| @@ -27,8 +27,6 @@ OBJS = allcodecs.o \ | |||
| options.o \ | |||
| parser.o \ | |||
| raw.o \ | |||
| resample.o \ | |||
| resample2.o \ | |||
| simple_idct.o \ | |||
| utils.o \ | |||
| @@ -3702,103 +3702,6 @@ int avcodec_encode_subtitle(AVCodecContext *avctx, uint8_t *buf, int buf_size, | |||
| * @} | |||
| */ | |||
| #if FF_API_AVCODEC_RESAMPLE | |||
| /** | |||
| * @defgroup lavc_resample Audio resampling | |||
| * @ingroup libavc | |||
| * @deprecated use libavresample instead | |||
| * | |||
| * @{ | |||
| */ | |||
| struct ReSampleContext; | |||
| struct AVResampleContext; | |||
| typedef struct ReSampleContext ReSampleContext; | |||
| /** | |||
| * Initialize audio resampling context. | |||
| * | |||
| * @param output_channels number of output channels | |||
| * @param input_channels number of input channels | |||
| * @param output_rate output sample rate | |||
| * @param input_rate input sample rate | |||
| * @param sample_fmt_out requested output sample format | |||
| * @param sample_fmt_in input sample format | |||
| * @param filter_length length of each FIR filter in the filterbank relative to the cutoff frequency | |||
| * @param log2_phase_count log2 of the number of entries in the polyphase filterbank | |||
| * @param linear if 1 then the used FIR filter will be linearly interpolated | |||
| between the 2 closest, if 0 the closest will be used | |||
| * @param cutoff cutoff frequency, 1.0 corresponds to half the output sampling rate | |||
| * @return allocated ReSampleContext, NULL if error occurred | |||
| */ | |||
| attribute_deprecated | |||
| ReSampleContext *av_audio_resample_init(int output_channels, int input_channels, | |||
| int output_rate, int input_rate, | |||
| enum AVSampleFormat sample_fmt_out, | |||
| enum AVSampleFormat sample_fmt_in, | |||
| int filter_length, int log2_phase_count, | |||
| int linear, double cutoff); | |||
| attribute_deprecated | |||
| int audio_resample(ReSampleContext *s, short *output, short *input, int nb_samples); | |||
| /** | |||
| * Free resample context. | |||
| * | |||
| * @param s a non-NULL pointer to a resample context previously | |||
| * created with av_audio_resample_init() | |||
| */ | |||
| attribute_deprecated | |||
| void audio_resample_close(ReSampleContext *s); | |||
| /** | |||
| * Initialize an audio resampler. | |||
| * Note, if either rate is not an integer then simply scale both rates up so they are. | |||
| * @param filter_length length of each FIR filter in the filterbank relative to the cutoff freq | |||
| * @param log2_phase_count log2 of the number of entries in the polyphase filterbank | |||
| * @param linear If 1 then the used FIR filter will be linearly interpolated | |||
| between the 2 closest, if 0 the closest will be used | |||
| * @param cutoff cutoff frequency, 1.0 corresponds to half the output sampling rate | |||
| */ | |||
| attribute_deprecated | |||
| struct AVResampleContext *av_resample_init(int out_rate, int in_rate, int filter_length, int log2_phase_count, int linear, double cutoff); | |||
| /** | |||
| * Resample an array of samples using a previously configured context. | |||
| * @param src an array of unconsumed samples | |||
| * @param consumed the number of samples of src which have been consumed are returned here | |||
| * @param src_size the number of unconsumed samples available | |||
| * @param dst_size the amount of space in samples available in dst | |||
| * @param update_ctx If this is 0 then the context will not be modified, that way several channels can be resampled with the same context. | |||
| * @return the number of samples written in dst or -1 if an error occurred | |||
| */ | |||
| attribute_deprecated | |||
| int av_resample(struct AVResampleContext *c, short *dst, short *src, int *consumed, int src_size, int dst_size, int update_ctx); | |||
| /** | |||
| * Compensate samplerate/timestamp drift. The compensation is done by changing | |||
| * the resampler parameters, so no audible clicks or similar distortions occur | |||
| * @param compensation_distance distance in output samples over which the compensation should be performed | |||
| * @param sample_delta number of output samples which should be output less | |||
| * | |||
| * example: av_resample_compensate(c, 10, 500) | |||
| * here instead of 510 samples only 500 samples would be output | |||
| * | |||
| * note, due to rounding the actual compensation might be slightly different, | |||
| * especially if the compensation_distance is large and the in_rate used during init is small | |||
| */ | |||
| attribute_deprecated | |||
| void av_resample_compensate(struct AVResampleContext *c, int sample_delta, int compensation_distance); | |||
| attribute_deprecated | |||
| void av_resample_close(struct AVResampleContext *c); | |||
| /** | |||
| * @} | |||
| */ | |||
| #endif | |||
| /** | |||
| * @addtogroup lavc_picture | |||
| * @{ | |||
| @@ -1,379 +0,0 @@ | |||
| /* | |||
| * samplerate conversion for both audio and video | |||
| * Copyright (c) 2000 Fabrice Bellard | |||
| * | |||
| * This file is part of Libav. | |||
| * | |||
| * Libav is free software; you can redistribute it and/or | |||
| * modify it under the terms of the GNU Lesser General Public | |||
| * License as published by the Free Software Foundation; either | |||
| * version 2.1 of the License, or (at your option) any later version. | |||
| * | |||
| * Libav is distributed in the hope that it will be useful, | |||
| * but WITHOUT ANY WARRANTY; without even the implied warranty of | |||
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |||
| * Lesser General Public License for more details. | |||
| * | |||
| * You should have received a copy of the GNU Lesser General Public | |||
| * License along with Libav; if not, write to the Free Software | |||
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |||
| */ | |||
| /** | |||
| * @file | |||
| * samplerate conversion for both audio and video | |||
| */ | |||
| #include <string.h> | |||
| #include "avcodec.h" | |||
| #include "audioconvert.h" | |||
| #include "libavutil/opt.h" | |||
| #include "libavutil/mem.h" | |||
| #include "libavutil/samplefmt.h" | |||
| #if FF_API_AVCODEC_RESAMPLE | |||
| #define MAX_CHANNELS 8 | |||
| struct AVResampleContext; | |||
| static const char *context_to_name(void *ptr) | |||
| { | |||
| return "audioresample"; | |||
| } | |||
| static const AVOption options[] = {{NULL}}; | |||
| static const AVClass audioresample_context_class = { | |||
| "ReSampleContext", context_to_name, options, LIBAVUTIL_VERSION_INT | |||
| }; | |||
| struct ReSampleContext { | |||
| struct AVResampleContext *resample_context; | |||
| short *temp[MAX_CHANNELS]; | |||
| int temp_len; | |||
| float ratio; | |||
| /* channel convert */ | |||
| int input_channels, output_channels, filter_channels; | |||
| AVAudioConvert *convert_ctx[2]; | |||
| enum AVSampleFormat sample_fmt[2]; ///< input and output sample format | |||
| unsigned sample_size[2]; ///< size of one sample in sample_fmt | |||
| short *buffer[2]; ///< buffers used for conversion to S16 | |||
| unsigned buffer_size[2]; ///< sizes of allocated buffers | |||
| }; | |||
| /* n1: number of samples */ | |||
| static void stereo_to_mono(short *output, short *input, int n1) | |||
| { | |||
| short *p, *q; | |||
| int n = n1; | |||
| p = input; | |||
| q = output; | |||
| while (n >= 4) { | |||
| q[0] = (p[0] + p[1]) >> 1; | |||
| q[1] = (p[2] + p[3]) >> 1; | |||
| q[2] = (p[4] + p[5]) >> 1; | |||
| q[3] = (p[6] + p[7]) >> 1; | |||
| q += 4; | |||
| p += 8; | |||
| n -= 4; | |||
| } | |||
| while (n > 0) { | |||
| q[0] = (p[0] + p[1]) >> 1; | |||
| q++; | |||
| p += 2; | |||
| n--; | |||
| } | |||
| } | |||
| /* n1: number of samples */ | |||
| static void mono_to_stereo(short *output, short *input, int n1) | |||
| { | |||
| short *p, *q; | |||
| int n = n1; | |||
| int v; | |||
| p = input; | |||
| q = output; | |||
| while (n >= 4) { | |||
| v = p[0]; q[0] = v; q[1] = v; | |||
| v = p[1]; q[2] = v; q[3] = v; | |||
| v = p[2]; q[4] = v; q[5] = v; | |||
| v = p[3]; q[6] = v; q[7] = v; | |||
| q += 8; | |||
| p += 4; | |||
| n -= 4; | |||
| } | |||
| while (n > 0) { | |||
| v = p[0]; q[0] = v; q[1] = v; | |||
| q += 2; | |||
| p += 1; | |||
| n--; | |||
| } | |||
| } | |||
| static void deinterleave(short **output, short *input, int channels, int samples) | |||
| { | |||
| int i, j; | |||
| for (i = 0; i < samples; i++) { | |||
| for (j = 0; j < channels; j++) { | |||
| *output[j]++ = *input++; | |||
| } | |||
| } | |||
| } | |||
| static void interleave(short *output, short **input, int channels, int samples) | |||
| { | |||
| int i, j; | |||
| for (i = 0; i < samples; i++) { | |||
| for (j = 0; j < channels; j++) { | |||
| *output++ = *input[j]++; | |||
| } | |||
| } | |||
| } | |||
| static void ac3_5p1_mux(short *output, short *input1, short *input2, int n) | |||
| { | |||
| int i; | |||
| short l, r; | |||
| for (i = 0; i < n; i++) { | |||
| l = *input1++; | |||
| r = *input2++; | |||
| *output++ = l; /* left */ | |||
| *output++ = (l / 2) + (r / 2); /* center */ | |||
| *output++ = r; /* right */ | |||
| *output++ = 0; /* left surround */ | |||
| *output++ = 0; /* right surroud */ | |||
| *output++ = 0; /* low freq */ | |||
| } | |||
| } | |||
| ReSampleContext *av_audio_resample_init(int output_channels, int input_channels, | |||
| int output_rate, int input_rate, | |||
| enum AVSampleFormat sample_fmt_out, | |||
| enum AVSampleFormat sample_fmt_in, | |||
| int filter_length, int log2_phase_count, | |||
| int linear, double cutoff) | |||
| { | |||
| ReSampleContext *s; | |||
| if (input_channels > MAX_CHANNELS) { | |||
| av_log(NULL, AV_LOG_ERROR, | |||
| "Resampling with input channels greater than %d is unsupported.\n", | |||
| MAX_CHANNELS); | |||
| return NULL; | |||
| } | |||
| if (output_channels != input_channels && | |||
| (input_channels > 2 || | |||
| output_channels > 2 && | |||
| !(output_channels == 6 && input_channels == 2))) { | |||
| av_log(NULL, AV_LOG_ERROR, | |||
| "Resampling output channel count must be 1 or 2 for mono input; 1, 2 or 6 for stereo input; or N for N channel input.\n"); | |||
| return NULL; | |||
| } | |||
| s = av_mallocz(sizeof(ReSampleContext)); | |||
| if (!s) { | |||
| av_log(NULL, AV_LOG_ERROR, "Can't allocate memory for resample context.\n"); | |||
| return NULL; | |||
| } | |||
| s->ratio = (float)output_rate / (float)input_rate; | |||
| s->input_channels = input_channels; | |||
| s->output_channels = output_channels; | |||
| s->filter_channels = s->input_channels; | |||
| if (s->output_channels < s->filter_channels) | |||
| s->filter_channels = s->output_channels; | |||
| s->sample_fmt[0] = sample_fmt_in; | |||
| s->sample_fmt[1] = sample_fmt_out; | |||
| s->sample_size[0] = av_get_bytes_per_sample(s->sample_fmt[0]); | |||
| s->sample_size[1] = av_get_bytes_per_sample(s->sample_fmt[1]); | |||
| if (s->sample_fmt[0] != AV_SAMPLE_FMT_S16) { | |||
| if (!(s->convert_ctx[0] = av_audio_convert_alloc(AV_SAMPLE_FMT_S16, 1, | |||
| s->sample_fmt[0], 1, NULL, 0))) { | |||
| av_log(s, AV_LOG_ERROR, | |||
| "Cannot convert %s sample format to s16 sample format\n", | |||
| av_get_sample_fmt_name(s->sample_fmt[0])); | |||
| av_free(s); | |||
| return NULL; | |||
| } | |||
| } | |||
| if (s->sample_fmt[1] != AV_SAMPLE_FMT_S16) { | |||
| if (!(s->convert_ctx[1] = av_audio_convert_alloc(s->sample_fmt[1], 1, | |||
| AV_SAMPLE_FMT_S16, 1, NULL, 0))) { | |||
| av_log(s, AV_LOG_ERROR, | |||
| "Cannot convert s16 sample format to %s sample format\n", | |||
| av_get_sample_fmt_name(s->sample_fmt[1])); | |||
| av_audio_convert_free(s->convert_ctx[0]); | |||
| av_free(s); | |||
| return NULL; | |||
| } | |||
| } | |||
| s->resample_context = av_resample_init(output_rate, input_rate, | |||
| filter_length, log2_phase_count, | |||
| linear, cutoff); | |||
| *(const AVClass**)s->resample_context = &audioresample_context_class; | |||
| return s; | |||
| } | |||
| /* resample audio. 'nb_samples' is the number of input samples */ | |||
| /* XXX: optimize it ! */ | |||
| int audio_resample(ReSampleContext *s, short *output, short *input, int nb_samples) | |||
| { | |||
| int i, nb_samples1; | |||
| short *bufin[MAX_CHANNELS]; | |||
| short *bufout[MAX_CHANNELS]; | |||
| short *buftmp2[MAX_CHANNELS], *buftmp3[MAX_CHANNELS]; | |||
| short *output_bak = NULL; | |||
| int lenout; | |||
| if (s->input_channels == s->output_channels && s->ratio == 1.0 && 0) { | |||
| /* nothing to do */ | |||
| memcpy(output, input, nb_samples * s->input_channels * sizeof(short)); | |||
| return nb_samples; | |||
| } | |||
| if (s->sample_fmt[0] != AV_SAMPLE_FMT_S16) { | |||
| int istride[1] = { s->sample_size[0] }; | |||
| int ostride[1] = { 2 }; | |||
| const void *ibuf[1] = { input }; | |||
| void *obuf[1]; | |||
| unsigned input_size = nb_samples * s->input_channels * 2; | |||
| if (!s->buffer_size[0] || s->buffer_size[0] < input_size) { | |||
| av_free(s->buffer[0]); | |||
| s->buffer_size[0] = input_size; | |||
| s->buffer[0] = av_malloc(s->buffer_size[0]); | |||
| if (!s->buffer[0]) { | |||
| av_log(s->resample_context, AV_LOG_ERROR, "Could not allocate buffer\n"); | |||
| return 0; | |||
| } | |||
| } | |||
| obuf[0] = s->buffer[0]; | |||
| if (av_audio_convert(s->convert_ctx[0], obuf, ostride, | |||
| ibuf, istride, nb_samples * s->input_channels) < 0) { | |||
| av_log(s->resample_context, AV_LOG_ERROR, | |||
| "Audio sample format conversion failed\n"); | |||
| return 0; | |||
| } | |||
| input = s->buffer[0]; | |||
| } | |||
| lenout = 4 * nb_samples * s->ratio + 16; | |||
| if (s->sample_fmt[1] != AV_SAMPLE_FMT_S16) { | |||
| int out_size = lenout * av_get_bytes_per_sample(s->sample_fmt[1]) * | |||
| s->output_channels; | |||
| output_bak = output; | |||
| if (!s->buffer_size[1] || s->buffer_size[1] < out_size) { | |||
| av_free(s->buffer[1]); | |||
| s->buffer_size[1] = out_size; | |||
| s->buffer[1] = av_malloc(s->buffer_size[1]); | |||
| if (!s->buffer[1]) { | |||
| av_log(s->resample_context, AV_LOG_ERROR, "Could not allocate buffer\n"); | |||
| return 0; | |||
| } | |||
| } | |||
| output = s->buffer[1]; | |||
| } | |||
| /* XXX: move those malloc to resample init code */ | |||
| for (i = 0; i < s->filter_channels; i++) { | |||
| bufin[i] = av_malloc((nb_samples + s->temp_len) * sizeof(short)); | |||
| memcpy(bufin[i], s->temp[i], s->temp_len * sizeof(short)); | |||
| buftmp2[i] = bufin[i] + s->temp_len; | |||
| bufout[i] = av_malloc(lenout * sizeof(short)); | |||
| } | |||
| if (s->input_channels == 2 && s->output_channels == 1) { | |||
| buftmp3[0] = output; | |||
| stereo_to_mono(buftmp2[0], input, nb_samples); | |||
| } else if (s->output_channels >= 2 && s->input_channels == 1) { | |||
| buftmp3[0] = bufout[0]; | |||
| memcpy(buftmp2[0], input, nb_samples * sizeof(short)); | |||
| } else if (s->output_channels >= s->input_channels && s->input_channels >= 2) { | |||
| for (i = 0; i < s->input_channels; i++) { | |||
| buftmp3[i] = bufout[i]; | |||
| } | |||
| deinterleave(buftmp2, input, s->input_channels, nb_samples); | |||
| } else { | |||
| buftmp3[0] = output; | |||
| memcpy(buftmp2[0], input, nb_samples * sizeof(short)); | |||
| } | |||
| nb_samples += s->temp_len; | |||
| /* resample each channel */ | |||
| nb_samples1 = 0; /* avoid warning */ | |||
| for (i = 0; i < s->filter_channels; i++) { | |||
| int consumed; | |||
| int is_last = i + 1 == s->filter_channels; | |||
| nb_samples1 = av_resample(s->resample_context, buftmp3[i], bufin[i], | |||
| &consumed, nb_samples, lenout, is_last); | |||
| s->temp_len = nb_samples - consumed; | |||
| s->temp[i] = av_realloc(s->temp[i], s->temp_len * sizeof(short)); | |||
| memcpy(s->temp[i], bufin[i] + consumed, s->temp_len * sizeof(short)); | |||
| } | |||
| if (s->output_channels == 2 && s->input_channels == 1) { | |||
| mono_to_stereo(output, buftmp3[0], nb_samples1); | |||
| } else if (s->output_channels == 6 && s->input_channels == 2) { | |||
| ac3_5p1_mux(output, buftmp3[0], buftmp3[1], nb_samples1); | |||
| } else if (s->output_channels == s->input_channels && s->input_channels >= 2) { | |||
| interleave(output, buftmp3, s->output_channels, nb_samples1); | |||
| } | |||
| if (s->sample_fmt[1] != AV_SAMPLE_FMT_S16) { | |||
| int istride[1] = { 2 }; | |||
| int ostride[1] = { s->sample_size[1] }; | |||
| const void *ibuf[1] = { output }; | |||
| void *obuf[1] = { output_bak }; | |||
| if (av_audio_convert(s->convert_ctx[1], obuf, ostride, | |||
| ibuf, istride, nb_samples1 * s->output_channels) < 0) { | |||
| av_log(s->resample_context, AV_LOG_ERROR, | |||
| "Audio sample format conversion failed\n"); | |||
| return 0; | |||
| } | |||
| } | |||
| for (i = 0; i < s->filter_channels; i++) { | |||
| av_free(bufin[i]); | |||
| av_free(bufout[i]); | |||
| } | |||
| return nb_samples1; | |||
| } | |||
| void audio_resample_close(ReSampleContext *s) | |||
| { | |||
| int i; | |||
| av_resample_close(s->resample_context); | |||
| for (i = 0; i < s->filter_channels; i++) | |||
| av_freep(&s->temp[i]); | |||
| av_freep(&s->buffer[0]); | |||
| av_freep(&s->buffer[1]); | |||
| av_audio_convert_free(s->convert_ctx[0]); | |||
| av_audio_convert_free(s->convert_ctx[1]); | |||
| av_free(s); | |||
| } | |||
| #endif | |||
| @@ -1,324 +0,0 @@ | |||
| /* | |||
| * audio resampling | |||
| * Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at> | |||
| * | |||
| * This file is part of Libav. | |||
| * | |||
| * Libav is free software; you can redistribute it and/or | |||
| * modify it under the terms of the GNU Lesser General Public | |||
| * License as published by the Free Software Foundation; either | |||
| * version 2.1 of the License, or (at your option) any later version. | |||
| * | |||
| * Libav is distributed in the hope that it will be useful, | |||
| * but WITHOUT ANY WARRANTY; without even the implied warranty of | |||
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |||
| * Lesser General Public License for more details. | |||
| * | |||
| * You should have received a copy of the GNU Lesser General Public | |||
| * License along with Libav; if not, write to the Free Software | |||
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |||
| */ | |||
| /** | |||
| * @file | |||
| * audio resampling | |||
| * @author Michael Niedermayer <michaelni@gmx.at> | |||
| */ | |||
| #include "avcodec.h" | |||
| #include "libavutil/common.h" | |||
| #if FF_API_AVCODEC_RESAMPLE | |||
| #ifndef CONFIG_RESAMPLE_HP | |||
| #define FILTER_SHIFT 15 | |||
| #define FELEM int16_t | |||
| #define FELEM2 int32_t | |||
| #define FELEML int64_t | |||
| #define FELEM_MAX INT16_MAX | |||
| #define FELEM_MIN INT16_MIN | |||
| #define WINDOW_TYPE 9 | |||
| #elif !defined(CONFIG_RESAMPLE_AUDIOPHILE_KIDDY_MODE) | |||
| #define FILTER_SHIFT 30 | |||
| #define FELEM int32_t | |||
| #define FELEM2 int64_t | |||
| #define FELEML int64_t | |||
| #define FELEM_MAX INT32_MAX | |||
| #define FELEM_MIN INT32_MIN | |||
| #define WINDOW_TYPE 12 | |||
| #else | |||
| #define FILTER_SHIFT 0 | |||
| #define FELEM double | |||
| #define FELEM2 double | |||
| #define FELEML double | |||
| #define WINDOW_TYPE 24 | |||
| #endif | |||
| typedef struct AVResampleContext{ | |||
| const AVClass *av_class; | |||
| FELEM *filter_bank; | |||
| int filter_length; | |||
| int ideal_dst_incr; | |||
| int dst_incr; | |||
| int index; | |||
| int frac; | |||
| int src_incr; | |||
| int compensation_distance; | |||
| int phase_shift; | |||
| int phase_mask; | |||
| int linear; | |||
| }AVResampleContext; | |||
| /** | |||
| * 0th order modified bessel function of the first kind. | |||
| */ | |||
| static double bessel(double x){ | |||
| double v=1; | |||
| double lastv=0; | |||
| double t=1; | |||
| int i; | |||
| x= x*x/4; | |||
| for(i=1; v != lastv; i++){ | |||
| lastv=v; | |||
| t *= x/(i*i); | |||
| v += t; | |||
| } | |||
| return v; | |||
| } | |||
| /** | |||
| * Build a polyphase filterbank. | |||
| * @param factor resampling factor | |||
| * @param scale wanted sum of coefficients for each filter | |||
| * @param type 0->cubic, 1->blackman nuttall windowed sinc, 2..16->kaiser windowed sinc beta=2..16 | |||
| * @return 0 on success, negative on error | |||
| */ | |||
| static int build_filter(FELEM *filter, double factor, int tap_count, int phase_count, int scale, int type){ | |||
| int ph, i; | |||
| double x, y, w; | |||
| double *tab = av_malloc(tap_count * sizeof(*tab)); | |||
| const int center= (tap_count-1)/2; | |||
| if (!tab) | |||
| return AVERROR(ENOMEM); | |||
| /* if upsampling, only need to interpolate, no filter */ | |||
| if (factor > 1.0) | |||
| factor = 1.0; | |||
| for(ph=0;ph<phase_count;ph++) { | |||
| double norm = 0; | |||
| for(i=0;i<tap_count;i++) { | |||
| x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor; | |||
| if (x == 0) y = 1.0; | |||
| else y = sin(x) / x; | |||
| switch(type){ | |||
| case 0:{ | |||
| const float d= -0.5; //first order derivative = -0.5 | |||
| x = fabs(((double)(i - center) - (double)ph / phase_count) * factor); | |||
| if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*( -x*x + x*x*x); | |||
| else y= d*(-4 + 8*x - 5*x*x + x*x*x); | |||
| break;} | |||
| case 1: | |||
| w = 2.0*x / (factor*tap_count) + M_PI; | |||
| y *= 0.3635819 - 0.4891775 * cos(w) + 0.1365995 * cos(2*w) - 0.0106411 * cos(3*w); | |||
| break; | |||
| default: | |||
| w = 2.0*x / (factor*tap_count*M_PI); | |||
| y *= bessel(type*sqrt(FFMAX(1-w*w, 0))); | |||
| break; | |||
| } | |||
| tab[i] = y; | |||
| norm += y; | |||
| } | |||
| /* normalize so that an uniform color remains the same */ | |||
| for(i=0;i<tap_count;i++) { | |||
| #ifdef CONFIG_RESAMPLE_AUDIOPHILE_KIDDY_MODE | |||
| filter[ph * tap_count + i] = tab[i] / norm; | |||
| #else | |||
| filter[ph * tap_count + i] = av_clip(lrintf(tab[i] * scale / norm), FELEM_MIN, FELEM_MAX); | |||
| #endif | |||
| } | |||
| } | |||
| #if 0 | |||
| { | |||
| #define LEN 1024 | |||
| int j,k; | |||
| double sine[LEN + tap_count]; | |||
| double filtered[LEN]; | |||
| double maxff=-2, minff=2, maxsf=-2, minsf=2; | |||
| for(i=0; i<LEN; i++){ | |||
| double ss=0, sf=0, ff=0; | |||
| for(j=0; j<LEN+tap_count; j++) | |||
| sine[j]= cos(i*j*M_PI/LEN); | |||
| for(j=0; j<LEN; j++){ | |||
| double sum=0; | |||
| ph=0; | |||
| for(k=0; k<tap_count; k++) | |||
| sum += filter[ph * tap_count + k] * sine[k+j]; | |||
| filtered[j]= sum / (1<<FILTER_SHIFT); | |||
| ss+= sine[j + center] * sine[j + center]; | |||
| ff+= filtered[j] * filtered[j]; | |||
| sf+= sine[j + center] * filtered[j]; | |||
| } | |||
| ss= sqrt(2*ss/LEN); | |||
| ff= sqrt(2*ff/LEN); | |||
| sf= 2*sf/LEN; | |||
| maxff= FFMAX(maxff, ff); | |||
| minff= FFMIN(minff, ff); | |||
| maxsf= FFMAX(maxsf, sf); | |||
| minsf= FFMIN(minsf, sf); | |||
| if(i%11==0){ | |||
| av_log(NULL, AV_LOG_ERROR, "i:%4d ss:%f ff:%13.6e-%13.6e sf:%13.6e-%13.6e\n", i, ss, maxff, minff, maxsf, minsf); | |||
| minff=minsf= 2; | |||
| maxff=maxsf= -2; | |||
| } | |||
| } | |||
| } | |||
| #endif | |||
| av_free(tab); | |||
| return 0; | |||
| } | |||
| AVResampleContext *av_resample_init(int out_rate, int in_rate, int filter_size, int phase_shift, int linear, double cutoff){ | |||
| AVResampleContext *c= av_mallocz(sizeof(AVResampleContext)); | |||
| double factor= FFMIN(out_rate * cutoff / in_rate, 1.0); | |||
| int phase_count= 1<<phase_shift; | |||
| if (!c) | |||
| return NULL; | |||
| c->phase_shift= phase_shift; | |||
| c->phase_mask= phase_count-1; | |||
| c->linear= linear; | |||
| c->filter_length= FFMAX((int)ceil(filter_size/factor), 1); | |||
| c->filter_bank= av_mallocz(c->filter_length*(phase_count+1)*sizeof(FELEM)); | |||
| if (!c->filter_bank) | |||
| goto error; | |||
| if (build_filter(c->filter_bank, factor, c->filter_length, phase_count, 1<<FILTER_SHIFT, WINDOW_TYPE)) | |||
| goto error; | |||
| memcpy(&c->filter_bank[c->filter_length*phase_count+1], c->filter_bank, (c->filter_length-1)*sizeof(FELEM)); | |||
| c->filter_bank[c->filter_length*phase_count]= c->filter_bank[c->filter_length - 1]; | |||
| c->src_incr= out_rate; | |||
| c->ideal_dst_incr= c->dst_incr= in_rate * phase_count; | |||
| c->index= -phase_count*((c->filter_length-1)/2); | |||
| return c; | |||
| error: | |||
| av_free(c->filter_bank); | |||
| av_free(c); | |||
| return NULL; | |||
| } | |||
| void av_resample_close(AVResampleContext *c){ | |||
| av_freep(&c->filter_bank); | |||
| av_freep(&c); | |||
| } | |||
| void av_resample_compensate(AVResampleContext *c, int sample_delta, int compensation_distance){ | |||
| // sample_delta += (c->ideal_dst_incr - c->dst_incr)*(int64_t)c->compensation_distance / c->ideal_dst_incr; | |||
| c->compensation_distance= compensation_distance; | |||
| c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr * (int64_t)sample_delta / compensation_distance; | |||
| } | |||
| int av_resample(AVResampleContext *c, short *dst, short *src, int *consumed, int src_size, int dst_size, int update_ctx){ | |||
| int dst_index, i; | |||
| int index= c->index; | |||
| int frac= c->frac; | |||
| int dst_incr_frac= c->dst_incr % c->src_incr; | |||
| int dst_incr= c->dst_incr / c->src_incr; | |||
| int compensation_distance= c->compensation_distance; | |||
| if(compensation_distance == 0 && c->filter_length == 1 && c->phase_shift==0){ | |||
| int64_t index2= ((int64_t)index)<<32; | |||
| int64_t incr= (1LL<<32) * c->dst_incr / c->src_incr; | |||
| dst_size= FFMIN(dst_size, (src_size-1-index) * (int64_t)c->src_incr / c->dst_incr); | |||
| for(dst_index=0; dst_index < dst_size; dst_index++){ | |||
| dst[dst_index] = src[index2>>32]; | |||
| index2 += incr; | |||
| } | |||
| frac += dst_index * dst_incr_frac; | |||
| index += dst_index * dst_incr; | |||
| index += frac / c->src_incr; | |||
| frac %= c->src_incr; | |||
| }else{ | |||
| for(dst_index=0; dst_index < dst_size; dst_index++){ | |||
| FELEM *filter= c->filter_bank + c->filter_length*(index & c->phase_mask); | |||
| int sample_index= index >> c->phase_shift; | |||
| FELEM2 val=0; | |||
| if(sample_index < 0){ | |||
| for(i=0; i<c->filter_length; i++) | |||
| val += src[FFABS(sample_index + i) % src_size] * filter[i]; | |||
| }else if(sample_index + c->filter_length > src_size){ | |||
| break; | |||
| }else if(c->linear){ | |||
| FELEM2 v2=0; | |||
| for(i=0; i<c->filter_length; i++){ | |||
| val += src[sample_index + i] * (FELEM2)filter[i]; | |||
| v2 += src[sample_index + i] * (FELEM2)filter[i + c->filter_length]; | |||
| } | |||
| val+=(v2-val)*(FELEML)frac / c->src_incr; | |||
| }else{ | |||
| for(i=0; i<c->filter_length; i++){ | |||
| val += src[sample_index + i] * (FELEM2)filter[i]; | |||
| } | |||
| } | |||
| #ifdef CONFIG_RESAMPLE_AUDIOPHILE_KIDDY_MODE | |||
| dst[dst_index] = av_clip_int16(lrintf(val)); | |||
| #else | |||
| val = (val + (1<<(FILTER_SHIFT-1)))>>FILTER_SHIFT; | |||
| dst[dst_index] = (unsigned)(val + 32768) > 65535 ? (val>>31) ^ 32767 : val; | |||
| #endif | |||
| frac += dst_incr_frac; | |||
| index += dst_incr; | |||
| if(frac >= c->src_incr){ | |||
| frac -= c->src_incr; | |||
| index++; | |||
| } | |||
| if(dst_index + 1 == compensation_distance){ | |||
| compensation_distance= 0; | |||
| dst_incr_frac= c->ideal_dst_incr % c->src_incr; | |||
| dst_incr= c->ideal_dst_incr / c->src_incr; | |||
| } | |||
| } | |||
| } | |||
| *consumed= FFMAX(index, 0) >> c->phase_shift; | |||
| if(index>=0) index &= c->phase_mask; | |||
| if(compensation_distance){ | |||
| compensation_distance -= dst_index; | |||
| assert(compensation_distance > 0); | |||
| } | |||
| if(update_ctx){ | |||
| c->frac= frac; | |||
| c->index= index; | |||
| c->dst_incr= dst_incr_frac + c->src_incr*dst_incr; | |||
| c->compensation_distance= compensation_distance; | |||
| } | |||
| #if 0 | |||
| if(update_ctx && !c->compensation_distance){ | |||
| #undef rand | |||
| av_resample_compensate(c, rand() % (8000*2) - 8000, 8000*2); | |||
| av_log(NULL, AV_LOG_DEBUG, "%d %d %d\n", c->dst_incr, c->ideal_dst_incr, c->compensation_distance); | |||
| } | |||
| #endif | |||
| return dst_index; | |||
| } | |||
| #endif | |||
| @@ -49,9 +49,6 @@ | |||
| #ifndef FF_API_REQUEST_CHANNELS | |||
| #define FF_API_REQUEST_CHANNELS (LIBAVCODEC_VERSION_MAJOR < 56) | |||
| #endif | |||
| #ifndef FF_API_AVCODEC_RESAMPLE | |||
| #define FF_API_AVCODEC_RESAMPLE (LIBAVCODEC_VERSION_MAJOR < 55) | |||
| #endif | |||
| #ifndef FF_API_LIBMPEG2 | |||
| #define FF_API_LIBMPEG2 (LIBAVCODEC_VERSION_MAJOR < 55) | |||
| #endif | |||