -1; | |||
| max_smr = 0x80000000; | |||
| for(ch=0;ch<s->nb_channels;ch++) { | |||
| for(i=0;i<s->sblimit;i++) { | |||
| if (smr[ch][i] > max_smr && subband_status[ch][i] != SB_NOMORE) { | |||
| max_smr = smr[ch][i]; | |||
| max_sb = i; | |||
| max_ch = ch; | |||
| } | |||
| } | |||
| } | |||
| #if 0 | |||
| printf("current=%d max=%d max_sb=%d alloc=%d\n", | |||
| current_frame_size, max_frame_size, max_sb, | |||
| bit_alloc[max_sb]); | |||
| #endif | |||
| if (max_sb < 0) | |||
| break; | |||
| /* find alloc table entry (XXX: not optimal, should use | |||
| pointer table) */ | |||
| alloc = s->alloc_table; | |||
| for(i=0;i<max_sb;i++) { | |||
| alloc += 1 << alloc[0]; | |||
| } | |||
| if (subband_status[max_ch][max_sb] == SB_NOTALLOCATED) { | |||
| /* nothing was coded for this band: add the necessary bits */ | |||
| incr = 2 + nb_scale_factors[s->scale_code[max_ch][max_sb]] * 6; | |||
| incr += total_quant_bits[alloc[1]]; | |||
| } else { | |||
| /* increments bit allocation */ | |||
| b = bit_alloc[max_ch][max_sb]; | |||
| incr = total_quant_bits[alloc[b + 1]] - | |||
| total_quant_bits[alloc[b]]; | |||
| } | |||
| if (current_frame_size + incr <= max_frame_size) { | |||
| /* can increase size */ | |||
| b = ++bit_alloc[max_ch][max_sb]; | |||
| current_frame_size += incr; | |||
| /* decrease smr by the resolution we added */ | |||
| smr[max_ch][max_sb] = smr1[max_ch][max_sb] - quant_snr[alloc[b]]; | |||
| /* max allocation size reached ? */ | |||
| if (b == ((1 << alloc[0]) - 1)) | |||
| subband_status[max_ch][max_sb] = SB_NOMORE; | |||
| else | |||
| subband_status[max_ch][max_sb] = SB_ALLOCATED; | |||
| } else { | |||
| /* cannot increase the size of this subband */ | |||
| subband_status[max_ch][max_sb] = SB_NOMORE; | |||
| } | |||
| } | |||
| *padding = max_frame_size - current_frame_size; | |||
| assert(*padding >= 0); | |||
| #if 0 | |||
| for(i=0;i<s->sblimit;i++) { | |||
| printf("%d ", bit_alloc[i]); | |||
| } | |||
| printf("\n"); | |||
| #endif | |||
| } | |||
| /* | |||
| * Output the mpeg audio layer 2 frame. Note how the code is small | |||
| * compared to other encoders :-) | |||
| */ | |||
| static void encode_frame(MpegAudioContext *s, | |||
| unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT], | |||
| int padding) | |||
| { | |||
| int i, j, k, l, bit_alloc_bits, b, ch; | |||
| unsigned char *sf; | |||
| int q[3]; | |||
| PutBitContext *p = &s->pb; | |||
| /* header */ | |||
| put_bits(p, 12, 0xfff); | |||
| put_bits(p, 1, 1 - s->lsf); /* 1 = mpeg1 ID, 0 = mpeg2 lsf ID */ | |||
| put_bits(p, 2, 4-2); /* layer 2 */ | |||
| put_bits(p, 1, 1); /* no error protection */ | |||
| put_bits(p, 4, s->bitrate_index); | |||
| put_bits(p, 2, s->freq_index); | |||
| put_bits(p, 1, s->do_padding); /* use padding */ | |||
| put_bits(p, 1, 0); /* private_bit */ | |||
| put_bits(p, 2, s->nb_channels == 2 ? MPA_STEREO : MPA_MONO); | |||
| put_bits(p, 2, 0); /* mode_ext */ | |||
| put_bits(p, 1, 0); /* no copyright */ | |||
| put_bits(p, 1, 1); /* original */ | |||
| put_bits(p, 2, 0); /* no emphasis */ | |||
| /* bit allocation */ | |||
| j = 0; | |||
| for(i=0;i<s->sblimit;i++) { | |||
| bit_alloc_bits = s->alloc_table[j]; | |||
| for(ch=0;ch<s->nb_channels;ch++) { | |||
| put_bits(p, bit_alloc_bits, bit_alloc[ch][i]); | |||
| } | |||
| j += 1 << bit_alloc_bits; | |||
| } | |||
| /* scale codes */ | |||
| for(i=0;i<s->sblimit;i++) { | |||
| for(ch=0;ch<s->nb_channels;ch++) { | |||
| if (bit_alloc[ch][i]) | |||
| put_bits(p, 2, s->scale_code[ch][i]); | |||
| } | |||
| } | |||
| /* scale factors */ | |||
| for(i=0;i<s->sblimit;i++) { | |||
| for(ch=0;ch<s->nb_channels;ch++) { | |||
| if (bit_alloc[ch][i]) { | |||
| sf = &s->scale_factors[ch][i][0]; | |||
| switch(s->scale_code[ch][i]) { | |||
| case 0: | |||
| put_bits(p, 6, sf[0]); | |||
| put_bits(p, 6, sf[1]); | |||
| put_bits(p, 6, sf[2]); | |||
| break; | |||
| case 3: | |||
| case 1: | |||
| put_bits(p, 6, sf[0]); | |||
| put_bits(p, 6, sf[2]); | |||
| break; | |||
| case 2: | |||
| put_bits(p, 6, sf[0]); | |||
| break; | |||
| } | |||
| } | |||
| } | |||
| } | |||
| /* quantization & write sub band samples */ | |||
| for(k=0;k<3;k++) { | |||
| for(l=0;l<12;l+=3) { | |||
| j = 0; | |||
| for(i=0;i<s->sblimit;i++) { | |||
| bit_alloc_bits = s->alloc_table[j]; | |||
| for(ch=0;ch<s->nb_channels;ch++) { | |||
| b = bit_alloc[ch][i]; | |||
| if (b) { | |||
| int qindex, steps, m, sample, bits; | |||
| /* we encode 3 sub band samples of the same sub band at a time */ | |||
| qindex = s->alloc_table[j+b]; | |||
| steps = ff_mpa_quant_steps[qindex]; | |||
| for(m=0;m<3;m++) { | |||
| sample = s->sb_samples[ch][k][l + m][i]; | |||
| /* divide by scale factor */ | |||
| #ifdef USE_FLOATS | |||
| { | |||
| float a; | |||
| a = (float)sample * scale_factor_inv_table[s->scale_factors[ch][i][k]]; | |||
| q[m] = (int)((a + 1.0) * steps * 0.5); | |||
| } | |||
| #else | |||
| { | |||
| int q1, e, shift, mult; | |||
| e = s->scale_factors[ch][i][k]; | |||
| shift = scale_factor_shift[e]; | |||
| mult = scale_factor_mult[e]; | |||
| /* normalize to P bits */ | |||
| if (shift < 0) | |||
| q1 = sample << (-shift); | |||
| else | |||
| q1 = sample >> shift; | |||
| q1 = (q1 * mult) >> P; | |||
| q[m] = ((q1 + (1 << P)) * steps) >> (P + 1); | |||
| } | |||
| #endif | |||
| if (q[m] >= steps) | |||
| q[m] = steps - 1; | |||
| assert(q[m] >= 0 && q[m] < steps); | |||
| } | |||
| bits = ff_mpa_quant_bits[qindex]; | |||
| if (bits < 0) { | |||
| /* group the 3 values to save bits */ | |||
| put_bits(p, -bits, | |||
| q[0] + steps * (q[1] + steps * q[2])); | |||
| #if 0 | |||
| printf("%d: gr1 %d\n", | |||
| i, q[0] + steps * (q[1] + steps * q[2])); | |||
| #endif | |||
| } else { | |||
| #if 0 | |||
| printf("%d: gr3 %d %d %d\n", | |||
| i, q[0], q[1], q[2]); | |||
| #endif | |||
| put_bits(p, bits, q[0]); | |||
| put_bits(p, bits, q[1]); | |||
| put_bits(p, bits, q[2]); | |||
| } | |||
| } | |||
| } | |||
| /* next subband in alloc table */ | |||
| j += 1 << bit_alloc_bits; | |||
| } | |||
| } | |||
| } | |||
| /* padding */ | |||
| for(i=0;i<padding;i++) | |||
| put_bits(p, 1, 0); | |||
| /* flush */ | |||
| flush_put_bits(p); | |||
| } | |||
| static int MPA_encode_frame(AVCodecContext *avctx, | |||
| unsigned char *frame, int buf_size, void *data) | |||
| { | |||
| MpegAudioContext *s = avctx->priv_data; | |||
| short *samples = data; | |||
| short smr[MPA_MAX_CHANNELS][SBLIMIT]; | |||
| unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT]; | |||
| int padding, i; | |||
| for(i=0;i<s->nb_channels;i++) { | |||
| filter(s, i, samples + i, s->nb_channels); | |||
| } | |||
| for(i=0;i<s->nb_channels;i++) { | |||
| compute_scale_factors(s->scale_code[i], s->scale_factors[i], | |||
| s->sb_samples[i], s->sblimit); | |||
| } | |||
| for(i=0;i<s->nb_channels;i++) { | |||
| psycho_acoustic_model(s, smr[i]); | |||
| table = 4; | |||
| } | |||
| compute_bit_allocation(s, smr, bit_alloc, &padding); | |||
| init_put_bits(&s->pb, frame, MPA_MAX_CODED_FRAME_SIZE); | |||
| encode_frame(s, bit_alloc, padding); | |||
| s->nb_samples += MPA_FRAME_SIZE; | |||
| return pbBufPtr(&s->pb) - s->pb.buf; | |||
| } | |||
| static int MPA_encode_close(AVCodecContext *avctx) | |||
| { | |||
| av_freep(&avctx->coded_frame); | |||
| return 0; | |||
| return table; | |||
| } | |||
| AVCodec mp2_encoder = { | |||
| "mp2", | |||
| CODEC_TYPE_AUDIO, | |||
| CODEC_ID_MP2, | |||
| sizeof(MpegAudioContext), | |||
| MPA_encode_init, | |||
| MPA_encode_frame, | |||
| MPA_encode_close, | |||
| NULL, | |||
| }; | |||
| #undef FIX | |||
| @@ -26,6 +26,7 @@ | |||
| #ifndef MPEGAUDIO_H | |||
| #define MPEGAUDIO_H | |||
| #include "avcodec.h" | |||
| #include "bitstream.h" | |||
| #include "dsputil.h" | |||
| @@ -115,7 +116,7 @@ typedef struct MPADecodeContext { | |||
| AVCodecContext* avctx; | |||
| } MPADecodeContext; | |||
| int l2_select_table(int bitrate, int nb_channels, int freq, int lsf); | |||
| int ff_mpa_l2_select_table(int bitrate, int nb_channels, int freq, int lsf); | |||
| int ff_mpa_decode_header(AVCodecContext *avctx, uint32_t head, int *sample_rate); | |||
| void ff_mpa_synth_init(MPA_INT *window); | |||
| void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset, | |||
| @@ -1140,28 +1140,6 @@ static int mp_decode_layer1(MPADecodeContext *s) | |||
| return 12; | |||
| } | |||
| /* bitrate is in kb/s */ | |||
| int l2_select_table(int bitrate, int nb_channels, int freq, int lsf) | |||
| { | |||
| int ch_bitrate, table; | |||
| ch_bitrate = bitrate / nb_channels; | |||
| if (!lsf) { | |||
| if ((freq == 48000 && ch_bitrate >= 56) || | |||
| (ch_bitrate >= 56 && ch_bitrate <= 80)) | |||
| table = 0; | |||
| else if (freq != 48000 && ch_bitrate >= 96) | |||
| table = 1; | |||
| else if (freq != 32000 && ch_bitrate <= 48) | |||
| table = 2; | |||
| else | |||
| table = 3; | |||
| } else { | |||
| table = 4; | |||
| } | |||
| return table; | |||
| } | |||
| static int mp_decode_layer2(MPADecodeContext *s) | |||
| { | |||
| int sblimit; /* number of used subbands */ | |||
| @@ -1173,7 +1151,7 @@ static int mp_decode_layer2(MPADecodeContext *s) | |||
| int scale, qindex, bits, steps, k, l, m, b; | |||
| /* select decoding table */ | |||
| table = l2_select_table(s->bit_rate / 1000, s->nb_channels, | |||
| table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels, | |||
| s->sample_rate, s->lsf); | |||
| sblimit = ff_mpa_sblimit_table[table]; | |||
| alloc_table = ff_mpa_alloc_tables[table]; | |||
| @@ -0,0 +1,802 @@ | |||
| /* | |||
| * The simplest mpeg audio layer 2 encoder | |||
| * Copyright (c) 2000, 2001 Fabrice Bellard. | |||
| * | |||
| * This file is part of FFmpeg. | |||
| * | |||
| * FFmpeg is free software; you can redistribute it and/or | |||
| * modify it under the terms of the GNU Lesser General Public | |||
| * License as published by the Free Software Foundation; either | |||
| * version 2.1 of the License, or (at your option) any later version. | |||
| * | |||
| * FFmpeg is distributed in the hope that it will be useful, | |||
| * but WITHOUT ANY WARRANTY; without even the implied warranty of | |||
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |||
| * Lesser General Public License for more details. | |||
| * | |||
| * You should have received a copy of the GNU Lesser General Public | |||
| * License along with FFmpeg; if not, write to the Free Software | |||
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |||
| */ | |||
| /** | |||
| * @file mpegaudio.c | |||
| * The simplest mpeg audio layer 2 encoder. | |||
| */ | |||
| #include "avcodec.h" | |||
| #include "bitstream.h" | |||
| #include "mpegaudio.h" | |||
| /* currently, cannot change these constants (need to modify | |||
| quantization stage) */ | |||
| #define MUL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS) | |||
| #define FIX(a) ((int)((a) * (1 << FRAC_BITS))) | |||
| #define SAMPLES_BUF_SIZE 4096 | |||
| typedef struct MpegAudioContext { | |||
| PutBitContext pb; | |||
| int nb_channels; | |||
| int freq, bit_rate; | |||
| int lsf; /* 1 if mpeg2 low bitrate selected */ | |||
| int bitrate_index; /* bit rate */ | |||
| int freq_index; | |||
| int frame_size; /* frame size, in bits, without padding */ | |||
| int64_t nb_samples; /* total number of samples encoded */ | |||
| /* padding computation */ | |||
| int frame_frac, frame_frac_incr, do_padding; | |||
| short samples_buf[MPA_MAX_CHANNELS][SAMPLES_BUF_SIZE]; /* buffer for filter */ | |||
| int samples_offset[MPA_MAX_CHANNELS]; /* offset in samples_buf */ | |||
| int sb_samples[MPA_MAX_CHANNELS][3][12][SBLIMIT]; | |||
| unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3]; /* scale factors */ | |||
| /* code to group 3 scale factors */ | |||
| unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT]; | |||
| int sblimit; /* number of used subbands */ | |||
| const unsigned char *alloc_table; | |||
| } MpegAudioContext; | |||
| /* define it to use floats in quantization (I don't like floats !) */ | |||
| //#define USE_FLOATS | |||
| #include "mpegaudiodata.h" | |||
| #include "mpegaudiotab.h" | |||
| static int MPA_encode_init(AVCodecContext *avctx) | |||
| { | |||
| MpegAudioContext *s = avctx->priv_data; | |||
| int freq = avctx->sample_rate; | |||
| int bitrate = avctx->bit_rate; | |||
| int channels = avctx->channels; | |||
| int i, v, table; | |||
| float a; | |||
| if (channels <= 0 || channels > 2){ | |||
| av_log(avctx, AV_LOG_ERROR, "encoding %d channel(s) is not allowed in mp2\n", channels); | |||
| return -1; | |||
| } | |||
| bitrate = bitrate / 1000; | |||
| s->nb_channels = channels; | |||
| s->freq = freq; | |||
| s->bit_rate = bitrate * 1000; | |||
| avctx->frame_size = MPA_FRAME_SIZE; | |||
| /* encoding freq */ | |||
| s->lsf = 0; | |||
| for(i=0;i<3;i++) { | |||
| if (ff_mpa_freq_tab[i] == freq) | |||
| break; | |||
| if ((ff_mpa_freq_tab[i] / 2) == freq) { | |||
| s->lsf = 1; | |||
| break; | |||
| } | |||
| } | |||
| if (i == 3){ | |||
| av_log(avctx, AV_LOG_ERROR, "Sampling rate %d is not allowed in mp2\n", freq); | |||
| return -1; | |||
| } | |||
| s->freq_index = i; | |||
| /* encoding bitrate & frequency */ | |||
| for(i=0;i<15;i++) { | |||
| if (ff_mpa_bitrate_tab[s->lsf][1][i] == bitrate) | |||
| break; | |||
| } | |||
| if (i == 15){ | |||
| av_log(avctx, AV_LOG_ERROR, "bitrate %d is not allowed in mp2\n", bitrate); | |||
| return -1; | |||
| } | |||
| s->bitrate_index = i; | |||
| /* compute total header size & pad bit */ | |||
| a = (float)(bitrate * 1000 * MPA_FRAME_SIZE) / (freq * 8.0); | |||
| s->frame_size = ((int)a) * 8; | |||
| /* frame fractional size to compute padding */ | |||
| s->frame_frac = 0; | |||
| s->frame_frac_incr = (int)((a - floor(a)) * 65536.0); | |||
| /* select the right allocation table */ | |||
| table = ff_mpa_l2_select_table(bitrate, s->nb_channels, freq, s->lsf); | |||
| /* number of used subbands */ | |||
| s->sblimit = ff_mpa_sblimit_table[table]; | |||
| s->alloc_table = ff_mpa_alloc_tables[table]; | |||
| #ifdef DEBUG | |||
| av_log(avctx, AV_LOG_DEBUG, "%d kb/s, %d Hz, frame_size=%d bits, table=%d, padincr=%x\n", | |||
| bitrate, freq, s->frame_size, table, s->frame_frac_incr); | |||
| #endif | |||
| for(i=0;i<s->nb_channels;i++) | |||
| s->samples_offset[i] = 0; | |||
| for(i=0;i<257;i++) { | |||
| int v; | |||
| v = ff_mpa_enwindow[i]; | |||
| #if WFRAC_BITS != 16 | |||
| v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS); | |||
| #endif | |||
| filter_bank[i] = v; | |||
| if ((i & 63) != 0) | |||
| v = -v; | |||
| if (i != 0) | |||
| filter_bank[512 - i] = v; | |||
| } | |||
| for(i=0;i<64;i++) { | |||
| v = (int)(pow(2.0, (3 - i) / 3.0) * (1 << 20)); | |||
| if (v <= 0) | |||
| v = 1; | |||
| scale_factor_table[i] = v; | |||
| #ifdef USE_FLOATS | |||
| scale_factor_inv_table[i] = pow(2.0, -(3 - i) / 3.0) / (float)(1 << 20); | |||
| #else | |||
| #define P 15 | |||
| scale_factor_shift[i] = 21 - P - (i / 3); | |||
| scale_factor_mult[i] = (1 << P) * pow(2.0, (i % 3) / 3.0); | |||
| #endif | |||
| } | |||
| for(i=0;i<128;i++) { | |||
| v = i - 64; | |||
| if (v <= -3) | |||
| v = 0; | |||
| else if (v < 0) | |||
| v = 1; | |||
| else if (v == 0) | |||
| v = 2; | |||
| else if (v < 3) | |||
| v = 3; | |||
| else | |||
| v = 4; | |||
| scale_diff_table[i] = v; | |||
| } | |||
| for(i=0;i<17;i++) { | |||
| v = ff_mpa_quant_bits[i]; | |||
| if (v < 0) | |||
| v = -v; | |||
| else | |||
| v = v * 3; | |||
| total_quant_bits[i] = 12 * v; | |||
| } | |||
| avctx->coded_frame= avcodec_alloc_frame(); | |||
| avctx->coded_frame->key_frame= 1; | |||
| return 0; | |||
| } | |||
| /* 32 point floating point IDCT without 1/sqrt(2) coef zero scaling */ | |||
| static void idct32(int *out, int *tab) | |||
| { | |||
| int i, j; | |||
| int *t, *t1, xr; | |||
| const int *xp = costab32; | |||
| for(j=31;j>=3;j-=2) tab[j] += tab[j - 2]; | |||
| t = tab + 30; | |||
| t1 = tab + 2; | |||
| do { | |||
| t[0] += t[-4]; | |||
| t[1] += t[1 - 4]; | |||
| t -= 4; | |||
| } while (t != t1); | |||
| t = tab + 28; | |||
| t1 = tab + 4; | |||
| do { | |||
| t[0] += t[-8]; | |||
| t[1] += t[1-8]; | |||
| t[2] += t[2-8]; | |||
| t[3] += t[3-8]; | |||
| t -= 8; | |||
| } while (t != t1); | |||
| t = tab; | |||
| t1 = tab + 32; | |||
| do { | |||
| t[ 3] = -t[ 3]; | |||
| t[ 6] = -t[ 6]; | |||
| t[11] = -t[11]; | |||
| t[12] = -t[12]; | |||
| t[13] = -t[13]; | |||
| t[15] = -t[15]; | |||
| t += 16; | |||
| } while (t != t1); | |||
| t = tab; | |||
| t1 = tab + 8; | |||
| do { | |||
| int x1, x2, x3, x4; | |||
| x3 = MUL(t[16], FIX(SQRT2*0.5)); | |||
| x4 = t[0] - x3; | |||
| x3 = t[0] + x3; | |||
| x2 = MUL(-(t[24] + t[8]), FIX(SQRT2*0.5)); | |||
| x1 = MUL((t[8] - x2), xp[0]); | |||
| x2 = MUL((t[8] + x2), xp[1]); | |||
| t[ 0] = x3 + x1; | |||
| t[ 8] = x4 - x2; | |||
| t[16] = x4 + x2; | |||
| t[24] = x3 - x1; | |||
| t++; | |||
| } while (t != t1); | |||
| xp += 2; | |||
| t = tab; | |||
| t1 = tab + 4; | |||
| do { | |||
| xr = MUL(t[28],xp[0]); | |||
| t[28] = (t[0] - xr); | |||
| t[0] = (t[0] + xr); | |||
| xr = MUL(t[4],xp[1]); | |||
| t[ 4] = (t[24] - xr); | |||
| t[24] = (t[24] + xr); | |||
| xr = MUL(t[20],xp[2]); | |||
| t[20] = (t[8] - xr); | |||
| t[ 8] = (t[8] + xr); | |||
| xr = MUL(t[12],xp[3]); | |||
| t[12] = (t[16] - xr); | |||
| t[16] = (t[16] + xr); | |||
| t++; | |||
| } while (t != t1); | |||
| xp += 4; | |||
| for (i = 0; i < 4; i++) { | |||
| xr = MUL(tab[30-i*4],xp[0]); | |||
| tab[30-i*4] = (tab[i*4] - xr); | |||
| tab[ i*4] = (tab[i*4] + xr); | |||
| xr = MUL(tab[ 2+i*4],xp[1]); | |||
| tab[ 2+i*4] = (tab[28-i*4] - xr); | |||
| tab[28-i*4] = (tab[28-i*4] + xr); | |||
| xr = MUL(tab[31-i*4],xp[0]); | |||
| tab[31-i*4] = (tab[1+i*4] - xr); | |||
| tab[ 1+i*4] = (tab[1+i*4] + xr); | |||
| xr = MUL(tab[ 3+i*4],xp[1]); | |||
| tab[ 3+i*4] = (tab[29-i*4] - xr); | |||
| tab[29-i*4] = (tab[29-i*4] + xr); | |||
| xp += 2; | |||
| } | |||
| t = tab + 30; | |||
| t1 = tab + 1; | |||
| do { | |||
| xr = MUL(t1[0], *xp); | |||
| t1[0] = (t[0] - xr); | |||
| t[0] = (t[0] + xr); | |||
| t -= 2; | |||
| t1 += 2; | |||
| xp++; | |||
| } while (t >= tab); | |||
| for(i=0;i<32;i++) { | |||
| out[i] = tab[bitinv32[i]]; | |||
| } | |||
| } | |||
| #define WSHIFT (WFRAC_BITS + 15 - FRAC_BITS) | |||
| static void filter(MpegAudioContext *s, int ch, short *samples, int incr) | |||
| { | |||
| short *p, *q; | |||
| int sum, offset, i, j; | |||
| int tmp[64]; | |||
| int tmp1[32]; | |||
| int *out; | |||
| // print_pow1(samples, 1152); | |||
| offset = s->samples_offset[ch]; | |||
| out = &s->sb_samples[ch][0][0][0]; | |||
| for(j=0;j<36;j++) { | |||
| /* 32 samples at once */ | |||
| for(i=0;i<32;i++) { | |||
| s->samples_buf[ch][offset + (31 - i)] = samples[0]; | |||
| samples += incr; | |||
| } | |||
| /* filter */ | |||
| p = s->samples_buf[ch] + offset; | |||
| q = filter_bank; | |||
| /* maxsum = 23169 */ | |||
| for(i=0;i<64;i++) { | |||
| sum = p[0*64] * q[0*64]; | |||
| sum += p[1*64] * q[1*64]; | |||
| sum += p[2*64] * q[2*64]; | |||
| sum += p[3*64] * q[3*64]; | |||
| sum += p[4*64] * q[4*64]; | |||
| sum += p[5*64] * q[5*64]; | |||
| sum += p[6*64] * q[6*64]; | |||
| sum += p[7*64] * q[7*64]; | |||
| tmp[i] = sum; | |||
| p++; | |||
| q++; | |||
| } | |||
| tmp1[0] = tmp[16] >> WSHIFT; | |||
| for( i=1; i<=16; i++ ) tmp1[i] = (tmp[i+16]+tmp[16-i]) >> WSHIFT; | |||
| for( i=17; i<=31; i++ ) tmp1[i] = (tmp[i+16]-tmp[80-i]) >> WSHIFT; | |||
| idct32(out, tmp1); | |||
| /* advance of 32 samples */ | |||
| offset -= 32; | |||
| out += 32; | |||
| /* handle the wrap around */ | |||
| if (offset < 0) { | |||
| memmove(s->samples_buf[ch] + SAMPLES_BUF_SIZE - (512 - 32), | |||
| s->samples_buf[ch], (512 - 32) * 2); | |||
| offset = SAMPLES_BUF_SIZE - 512; | |||
| } | |||
| } | |||
| s->samples_offset[ch] = offset; | |||
| // print_pow(s->sb_samples, 1152); | |||
| } | |||
| static void compute_scale_factors(unsigned char scale_code[SBLIMIT], | |||
| unsigned char scale_factors[SBLIMIT][3], | |||
| int sb_samples[3][12][SBLIMIT], | |||
| int sblimit) | |||
| { | |||
| int *p, vmax, v, n, i, j, k, code; | |||
| int index, d1, d2; | |||
| unsigned char *sf = &scale_factors[0][0]; | |||
| for(j=0;j<sblimit;j++) { | |||
| for(i=0;i<3;i++) { | |||
| /* find the max absolute value */ | |||
| p = &sb_samples[i][0][j]; | |||
| vmax = abs(*p); | |||
| for(k=1;k<12;k++) { | |||
| p += SBLIMIT; | |||
| v = abs(*p); | |||
| if (v > vmax) | |||
| vmax = v; | |||
| } | |||
| /* compute the scale factor index using log 2 computations */ | |||
| if (vmax > 0) { | |||
| n = av_log2(vmax); | |||
| /* n is the position of the MSB of vmax. now | |||
| use at most 2 compares to find the index */ | |||
| index = (21 - n) * 3 - 3; | |||
| if (index >= 0) { | |||
| while (vmax <= scale_factor_table[index+1]) | |||
| index++; | |||
| } else { | |||
| index = 0; /* very unlikely case of overflow */ | |||
| } | |||
| } else { | |||
| index = 62; /* value 63 is not allowed */ | |||
| } | |||
| #if 0 | |||
| printf("%2d:%d in=%x %x %d\n", | |||
| j, i, vmax, scale_factor_table[index], index); | |||
| #endif | |||
| /* store the scale factor */ | |||
| assert(index >=0 && index <= 63); | |||
| sf[i] = index; | |||
| } | |||
| /* compute the transmission factor : look if the scale factors | |||
| are close enough to each other */ | |||
| d1 = scale_diff_table[sf[0] - sf[1] + 64]; | |||
| d2 = scale_diff_table[sf[1] - sf[2] + 64]; | |||
| /* handle the 25 cases */ | |||
| switch(d1 * 5 + d2) { | |||
| case 0*5+0: | |||
| case 0*5+4: | |||
| case 3*5+4: | |||
| case 4*5+0: | |||
| case 4*5+4: | |||
| code = 0; | |||
| break; | |||
| case 0*5+1: | |||
| case 0*5+2: | |||
| case 4*5+1: | |||
| case 4*5+2: | |||
| code = 3; | |||
| sf[2] = sf[1]; | |||
| break; | |||
| case 0*5+3: | |||
| case 4*5+3: | |||
| code = 3; | |||
| sf[1] = sf[2]; | |||
| break; | |||
| case 1*5+0: | |||
| case 1*5+4: | |||
| case 2*5+4: | |||
| code = 1; | |||
| sf[1] = sf[0]; | |||
| break; | |||
| case 1*5+1: | |||
| case 1*5+2: | |||
| case 2*5+0: | |||
| case 2*5+1: | |||
| case 2*5+2: | |||
| code = 2; | |||
| sf[1] = sf[2] = sf[0]; | |||
| break; | |||
| case 2*5+3: | |||
| case 3*5+3: | |||
| code = 2; | |||
| sf[0] = sf[1] = sf[2]; | |||
| break; | |||
| case 3*5+0: | |||
| case 3*5+1: | |||
| case 3*5+2: | |||
| code = 2; | |||
| sf[0] = sf[2] = sf[1]; | |||
| break; | |||
| case 1*5+3: | |||
| code = 2; | |||
| if (sf[0] > sf[2]) | |||
| sf[0] = sf[2]; | |||
| sf[1] = sf[2] = sf[0]; | |||
| break; | |||
| default: | |||
| assert(0); //cant happen | |||
| code = 0; /* kill warning */ | |||
| } | |||
| #if 0 | |||
| printf("%d: %2d %2d %2d %d %d -> %d\n", j, | |||
| sf[0], sf[1], sf[2], d1, d2, code); | |||
| #endif | |||
| scale_code[j] = code; | |||
| sf += 3; | |||
| } | |||
| } | |||
| /* The most important function : psycho acoustic module. In this | |||
| encoder there is basically none, so this is the worst you can do, | |||
| but also this is the simpler. */ | |||
| static void psycho_acoustic_model(MpegAudioContext *s, short smr[SBLIMIT]) | |||
| { | |||
| int i; | |||
| for(i=0;i<s->sblimit;i++) { | |||
| smr[i] = (int)(fixed_smr[i] * 10); | |||
| } | |||
| } | |||
| #define SB_NOTALLOCATED 0 | |||
| #define SB_ALLOCATED 1 | |||
| #define SB_NOMORE 2 | |||
| /* Try to maximize the smr while using a number of bits inferior to | |||
| the frame size. I tried to make the code simpler, faster and | |||
| smaller than other encoders :-) */ | |||
| static void compute_bit_allocation(MpegAudioContext *s, | |||
| short smr1[MPA_MAX_CHANNELS][SBLIMIT], | |||
| unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT], | |||
| int *padding) | |||
| { | |||
| int i, ch, b, max_smr, max_ch, max_sb, current_frame_size, max_frame_size; | |||
| int incr; | |||
| short smr[MPA_MAX_CHANNELS][SBLIMIT]; | |||
| unsigned char subband_status[MPA_MAX_CHANNELS][SBLIMIT]; | |||
| const unsigned char *alloc; | |||
| memcpy(smr, smr1, s->nb_channels * sizeof(short) * SBLIMIT); | |||
| memset(subband_status, SB_NOTALLOCATED, s->nb_channels * SBLIMIT); | |||
| memset(bit_alloc, 0, s->nb_channels * SBLIMIT); | |||
| /* compute frame size and padding */ | |||
| max_frame_size = s->frame_size; | |||
| s->frame_frac += s->frame_frac_incr; | |||
| if (s->frame_frac >= 65536) { | |||
| s->frame_frac -= 65536; | |||
| s->do_padding = 1; | |||
| max_frame_size += 8; | |||
| } else { | |||
| s->do_padding = 0; | |||
| } | |||
| /* compute the header + bit alloc size */ | |||
| current_frame_size = 32; | |||
| alloc = s->alloc_table; | |||
| for(i=0;i<s->sblimit;i++) { | |||
| incr = alloc[0]; | |||
| current_frame_size += incr * s->nb_channels; | |||
| alloc += 1 << incr; | |||
| } | |||
| for(;;) { | |||
| /* look for the subband with the largest signal to mask ratio */ | |||
| max_sb = -1; | |||
| max_ch = -1; | |||
| max_smr = 0x80000000; | |||
| for(ch=0;ch<s->nb_channels;ch++) { | |||
| for(i=0;i<s->sblimit;i++) { | |||
| if (smr[ch][i] > max_smr && subband_status[ch][i] != SB_NOMORE) { | |||
| max_smr = smr[ch][i]; | |||
| max_sb = i; | |||
| max_ch = ch; | |||
| } | |||
| } | |||
| } | |||
| #if 0 | |||
| printf("current=%d max=%d max_sb=%d alloc=%d\n", | |||
| current_frame_size, max_frame_size, max_sb, | |||
| bit_alloc[max_sb]); | |||
| #endif | |||
| if (max_sb < 0) | |||
| break; | |||
| /* find alloc table entry (XXX: not optimal, should use | |||
| pointer table) */ | |||
| alloc = s->alloc_table; | |||
| for(i=0;i<max_sb;i++) { | |||
| alloc += 1 << alloc[0]; | |||
| } | |||
| if (subband_status[max_ch][max_sb] == SB_NOTALLOCATED) { | |||
| /* nothing was coded for this band: add the necessary bits */ | |||
| incr = 2 + nb_scale_factors[s->scale_code[max_ch][max_sb]] * 6; | |||
| incr += total_quant_bits[alloc[1]]; | |||
| } else { | |||
| /* increments bit allocation */ | |||
| b = bit_alloc[max_ch][max_sb]; | |||
| incr = total_quant_bits[alloc[b + 1]] - | |||
| total_quant_bits[alloc[b]]; | |||
| } | |||
| if (current_frame_size + incr <= max_frame_size) { | |||
| /* can increase size */ | |||
| b = ++bit_alloc[max_ch][max_sb]; | |||
| current_frame_size += incr; | |||
| /* decrease smr by the resolution we added */ | |||
| smr[max_ch][max_sb] = smr1[max_ch][max_sb] - quant_snr[alloc[b]]; | |||
| /* max allocation size reached ? */ | |||
| if (b == ((1 << alloc[0]) - 1)) | |||
| subband_status[max_ch][max_sb] = SB_NOMORE; | |||
| else | |||
| subband_status[max_ch][max_sb] = SB_ALLOCATED; | |||
| } else { | |||
| /* cannot increase the size of this subband */ | |||
| subband_status[max_ch][max_sb] = SB_NOMORE; | |||
| } | |||
| } | |||
| *padding = max_frame_size - current_frame_size; | |||
| assert(*padding >= 0); | |||
| #if 0 | |||
| for(i=0;i<s->sblimit;i++) { | |||
| printf("%d ", bit_alloc[i]); | |||
| } | |||
| printf("\n"); | |||
| #endif | |||
| } | |||
| /* | |||
| * Output the mpeg audio layer 2 frame. Note how the code is small | |||
| * compared to other encoders :-) | |||
| */ | |||
| static void encode_frame(MpegAudioContext *s, | |||
| unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT], | |||
| int padding) | |||
| { | |||
| int i, j, k, l, bit_alloc_bits, b, ch; | |||
| unsigned char *sf; | |||
| int q[3]; | |||
| PutBitContext *p = &s->pb; | |||
| /* header */ | |||
| put_bits(p, 12, 0xfff); | |||
| put_bits(p, 1, 1 - s->lsf); /* 1 = mpeg1 ID, 0 = mpeg2 lsf ID */ | |||
| put_bits(p, 2, 4-2); /* layer 2 */ | |||
| put_bits(p, 1, 1); /* no error protection */ | |||
| put_bits(p, 4, s->bitrate_index); | |||
| put_bits(p, 2, s->freq_index); | |||
| put_bits(p, 1, s->do_padding); /* use padding */ | |||
| put_bits(p, 1, 0); /* private_bit */ | |||
| put_bits(p, 2, s->nb_channels == 2 ? MPA_STEREO : MPA_MONO); | |||
| put_bits(p, 2, 0); /* mode_ext */ | |||
| put_bits(p, 1, 0); /* no copyright */ | |||
| put_bits(p, 1, 1); /* original */ | |||
| put_bits(p, 2, 0); /* no emphasis */ | |||
| /* bit allocation */ | |||
| j = 0; | |||
| for(i=0;i<s->sblimit;i++) { | |||
| bit_alloc_bits = s->alloc_table[j]; | |||
| for(ch=0;ch<s->nb_channels;ch++) { | |||
| put_bits(p, bit_alloc_bits, bit_alloc[ch][i]); | |||
| } | |||
| j += 1 << bit_alloc_bits; | |||
| } | |||
| /* scale codes */ | |||
| for(i=0;i<s->sblimit;i++) { | |||
| for(ch=0;ch<s->nb_channels;ch++) { | |||
| if (bit_alloc[ch][i]) | |||
| put_bits(p, 2, s->scale_code[ch][i]); | |||
| } | |||
| } | |||
| /* scale factors */ | |||
| for(i=0;i<s->sblimit;i++) { | |||
| for(ch=0;ch<s->nb_channels;ch++) { | |||
| if (bit_alloc[ch][i]) { | |||
| sf = &s->scale_factors[ch][i][0]; | |||
| switch(s->scale_code[ch][i]) { | |||
| case 0: | |||
| put_bits(p, 6, sf[0]); | |||
| put_bits(p, 6, sf[1]); | |||
| put_bits(p, 6, sf[2]); | |||
| break; | |||
| case 3: | |||
| case 1: | |||
| put_bits(p, 6, sf[0]); | |||
| put_bits(p, 6, sf[2]); | |||
| break; | |||
| case 2: | |||
| put_bits(p, 6, sf[0]); | |||
| break; | |||
| } | |||
| } | |||
| } | |||
| } | |||
| /* quantization & write sub band samples */ | |||
| for(k=0;k<3;k++) { | |||
| for(l=0;l<12;l+=3) { | |||
| j = 0; | |||
| for(i=0;i<s->sblimit;i++) { | |||
| bit_alloc_bits = s->alloc_table[j]; | |||
| for(ch=0;ch<s->nb_channels;ch++) { | |||
| b = bit_alloc[ch][i]; | |||
| if (b) { | |||
| int qindex, steps, m, sample, bits; | |||
| /* we encode 3 sub band samples of the same sub band at a time */ | |||
| qindex = s->alloc_table[j+b]; | |||
| steps = ff_mpa_quant_steps[qindex]; | |||
| for(m=0;m<3;m++) { | |||
| sample = s->sb_samples[ch][k][l + m][i]; | |||
| /* divide by scale factor */ | |||
| #ifdef USE_FLOATS | |||
| { | |||
| float a; | |||
| a = (float)sample * scale_factor_inv_table[s->scale_factors[ch][i][k]]; | |||
| q[m] = (int)((a + 1.0) * steps * 0.5); | |||
| } | |||
| #else | |||
| { | |||
| int q1, e, shift, mult; | |||
| e = s->scale_factors[ch][i][k]; | |||
| shift = scale_factor_shift[e]; | |||
| mult = scale_factor_mult[e]; | |||
| /* normalize to P bits */ | |||
| if (shift < 0) | |||
| q1 = sample << (-shift); | |||
| else | |||
| q1 = sample >> shift; | |||
| q1 = (q1 * mult) >> P; | |||
| q[m] = ((q1 + (1 << P)) * steps) >> (P + 1); | |||
| } | |||
| #endif | |||
| if (q[m] >= steps) | |||
| q[m] = steps - 1; | |||
| assert(q[m] >= 0 && q[m] < steps); | |||
| } | |||
| bits = ff_mpa_quant_bits[qindex]; | |||
| if (bits < 0) { | |||
| /* group the 3 values to save bits */ | |||
| put_bits(p, -bits, | |||
| q[0] + steps * (q[1] + steps * q[2])); | |||
| #if 0 | |||
| printf("%d: gr1 %d\n", | |||
| i, q[0] + steps * (q[1] + steps * q[2])); | |||
| #endif | |||
| } else { | |||
| #if 0 | |||
| printf("%d: gr3 %d %d %d\n", | |||
| i, q[0], q[1], q[2]); | |||
| #endif | |||
| put_bits(p, bits, q[0]); | |||
| put_bits(p, bits, q[1]); | |||
| put_bits(p, bits, q[2]); | |||
| } | |||
| } | |||
| } | |||
| /* next subband in alloc table */ | |||
| j += 1 << bit_alloc_bits; | |||
| } | |||
| } | |||
| } | |||
| /* padding */ | |||
| for(i=0;i<padding;i++) | |||
| put_bits(p, 1, 0); | |||
| /* flush */ | |||
| flush_put_bits(p); | |||
| } | |||
| static int MPA_encode_frame(AVCodecContext *avctx, | |||
| unsigned char *frame, int buf_size, void *data) | |||
| { | |||
| MpegAudioContext *s = avctx->priv_data; | |||
| short *samples = data; | |||
| short smr[MPA_MAX_CHANNELS][SBLIMIT]; | |||
| unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT]; | |||
| int padding, i; | |||
| for(i=0;i<s->nb_channels;i++) { | |||
| filter(s, i, samples + i, s->nb_channels); | |||
| } | |||
| for(i=0;i<s->nb_channels;i++) { | |||
| compute_scale_factors(s->scale_code[i], s->scale_factors[i], | |||
| s->sb_samples[i], s->sblimit); | |||
| } | |||
| for(i=0;i<s->nb_channels;i++) { | |||
| psycho_acoustic_model(s, smr[i]); | |||
| } | |||
| compute_bit_allocation(s, smr, bit_alloc, &padding); | |||
| init_put_bits(&s->pb, frame, MPA_MAX_CODED_FRAME_SIZE); | |||
| encode_frame(s, bit_alloc, padding); | |||
| s->nb_samples += MPA_FRAME_SIZE; | |||
| return pbBufPtr(&s->pb) - s->pb.buf; | |||
| } | |||
| static int MPA_encode_close(AVCodecContext *avctx) | |||
| { | |||
| av_freep(&avctx->coded_frame); | |||
| return 0; | |||
| } | |||
| AVCodec mp2_encoder = { | |||
| "mp2", | |||
| CODEC_TYPE_AUDIO, | |||
| CODEC_ID_MP2, | |||
| sizeof(MpegAudioContext), | |||
| MPA_encode_init, | |||
| MPA_encode_frame, | |||
| MPA_encode_close, | |||
| NULL, | |||
| }; | |||
| #undef FIX | |||