Audio plugin host https://kx.studio/carla
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1690 lines
60KB

  1. /*
  2. * Carla FluidSynth Plugin
  3. * Copyright (C) 2011-2013 Filipe Coelho <falktx@falktx.com>
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation; either version 2 of
  8. * the License, or any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * For a full copy of the GNU General Public License see the GPL.txt file
  16. */
  17. #include "CarlaPluginInternal.hpp"
  18. #ifdef WANT_FLUIDSYNTH
  19. #include <fluidsynth.h>
  20. #include <QtCore/QStringList>
  21. #define FLUIDSYNTH_VERSION_NEW_API (FLUIDSYNTH_VERSION_MAJOR >= 1 && FLUIDSYNTH_VERSION_MINOR >= 1 && FLUIDSYNTH_VERSION_MICRO >= 4)
  22. CARLA_BACKEND_START_NAMESPACE
  23. #if 0
  24. }
  25. #endif
  26. #define FLUID_DEFAULT_POLYPHONY 64
  27. class FluidSynthPlugin : public CarlaPlugin
  28. {
  29. public:
  30. FluidSynthPlugin(CarlaEngine* const engine, const unsigned int id, const bool use16Outs)
  31. : CarlaPlugin(engine, id),
  32. kUses16Outs(use16Outs),
  33. fSettings(nullptr),
  34. fSynth(nullptr),
  35. fSynthId(-1),
  36. #ifdef CARLA_PROPER_CPP11_SUPPORT
  37. fAudio16Buffers(nullptr),
  38. fParamBuffers{0.0f},
  39. fCurMidiProgs{0}
  40. #else
  41. fAudio16Buffers(nullptr)
  42. #endif
  43. {
  44. carla_debug("FluidSynthPlugin::FluidSynthPlugin(%p, %i, %s)", engine, id, bool2str(use16Outs));
  45. #ifndef CARLA_PROPER_CPP11_SUPPORT
  46. carla_zeroFloat(fParamBuffers, FluidSynthParametersMax);
  47. carla_fill<int32_t>(fCurMidiProgs, MAX_MIDI_CHANNELS, 0);
  48. #endif
  49. // create settings
  50. fSettings = new_fluid_settings();
  51. CARLA_ASSERT(fSettings != nullptr);
  52. // define settings
  53. fluid_settings_setint(fSettings, "synth.audio-channels", use16Outs ? 16 : 1);
  54. fluid_settings_setint(fSettings, "synth.audio-groups", use16Outs ? 16 : 1);
  55. fluid_settings_setnum(fSettings, "synth.sample-rate", kData->engine->getSampleRate());
  56. fluid_settings_setint(fSettings, "synth.threadsafe-api ", 0);
  57. // create synth
  58. fSynth = new_fluid_synth(fSettings);
  59. CARLA_ASSERT(fSynth != nullptr);
  60. #ifdef FLUIDSYNTH_VERSION_NEW_API
  61. fluid_synth_set_sample_rate(fSynth, kData->engine->getSampleRate());
  62. #endif
  63. // set default values
  64. fluid_synth_set_reverb_on(fSynth, 0);
  65. fluid_synth_set_reverb(fSynth, FLUID_REVERB_DEFAULT_ROOMSIZE, FLUID_REVERB_DEFAULT_DAMP, FLUID_REVERB_DEFAULT_WIDTH, FLUID_REVERB_DEFAULT_LEVEL);
  66. fluid_synth_set_chorus_on(fSynth, 0);
  67. fluid_synth_set_chorus(fSynth, FLUID_CHORUS_DEFAULT_N, FLUID_CHORUS_DEFAULT_LEVEL, FLUID_CHORUS_DEFAULT_SPEED, FLUID_CHORUS_DEFAULT_DEPTH, FLUID_CHORUS_DEFAULT_TYPE);
  68. fluid_synth_set_polyphony(fSynth, FLUID_DEFAULT_POLYPHONY);
  69. fluid_synth_set_gain(fSynth, 1.0f);
  70. for (int i=0; i < MAX_MIDI_CHANNELS; ++i)
  71. fluid_synth_set_interp_method(fSynth, i, FLUID_INTERP_DEFAULT);
  72. }
  73. ~FluidSynthPlugin() override
  74. {
  75. carla_debug("FluidSynthPlugin::~FluidSynthPlugin()");
  76. kData->singleMutex.lock();
  77. kData->masterMutex.lock();
  78. if (kData->active)
  79. {
  80. deactivate();
  81. kData->active = false;
  82. }
  83. delete_fluid_synth(fSynth);
  84. delete_fluid_settings(fSettings);
  85. clearBuffers();
  86. }
  87. // -------------------------------------------------------------------
  88. // Information (base)
  89. PluginType type() const override
  90. {
  91. return PLUGIN_SF2;
  92. }
  93. PluginCategory category() override
  94. {
  95. return PLUGIN_CATEGORY_SYNTH;
  96. }
  97. // -------------------------------------------------------------------
  98. // Information (count)
  99. uint32_t parameterScalePointCount(const uint32_t parameterId) const override
  100. {
  101. CARLA_ASSERT(parameterId < kData->param.count);
  102. switch (parameterId)
  103. {
  104. case FluidSynthChorusType:
  105. return 2;
  106. case FluidSynthInterpolation:
  107. return 4;
  108. default:
  109. return 0;
  110. }
  111. }
  112. // -------------------------------------------------------------------
  113. // Information (current data)
  114. // nothing
  115. // -------------------------------------------------------------------
  116. // Information (per-plugin data)
  117. unsigned int availableOptions() override
  118. {
  119. unsigned int options = 0x0;
  120. options |= PLUGIN_OPTION_MAP_PROGRAM_CHANGES;
  121. options |= PLUGIN_OPTION_SEND_CONTROL_CHANGES;
  122. options |= PLUGIN_OPTION_SEND_CHANNEL_PRESSURE;
  123. options |= PLUGIN_OPTION_SEND_PITCHBEND;
  124. options |= PLUGIN_OPTION_SEND_ALL_SOUND_OFF;
  125. return options;
  126. }
  127. float getParameterValue(const uint32_t parameterId) override
  128. {
  129. CARLA_ASSERT(parameterId < kData->param.count);
  130. return fParamBuffers[parameterId];
  131. }
  132. float getParameterScalePointValue(const uint32_t parameterId, const uint32_t scalePointId) override
  133. {
  134. CARLA_ASSERT(parameterId < kData->param.count);
  135. CARLA_ASSERT(scalePointId < parameterScalePointCount(parameterId));
  136. switch (parameterId)
  137. {
  138. case FluidSynthChorusType:
  139. switch (scalePointId)
  140. {
  141. case 0:
  142. return FLUID_CHORUS_MOD_SINE;
  143. case 1:
  144. return FLUID_CHORUS_MOD_TRIANGLE;
  145. default:
  146. return FLUID_CHORUS_DEFAULT_TYPE;
  147. }
  148. case FluidSynthInterpolation:
  149. switch (scalePointId)
  150. {
  151. case 0:
  152. return FLUID_INTERP_NONE;
  153. case 1:
  154. return FLUID_INTERP_LINEAR;
  155. case 2:
  156. return FLUID_INTERP_4THORDER;
  157. case 3:
  158. return FLUID_INTERP_7THORDER;
  159. default:
  160. return FLUID_INTERP_DEFAULT;
  161. }
  162. default:
  163. return 0.0f;
  164. }
  165. }
  166. void getLabel(char* const strBuf) override
  167. {
  168. if (fLabel.isNotEmpty())
  169. std::strncpy(strBuf, (const char*)fLabel, STR_MAX);
  170. else
  171. CarlaPlugin::getLabel(strBuf);
  172. }
  173. void getMaker(char* const strBuf) override
  174. {
  175. std::strncpy(strBuf, "FluidSynth SF2 engine", STR_MAX);
  176. }
  177. void getCopyright(char* const strBuf) override
  178. {
  179. std::strncpy(strBuf, "GNU GPL v2+", STR_MAX);
  180. }
  181. void getRealName(char* const strBuf) override
  182. {
  183. getLabel(strBuf);
  184. }
  185. void getParameterName(const uint32_t parameterId, char* const strBuf) override
  186. {
  187. CARLA_ASSERT(parameterId < kData->param.count);
  188. switch (parameterId)
  189. {
  190. case FluidSynthReverbOnOff:
  191. std::strncpy(strBuf, "Reverb On/Off", STR_MAX);
  192. break;
  193. case FluidSynthReverbRoomSize:
  194. std::strncpy(strBuf, "Reverb Room Size", STR_MAX);
  195. break;
  196. case FluidSynthReverbDamp:
  197. std::strncpy(strBuf, "Reverb Damp", STR_MAX);
  198. break;
  199. case FluidSynthReverbLevel:
  200. std::strncpy(strBuf, "Reverb Level", STR_MAX);
  201. break;
  202. case FluidSynthReverbWidth:
  203. std::strncpy(strBuf, "Reverb Width", STR_MAX);
  204. break;
  205. case FluidSynthChorusOnOff:
  206. std::strncpy(strBuf, "Chorus On/Off", STR_MAX);
  207. break;
  208. case FluidSynthChorusNr:
  209. std::strncpy(strBuf, "Chorus Voice Count", STR_MAX);
  210. break;
  211. case FluidSynthChorusLevel:
  212. std::strncpy(strBuf, "Chorus Level", STR_MAX);
  213. break;
  214. case FluidSynthChorusSpeedHz:
  215. std::strncpy(strBuf, "Chorus Speed", STR_MAX);
  216. break;
  217. case FluidSynthChorusDepthMs:
  218. std::strncpy(strBuf, "Chorus Depth", STR_MAX);
  219. break;
  220. case FluidSynthChorusType:
  221. std::strncpy(strBuf, "Chorus Type", STR_MAX);
  222. break;
  223. case FluidSynthPolyphony:
  224. std::strncpy(strBuf, "Polyphony", STR_MAX);
  225. break;
  226. case FluidSynthInterpolation:
  227. std::strncpy(strBuf, "Interpolation", STR_MAX);
  228. break;
  229. case FluidSynthVoiceCount:
  230. std::strncpy(strBuf, "Voice Count", STR_MAX);
  231. break;
  232. default:
  233. CarlaPlugin::getParameterName(parameterId, strBuf);
  234. break;
  235. }
  236. }
  237. void getParameterUnit(const uint32_t parameterId, char* const strBuf) override
  238. {
  239. CARLA_ASSERT(parameterId < kData->param.count);
  240. switch (parameterId)
  241. {
  242. case FluidSynthChorusSpeedHz:
  243. std::strncpy(strBuf, "Hz", STR_MAX);
  244. break;
  245. case FluidSynthChorusDepthMs:
  246. std::strncpy(strBuf, "ms", STR_MAX);
  247. break;
  248. default:
  249. CarlaPlugin::getParameterUnit(parameterId, strBuf);
  250. break;
  251. }
  252. }
  253. void getParameterScalePointLabel(const uint32_t parameterId, const uint32_t scalePointId, char* const strBuf) override
  254. {
  255. CARLA_ASSERT(parameterId < kData->param.count);
  256. CARLA_ASSERT(scalePointId < parameterScalePointCount(parameterId));
  257. switch (parameterId)
  258. {
  259. case FluidSynthChorusType:
  260. switch (scalePointId)
  261. {
  262. case 0:
  263. std::strncpy(strBuf, "Sine wave", STR_MAX);
  264. return;
  265. case 1:
  266. std::strncpy(strBuf, "Triangle wave", STR_MAX);
  267. return;
  268. }
  269. case FluidSynthInterpolation:
  270. switch (scalePointId)
  271. {
  272. case 0:
  273. std::strncpy(strBuf, "None", STR_MAX);
  274. return;
  275. case 1:
  276. std::strncpy(strBuf, "Straight-line", STR_MAX);
  277. return;
  278. case 2:
  279. std::strncpy(strBuf, "Fourth-order", STR_MAX);
  280. return;
  281. case 3:
  282. std::strncpy(strBuf, "Seventh-order", STR_MAX);
  283. return;
  284. }
  285. }
  286. CarlaPlugin::getParameterScalePointLabel(parameterId, scalePointId, strBuf);
  287. }
  288. // -------------------------------------------------------------------
  289. // Set data (state)
  290. void prepareForSave() override
  291. {
  292. CARLA_ASSERT(fSynth != nullptr);
  293. char strBuf[STR_MAX+1];
  294. std::snprintf(strBuf, STR_MAX, "%i:%i:%i:%i:%i:%i:%i:%i:%i:%i:%i:%i:%i:%i:%i:%i", fCurMidiProgs[0], fCurMidiProgs[1], fCurMidiProgs[2], fCurMidiProgs[3],
  295. fCurMidiProgs[4], fCurMidiProgs[5], fCurMidiProgs[6], fCurMidiProgs[7],
  296. fCurMidiProgs[8], fCurMidiProgs[9], fCurMidiProgs[10], fCurMidiProgs[11],
  297. fCurMidiProgs[12], fCurMidiProgs[13], fCurMidiProgs[14], fCurMidiProgs[15]);
  298. CarlaPlugin::setCustomData(CUSTOM_DATA_STRING, "midiPrograms", strBuf, false);
  299. }
  300. // -------------------------------------------------------------------
  301. // Set data (internal stuff)
  302. void setCtrlChannel(const int8_t channel, const bool sendOsc, const bool sendCallback) override
  303. {
  304. if (channel < MAX_MIDI_CHANNELS)
  305. kData->midiprog.current = fCurMidiProgs[channel];
  306. CarlaPlugin::setCtrlChannel(channel, sendOsc, sendCallback);
  307. }
  308. // -------------------------------------------------------------------
  309. // Set data (plugin-specific stuff)
  310. void setParameterValue(const uint32_t parameterId, const float value, const bool sendGui, const bool sendOsc, const bool sendCallback) override
  311. {
  312. CARLA_ASSERT(parameterId < kData->param.count);
  313. const float fixedValue(kData->param.fixValue(parameterId, value));
  314. fParamBuffers[parameterId] = fixedValue;
  315. {
  316. const ScopedSingleProcessLocker spl(this, (sendGui || sendOsc || sendCallback));
  317. switch (parameterId)
  318. {
  319. case FluidSynthReverbOnOff:
  320. fluid_synth_set_reverb_on(fSynth, (fixedValue > 0.5f) ? 1 : 0);
  321. break;
  322. case FluidSynthReverbRoomSize:
  323. case FluidSynthReverbDamp:
  324. case FluidSynthReverbLevel:
  325. case FluidSynthReverbWidth:
  326. fluid_synth_set_reverb(fSynth, fParamBuffers[FluidSynthReverbRoomSize], fParamBuffers[FluidSynthReverbDamp], fParamBuffers[FluidSynthReverbWidth], fParamBuffers[FluidSynthReverbLevel]);
  327. break;
  328. case FluidSynthChorusOnOff:
  329. fluid_synth_set_chorus_on(fSynth, (value > 0.5f) ? 1 : 0);
  330. break;
  331. case FluidSynthChorusNr:
  332. case FluidSynthChorusLevel:
  333. case FluidSynthChorusSpeedHz:
  334. case FluidSynthChorusDepthMs:
  335. case FluidSynthChorusType:
  336. fluid_synth_set_chorus(fSynth, fParamBuffers[FluidSynthChorusNr], fParamBuffers[FluidSynthChorusLevel], fParamBuffers[FluidSynthChorusSpeedHz], fParamBuffers[FluidSynthChorusDepthMs], fParamBuffers[FluidSynthChorusType]);
  337. break;
  338. case FluidSynthPolyphony:
  339. fluid_synth_set_polyphony(fSynth, value);
  340. break;
  341. case FluidSynthInterpolation:
  342. for (int i=0; i < MAX_MIDI_CHANNELS; ++i)
  343. fluid_synth_set_interp_method(fSynth, i, value);
  344. break;
  345. default:
  346. break;
  347. }
  348. }
  349. CarlaPlugin::setParameterValue(parameterId, value, sendGui, sendOsc, sendCallback);
  350. }
  351. void setCustomData(const char* const type, const char* const key, const char* const value, const bool sendGui) override
  352. {
  353. CARLA_ASSERT(fSynth != nullptr);
  354. CARLA_ASSERT(type != nullptr);
  355. CARLA_ASSERT(key != nullptr);
  356. CARLA_ASSERT(value != nullptr);
  357. carla_debug("DssiPlugin::setCustomData(%s, %s, %s, %s)", type, key, value, bool2str(sendGui));
  358. if (type == nullptr)
  359. return carla_stderr2("DssiPlugin::setCustomData(\"%s\", \"%s\", \"%s\", %s) - type is invalid", type, key, value, bool2str(sendGui));
  360. if (std::strcmp(type, CUSTOM_DATA_STRING) != 0)
  361. return carla_stderr2("DssiPlugin::setCustomData(\"%s\", \"%s\", \"%s\", %s) - type is not string", type, key, value, bool2str(sendGui));
  362. if (key == nullptr)
  363. return carla_stderr2("DssiPlugin::setCustomData(\"%s\", \"%s\", \"%s\", %s) - key is null", type, key, value, bool2str(sendGui));
  364. if (std::strcmp(key, "midiPrograms") != 0)
  365. return carla_stderr2("DssiPlugin::setCustomData(\"%s\", \"%s\", \"%s\", %s) - type is not string", type, key, value, bool2str(sendGui));
  366. if (value == nullptr)
  367. return carla_stderr2("DssiPlugin::setCustomData(\"%s\", \"%s\", \"%s\", %s) - value is null", type, key, value, bool2str(sendGui));
  368. QStringList midiProgramList(QString(value).split(":", QString::SkipEmptyParts));
  369. if (midiProgramList.count() == MAX_MIDI_CHANNELS)
  370. {
  371. uint i = 0;
  372. foreach (const QString& midiProg, midiProgramList)
  373. {
  374. bool ok;
  375. uint index = midiProg.toUInt(&ok);
  376. if (ok && index < kData->midiprog.count)
  377. {
  378. const uint32_t bank = kData->midiprog.data[index].bank;
  379. const uint32_t program = kData->midiprog.data[index].program;
  380. fluid_synth_program_select(fSynth, i, fSynthId, bank, program);
  381. fCurMidiProgs[i] = index;
  382. if (kData->ctrlChannel == static_cast<int32_t>(i))
  383. {
  384. kData->midiprog.current = index;
  385. kData->engine->callback(CALLBACK_MIDI_PROGRAM_CHANGED, fId, index, 0, 0.0f, nullptr);
  386. }
  387. }
  388. ++i;
  389. }
  390. }
  391. CarlaPlugin::setCustomData(type, key, value, sendGui);
  392. }
  393. void setMidiProgram(int32_t index, const bool sendGui, const bool sendOsc, const bool sendCallback) override
  394. {
  395. CARLA_ASSERT(fSynth != nullptr);
  396. CARLA_ASSERT(index >= -1 && index < static_cast<int32_t>(kData->midiprog.count));
  397. if (index < -1)
  398. index = -1;
  399. else if (index > static_cast<int32_t>(kData->midiprog.count))
  400. return;
  401. if (kData->ctrlChannel < 0 || kData->ctrlChannel >= MAX_MIDI_CHANNELS)
  402. return;
  403. if (index >= 0)
  404. {
  405. const uint32_t bank = kData->midiprog.data[index].bank;
  406. const uint32_t program = kData->midiprog.data[index].program;
  407. //const ScopedSingleProcessLocker spl(this, (sendGui || sendOsc || sendCallback));
  408. fluid_synth_program_select(fSynth, kData->ctrlChannel, fSynthId, bank, program);
  409. fCurMidiProgs[kData->ctrlChannel] = index;
  410. }
  411. CarlaPlugin::setMidiProgram(index, sendGui, sendOsc, sendCallback);
  412. }
  413. // -------------------------------------------------------------------
  414. // Set gui stuff
  415. // nothing
  416. // -------------------------------------------------------------------
  417. // Plugin state
  418. void reload() override
  419. {
  420. carla_debug("FluidSynthPlugin::reload() - start");
  421. CARLA_ASSERT(kData->engine != nullptr);
  422. CARLA_ASSERT(fSynth != nullptr);
  423. if (kData->engine == nullptr)
  424. return;
  425. if (fSynth == nullptr)
  426. return;
  427. const ProcessMode processMode(kData->engine->getProccessMode());
  428. // Safely disable plugin for reload
  429. const ScopedDisabler sd(this);
  430. if (kData->active)
  431. deactivate();
  432. clearBuffers();
  433. uint32_t aOuts, params, j;
  434. aOuts = kUses16Outs ? 32 : 2;
  435. params = FluidSynthParametersMax;
  436. kData->audioOut.createNew(aOuts);
  437. kData->param.createNew(params);
  438. const int portNameSize = kData->engine->maxPortNameSize();
  439. CarlaString portName;
  440. // ---------------------------------------
  441. // Audio Outputs
  442. if (kUses16Outs)
  443. {
  444. for (j=0; j < 32; ++j)
  445. {
  446. portName.clear();
  447. if (processMode == PROCESS_MODE_SINGLE_CLIENT)
  448. {
  449. portName = fName;
  450. portName += ":";
  451. }
  452. portName += "out-";
  453. if ((j+2)/2 < 9)
  454. portName += "0";
  455. portName += CarlaString((j+2)/2);
  456. if (j % 2 == 0)
  457. portName += "L";
  458. else
  459. portName += "R";
  460. portName.truncate(portNameSize);
  461. kData->audioOut.ports[j].port = (CarlaEngineAudioPort*)kData->client->addPort(kEnginePortTypeAudio, portName, false);
  462. kData->audioOut.ports[j].rindex = j;
  463. }
  464. fAudio16Buffers = new float*[aOuts];
  465. for (j=0; j < aOuts; ++j)
  466. fAudio16Buffers[j] = nullptr;
  467. }
  468. else
  469. {
  470. // out-left
  471. portName.clear();
  472. if (processMode == PROCESS_MODE_SINGLE_CLIENT)
  473. {
  474. portName = fName;
  475. portName += ":";
  476. }
  477. portName += "out-left";
  478. portName.truncate(portNameSize);
  479. kData->audioOut.ports[0].port = (CarlaEngineAudioPort*)kData->client->addPort(kEnginePortTypeAudio, portName, false);
  480. kData->audioOut.ports[0].rindex = 0;
  481. // out-right
  482. portName.clear();
  483. if (processMode == PROCESS_MODE_SINGLE_CLIENT)
  484. {
  485. portName = fName;
  486. portName += ":";
  487. }
  488. portName += "out-right";
  489. portName.truncate(portNameSize);
  490. kData->audioOut.ports[1].port = (CarlaEngineAudioPort*)kData->client->addPort(kEnginePortTypeAudio, portName, false);
  491. kData->audioOut.ports[1].rindex = 1;
  492. }
  493. // ---------------------------------------
  494. // Event Input
  495. {
  496. portName.clear();
  497. if (processMode == PROCESS_MODE_SINGLE_CLIENT)
  498. {
  499. portName = fName;
  500. portName += ":";
  501. }
  502. portName += "event-in";
  503. portName.truncate(portNameSize);
  504. kData->event.portIn = (CarlaEngineEventPort*)kData->client->addPort(kEnginePortTypeEvent, portName, true);
  505. }
  506. // ---------------------------------------
  507. // Event Output
  508. {
  509. portName.clear();
  510. if (processMode == PROCESS_MODE_SINGLE_CLIENT)
  511. {
  512. portName = fName;
  513. portName += ":";
  514. }
  515. portName += "event-out";
  516. portName.truncate(portNameSize);
  517. kData->event.portOut = (CarlaEngineEventPort*)kData->client->addPort(kEnginePortTypeEvent, portName, false);
  518. }
  519. // ----------------------
  520. j = FluidSynthReverbOnOff;
  521. kData->param.data[j].index = j;
  522. kData->param.data[j].rindex = j;
  523. kData->param.data[j].type = PARAMETER_INPUT;
  524. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE | PARAMETER_IS_BOOLEAN;
  525. kData->param.data[j].midiChannel = 0;
  526. kData->param.data[j].midiCC = -1;
  527. kData->param.ranges[j].min = 0.0f;
  528. kData->param.ranges[j].max = 1.0f;
  529. kData->param.ranges[j].def = 0.0f; // off
  530. kData->param.ranges[j].step = 1.0f;
  531. kData->param.ranges[j].stepSmall = 1.0f;
  532. kData->param.ranges[j].stepLarge = 1.0f;
  533. fParamBuffers[j] = kData->param.ranges[j].def;
  534. // ----------------------
  535. j = FluidSynthReverbRoomSize;
  536. kData->param.data[j].index = j;
  537. kData->param.data[j].rindex = j;
  538. kData->param.data[j].type = PARAMETER_INPUT;
  539. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE;
  540. kData->param.data[j].midiChannel = 0;
  541. kData->param.data[j].midiCC = -1;
  542. kData->param.ranges[j].min = 0.0f;
  543. kData->param.ranges[j].max = 1.2f;
  544. kData->param.ranges[j].def = FLUID_REVERB_DEFAULT_ROOMSIZE;
  545. kData->param.ranges[j].step = 0.01f;
  546. kData->param.ranges[j].stepSmall = 0.0001f;
  547. kData->param.ranges[j].stepLarge = 0.1f;
  548. fParamBuffers[j] = kData->param.ranges[j].def;
  549. // ----------------------
  550. j = FluidSynthReverbDamp;
  551. kData->param.data[j].index = j;
  552. kData->param.data[j].rindex = j;
  553. kData->param.data[j].type = PARAMETER_INPUT;
  554. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE;
  555. kData->param.data[j].midiChannel = 0;
  556. kData->param.data[j].midiCC = -1;
  557. kData->param.ranges[j].min = 0.0f;
  558. kData->param.ranges[j].max = 1.0f;
  559. kData->param.ranges[j].def = FLUID_REVERB_DEFAULT_DAMP;
  560. kData->param.ranges[j].step = 0.01f;
  561. kData->param.ranges[j].stepSmall = 0.0001f;
  562. kData->param.ranges[j].stepLarge = 0.1f;
  563. fParamBuffers[j] = kData->param.ranges[j].def;
  564. // ----------------------
  565. j = FluidSynthReverbLevel;
  566. kData->param.data[j].index = j;
  567. kData->param.data[j].rindex = j;
  568. kData->param.data[j].type = PARAMETER_INPUT;
  569. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE;
  570. kData->param.data[j].midiChannel = 0;
  571. kData->param.data[j].midiCC = MIDI_CONTROL_REVERB_SEND_LEVEL;
  572. kData->param.ranges[j].min = 0.0f;
  573. kData->param.ranges[j].max = 1.0f;
  574. kData->param.ranges[j].def = FLUID_REVERB_DEFAULT_LEVEL;
  575. kData->param.ranges[j].step = 0.01f;
  576. kData->param.ranges[j].stepSmall = 0.0001f;
  577. kData->param.ranges[j].stepLarge = 0.1f;
  578. fParamBuffers[j] = kData->param.ranges[j].def;
  579. // ----------------------
  580. j = FluidSynthReverbWidth;
  581. kData->param.data[j].index = j;
  582. kData->param.data[j].rindex = j;
  583. kData->param.data[j].type = PARAMETER_INPUT;
  584. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE;
  585. kData->param.data[j].midiChannel = 0;
  586. kData->param.data[j].midiCC = -1;
  587. kData->param.ranges[j].min = 0.0f;
  588. kData->param.ranges[j].max = 10.0f; // should be 100, but that sounds too much
  589. kData->param.ranges[j].def = FLUID_REVERB_DEFAULT_WIDTH;
  590. kData->param.ranges[j].step = 0.01f;
  591. kData->param.ranges[j].stepSmall = 0.0001f;
  592. kData->param.ranges[j].stepLarge = 0.1f;
  593. fParamBuffers[j] = kData->param.ranges[j].def;
  594. // ----------------------
  595. j = FluidSynthChorusOnOff;
  596. kData->param.data[j].index = j;
  597. kData->param.data[j].rindex = j;
  598. kData->param.data[j].type = PARAMETER_INPUT;
  599. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_BOOLEAN;
  600. kData->param.data[j].midiChannel = 0;
  601. kData->param.data[j].midiCC = -1;
  602. kData->param.ranges[j].min = 0.0f;
  603. kData->param.ranges[j].max = 1.0f;
  604. kData->param.ranges[j].def = 0.0f; // off
  605. kData->param.ranges[j].step = 1.0f;
  606. kData->param.ranges[j].stepSmall = 1.0f;
  607. kData->param.ranges[j].stepLarge = 1.0f;
  608. fParamBuffers[j] = kData->param.ranges[j].def;
  609. // ----------------------
  610. j = FluidSynthChorusNr;
  611. kData->param.data[j].index = j;
  612. kData->param.data[j].rindex = j;
  613. kData->param.data[j].type = PARAMETER_INPUT;
  614. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_INTEGER;
  615. kData->param.data[j].midiChannel = 0;
  616. kData->param.data[j].midiCC = -1;
  617. kData->param.ranges[j].min = 0.0f;
  618. kData->param.ranges[j].max = 99.0f;
  619. kData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_N;
  620. kData->param.ranges[j].step = 1.0f;
  621. kData->param.ranges[j].stepSmall = 1.0f;
  622. kData->param.ranges[j].stepLarge = 10.0f;
  623. fParamBuffers[j] = kData->param.ranges[j].def;
  624. // ----------------------
  625. j = FluidSynthChorusLevel;
  626. kData->param.data[j].index = j;
  627. kData->param.data[j].rindex = j;
  628. kData->param.data[j].type = PARAMETER_INPUT;
  629. kData->param.data[j].hints = PARAMETER_IS_ENABLED;
  630. kData->param.data[j].midiChannel = 0;
  631. kData->param.data[j].midiCC = 0; //MIDI_CONTROL_CHORUS_SEND_LEVEL;
  632. kData->param.ranges[j].min = 0.0f;
  633. kData->param.ranges[j].max = 10.0f;
  634. kData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_LEVEL;
  635. kData->param.ranges[j].step = 0.01f;
  636. kData->param.ranges[j].stepSmall = 0.0001f;
  637. kData->param.ranges[j].stepLarge = 0.1f;
  638. fParamBuffers[j] = kData->param.ranges[j].def;
  639. // ----------------------
  640. j = FluidSynthChorusSpeedHz;
  641. kData->param.data[j].index = j;
  642. kData->param.data[j].rindex = j;
  643. kData->param.data[j].type = PARAMETER_INPUT;
  644. kData->param.data[j].hints = PARAMETER_IS_ENABLED;
  645. kData->param.data[j].midiChannel = 0;
  646. kData->param.data[j].midiCC = -1;
  647. kData->param.ranges[j].min = 0.29f;
  648. kData->param.ranges[j].max = 5.0f;
  649. kData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_SPEED;
  650. kData->param.ranges[j].step = 0.01f;
  651. kData->param.ranges[j].stepSmall = 0.0001f;
  652. kData->param.ranges[j].stepLarge = 0.1f;
  653. fParamBuffers[j] = kData->param.ranges[j].def;
  654. // ----------------------
  655. j = FluidSynthChorusDepthMs;
  656. kData->param.data[j].index = j;
  657. kData->param.data[j].rindex = j;
  658. kData->param.data[j].type = PARAMETER_INPUT;
  659. kData->param.data[j].hints = PARAMETER_IS_ENABLED;
  660. kData->param.data[j].midiChannel = 0;
  661. kData->param.data[j].midiCC = -1;
  662. kData->param.ranges[j].min = 0.0f;
  663. kData->param.ranges[j].max = 2048000.0 / kData->engine->getSampleRate();
  664. kData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_DEPTH;
  665. kData->param.ranges[j].step = 0.01f;
  666. kData->param.ranges[j].stepSmall = 0.0001f;
  667. kData->param.ranges[j].stepLarge = 0.1f;
  668. fParamBuffers[j] = kData->param.ranges[j].def;
  669. // ----------------------
  670. j = FluidSynthChorusType;
  671. kData->param.data[j].index = j;
  672. kData->param.data[j].rindex = j;
  673. kData->param.data[j].type = PARAMETER_INPUT;
  674. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_INTEGER | PARAMETER_USES_SCALEPOINTS;
  675. kData->param.data[j].midiChannel = 0;
  676. kData->param.data[j].midiCC = -1;
  677. kData->param.ranges[j].min = FLUID_CHORUS_MOD_SINE;
  678. kData->param.ranges[j].max = FLUID_CHORUS_MOD_TRIANGLE;
  679. kData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_TYPE;
  680. kData->param.ranges[j].step = 1.0f;
  681. kData->param.ranges[j].stepSmall = 1.0f;
  682. kData->param.ranges[j].stepLarge = 1.0f;
  683. fParamBuffers[j] = kData->param.ranges[j].def;
  684. // ----------------------
  685. j = FluidSynthPolyphony;
  686. kData->param.data[j].index = j;
  687. kData->param.data[j].rindex = j;
  688. kData->param.data[j].type = PARAMETER_INPUT;
  689. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_INTEGER;
  690. kData->param.data[j].midiChannel = 0;
  691. kData->param.data[j].midiCC = -1;
  692. kData->param.ranges[j].min = 1.0f;
  693. kData->param.ranges[j].max = 512.0f; // max theoric is 65535
  694. kData->param.ranges[j].def = fluid_synth_get_polyphony(fSynth);
  695. kData->param.ranges[j].step = 1.0f;
  696. kData->param.ranges[j].stepSmall = 1.0f;
  697. kData->param.ranges[j].stepLarge = 10.0f;
  698. fParamBuffers[j] = kData->param.ranges[j].def;
  699. // ----------------------
  700. j = FluidSynthInterpolation;
  701. kData->param.data[j].index = j;
  702. kData->param.data[j].rindex = j;
  703. kData->param.data[j].type = PARAMETER_INPUT;
  704. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_INTEGER | PARAMETER_USES_SCALEPOINTS;
  705. kData->param.data[j].midiChannel = 0;
  706. kData->param.data[j].midiCC = -1;
  707. kData->param.ranges[j].min = FLUID_INTERP_NONE;
  708. kData->param.ranges[j].max = FLUID_INTERP_HIGHEST;
  709. kData->param.ranges[j].def = FLUID_INTERP_DEFAULT;
  710. kData->param.ranges[j].step = 1.0f;
  711. kData->param.ranges[j].stepSmall = 1.0f;
  712. kData->param.ranges[j].stepLarge = 1.0f;
  713. fParamBuffers[j] = kData->param.ranges[j].def;
  714. // ----------------------
  715. j = FluidSynthVoiceCount;
  716. kData->param.data[j].index = j;
  717. kData->param.data[j].rindex = j;
  718. kData->param.data[j].type = PARAMETER_OUTPUT;
  719. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE | PARAMETER_IS_INTEGER;
  720. kData->param.data[j].midiChannel = 0;
  721. kData->param.data[j].midiCC = -1;
  722. kData->param.ranges[j].min = 0.0f;
  723. kData->param.ranges[j].max = 65535.0f;
  724. kData->param.ranges[j].def = 0.0f;
  725. kData->param.ranges[j].step = 1.0f;
  726. kData->param.ranges[j].stepSmall = 1.0f;
  727. kData->param.ranges[j].stepLarge = 1.0f;
  728. fParamBuffers[j] = kData->param.ranges[j].def;
  729. // ---------------------------------------
  730. // plugin hints
  731. fHints = 0x0;
  732. fHints |= PLUGIN_IS_SYNTH;
  733. fHints |= PLUGIN_CAN_VOLUME;
  734. fHints |= PLUGIN_CAN_BALANCE;
  735. // extra plugin hints
  736. kData->extraHints = 0x0;
  737. kData->extraHints |= PLUGIN_HINT_HAS_MIDI_IN;
  738. kData->extraHints |= PLUGIN_HINT_CAN_RUN_RACK;
  739. bufferSizeChanged(kData->engine->getBufferSize());
  740. reloadPrograms(true);
  741. if (kData->active)
  742. activate();
  743. carla_debug("FluidSynthPlugin::reload() - end");
  744. }
  745. void reloadPrograms(const bool init) override
  746. {
  747. carla_debug("FluidSynthPlugin::reloadPrograms(%s)", bool2str(init));
  748. // Delete old programs
  749. kData->midiprog.clear();
  750. // Query new programs
  751. uint32_t count = 0;
  752. fluid_sfont_t* f_sfont;
  753. fluid_preset_t f_preset;
  754. bool hasDrums = false;
  755. uint32_t drumIndex, drumProg;
  756. f_sfont = fluid_synth_get_sfont_by_id(fSynth, fSynthId);
  757. // initial check to know how much midi-programs we have
  758. f_sfont->iteration_start(f_sfont);
  759. while (f_sfont->iteration_next(f_sfont, &f_preset))
  760. count += 1;
  761. // soundfonts must always have at least 1 midi-program
  762. CARLA_ASSERT(count > 0);
  763. if (count == 0)
  764. return;
  765. kData->midiprog.createNew(count);
  766. // Update data
  767. uint32_t i = 0;
  768. f_sfont->iteration_start(f_sfont);
  769. while (f_sfont->iteration_next(f_sfont, &f_preset))
  770. {
  771. CARLA_ASSERT(i < kData->midiprog.count);
  772. kData->midiprog.data[i].bank = f_preset.get_banknum(&f_preset);
  773. kData->midiprog.data[i].program = f_preset.get_num(&f_preset);
  774. kData->midiprog.data[i].name = carla_strdup(f_preset.get_name(&f_preset));
  775. if (kData->midiprog.data[i].bank == 128 && ! hasDrums)
  776. {
  777. hasDrums = true;
  778. drumIndex = i;
  779. drumProg = kData->midiprog.data[i].program;
  780. }
  781. ++i;
  782. }
  783. //f_sfont->free(f_sfont);
  784. #ifndef BUILD_BRIDGE
  785. // Update OSC Names
  786. if (kData->engine->isOscControlRegistered())
  787. {
  788. kData->engine->osc_send_control_set_midi_program_count(fId, count);
  789. for (i=0; i < count; ++i)
  790. kData->engine->osc_send_control_set_midi_program_data(fId, i, kData->midiprog.data[i].bank, kData->midiprog.data[i].program, kData->midiprog.data[i].name);
  791. }
  792. #endif
  793. if (init)
  794. {
  795. fluid_synth_program_reset(fSynth);
  796. // select first program, or 128 for ch10
  797. for (i=0; i < MAX_MIDI_CHANNELS && i != 9; ++i)
  798. {
  799. #ifdef FLUIDSYNTH_VERSION_NEW_API
  800. fluid_synth_set_channel_type(fSynth, i, CHANNEL_TYPE_MELODIC);
  801. #endif
  802. fluid_synth_program_select(fSynth, i, fSynthId, kData->midiprog.data[0].bank, kData->midiprog.data[0].program);
  803. fCurMidiProgs[i] = 0;
  804. }
  805. if (hasDrums)
  806. {
  807. #ifdef FLUIDSYNTH_VERSION_NEW_API
  808. fluid_synth_set_channel_type(fSynth, 9, CHANNEL_TYPE_DRUM);
  809. #endif
  810. fluid_synth_program_select(fSynth, 9, fSynthId, 128, drumProg);
  811. fCurMidiProgs[9] = drumIndex;
  812. }
  813. else
  814. {
  815. #ifdef FLUIDSYNTH_VERSION_NEW_API
  816. fluid_synth_set_channel_type(fSynth, 9, CHANNEL_TYPE_MELODIC);
  817. #endif
  818. fluid_synth_program_select(fSynth, 9, fSynthId, kData->midiprog.data[0].bank, kData->midiprog.data[0].program);
  819. fCurMidiProgs[9] = 0;
  820. }
  821. kData->midiprog.current = 0;
  822. }
  823. else
  824. {
  825. kData->engine->callback(CALLBACK_RELOAD_PROGRAMS, fId, 0, 0, 0.0f, nullptr);
  826. }
  827. }
  828. // -------------------------------------------------------------------
  829. // Plugin processing
  830. void process(float** const, float** const outBuffer, const uint32_t frames) override
  831. {
  832. uint32_t i, k;
  833. // --------------------------------------------------------------------------------------------------------
  834. // Check if active
  835. if (! kData->active)
  836. {
  837. // disable any output sound
  838. for (i=0; i < kData->audioOut.count; ++i)
  839. carla_zeroFloat(outBuffer[i], frames);
  840. return;
  841. }
  842. // --------------------------------------------------------------------------------------------------------
  843. // Check if needs reset
  844. if (kData->needsReset)
  845. {
  846. if (fOptions & PLUGIN_OPTION_SEND_ALL_SOUND_OFF)
  847. {
  848. for (int c=0; c < MAX_MIDI_CHANNELS; ++c)
  849. {
  850. #ifdef FLUIDSYNTH_VERSION_NEW_API
  851. fluid_synth_all_notes_off(fSynth, c);
  852. fluid_synth_all_sounds_off(fSynth, c);
  853. #else
  854. fluid_synth_cc(fSynth, c, MIDI_CONTROL_ALL_SOUND_OFF, 0);
  855. fluid_synth_cc(fSynth, c, MIDI_CONTROL_ALL_NOTES_OFF, 0);
  856. #endif
  857. }
  858. }
  859. else if (kData->ctrlChannel >= 0 && kData->ctrlChannel < MAX_MIDI_CHANNELS)
  860. {
  861. for (k=0; k < MAX_MIDI_NOTE; ++k)
  862. fluid_synth_noteoff(fSynth, kData->ctrlChannel, k);
  863. }
  864. kData->needsReset = false;
  865. }
  866. // --------------------------------------------------------------------------------------------------------
  867. // Event Input and Processing
  868. {
  869. // ----------------------------------------------------------------------------------------------------
  870. // MIDI Input (External)
  871. if (kData->extNotes.mutex.tryLock())
  872. {
  873. while (! kData->extNotes.data.isEmpty())
  874. {
  875. const ExternalMidiNote& note(kData->extNotes.data.getFirst(true));
  876. CARLA_ASSERT(note.channel >= 0 && note.channel < MAX_MIDI_CHANNELS);
  877. if (note.velo > 0)
  878. fluid_synth_noteon(fSynth, note.channel, note.note, note.velo);
  879. else
  880. fluid_synth_noteoff(fSynth,note.channel, note.note);
  881. }
  882. kData->extNotes.mutex.unlock();
  883. } // End of MIDI Input (External)
  884. // ----------------------------------------------------------------------------------------------------
  885. // Event Input (System)
  886. bool allNotesOffSent = false;
  887. uint32_t time, nEvents = kData->event.portIn->getEventCount();
  888. uint32_t timeOffset = 0;
  889. uint32_t nextBankIds[MAX_MIDI_CHANNELS] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 128, 0, 0, 0, 0, 0, 0 };
  890. if (kData->midiprog.current >= 0 && kData->midiprog.count > 0 && kData->ctrlChannel >= 0 && kData->ctrlChannel < MAX_MIDI_CHANNELS)
  891. nextBankIds[kData->ctrlChannel] = kData->midiprog.data[kData->midiprog.current].bank;
  892. for (i=0; i < nEvents; ++i)
  893. {
  894. const EngineEvent& event(kData->event.portIn->getEvent(i));
  895. time = event.time;
  896. if (time >= frames)
  897. continue;
  898. CARLA_ASSERT_INT2(time >= timeOffset, time, timeOffset);
  899. if (time > timeOffset)
  900. {
  901. if (processSingle(outBuffer, time - timeOffset, timeOffset))
  902. {
  903. timeOffset = time;
  904. if (kData->midiprog.current >= 0 && kData->midiprog.count > 0 && kData->ctrlChannel >= 0 && kData->ctrlChannel < 16)
  905. nextBankIds[kData->ctrlChannel] = kData->midiprog.data[kData->midiprog.current].bank;
  906. }
  907. }
  908. // Control change
  909. switch (event.type)
  910. {
  911. case kEngineEventTypeNull:
  912. break;
  913. case kEngineEventTypeControl:
  914. {
  915. const EngineControlEvent& ctrlEvent = event.ctrl;
  916. switch (ctrlEvent.type)
  917. {
  918. case kEngineControlEventTypeNull:
  919. break;
  920. case kEngineControlEventTypeParameter:
  921. {
  922. #ifndef BUILD_BRIDGE
  923. // Control backend stuff
  924. if (event.channel == kData->ctrlChannel)
  925. {
  926. float value;
  927. if (MIDI_IS_CONTROL_BREATH_CONTROLLER(ctrlEvent.param) && (fHints & PLUGIN_CAN_DRYWET) > 0)
  928. {
  929. value = ctrlEvent.value;
  930. setDryWet(value, false, false);
  931. postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_DRYWET, 0, value);
  932. }
  933. if (MIDI_IS_CONTROL_CHANNEL_VOLUME(ctrlEvent.param) && (fHints & PLUGIN_CAN_VOLUME) > 0)
  934. {
  935. value = ctrlEvent.value*127.0f/100.0f;
  936. setVolume(value, false, false);
  937. postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_VOLUME, 0, value);
  938. }
  939. if (MIDI_IS_CONTROL_BALANCE(ctrlEvent.param) && (fHints & PLUGIN_CAN_BALANCE) > 0)
  940. {
  941. float left, right;
  942. value = ctrlEvent.value/0.5f - 1.0f;
  943. if (value < 0.0f)
  944. {
  945. left = -1.0f;
  946. right = (value*2.0f)+1.0f;
  947. }
  948. else if (value > 0.0f)
  949. {
  950. left = (value*2.0f)-1.0f;
  951. right = 1.0f;
  952. }
  953. else
  954. {
  955. left = -1.0f;
  956. right = 1.0f;
  957. }
  958. setBalanceLeft(left, false, false);
  959. setBalanceRight(right, false, false);
  960. postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_BALANCE_LEFT, 0, left);
  961. postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_BALANCE_RIGHT, 0, right);
  962. }
  963. }
  964. #endif
  965. // Control plugin parameters
  966. for (k=0; k < kData->param.count; ++k)
  967. {
  968. if (kData->param.data[k].midiChannel != event.channel)
  969. continue;
  970. if (kData->param.data[k].midiCC != ctrlEvent.param)
  971. continue;
  972. if (kData->param.data[k].type != PARAMETER_INPUT)
  973. continue;
  974. if ((kData->param.data[k].hints & PARAMETER_IS_AUTOMABLE) == 0)
  975. continue;
  976. float value;
  977. if (kData->param.data[k].hints & PARAMETER_IS_BOOLEAN)
  978. {
  979. value = (ctrlEvent.value < 0.5f) ? kData->param.ranges[k].min : kData->param.ranges[k].max;
  980. }
  981. else
  982. {
  983. value = kData->param.ranges[i].unnormalizeValue(ctrlEvent.value);
  984. if (kData->param.data[k].hints & PARAMETER_IS_INTEGER)
  985. value = std::rint(value);
  986. }
  987. setParameterValue(k, value, false, false, false);
  988. postponeRtEvent(kPluginPostRtEventParameterChange, static_cast<int32_t>(k), 0, value);
  989. }
  990. if ((fOptions & PLUGIN_OPTION_SEND_CONTROL_CHANGES) != 0 && ctrlEvent.param <= 0x5F)
  991. {
  992. fluid_synth_cc(fSynth, event.channel, ctrlEvent.param, ctrlEvent.value*127.0f);
  993. }
  994. break;
  995. }
  996. case kEngineControlEventTypeMidiBank:
  997. if (event.channel < MAX_MIDI_CHANNELS && (fOptions & PLUGIN_OPTION_MAP_PROGRAM_CHANGES) != 0)
  998. nextBankIds[event.channel] = ctrlEvent.param;
  999. break;
  1000. case kEngineControlEventTypeMidiProgram:
  1001. if (event.channel < MAX_MIDI_CHANNELS && (fOptions & PLUGIN_OPTION_MAP_PROGRAM_CHANGES) != 0)
  1002. {
  1003. const uint32_t bankId(nextBankIds[event.channel]);
  1004. const uint32_t progId(ctrlEvent.param);
  1005. for (k=0; k < kData->midiprog.count; ++k)
  1006. {
  1007. if (kData->midiprog.data[k].bank == bankId && kData->midiprog.data[k].program == progId)
  1008. {
  1009. fluid_synth_program_select(fSynth, event.channel, fSynthId, bankId, progId);
  1010. fCurMidiProgs[event.channel] = k;
  1011. if (event.channel == kData->ctrlChannel)
  1012. postponeRtEvent(kPluginPostRtEventMidiProgramChange, k, 0, 0.0f);
  1013. break;
  1014. }
  1015. }
  1016. }
  1017. break;
  1018. case kEngineControlEventTypeAllSoundOff:
  1019. if (fOptions & PLUGIN_OPTION_SEND_ALL_SOUND_OFF)
  1020. {
  1021. #ifdef FLUIDSYNTH_VERSION_NEW_API
  1022. fluid_synth_all_sounds_off(fSynth, event.channel);
  1023. #else
  1024. fluid_synth_cc(fSynth, event.channel, MIDI_CONTROL_ALL_SOUND_OFF, 0);
  1025. #endif
  1026. }
  1027. break;
  1028. case kEngineControlEventTypeAllNotesOff:
  1029. if (fOptions & PLUGIN_OPTION_SEND_ALL_SOUND_OFF)
  1030. {
  1031. if (event.channel == kData->ctrlChannel && ! allNotesOffSent)
  1032. {
  1033. allNotesOffSent = true;
  1034. sendMidiAllNotesOffToCallback();
  1035. }
  1036. #ifdef FLUIDSYNTH_VERSION_NEW_API
  1037. fluid_synth_all_notes_off(fSynth, event.channel);
  1038. #else
  1039. fluid_synth_cc(fSynth, event.channel, MIDI_CONTROL_ALL_NOTES_OFF, 0);
  1040. #endif
  1041. }
  1042. break;
  1043. }
  1044. break;
  1045. }
  1046. case kEngineEventTypeMidi:
  1047. {
  1048. const EngineMidiEvent& midiEvent(event.midi);
  1049. uint8_t status = MIDI_GET_STATUS_FROM_DATA(midiEvent.data);
  1050. uint8_t channel = event.channel;
  1051. // Fix bad note-off
  1052. if (MIDI_IS_STATUS_NOTE_ON(status) && midiEvent.data[2] == 0)
  1053. status -= 0x10;
  1054. if (MIDI_IS_STATUS_NOTE_OFF(status))
  1055. {
  1056. const uint8_t note = midiEvent.data[1];
  1057. fluid_synth_noteoff(fSynth, channel, note);
  1058. postponeRtEvent(kPluginPostRtEventNoteOff, channel, note, 0.0f);
  1059. }
  1060. else if (MIDI_IS_STATUS_NOTE_ON(status))
  1061. {
  1062. const uint8_t note = midiEvent.data[1];
  1063. const uint8_t velo = midiEvent.data[2];
  1064. fluid_synth_noteon(fSynth, channel, note, velo);
  1065. postponeRtEvent(kPluginPostRtEventNoteOn, channel, note, velo);
  1066. }
  1067. else if (MIDI_IS_STATUS_POLYPHONIC_AFTERTOUCH(status) && (fOptions & PLUGIN_OPTION_SEND_NOTE_AFTERTOUCH) != 0)
  1068. {
  1069. //const uint8_t note = midiEvent.data[1];
  1070. //const uint8_t pressure = midiEvent.data[2];
  1071. // TODO, not in fluidsynth API
  1072. }
  1073. else if (MIDI_IS_STATUS_CONTROL_CHANGE(status) && (fOptions & PLUGIN_OPTION_SEND_CONTROL_CHANGES) != 0)
  1074. {
  1075. const uint8_t control = midiEvent.data[1];
  1076. const uint8_t value = midiEvent.data[2];
  1077. fluid_synth_cc(fSynth, channel, control, value);
  1078. }
  1079. else if (MIDI_IS_STATUS_AFTERTOUCH(status) && (fOptions & PLUGIN_OPTION_SEND_CHANNEL_PRESSURE) != 0)
  1080. {
  1081. const uint8_t pressure = midiEvent.data[1];
  1082. fluid_synth_channel_pressure(fSynth, channel, pressure);;
  1083. }
  1084. else if (MIDI_IS_STATUS_PITCH_WHEEL_CONTROL(status) && (fOptions & PLUGIN_OPTION_SEND_PITCHBEND) != 0)
  1085. {
  1086. const uint8_t lsb = midiEvent.data[1];
  1087. const uint8_t msb = midiEvent.data[2];
  1088. fluid_synth_pitch_bend(fSynth, channel, (msb << 7) | lsb);
  1089. }
  1090. break;
  1091. }
  1092. }
  1093. }
  1094. kData->postRtEvents.trySplice();
  1095. if (frames > timeOffset)
  1096. processSingle(outBuffer, frames - timeOffset, timeOffset);
  1097. } // End of Event Input and Processing
  1098. CARLA_PROCESS_CONTINUE_CHECK;
  1099. // --------------------------------------------------------------------------------------------------------
  1100. // Control Output
  1101. {
  1102. k = FluidSynthVoiceCount;
  1103. fParamBuffers[k] = fluid_synth_get_active_voice_count(fSynth);
  1104. kData->param.ranges[k].fixValue(fParamBuffers[k]);
  1105. if (kData->param.data[k].midiCC > 0)
  1106. {
  1107. float value(kData->param.ranges[k].normalizeValue(fParamBuffers[k]));
  1108. kData->event.portOut->writeControlEvent(0, kData->param.data[k].midiChannel, kEngineControlEventTypeParameter, kData->param.data[k].midiCC, value);
  1109. }
  1110. } // End of Control Output
  1111. }
  1112. bool processSingle(float** const outBuffer, const uint32_t frames, const uint32_t timeOffset)
  1113. {
  1114. CARLA_ASSERT(outBuffer != nullptr);
  1115. CARLA_ASSERT(frames > 0);
  1116. if (outBuffer == nullptr)
  1117. return false;
  1118. if (frames == 0)
  1119. return false;
  1120. uint32_t i, k;
  1121. // --------------------------------------------------------------------------------------------------------
  1122. // Try lock, silence otherwise
  1123. if (kData->engine->isOffline())
  1124. {
  1125. kData->singleMutex.lock();
  1126. }
  1127. else if (! kData->singleMutex.tryLock())
  1128. {
  1129. for (i=0; i < kData->audioOut.count; ++i)
  1130. {
  1131. for (k=0; k < frames; ++k)
  1132. outBuffer[i][k+timeOffset] = 0.0f;
  1133. }
  1134. return false;
  1135. }
  1136. // --------------------------------------------------------------------------------------------------------
  1137. // Fill plugin buffers and Run plugin
  1138. if (kUses16Outs)
  1139. {
  1140. for (i=0; i < kData->audioOut.count; ++i)
  1141. carla_zeroFloat(fAudio16Buffers[i], frames);
  1142. fluid_synth_process(fSynth, frames, 0, nullptr, kData->audioOut.count, fAudio16Buffers);
  1143. }
  1144. else
  1145. fluid_synth_write_float(fSynth, frames, outBuffer[0] + timeOffset, 0, 1, outBuffer[1] + timeOffset, 0, 1);
  1146. #ifndef BUILD_BRIDGE
  1147. // --------------------------------------------------------------------------------------------------------
  1148. // Post-processing (volume and balance)
  1149. {
  1150. // note - balance not possible with kUses16Outs, so we can safely skip fAudioOutBuffers
  1151. const bool doVolume = (fHints & PLUGIN_CAN_VOLUME) > 0 && kData->postProc.volume != 1.0f;
  1152. const bool doBalance = (fHints & PLUGIN_CAN_BALANCE) > 0 && (kData->postProc.balanceLeft != -1.0f || kData->postProc.balanceRight != 1.0f);
  1153. float oldBufLeft[doBalance ? frames : 1];
  1154. for (i=0; i < kData->audioOut.count; ++i)
  1155. {
  1156. // Balance
  1157. if (doBalance)
  1158. {
  1159. if (i % 2 == 0)
  1160. carla_copyFloat(oldBufLeft, outBuffer[i]+timeOffset, frames);
  1161. float balRangeL = (kData->postProc.balanceLeft + 1.0f)/2.0f;
  1162. float balRangeR = (kData->postProc.balanceRight + 1.0f)/2.0f;
  1163. for (k=0; k < frames; ++k)
  1164. {
  1165. if (i % 2 == 0)
  1166. {
  1167. // left
  1168. outBuffer[i][k+timeOffset] = oldBufLeft[k] * (1.0f - balRangeL);
  1169. outBuffer[i][k+timeOffset] += outBuffer[i+1][k+timeOffset] * (1.0f - balRangeR);
  1170. }
  1171. else
  1172. {
  1173. // right
  1174. outBuffer[i][k+timeOffset] = outBuffer[i][k+timeOffset] * balRangeR;
  1175. outBuffer[i][k+timeOffset] += oldBufLeft[k] * balRangeL;
  1176. }
  1177. }
  1178. }
  1179. // Volume
  1180. if (kUses16Outs)
  1181. {
  1182. for (k=0; k < frames; ++k)
  1183. outBuffer[i][k+timeOffset] = fAudio16Buffers[i][k] * kData->postProc.volume;
  1184. }
  1185. else if (doVolume)
  1186. {
  1187. for (k=0; k < frames; ++k)
  1188. outBuffer[i][k+timeOffset] *= kData->postProc.volume;
  1189. }
  1190. }
  1191. } // End of Post-processing
  1192. #else
  1193. if (kUses16Outs)
  1194. {
  1195. for (i=0; i < kData->audioOut.count; ++i)
  1196. {
  1197. for (k=0; k < frames; ++k)
  1198. outBuffer[i][k+timeOffset] = fAudio16Buffers[i][k];
  1199. }
  1200. }
  1201. #endif
  1202. // --------------------------------------------------------------------------------------------------------
  1203. kData->singleMutex.unlock();
  1204. return true;
  1205. }
  1206. void bufferSizeChanged(const uint32_t newBufferSize) override
  1207. {
  1208. if (! kUses16Outs)
  1209. return;
  1210. for (uint32_t i=0; i < kData->audioOut.count; ++i)
  1211. {
  1212. if (fAudio16Buffers[i] != nullptr)
  1213. delete[] fAudio16Buffers[i];
  1214. fAudio16Buffers[i] = new float[newBufferSize];
  1215. }
  1216. }
  1217. // -------------------------------------------------------------------
  1218. // Plugin buffers
  1219. void clearBuffers() override
  1220. {
  1221. carla_debug("FluidSynthPlugin::clearBuffers() - start");
  1222. if (fAudio16Buffers != nullptr)
  1223. {
  1224. for (uint32_t i=0; i < kData->audioOut.count; ++i)
  1225. {
  1226. if (fAudio16Buffers[i] != nullptr)
  1227. {
  1228. delete[] fAudio16Buffers[i];
  1229. fAudio16Buffers[i] = nullptr;
  1230. }
  1231. }
  1232. delete[] fAudio16Buffers;
  1233. fAudio16Buffers = nullptr;
  1234. }
  1235. CarlaPlugin::clearBuffers();
  1236. carla_debug("FluidSynthPlugin::clearBuffers() - end");
  1237. }
  1238. // -------------------------------------------------------------------
  1239. const void* getExtraStuff() override
  1240. {
  1241. return kUses16Outs ? (const void*)0x1 : nullptr;
  1242. }
  1243. bool init(const char* const filename, const char* const name, const char* const label)
  1244. {
  1245. CARLA_ASSERT(fSynth != nullptr);
  1246. CARLA_ASSERT(filename != nullptr);
  1247. CARLA_ASSERT(label != nullptr);
  1248. // ---------------------------------------------------------------
  1249. // first checks
  1250. if (kData->engine == nullptr)
  1251. {
  1252. return false;
  1253. }
  1254. if (kData->client != nullptr)
  1255. {
  1256. kData->engine->setLastError("Plugin client is already registered");
  1257. return false;
  1258. }
  1259. if (fSynth == nullptr)
  1260. {
  1261. kData->engine->setLastError("null synth");
  1262. return false;
  1263. }
  1264. if (filename == nullptr)
  1265. {
  1266. kData->engine->setLastError("null filename");
  1267. return false;
  1268. }
  1269. if (label == nullptr)
  1270. {
  1271. kData->engine->setLastError("null label");
  1272. return false;
  1273. }
  1274. // ---------------------------------------------------------------
  1275. // open soundfont
  1276. fSynthId = fluid_synth_sfload(fSynth, filename, 0);
  1277. if (fSynthId < 0)
  1278. {
  1279. kData->engine->setLastError("Failed to load SoundFont file");
  1280. return false;
  1281. }
  1282. // ---------------------------------------------------------------
  1283. // get info
  1284. fFilename = filename;
  1285. fLabel = label;
  1286. if (name != nullptr)
  1287. fName = kData->engine->getUniquePluginName(name);
  1288. else
  1289. fName = kData->engine->getUniquePluginName(label);
  1290. // ---------------------------------------------------------------
  1291. // register client
  1292. kData->client = kData->engine->addClient(this);
  1293. if (kData->client == nullptr || ! kData->client->isOk())
  1294. {
  1295. kData->engine->setLastError("Failed to register plugin client");
  1296. return false;
  1297. }
  1298. // ---------------------------------------------------------------
  1299. // load plugin settings
  1300. {
  1301. // set default options
  1302. fOptions = 0x0;
  1303. fOptions |= PLUGIN_OPTION_MAP_PROGRAM_CHANGES;
  1304. fOptions |= PLUGIN_OPTION_SEND_CHANNEL_PRESSURE;
  1305. fOptions |= PLUGIN_OPTION_SEND_NOTE_AFTERTOUCH;
  1306. fOptions |= PLUGIN_OPTION_SEND_PITCHBEND;
  1307. fOptions |= PLUGIN_OPTION_SEND_ALL_SOUND_OFF;
  1308. // load settings
  1309. kData->idStr = "SF2/";
  1310. kData->idStr += label;
  1311. fOptions = kData->loadSettings(fOptions, availableOptions());
  1312. }
  1313. return true;
  1314. }
  1315. private:
  1316. enum FluidSynthInputParameters {
  1317. FluidSynthReverbOnOff = 0,
  1318. FluidSynthReverbRoomSize = 1,
  1319. FluidSynthReverbDamp = 2,
  1320. FluidSynthReverbLevel = 3,
  1321. FluidSynthReverbWidth = 4,
  1322. FluidSynthChorusOnOff = 5,
  1323. FluidSynthChorusNr = 6,
  1324. FluidSynthChorusLevel = 7,
  1325. FluidSynthChorusSpeedHz = 8,
  1326. FluidSynthChorusDepthMs = 9,
  1327. FluidSynthChorusType = 10,
  1328. FluidSynthPolyphony = 11,
  1329. FluidSynthInterpolation = 12,
  1330. FluidSynthVoiceCount = 13,
  1331. FluidSynthParametersMax = 14
  1332. };
  1333. const bool kUses16Outs;
  1334. CarlaString fLabel;
  1335. fluid_settings_t* fSettings;
  1336. fluid_synth_t* fSynth;
  1337. int fSynthId;
  1338. float** fAudio16Buffers;
  1339. float fParamBuffers[FluidSynthParametersMax];
  1340. int32_t fCurMidiProgs[MAX_MIDI_CHANNELS];
  1341. CARLA_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR(FluidSynthPlugin)
  1342. };
  1343. CARLA_BACKEND_END_NAMESPACE
  1344. #else // WANT_FLUIDSYNTH
  1345. # warning fluidsynth not available (no SF2 support)
  1346. #endif
  1347. CARLA_BACKEND_START_NAMESPACE
  1348. CarlaPlugin* CarlaPlugin::newSF2(const Initializer& init, const bool use16Outs)
  1349. {
  1350. carla_debug("CarlaPlugin::newSF2({%p, \"%s\", \"%s\", \"%s\"}, %s)", init.engine, init.filename, init.name, init.label, bool2str(use16Outs));
  1351. #ifdef WANT_FLUIDSYNTH
  1352. if (! fluid_is_soundfont(init.filename))
  1353. {
  1354. init.engine->setLastError("Requested file is not a valid SoundFont");
  1355. return nullptr;
  1356. }
  1357. if (init.engine->getProccessMode() == PROCESS_MODE_CONTINUOUS_RACK && use16Outs)
  1358. {
  1359. init.engine->setLastError("Carla's rack mode can only work with Stereo modules, please choose the 2-channel only SoundFont version");
  1360. return nullptr;
  1361. }
  1362. FluidSynthPlugin* const plugin(new FluidSynthPlugin(init.engine, init.id, use16Outs));
  1363. if (! plugin->init(init.filename, init.name, init.label))
  1364. {
  1365. delete plugin;
  1366. return nullptr;
  1367. }
  1368. plugin->reload();
  1369. return plugin;
  1370. #else
  1371. init.engine->setLastError("fluidsynth support not available");
  1372. return nullptr;
  1373. // unused
  1374. (void)use16Outs;
  1375. #endif
  1376. }
  1377. CARLA_BACKEND_END_NAMESPACE