|
|
@@ -63,7 +63,7 @@ static DNNReturnType set_input_output_native(void *model, DNNInputData *input, c |
|
|
|
cur_channels = conv_params->output_num; |
|
|
|
|
|
|
|
if (conv_params->padding_method == VALID) { |
|
|
|
int pad_size = conv_params->kernel_size - 1; |
|
|
|
int pad_size = (conv_params->kernel_size - 1) * conv_params->dilation; |
|
|
|
cur_height -= pad_size; |
|
|
|
cur_width -= pad_size; |
|
|
|
} |
|
|
@@ -164,6 +164,7 @@ DNNModel *ff_dnn_load_model_native(const char *model_filename) |
|
|
|
ff_dnn_free_model_native(&model); |
|
|
|
return NULL; |
|
|
|
} |
|
|
|
conv_params->dilation = (int32_t)avio_rl32(model_file_context); |
|
|
|
conv_params->padding_method = (int32_t)avio_rl32(model_file_context); |
|
|
|
conv_params->activation = (int32_t)avio_rl32(model_file_context); |
|
|
|
conv_params->input_num = (int32_t)avio_rl32(model_file_context); |
|
|
@@ -171,7 +172,7 @@ DNNModel *ff_dnn_load_model_native(const char *model_filename) |
|
|
|
conv_params->kernel_size = (int32_t)avio_rl32(model_file_context); |
|
|
|
kernel_size = conv_params->input_num * conv_params->output_num * |
|
|
|
conv_params->kernel_size * conv_params->kernel_size; |
|
|
|
dnn_size += 20 + (kernel_size + conv_params->output_num << 2); |
|
|
|
dnn_size += 24 + (kernel_size + conv_params->output_num << 2); |
|
|
|
if (dnn_size > file_size || conv_params->input_num <= 0 || |
|
|
|
conv_params->output_num <= 0 || conv_params->kernel_size <= 0){ |
|
|
|
avio_closep(&model_file_context); |
|
|
@@ -233,7 +234,7 @@ static void convolve(const float *input, float *output, const ConvolutionalParam |
|
|
|
int src_linesize = width * conv_params->input_num; |
|
|
|
int filter_linesize = conv_params->kernel_size * conv_params->input_num; |
|
|
|
int filter_size = conv_params->kernel_size * filter_linesize; |
|
|
|
int pad_size = (conv_params->padding_method == VALID) ? (conv_params->kernel_size - 1) / 2 : 0; |
|
|
|
int pad_size = (conv_params->padding_method == VALID) ? (conv_params->kernel_size - 1) / 2 * conv_params->dilation : 0; |
|
|
|
|
|
|
|
for (int y = pad_size; y < height - pad_size; ++y) { |
|
|
|
for (int x = pad_size; x < width - pad_size; ++x) { |
|
|
@@ -245,12 +246,12 @@ static void convolve(const float *input, float *output, const ConvolutionalParam |
|
|
|
for (int kernel_x = 0; kernel_x < conv_params->kernel_size; ++kernel_x) { |
|
|
|
float input_pel; |
|
|
|
if (conv_params->padding_method == SAME_CLAMP_TO_EDGE) { |
|
|
|
int y_pos = CLAMP_TO_EDGE(y + kernel_y - radius, height); |
|
|
|
int x_pos = CLAMP_TO_EDGE(x + kernel_x - radius, width); |
|
|
|
int y_pos = CLAMP_TO_EDGE(y + (kernel_y - radius) * conv_params->dilation, height); |
|
|
|
int x_pos = CLAMP_TO_EDGE(x + (kernel_x - radius) * conv_params->dilation, width); |
|
|
|
input_pel = input[y_pos * src_linesize + x_pos * conv_params->input_num + ch]; |
|
|
|
} else { |
|
|
|
int y_pos = y + kernel_y - radius; |
|
|
|
int x_pos = x + kernel_x - radius; |
|
|
|
int y_pos = y + (kernel_y - radius) * conv_params->dilation; |
|
|
|
int x_pos = x + (kernel_x - radius) * conv_params->dilation; |
|
|
|
input_pel = (x_pos < 0 || x_pos >= width || y_pos < 0 || y_pos >= height) ? 0.0 : |
|
|
|
input[y_pos * src_linesize + x_pos * conv_params->input_num + ch]; |
|
|
|
} |
|
|
@@ -334,7 +335,7 @@ DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNData *output |
|
|
|
convolve(network->layers[layer - 1].output, network->layers[layer].output, conv_params, cur_width, cur_height); |
|
|
|
cur_channels = conv_params->output_num; |
|
|
|
if (conv_params->padding_method == VALID) { |
|
|
|
int pad_size = conv_params->kernel_size - 1; |
|
|
|
int pad_size = (conv_params->kernel_size - 1) * conv_params->dilation; |
|
|
|
cur_height -= pad_size; |
|
|
|
cur_width -= pad_size; |
|
|
|
} |
|
|
|