Audio plugin host https://kx.studio/carla
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1455 lines
51KB

  1. /*
  2. * Carla FluidSynth Plugin
  3. * Copyright (C) 2011-2013 Filipe Coelho <falktx@falktx.com>
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation; either version 2 of
  8. * the License, or any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * For a full copy of the GNU General Public License see the GPL.txt file
  16. */
  17. #include "CarlaPluginInternal.hpp"
  18. #ifdef WANT_FLUIDSYNTH
  19. #include <fluidsynth.h>
  20. #define FLUIDSYNTH_VERSION_NEW_API (FLUIDSYNTH_VERSION_MAJOR >= 1 && FLUIDSYNTH_VERSION_MINOR >= 1 && FLUIDSYNTH_VERSION_MICRO >= 4)
  21. CARLA_BACKEND_START_NAMESPACE
  22. class FluidSynthPlugin : public CarlaPlugin
  23. {
  24. public:
  25. FluidSynthPlugin(CarlaEngine* const engine, const unsigned int id, const bool use16Outs)
  26. : CarlaPlugin(engine, id),
  27. kUses16Outs(use16Outs),
  28. fSettings(nullptr),
  29. fSynth(nullptr),
  30. fSynthId(-1),
  31. fAudio16Buffers(nullptr)
  32. {
  33. carla_debug("FluidSynthPlugin::FluidSynthPlugin(%p, %i, %s)", engine, id, bool2str(use16Outs));
  34. // create settings
  35. fSettings = new_fluid_settings();
  36. // define settings
  37. fluid_settings_setint(fSettings, "synth.audio-channels", use16Outs ? 16 : 1);
  38. fluid_settings_setint(fSettings, "synth.audio-groups", use16Outs ? 16 : 1);
  39. fluid_settings_setnum(fSettings, "synth.sample-rate", kData->engine->getSampleRate());
  40. fluid_settings_setint(fSettings, "synth.threadsafe-api ", 0);
  41. // create synth
  42. fSynth = new_fluid_synth(fSettings);
  43. #ifdef FLUIDSYNTH_VERSION_NEW_API
  44. fluid_synth_set_sample_rate(fSynth, kData->engine->getSampleRate());
  45. #endif
  46. // set default values
  47. fluid_synth_set_reverb_on(fSynth, 0);
  48. fluid_synth_set_reverb(fSynth, FLUID_REVERB_DEFAULT_ROOMSIZE, FLUID_REVERB_DEFAULT_DAMP, FLUID_REVERB_DEFAULT_WIDTH, FLUID_REVERB_DEFAULT_LEVEL);
  49. fluid_synth_set_chorus_on(fSynth, 0);
  50. fluid_synth_set_chorus(fSynth, FLUID_CHORUS_DEFAULT_N, FLUID_CHORUS_DEFAULT_LEVEL, FLUID_CHORUS_DEFAULT_SPEED, FLUID_CHORUS_DEFAULT_DEPTH, FLUID_CHORUS_DEFAULT_TYPE);
  51. fluid_synth_set_polyphony(fSynth, 64);
  52. for (int i=0; i < 16; i++)
  53. fluid_synth_set_interp_method(fSynth, i, FLUID_INTERP_DEFAULT);
  54. }
  55. ~FluidSynthPlugin()
  56. {
  57. carla_debug("FluidSynthPlugin::~FluidSynthPlugin()");
  58. delete_fluid_synth(fSynth);
  59. delete_fluid_settings(fSettings);
  60. deleteBuffers();
  61. }
  62. // -------------------------------------------------------------------
  63. // Information (base)
  64. PluginType type() const
  65. {
  66. return PLUGIN_SF2;
  67. }
  68. PluginCategory category() const
  69. {
  70. return PLUGIN_CATEGORY_SYNTH;
  71. }
  72. // -------------------------------------------------------------------
  73. // Information (count)
  74. uint32_t parameterScalePointCount(const uint32_t parameterId) const
  75. {
  76. CARLA_ASSERT(parameterId < kData->param.count);
  77. switch (parameterId)
  78. {
  79. case FluidSynthChorusType:
  80. return 2;
  81. case FluidSynthInterpolation:
  82. return 4;
  83. default:
  84. return 0;
  85. }
  86. }
  87. // -------------------------------------------------------------------
  88. // Information (per-plugin data)
  89. float getParameterValue(const uint32_t parameterId)
  90. {
  91. CARLA_ASSERT(parameterId < kData->param.count);
  92. return fParamBuffers[parameterId];
  93. }
  94. float getParameterScalePointValue(const uint32_t parameterId, const uint32_t scalePointId)
  95. {
  96. CARLA_ASSERT(parameterId < kData->param.count);
  97. CARLA_ASSERT(scalePointId < parameterScalePointCount(parameterId));
  98. switch (parameterId)
  99. {
  100. case FluidSynthChorusType:
  101. switch (scalePointId)
  102. {
  103. case 0:
  104. return FLUID_CHORUS_MOD_SINE;
  105. case 1:
  106. return FLUID_CHORUS_MOD_TRIANGLE;
  107. default:
  108. return FLUID_CHORUS_DEFAULT_TYPE;
  109. }
  110. case FluidSynthInterpolation:
  111. switch (scalePointId)
  112. {
  113. case 0:
  114. return FLUID_INTERP_NONE;
  115. case 1:
  116. return FLUID_INTERP_LINEAR;
  117. case 2:
  118. return FLUID_INTERP_4THORDER;
  119. case 3:
  120. return FLUID_INTERP_7THORDER;
  121. default:
  122. return FLUID_INTERP_DEFAULT;
  123. }
  124. default:
  125. return 0.0f;
  126. }
  127. }
  128. void getLabel(char* const strBuf)
  129. {
  130. if (fLabel.isNotEmpty())
  131. std::strncpy(strBuf, (const char*)fLabel, STR_MAX);
  132. else
  133. CarlaPlugin::getLabel(strBuf);
  134. }
  135. void getMaker(char* const strBuf)
  136. {
  137. std::strncpy(strBuf, "FluidSynth SF2 engine", STR_MAX);
  138. }
  139. void getCopyright(char* const strBuf)
  140. {
  141. std::strncpy(strBuf, "GNU GPL v2+", STR_MAX);
  142. }
  143. void getRealName(char* const strBuf)
  144. {
  145. getLabel(strBuf);
  146. }
  147. void getParameterName(const uint32_t parameterId, char* const strBuf)
  148. {
  149. CARLA_ASSERT(parameterId < kData->param.count);
  150. switch (parameterId)
  151. {
  152. case FluidSynthReverbOnOff:
  153. std::strncpy(strBuf, "Reverb On/Off", STR_MAX);
  154. break;
  155. case FluidSynthReverbRoomSize:
  156. std::strncpy(strBuf, "Reverb Room Size", STR_MAX);
  157. break;
  158. case FluidSynthReverbDamp:
  159. std::strncpy(strBuf, "Reverb Damp", STR_MAX);
  160. break;
  161. case FluidSynthReverbLevel:
  162. std::strncpy(strBuf, "Reverb Level", STR_MAX);
  163. break;
  164. case FluidSynthReverbWidth:
  165. std::strncpy(strBuf, "Reverb Width", STR_MAX);
  166. break;
  167. case FluidSynthChorusOnOff:
  168. std::strncpy(strBuf, "Chorus On/Off", STR_MAX);
  169. break;
  170. case FluidSynthChorusNr:
  171. std::strncpy(strBuf, "Chorus Voice Count", STR_MAX);
  172. break;
  173. case FluidSynthChorusLevel:
  174. std::strncpy(strBuf, "Chorus Level", STR_MAX);
  175. break;
  176. case FluidSynthChorusSpeedHz:
  177. std::strncpy(strBuf, "Chorus Speed", STR_MAX);
  178. break;
  179. case FluidSynthChorusDepthMs:
  180. std::strncpy(strBuf, "Chorus Depth", STR_MAX);
  181. break;
  182. case FluidSynthChorusType:
  183. std::strncpy(strBuf, "Chorus Type", STR_MAX);
  184. break;
  185. case FluidSynthPolyphony:
  186. std::strncpy(strBuf, "Polyphony", STR_MAX);
  187. break;
  188. case FluidSynthInterpolation:
  189. std::strncpy(strBuf, "Interpolation", STR_MAX);
  190. break;
  191. case FluidSynthVoiceCount:
  192. std::strncpy(strBuf, "Voice Count", STR_MAX);
  193. break;
  194. default:
  195. CarlaPlugin::getParameterName(parameterId, strBuf);
  196. break;
  197. }
  198. }
  199. void getParameterUnit(const uint32_t parameterId, char* const strBuf)
  200. {
  201. CARLA_ASSERT(parameterId < kData->param.count);
  202. switch (parameterId)
  203. {
  204. case FluidSynthChorusSpeedHz:
  205. std::strncpy(strBuf, "Hz", STR_MAX);
  206. break;
  207. case FluidSynthChorusDepthMs:
  208. std::strncpy(strBuf, "ms", STR_MAX);
  209. break;
  210. default:
  211. CarlaPlugin::getParameterUnit(parameterId, strBuf);
  212. break;
  213. }
  214. }
  215. void getParameterScalePointLabel(const uint32_t parameterId, const uint32_t scalePointId, char* const strBuf)
  216. {
  217. CARLA_ASSERT(parameterId < kData->param.count);
  218. CARLA_ASSERT(scalePointId < parameterScalePointCount(parameterId));
  219. switch (parameterId)
  220. {
  221. case FluidSynthChorusType:
  222. switch (scalePointId)
  223. {
  224. case 0:
  225. std::strncpy(strBuf, "Sine wave", STR_MAX);
  226. return;
  227. case 1:
  228. std::strncpy(strBuf, "Triangle wave", STR_MAX);
  229. return;
  230. }
  231. case FluidSynthInterpolation:
  232. switch (scalePointId)
  233. {
  234. case 0:
  235. std::strncpy(strBuf, "None", STR_MAX);
  236. return;
  237. case 1:
  238. std::strncpy(strBuf, "Straight-line", STR_MAX);
  239. return;
  240. case 2:
  241. std::strncpy(strBuf, "Fourth-order", STR_MAX);
  242. return;
  243. case 3:
  244. std::strncpy(strBuf, "Seventh-order", STR_MAX);
  245. return;
  246. }
  247. }
  248. CarlaPlugin::getParameterScalePointLabel(parameterId, scalePointId, strBuf);
  249. }
  250. // -------------------------------------------------------------------
  251. // Set data (plugin-specific stuff)
  252. void setParameterValue(const uint32_t parameterId, const float value, const bool sendGui, const bool sendOsc, const bool sendCallback)
  253. {
  254. CARLA_ASSERT(parameterId < kData->param.count);
  255. const float fixedValue = kData->param.fixValue(parameterId, value);
  256. fParamBuffers[parameterId] = fixedValue;
  257. switch (parameterId)
  258. {
  259. case FluidSynthReverbOnOff:
  260. fluid_synth_set_reverb_on(fSynth, (fixedValue > 0.5f) ? 1 : 0);
  261. break;
  262. case FluidSynthReverbRoomSize:
  263. case FluidSynthReverbDamp:
  264. case FluidSynthReverbLevel:
  265. case FluidSynthReverbWidth:
  266. fluid_synth_set_reverb(fSynth, fParamBuffers[FluidSynthReverbRoomSize], fParamBuffers[FluidSynthReverbDamp], fParamBuffers[FluidSynthReverbWidth], fParamBuffers[FluidSynthReverbLevel]);
  267. break;
  268. case FluidSynthChorusOnOff:
  269. {
  270. // FIXME
  271. //const ScopedDisabler m(this, ! kData->engine->isOffline());
  272. fluid_synth_set_chorus_on(fSynth, (value > 0.5f) ? 1 : 0);
  273. break;
  274. }
  275. case FluidSynthChorusNr:
  276. case FluidSynthChorusLevel:
  277. case FluidSynthChorusSpeedHz:
  278. case FluidSynthChorusDepthMs:
  279. case FluidSynthChorusType:
  280. {
  281. //FIXME
  282. //const ScopedDisabler m(this, ! kData->engine->isOffline());
  283. fluid_synth_set_chorus(fSynth, fParamBuffers[FluidSynthChorusNr], fParamBuffers[FluidSynthChorusLevel], fParamBuffers[FluidSynthChorusSpeedHz], fParamBuffers[FluidSynthChorusDepthMs], fParamBuffers[FluidSynthChorusType]);
  284. break;
  285. }
  286. case FluidSynthPolyphony:
  287. {
  288. //FIXME
  289. //const ScopedDisabler m(this, ! kData->engine->isOffline());
  290. fluid_synth_set_polyphony(fSynth, value);
  291. break;
  292. }
  293. case FluidSynthInterpolation:
  294. {
  295. //FIXME
  296. //const ScopedDisabler m(this, ! kData->engine->isOffline());
  297. for (int i=0; i < 16; i++)
  298. fluid_synth_set_interp_method(fSynth, i, value);
  299. break;
  300. }
  301. default:
  302. break;
  303. }
  304. CarlaPlugin::setParameterValue(parameterId, value, sendGui, sendOsc, sendCallback);
  305. }
  306. void setMidiProgram(int32_t index, const bool sendGui, const bool sendOsc, const bool sendCallback, const bool block)
  307. {
  308. CARLA_ASSERT(index >= -1 && index < static_cast<int32_t>(kData->midiprog.count));
  309. if (index < -1)
  310. index = -1;
  311. else if (index > static_cast<int32_t>(kData->midiprog.count))
  312. return;
  313. if (kData->ctrlChannel < 0 || kData->ctrlChannel >= 16)
  314. return;
  315. // FIXME
  316. if (index >= 0)
  317. {
  318. const uint32_t bank = kData->midiprog.data[index].bank;
  319. const uint32_t program = kData->midiprog.data[index].program;
  320. if (kData->engine->isOffline())
  321. {
  322. //const CarlaEngine::ScopedLocker m(x_engine, block);
  323. fluid_synth_program_select(fSynth, kData->ctrlChannel, fSynthId, bank, program);
  324. }
  325. else
  326. {
  327. //const ScopedDisabler m(this, block);
  328. fluid_synth_program_select(fSynth, kData->ctrlChannel, fSynthId, bank, program);
  329. }
  330. }
  331. CarlaPlugin::setMidiProgram(index, sendGui, sendOsc, sendCallback, block);
  332. }
  333. // -------------------------------------------------------------------
  334. // Plugin state
  335. void reload()
  336. {
  337. carla_debug("FluidSynthPlugin::reload() - start");
  338. CARLA_ASSERT(kData->engine != nullptr);
  339. CARLA_ASSERT(fSynth != nullptr);
  340. const ProcessMode processMode(kData->engine->getProccessMode());
  341. // Safely disable plugin for reload
  342. const ScopedDisabler sd(this);
  343. if (kData->client->isActive())
  344. kData->client->deactivate();
  345. deleteBuffers();
  346. uint32_t aOuts, params, j;
  347. aOuts = kUses16Outs ? 32 : 2;
  348. params = FluidSynthParametersMax;
  349. kData->audioOut.createNew(aOuts);
  350. kData->param.createNew(params);
  351. const int portNameSize = kData->engine->maxPortNameSize();
  352. CarlaString portName;
  353. // ---------------------------------------
  354. // Audio Outputs
  355. if (kUses16Outs)
  356. {
  357. for (j=0; j < 32; j++)
  358. {
  359. portName.clear();
  360. if (processMode == PROCESS_MODE_SINGLE_CLIENT)
  361. {
  362. portName = fName;
  363. portName += ":";
  364. }
  365. portName += "out-";
  366. if ((j+2)/2 < 9)
  367. portName += "0";
  368. portName += CarlaString((j+2)/2);
  369. if (j % 2 == 0)
  370. portName += "L";
  371. else
  372. portName += "R";
  373. portName.truncate(portNameSize);
  374. kData->audioOut.ports[j].port = (CarlaEngineAudioPort*)kData->client->addPort(kEnginePortTypeAudio, portName, false);
  375. kData->audioOut.ports[j].rindex = j;
  376. }
  377. fAudio16Buffers = new float*[aOuts];
  378. for (j=0; j < aOuts; j++)
  379. fAudio16Buffers[j] = nullptr;
  380. }
  381. else
  382. {
  383. // out-left
  384. portName.clear();
  385. if (processMode == PROCESS_MODE_SINGLE_CLIENT)
  386. {
  387. portName = fName;
  388. portName += ":";
  389. }
  390. portName += "out-left";
  391. portName.truncate(portNameSize);
  392. kData->audioOut.ports[0].port = (CarlaEngineAudioPort*)kData->client->addPort(kEnginePortTypeAudio, portName, false);
  393. kData->audioOut.ports[0].rindex = 0;
  394. // out-right
  395. portName.clear();
  396. if (processMode == PROCESS_MODE_SINGLE_CLIENT)
  397. {
  398. portName = fName;
  399. portName += ":";
  400. }
  401. portName += "out-right";
  402. portName.truncate(portNameSize);
  403. kData->audioOut.ports[1].port = (CarlaEngineAudioPort*)kData->client->addPort(kEnginePortTypeAudio, portName, false);
  404. kData->audioOut.ports[1].rindex = 1;
  405. }
  406. // ---------------------------------------
  407. // Event Input
  408. {
  409. portName.clear();
  410. if (processMode == PROCESS_MODE_SINGLE_CLIENT)
  411. {
  412. portName = fName;
  413. portName += ":";
  414. }
  415. portName += "event-in";
  416. portName.truncate(portNameSize);
  417. kData->event.portIn = (CarlaEngineEventPort*)kData->client->addPort(kEnginePortTypeEvent, portName, true);
  418. }
  419. // ---------------------------------------
  420. // Event Output
  421. {
  422. portName.clear();
  423. if (processMode == PROCESS_MODE_SINGLE_CLIENT)
  424. {
  425. portName = fName;
  426. portName += ":";
  427. }
  428. portName += "event-out";
  429. portName.truncate(portNameSize);
  430. kData->event.portOut = (CarlaEngineEventPort*)kData->client->addPort(kEnginePortTypeEvent, portName, false);
  431. }
  432. // ----------------------
  433. j = FluidSynthReverbOnOff;
  434. kData->param.data[j].index = j;
  435. kData->param.data[j].rindex = j;
  436. kData->param.data[j].type = PARAMETER_INPUT;
  437. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE | PARAMETER_IS_BOOLEAN;
  438. kData->param.data[j].midiChannel = 0;
  439. kData->param.data[j].midiCC = -1;
  440. kData->param.ranges[j].min = 0.0f;
  441. kData->param.ranges[j].max = 1.0f;
  442. kData->param.ranges[j].def = 0.0f; // off
  443. kData->param.ranges[j].step = 1.0f;
  444. kData->param.ranges[j].stepSmall = 1.0f;
  445. kData->param.ranges[j].stepLarge = 1.0f;
  446. fParamBuffers[j] = kData->param.ranges[j].def;
  447. // ----------------------
  448. j = FluidSynthReverbRoomSize;
  449. kData->param.data[j].index = j;
  450. kData->param.data[j].rindex = j;
  451. kData->param.data[j].type = PARAMETER_INPUT;
  452. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE;
  453. kData->param.data[j].midiChannel = 0;
  454. kData->param.data[j].midiCC = -1;
  455. kData->param.ranges[j].min = 0.0f;
  456. kData->param.ranges[j].max = 1.2f;
  457. kData->param.ranges[j].def = FLUID_REVERB_DEFAULT_ROOMSIZE;
  458. kData->param.ranges[j].step = 0.01f;
  459. kData->param.ranges[j].stepSmall = 0.0001f;
  460. kData->param.ranges[j].stepLarge = 0.1f;
  461. fParamBuffers[j] = kData->param.ranges[j].def;
  462. // ----------------------
  463. j = FluidSynthReverbDamp;
  464. kData->param.data[j].index = j;
  465. kData->param.data[j].rindex = j;
  466. kData->param.data[j].type = PARAMETER_INPUT;
  467. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE;
  468. kData->param.data[j].midiChannel = 0;
  469. kData->param.data[j].midiCC = -1;
  470. kData->param.ranges[j].min = 0.0f;
  471. kData->param.ranges[j].max = 1.0f;
  472. kData->param.ranges[j].def = FLUID_REVERB_DEFAULT_DAMP;
  473. kData->param.ranges[j].step = 0.01f;
  474. kData->param.ranges[j].stepSmall = 0.0001f;
  475. kData->param.ranges[j].stepLarge = 0.1f;
  476. fParamBuffers[j] = kData->param.ranges[j].def;
  477. // ----------------------
  478. j = FluidSynthReverbLevel;
  479. kData->param.data[j].index = j;
  480. kData->param.data[j].rindex = j;
  481. kData->param.data[j].type = PARAMETER_INPUT;
  482. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE;
  483. kData->param.data[j].midiChannel = 0;
  484. kData->param.data[j].midiCC = MIDI_CONTROL_REVERB_SEND_LEVEL;
  485. kData->param.ranges[j].min = 0.0f;
  486. kData->param.ranges[j].max = 1.0f;
  487. kData->param.ranges[j].def = FLUID_REVERB_DEFAULT_LEVEL;
  488. kData->param.ranges[j].step = 0.01f;
  489. kData->param.ranges[j].stepSmall = 0.0001f;
  490. kData->param.ranges[j].stepLarge = 0.1f;
  491. fParamBuffers[j] = kData->param.ranges[j].def;
  492. // ----------------------
  493. j = FluidSynthReverbWidth;
  494. kData->param.data[j].index = j;
  495. kData->param.data[j].rindex = j;
  496. kData->param.data[j].type = PARAMETER_INPUT;
  497. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE;
  498. kData->param.data[j].midiChannel = 0;
  499. kData->param.data[j].midiCC = -1;
  500. kData->param.ranges[j].min = 0.0f;
  501. kData->param.ranges[j].max = 10.0f; // should be 100, but that sounds too much
  502. kData->param.ranges[j].def = FLUID_REVERB_DEFAULT_WIDTH;
  503. kData->param.ranges[j].step = 0.01f;
  504. kData->param.ranges[j].stepSmall = 0.0001f;
  505. kData->param.ranges[j].stepLarge = 0.1f;
  506. fParamBuffers[j] = kData->param.ranges[j].def;
  507. // ----------------------
  508. j = FluidSynthChorusOnOff;
  509. kData->param.data[j].index = j;
  510. kData->param.data[j].rindex = j;
  511. kData->param.data[j].type = PARAMETER_INPUT;
  512. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_BOOLEAN;
  513. kData->param.data[j].midiChannel = 0;
  514. kData->param.data[j].midiCC = -1;
  515. kData->param.ranges[j].min = 0.0f;
  516. kData->param.ranges[j].max = 1.0f;
  517. kData->param.ranges[j].def = 0.0f; // off
  518. kData->param.ranges[j].step = 1.0f;
  519. kData->param.ranges[j].stepSmall = 1.0f;
  520. kData->param.ranges[j].stepLarge = 1.0f;
  521. fParamBuffers[j] = kData->param.ranges[j].def;
  522. // ----------------------
  523. j = FluidSynthChorusNr;
  524. kData->param.data[j].index = j;
  525. kData->param.data[j].rindex = j;
  526. kData->param.data[j].type = PARAMETER_INPUT;
  527. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_INTEGER;
  528. kData->param.data[j].midiChannel = 0;
  529. kData->param.data[j].midiCC = -1;
  530. kData->param.ranges[j].min = 0.0f;
  531. kData->param.ranges[j].max = 99.0f;
  532. kData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_N;
  533. kData->param.ranges[j].step = 1.0f;
  534. kData->param.ranges[j].stepSmall = 1.0f;
  535. kData->param.ranges[j].stepLarge = 10.0f;
  536. fParamBuffers[j] = kData->param.ranges[j].def;
  537. // ----------------------
  538. j = FluidSynthChorusLevel;
  539. kData->param.data[j].index = j;
  540. kData->param.data[j].rindex = j;
  541. kData->param.data[j].type = PARAMETER_INPUT;
  542. kData->param.data[j].hints = PARAMETER_IS_ENABLED;
  543. kData->param.data[j].midiChannel = 0;
  544. kData->param.data[j].midiCC = 0; //MIDI_CONTROL_CHORUS_SEND_LEVEL;
  545. kData->param.ranges[j].min = 0.0f;
  546. kData->param.ranges[j].max = 10.0f;
  547. kData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_LEVEL;
  548. kData->param.ranges[j].step = 0.01f;
  549. kData->param.ranges[j].stepSmall = 0.0001f;
  550. kData->param.ranges[j].stepLarge = 0.1f;
  551. fParamBuffers[j] = kData->param.ranges[j].def;
  552. // ----------------------
  553. j = FluidSynthChorusSpeedHz;
  554. kData->param.data[j].index = j;
  555. kData->param.data[j].rindex = j;
  556. kData->param.data[j].type = PARAMETER_INPUT;
  557. kData->param.data[j].hints = PARAMETER_IS_ENABLED;
  558. kData->param.data[j].midiChannel = 0;
  559. kData->param.data[j].midiCC = -1;
  560. kData->param.ranges[j].min = 0.29f;
  561. kData->param.ranges[j].max = 5.0f;
  562. kData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_SPEED;
  563. kData->param.ranges[j].step = 0.01f;
  564. kData->param.ranges[j].stepSmall = 0.0001f;
  565. kData->param.ranges[j].stepLarge = 0.1f;
  566. fParamBuffers[j] = kData->param.ranges[j].def;
  567. // ----------------------
  568. j = FluidSynthChorusDepthMs;
  569. kData->param.data[j].index = j;
  570. kData->param.data[j].rindex = j;
  571. kData->param.data[j].type = PARAMETER_INPUT;
  572. kData->param.data[j].hints = PARAMETER_IS_ENABLED;
  573. kData->param.data[j].midiChannel = 0;
  574. kData->param.data[j].midiCC = -1;
  575. kData->param.ranges[j].min = 0.0f;
  576. kData->param.ranges[j].max = 2048000.0 / kData->engine->getSampleRate();
  577. kData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_DEPTH;
  578. kData->param.ranges[j].step = 0.01f;
  579. kData->param.ranges[j].stepSmall = 0.0001f;
  580. kData->param.ranges[j].stepLarge = 0.1f;
  581. fParamBuffers[j] = kData->param.ranges[j].def;
  582. // ----------------------
  583. j = FluidSynthChorusType;
  584. kData->param.data[j].index = j;
  585. kData->param.data[j].rindex = j;
  586. kData->param.data[j].type = PARAMETER_INPUT;
  587. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_INTEGER | PARAMETER_USES_SCALEPOINTS;
  588. kData->param.data[j].midiChannel = 0;
  589. kData->param.data[j].midiCC = -1;
  590. kData->param.ranges[j].min = FLUID_CHORUS_MOD_SINE;
  591. kData->param.ranges[j].max = FLUID_CHORUS_MOD_TRIANGLE;
  592. kData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_TYPE;
  593. kData->param.ranges[j].step = 1.0f;
  594. kData->param.ranges[j].stepSmall = 1.0f;
  595. kData->param.ranges[j].stepLarge = 1.0f;
  596. fParamBuffers[j] = kData->param.ranges[j].def;
  597. // ----------------------
  598. j = FluidSynthPolyphony;
  599. kData->param.data[j].index = j;
  600. kData->param.data[j].rindex = j;
  601. kData->param.data[j].type = PARAMETER_INPUT;
  602. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_INTEGER;
  603. kData->param.data[j].midiChannel = 0;
  604. kData->param.data[j].midiCC = -1;
  605. kData->param.ranges[j].min = 1.0f;
  606. kData->param.ranges[j].max = 512.0f; // max theoric is 65535
  607. kData->param.ranges[j].def = fluid_synth_get_polyphony(fSynth);
  608. kData->param.ranges[j].step = 1.0f;
  609. kData->param.ranges[j].stepSmall = 1.0f;
  610. kData->param.ranges[j].stepLarge = 10.0f;
  611. fParamBuffers[j] = kData->param.ranges[j].def;
  612. // ----------------------
  613. j = FluidSynthInterpolation;
  614. kData->param.data[j].index = j;
  615. kData->param.data[j].rindex = j;
  616. kData->param.data[j].type = PARAMETER_INPUT;
  617. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_INTEGER | PARAMETER_USES_SCALEPOINTS;
  618. kData->param.data[j].midiChannel = 0;
  619. kData->param.data[j].midiCC = -1;
  620. kData->param.ranges[j].min = FLUID_INTERP_NONE;
  621. kData->param.ranges[j].max = FLUID_INTERP_HIGHEST;
  622. kData->param.ranges[j].def = FLUID_INTERP_DEFAULT;
  623. kData->param.ranges[j].step = 1.0f;
  624. kData->param.ranges[j].stepSmall = 1.0f;
  625. kData->param.ranges[j].stepLarge = 1.0f;
  626. fParamBuffers[j] = kData->param.ranges[j].def;
  627. // ----------------------
  628. j = FluidSynthVoiceCount;
  629. kData->param.data[j].index = j;
  630. kData->param.data[j].rindex = j;
  631. kData->param.data[j].type = PARAMETER_OUTPUT;
  632. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE | PARAMETER_IS_INTEGER;
  633. kData->param.data[j].midiChannel = 0;
  634. kData->param.data[j].midiCC = -1;
  635. kData->param.ranges[j].min = 0.0f;
  636. kData->param.ranges[j].max = 65535.0f;
  637. kData->param.ranges[j].def = 0.0f;
  638. kData->param.ranges[j].step = 1.0f;
  639. kData->param.ranges[j].stepSmall = 1.0f;
  640. kData->param.ranges[j].stepLarge = 1.0f;
  641. fParamBuffers[j] = kData->param.ranges[j].def;
  642. // ---------------------------------------
  643. // plugin checks
  644. fHints &= ~(PLUGIN_IS_SYNTH | PLUGIN_USES_CHUNKS | PLUGIN_CAN_DRYWET | PLUGIN_CAN_VOLUME | PLUGIN_CAN_BALANCE | PLUGIN_CAN_FORCE_STEREO);
  645. fHints |= PLUGIN_IS_SYNTH;
  646. fHints |= PLUGIN_CAN_VOLUME;
  647. fHints |= PLUGIN_CAN_BALANCE;
  648. fHints |= PLUGIN_CAN_FORCE_STEREO;
  649. // plugin options
  650. kData->availOptions &= ~(PLUGIN_OPTION_FIXED_BUFFER | PLUGIN_OPTION_SELF_AUTOMATION | PLUGIN_OPTION_SEND_ALL_SOUND_OFF | PLUGIN_OPTION_SEND_NOTE_AFTERTOUCH | PLUGIN_OPTION_SEND_PITCHBEND);
  651. // always available if needed
  652. kData->availOptions |= PLUGIN_OPTION_SELF_AUTOMATION;
  653. kData->availOptions |= PLUGIN_OPTION_SEND_ALL_SOUND_OFF;
  654. kData->availOptions |= PLUGIN_OPTION_SEND_NOTE_AFTERTOUCH;
  655. kData->availOptions |= PLUGIN_OPTION_SEND_PITCHBEND;
  656. bufferSizeChanged(kData->engine->getBufferSize());
  657. reloadPrograms(true);
  658. kData->client->activate();
  659. carla_debug("FluidSynthPlugin::reload() - end");
  660. }
  661. void reloadPrograms(const bool init)
  662. {
  663. carla_debug("FluidSynthPlugin::reloadPrograms(%s)", bool2str(init));
  664. // Delete old programs
  665. kData->midiprog.clear();
  666. // Query new programs
  667. uint32_t count = 0;
  668. fluid_sfont_t* f_sfont;
  669. fluid_preset_t f_preset;
  670. bool hasDrums = false;
  671. f_sfont = fluid_synth_get_sfont_by_id(fSynth, fSynthId);
  672. // initial check to know how much midi-programs we have
  673. f_sfont->iteration_start(f_sfont);
  674. while (f_sfont->iteration_next(f_sfont, &f_preset))
  675. count += 1;
  676. // soundfonts must always have at least 1 midi-program
  677. CARLA_ASSERT(count > 0);
  678. if (count == 0)
  679. return;
  680. kData->midiprog.createNew(count);
  681. // Update data
  682. uint32_t i = 0;
  683. f_sfont->iteration_start(f_sfont);
  684. while (f_sfont->iteration_next(f_sfont, &f_preset))
  685. {
  686. CARLA_ASSERT(i < kData->midiprog.count);
  687. kData->midiprog.data[i].bank = f_preset.get_banknum(&f_preset);
  688. kData->midiprog.data[i].program = f_preset.get_num(&f_preset);
  689. kData->midiprog.data[i].name = carla_strdup(f_preset.get_name(&f_preset));
  690. if (kData->midiprog.data[i].bank == 128)
  691. hasDrums = true;
  692. i++;
  693. }
  694. //f_sfont->free(f_sfont);
  695. // Update OSC Names
  696. if (kData->engine->isOscControlRegistered())
  697. {
  698. kData->engine->osc_send_control_set_midi_program_count(fId, kData->midiprog.count);
  699. for (i=0; i < kData->midiprog.count; i++)
  700. kData->engine->osc_send_control_set_midi_program_data(fId, i, kData->midiprog.data[i].bank, kData->midiprog.data[i].program, kData->midiprog.data[i].name);
  701. }
  702. if (init)
  703. {
  704. fluid_synth_program_reset(fSynth);
  705. // select first program, or 128 for ch10
  706. for (i=0; i < 16 && i != 9; i++)
  707. {
  708. fluid_synth_program_select(fSynth, i, fSynthId, kData->midiprog.data[0].bank, kData->midiprog.data[0].program);
  709. #ifdef FLUIDSYNTH_VERSION_NEW_API
  710. fluid_synth_set_channel_type(fSynth, i, CHANNEL_TYPE_MELODIC);
  711. #endif
  712. }
  713. if (hasDrums)
  714. {
  715. fluid_synth_program_select(fSynth, 9, fSynthId, 128, 0);
  716. #ifdef FLUIDSYNTH_VERSION_NEW_API
  717. fluid_synth_set_channel_type(fSynth, 9, CHANNEL_TYPE_DRUM);
  718. #endif
  719. }
  720. else
  721. {
  722. fluid_synth_program_select(fSynth, 9, fSynthId, kData->midiprog.data[0].bank, kData->midiprog.data[0].program);
  723. #ifdef FLUIDSYNTH_VERSION_NEW_API
  724. fluid_synth_set_channel_type(fSynth, 9, CHANNEL_TYPE_MELODIC);
  725. #endif
  726. }
  727. setMidiProgram(0, false, false, false, true);
  728. }
  729. else
  730. {
  731. kData->engine->callback(CALLBACK_RELOAD_PROGRAMS, fId, 0, 0, 0.0f, nullptr);
  732. }
  733. }
  734. // -------------------------------------------------------------------
  735. // Plugin processing
  736. void process(float** const, float** const outBuffer, const uint32_t frames)
  737. {
  738. uint32_t i, k;
  739. // --------------------------------------------------------------------------------------------------------
  740. // Check if active
  741. if (! kData->active)
  742. {
  743. // disable any output sound
  744. for (i=0; i < kData->audioOut.count; i++)
  745. carla_zeroFloat(outBuffer[i], frames);
  746. kData->activeBefore = kData->active;
  747. return;
  748. }
  749. // --------------------------------------------------------------------------------------------------------
  750. // Check if active before
  751. if (! kData->activeBefore)
  752. {
  753. for (int c=0; c < MAX_MIDI_CHANNELS; c++)
  754. {
  755. #ifdef FLUIDSYNTH_VERSION_NEW_API
  756. fluid_synth_all_notes_off(fSynth, c);
  757. fluid_synth_all_sounds_off(fSynth, c);
  758. #else
  759. fluid_synth_cc(f_synth, c, MIDI_CONTROL_ALL_SOUND_OFF, 0);
  760. fluid_synth_cc(f_synth, c, MIDI_CONTROL_ALL_NOTES_OFF, 0);
  761. #endif
  762. }
  763. }
  764. // --------------------------------------------------------------------------------------------------------
  765. // Event Input and Processing
  766. else
  767. {
  768. // ----------------------------------------------------------------------------------------------------
  769. // MIDI Input (External)
  770. if (kData->extNotes.mutex.tryLock())
  771. {
  772. while (! kData->extNotes.data.isEmpty())
  773. {
  774. const ExternalMidiNote& note = kData->extNotes.data.getFirst(true);
  775. CARLA_ASSERT(note.channel >= 0);
  776. if (note.velo > 0)
  777. fluid_synth_noteon(fSynth, note.channel, note.note, note.velo);
  778. else
  779. fluid_synth_noteoff(fSynth,note.channel, note.note);
  780. }
  781. kData->extNotes.mutex.unlock();
  782. } // End of MIDI Input (External)
  783. // ----------------------------------------------------------------------------------------------------
  784. // Event Input (System)
  785. bool allNotesOffSent = false;
  786. uint32_t time, nEvents = kData->event.portIn->getEventCount();
  787. uint32_t timeOffset = 0;
  788. uint32_t nextBankIds[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 128, 0, 0, 0, 0, 0, 0 };
  789. if (kData->midiprog.current >= 0 && kData->midiprog.count > 0 && kData->ctrlChannel >= 0 && kData->ctrlChannel < 16)
  790. nextBankIds[kData->ctrlChannel] = kData->midiprog.data[kData->midiprog.current].bank;
  791. for (i=0; i < nEvents; i++)
  792. {
  793. const EngineEvent& event = kData->event.portIn->getEvent(i);
  794. time = event.time;
  795. if (time >= frames)
  796. continue;
  797. CARLA_ASSERT_INT2(time >= timeOffset, time, timeOffset);
  798. if (time > timeOffset)
  799. {
  800. if (kUses16Outs)
  801. processSingle(outBuffer, time - timeOffset, timeOffset);
  802. else
  803. fluid_synth_write_float(fSynth, time - timeOffset, outBuffer[0] + timeOffset, 0, 1, outBuffer[1] + timeOffset, 0, 1);
  804. timeOffset = time;
  805. }
  806. // Control change
  807. switch (event.type)
  808. {
  809. case kEngineEventTypeNull:
  810. break;
  811. case kEngineEventTypeControl:
  812. {
  813. const EngineControlEvent& ctrlEvent = event.ctrl;
  814. switch (ctrlEvent.type)
  815. {
  816. case kEngineControlEventTypeNull:
  817. break;
  818. case kEngineControlEventTypeParameter:
  819. {
  820. // Control backend stuff
  821. if (event.channel == kData->ctrlChannel)
  822. {
  823. double value;
  824. if (MIDI_IS_CONTROL_BREATH_CONTROLLER(ctrlEvent.param) && (fHints & PLUGIN_CAN_DRYWET) > 0)
  825. {
  826. value = ctrlEvent.value;
  827. setDryWet(value, false, false);
  828. postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_DRYWET, 0, value);
  829. continue;
  830. }
  831. if (MIDI_IS_CONTROL_CHANNEL_VOLUME(ctrlEvent.param) && (fHints & PLUGIN_CAN_VOLUME) > 0)
  832. {
  833. value = ctrlEvent.value*127/100;
  834. setVolume(value, false, false);
  835. postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_VOLUME, 0, value);
  836. continue;
  837. }
  838. if (MIDI_IS_CONTROL_BALANCE(ctrlEvent.param) && (fHints & PLUGIN_CAN_BALANCE) > 0)
  839. {
  840. double left, right;
  841. value = ctrlEvent.value/0.5 - 1.0;
  842. if (value < 0.0)
  843. {
  844. left = -1.0;
  845. right = (value*2)+1.0;
  846. }
  847. else if (value > 0.0)
  848. {
  849. left = (value*2)-1.0;
  850. right = 1.0;
  851. }
  852. else
  853. {
  854. left = -1.0;
  855. right = 1.0;
  856. }
  857. setBalanceLeft(left, false, false);
  858. setBalanceRight(right, false, false);
  859. postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_BALANCE_LEFT, 0, left);
  860. postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_BALANCE_RIGHT, 0, right);
  861. continue;
  862. }
  863. }
  864. // Control plugin parameters
  865. for (k=0; k < kData->param.count; k++)
  866. {
  867. if (kData->param.data[k].midiChannel != event.channel)
  868. continue;
  869. if (kData->param.data[k].midiCC != ctrlEvent.param)
  870. continue;
  871. if (kData->param.data[k].type != PARAMETER_INPUT)
  872. continue;
  873. if ((kData->param.data[k].hints & PARAMETER_IS_AUTOMABLE) == 0)
  874. continue;
  875. double value;
  876. if (kData->param.data[k].hints & PARAMETER_IS_BOOLEAN)
  877. {
  878. value = (ctrlEvent.value < 0.5) ? kData->param.ranges[k].min : kData->param.ranges[k].max;
  879. }
  880. else
  881. {
  882. // FIXME - ranges call for this
  883. value = ctrlEvent.value * (kData->param.ranges[k].max - kData->param.ranges[k].min) + kData->param.ranges[k].min;
  884. if (kData->param.data[k].hints & PARAMETER_IS_INTEGER)
  885. value = std::rint(value);
  886. }
  887. setParameterValue(k, value, false, false, false);
  888. postponeRtEvent(kPluginPostRtEventParameterChange, k, 0, value);
  889. }
  890. break;
  891. }
  892. case kEngineControlEventTypeMidiBank:
  893. if (event.channel < 16)
  894. nextBankIds[event.channel] = ctrlEvent.param;
  895. break;
  896. case kEngineControlEventTypeMidiProgram:
  897. if (event.channel < 16)
  898. {
  899. const uint32_t bankId = nextBankIds[event.channel];
  900. const uint32_t progId = ctrlEvent.param;
  901. for (k=0; k < kData->midiprog.count; k++)
  902. {
  903. if (kData->midiprog.data[k].bank == bankId && kData->midiprog.data[k].program == progId)
  904. {
  905. if (event.channel == kData->ctrlChannel)
  906. {
  907. setMidiProgram(k, false, false, false, false);
  908. postponeRtEvent(kPluginPostRtEventMidiProgramChange, k, 0, 0.0);
  909. }
  910. else
  911. fluid_synth_program_select(fSynth, event.channel, fSynthId, bankId, progId);
  912. break;
  913. }
  914. }
  915. }
  916. break;
  917. case kEngineControlEventTypeAllSoundOff:
  918. if (event.channel == kData->ctrlChannel)
  919. {
  920. if (! allNotesOffSent)
  921. sendMidiAllNotesOff();
  922. postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_ACTIVE, 0, 0.0);
  923. postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_ACTIVE, 0, 1.0);
  924. allNotesOffSent = true;
  925. }
  926. break;
  927. case kEngineControlEventTypeAllNotesOff:
  928. if (event.channel == kData->ctrlChannel)
  929. {
  930. if (! allNotesOffSent)
  931. sendMidiAllNotesOff();
  932. allNotesOffSent = true;
  933. }
  934. break;
  935. }
  936. break;
  937. }
  938. case kEngineEventTypeMidi:
  939. {
  940. const EngineMidiEvent& midiEvent = event.midi;
  941. uint8_t status = MIDI_GET_STATUS_FROM_DATA(midiEvent.data);
  942. uint8_t channel = event.channel;
  943. // Fix bad note-off
  944. if (MIDI_IS_STATUS_NOTE_ON(status) && midiEvent.data[2] == 0)
  945. status -= 0x10;
  946. if (MIDI_IS_STATUS_NOTE_OFF(status))
  947. {
  948. const uint8_t note = midiEvent.data[1];
  949. fluid_synth_noteoff(fSynth, channel, note);
  950. postponeRtEvent(kPluginPostRtEventNoteOff, channel, note, 0.0);
  951. }
  952. else if (MIDI_IS_STATUS_NOTE_ON(status))
  953. {
  954. const uint8_t note = midiEvent.data[1];
  955. const uint8_t velo = midiEvent.data[2];
  956. fluid_synth_noteon(fSynth, channel, note, velo);
  957. postponeRtEvent(kPluginPostRtEventNoteOn, channel, note, velo);
  958. }
  959. else if (MIDI_IS_STATUS_POLYPHONIC_AFTERTOUCH(status))
  960. {
  961. const uint8_t note = midiEvent.data[1];
  962. const uint8_t pressure = midiEvent.data[2];
  963. // TODO, not in fluidsynth API?
  964. continue;
  965. // unused
  966. (void)note;
  967. (void)pressure;
  968. }
  969. else if (MIDI_IS_STATUS_CONTROL_CHANGE(status) && (fHints & PLUGIN_OPTION_SELF_AUTOMATION) != 0)
  970. {
  971. const uint8_t control = midiEvent.data[1];
  972. const uint8_t value = midiEvent.data[2];
  973. fluid_synth_cc(fSynth, channel, control, value);
  974. }
  975. else if (MIDI_IS_STATUS_AFTERTOUCH(status))
  976. {
  977. const uint8_t pressure = midiEvent.data[1];
  978. fluid_synth_channel_pressure(fSynth, channel, pressure);;
  979. }
  980. else if (MIDI_IS_STATUS_PITCH_WHEEL_CONTROL(status))
  981. {
  982. const uint8_t lsb = midiEvent.data[1];
  983. const uint8_t msb = midiEvent.data[2];
  984. fluid_synth_pitch_bend(fSynth, channel, (msb << 7) | lsb);
  985. }
  986. else
  987. continue;
  988. break;
  989. }
  990. }
  991. }
  992. kData->postRtEvents.trySplice();
  993. if (frames > timeOffset)
  994. {
  995. if (kUses16Outs)
  996. processSingle(outBuffer, frames - timeOffset, timeOffset);
  997. else
  998. fluid_synth_write_float(fSynth, frames - timeOffset, outBuffer[0] + timeOffset, 0, 1, outBuffer[1] + timeOffset, 0, 1);
  999. }
  1000. } // End of Event Input and Processing
  1001. CARLA_PROCESS_CONTINUE_CHECK;
  1002. // --------------------------------------------------------------------------------------------------------
  1003. // Post-processing (volume and balance)
  1004. {
  1005. const bool doVolume = (fHints & PLUGIN_CAN_VOLUME) > 0 && kData->postProc.volume != 1.0f;
  1006. const bool doBalance = (fHints & PLUGIN_CAN_BALANCE) > 0 && (kData->postProc.balanceLeft != -1.0f || kData->postProc.balanceRight != 1.0f);
  1007. float oldBufLeft[doBalance ? frames : 1];
  1008. for (i=0; i < kData->audioOut.count; i++)
  1009. {
  1010. // Balance
  1011. if (doBalance)
  1012. {
  1013. if (i % 2 == 0)
  1014. carla_copyFloat(oldBufLeft, outBuffer[i], frames);
  1015. float balRangeL = (kData->postProc.balanceLeft + 1.0f)/2.0f;
  1016. float balRangeR = (kData->postProc.balanceRight + 1.0f)/2.0f;
  1017. for (k=0; k < frames; k++)
  1018. {
  1019. if (i % 2 == 0)
  1020. {
  1021. // left
  1022. outBuffer[i][k] = oldBufLeft[k] * (1.0f - balRangeL);
  1023. outBuffer[i][k] += outBuffer[i+1][k] * (1.0f - balRangeR);
  1024. }
  1025. else
  1026. {
  1027. // right
  1028. outBuffer[i][k] = outBuffer[i][k] * balRangeR;
  1029. outBuffer[i][k] += oldBufLeft[k] * balRangeL;
  1030. }
  1031. }
  1032. }
  1033. // Volume
  1034. if (doVolume)
  1035. {
  1036. for (k=0; k < frames; k++)
  1037. outBuffer[i][k] *= kData->postProc.volume;
  1038. }
  1039. }
  1040. } // End of Post-processing
  1041. CARLA_PROCESS_CONTINUE_CHECK;
  1042. // --------------------------------------------------------------------------------------------------------
  1043. // Control Output
  1044. {
  1045. k = FluidSynthVoiceCount;
  1046. fParamBuffers[k] = fluid_synth_get_active_voice_count(fSynth);
  1047. kData->param.ranges[k].fixValue(fParamBuffers[k]);
  1048. if (kData->param.data[k].midiCC > 0)
  1049. {
  1050. double value = kData->param.ranges[k].normalizeValue(fParamBuffers[k]);
  1051. kData->event.portOut->writeControlEvent(0, kData->param.data[k].midiChannel, kEngineControlEventTypeParameter, kData->param.data[k].midiCC, value);
  1052. }
  1053. } // End of Control Output
  1054. // --------------------------------------------------------------------------------------------------------
  1055. kData->activeBefore = kData->active;
  1056. }
  1057. void processSingle(float** const outBuffer, const uint32_t frames, const uint32_t timeOffset)
  1058. {
  1059. for (uint32_t i=0; i < kData->audioOut.count; i++)
  1060. carla_zeroFloat(fAudio16Buffers[i], frames);
  1061. fluid_synth_process(fSynth, frames, 0, nullptr, kData->audioOut.count, fAudio16Buffers);
  1062. for (uint32_t i=0, k; i < kData->audioOut.count; i++)
  1063. {
  1064. for (k=0; k < frames; k++)
  1065. outBuffer[i][k+timeOffset] = fAudio16Buffers[i][k];
  1066. }
  1067. }
  1068. void bufferSizeChanged(const uint32_t newBufferSize)
  1069. {
  1070. if (! kUses16Outs)
  1071. return;
  1072. for (uint32_t i=0; i < kData->audioOut.count; i++)
  1073. {
  1074. if (fAudio16Buffers[i] != nullptr)
  1075. delete[] fAudio16Buffers[i];
  1076. fAudio16Buffers[i] = new float[newBufferSize];
  1077. }
  1078. }
  1079. // -------------------------------------------------------------------
  1080. // Cleanup
  1081. void deleteBuffers()
  1082. {
  1083. carla_debug("FluidSynthPlugin::deleteBuffers() - start");
  1084. if (fAudio16Buffers != nullptr)
  1085. {
  1086. for (uint32_t i=0; i < kData->audioOut.count; i++)
  1087. {
  1088. if (fAudio16Buffers[i] != nullptr)
  1089. {
  1090. delete[] fAudio16Buffers[i];
  1091. fAudio16Buffers[i] = nullptr;
  1092. }
  1093. }
  1094. delete[] fAudio16Buffers;
  1095. fAudio16Buffers = nullptr;
  1096. }
  1097. CarlaPlugin::deleteBuffers();
  1098. carla_debug("FluidSynthPlugin::deleteBuffers() - end");
  1099. }
  1100. // -------------------------------------------------------------------
  1101. bool init(const char* const filename, const char* const name, const char* const label)
  1102. {
  1103. CARLA_ASSERT(fSynth != nullptr);
  1104. CARLA_ASSERT(filename != nullptr);
  1105. CARLA_ASSERT(label != nullptr);
  1106. // ---------------------------------------------------------------
  1107. // open soundfont
  1108. fSynthId = fluid_synth_sfload(fSynth, filename, 0);
  1109. if (fSynthId < 0)
  1110. {
  1111. kData->engine->setLastError("Failed to load SoundFont file");
  1112. return false;
  1113. }
  1114. // ---------------------------------------------------------------
  1115. // get info
  1116. fFilename = filename;
  1117. fLabel = label;
  1118. if (name != nullptr)
  1119. fName = kData->engine->getNewUniquePluginName(name);
  1120. else
  1121. fName = kData->engine->getNewUniquePluginName(label);
  1122. // ---------------------------------------------------------------
  1123. // register client
  1124. kData->client = kData->engine->addClient(this);
  1125. if (kData->client == nullptr || ! kData->client->isOk())
  1126. {
  1127. kData->engine->setLastError("Failed to register plugin client");
  1128. return false;
  1129. }
  1130. return true;
  1131. }
  1132. private:
  1133. enum FluidSynthInputParameters {
  1134. FluidSynthReverbOnOff = 0,
  1135. FluidSynthReverbRoomSize = 1,
  1136. FluidSynthReverbDamp = 2,
  1137. FluidSynthReverbLevel = 3,
  1138. FluidSynthReverbWidth = 4,
  1139. FluidSynthChorusOnOff = 5,
  1140. FluidSynthChorusNr = 6,
  1141. FluidSynthChorusLevel = 7,
  1142. FluidSynthChorusSpeedHz = 8,
  1143. FluidSynthChorusDepthMs = 9,
  1144. FluidSynthChorusType = 10,
  1145. FluidSynthPolyphony = 11,
  1146. FluidSynthInterpolation = 12,
  1147. FluidSynthVoiceCount = 13,
  1148. FluidSynthParametersMax = 14
  1149. };
  1150. const bool kUses16Outs;
  1151. CarlaString fLabel;
  1152. fluid_settings_t* fSettings;
  1153. fluid_synth_t* fSynth;
  1154. int fSynthId;
  1155. float** fAudio16Buffers;
  1156. double fParamBuffers[FluidSynthParametersMax];
  1157. };
  1158. /**@}*/
  1159. CARLA_BACKEND_END_NAMESPACE
  1160. #else // WANT_FLUIDSYNTH
  1161. # warning fluidsynth not available (no SF2 support)
  1162. #endif
  1163. CARLA_BACKEND_START_NAMESPACE
  1164. CarlaPlugin* CarlaPlugin::newSF2(const Initializer& init, const bool use16Outs)
  1165. {
  1166. carla_debug("CarlaPlugin::newSF2({%p, \"%s\", \"%s\", \"%s\"}, %s)", init.engine, init.filename, init.name, init.label, bool2str(use16Outs));
  1167. #ifdef WANT_FLUIDSYNTH
  1168. if (! fluid_is_soundfont(init.filename))
  1169. {
  1170. init.engine->setLastError("Requested file is not a valid SoundFont");
  1171. return nullptr;
  1172. }
  1173. if (init.engine->getProccessMode() == PROCESS_MODE_CONTINUOUS_RACK && use16Outs)
  1174. {
  1175. init.engine->setLastError("Carla's rack mode can only work with Stereo modules, please choose the 2-channel only SoundFont version");
  1176. return nullptr;
  1177. }
  1178. FluidSynthPlugin* const plugin = new FluidSynthPlugin(init.engine, init.id, use16Outs);
  1179. if (! plugin->init(init.filename, init.name, init.label))
  1180. {
  1181. delete plugin;
  1182. return nullptr;
  1183. }
  1184. plugin->reload();
  1185. plugin->registerToOscClient();
  1186. return plugin;
  1187. #else
  1188. init.engine->setLastError("fluidsynth support not available");
  1189. return nullptr;
  1190. // unused
  1191. (void)use16Outs;
  1192. #endif
  1193. }
  1194. CARLA_BACKEND_END_NAMESPACE