Audio plugin host https://kx.studio/carla
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1491 lines
53KB

  1. /*
  2. * Carla FluidSynth Plugin
  3. * Copyright (C) 2011-2013 Filipe Coelho <falktx@falktx.com>
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation; either version 2 of
  8. * the License, or any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * For a full copy of the GNU General Public License see the GPL.txt file
  16. */
  17. #include "CarlaPluginInternal.hpp"
  18. #ifdef WANT_FLUIDSYNTH
  19. #include <fluidsynth.h>
  20. #define FLUIDSYNTH_VERSION_NEW_API (FLUIDSYNTH_VERSION_MAJOR >= 1 && FLUIDSYNTH_VERSION_MINOR >= 1 && FLUIDSYNTH_VERSION_MICRO >= 4)
  21. CARLA_BACKEND_START_NAMESPACE
  22. class FluidSynthPlugin : public CarlaPlugin
  23. {
  24. public:
  25. FluidSynthPlugin(CarlaEngine* const engine, const unsigned int id, const bool use16Outs)
  26. : CarlaPlugin(engine, id),
  27. kUses16Outs(use16Outs),
  28. fSettings(nullptr),
  29. fSynth(nullptr),
  30. fSynthId(-1),
  31. fAudio16Buffers(nullptr)
  32. {
  33. carla_debug("FluidSynthPlugin::FluidSynthPlugin(%p, %i, %s)", engine, id, bool2str(use16Outs));
  34. // create settings
  35. fSettings = new_fluid_settings();
  36. // define settings
  37. fluid_settings_setint(fSettings, "synth.audio-channels", use16Outs ? 16 : 1);
  38. fluid_settings_setint(fSettings, "synth.audio-groups", use16Outs ? 16 : 1);
  39. fluid_settings_setnum(fSettings, "synth.sample-rate", kData->engine->getSampleRate());
  40. fluid_settings_setint(fSettings, "synth.threadsafe-api ", 0);
  41. // create synth
  42. fSynth = new_fluid_synth(fSettings);
  43. #ifdef FLUIDSYNTH_VERSION_NEW_API
  44. fluid_synth_set_sample_rate(fSynth, kData->engine->getSampleRate());
  45. #endif
  46. // set default values
  47. fluid_synth_set_reverb_on(fSynth, 0);
  48. fluid_synth_set_reverb(fSynth, FLUID_REVERB_DEFAULT_ROOMSIZE, FLUID_REVERB_DEFAULT_DAMP, FLUID_REVERB_DEFAULT_WIDTH, FLUID_REVERB_DEFAULT_LEVEL);
  49. fluid_synth_set_chorus_on(fSynth, 0);
  50. fluid_synth_set_chorus(fSynth, FLUID_CHORUS_DEFAULT_N, FLUID_CHORUS_DEFAULT_LEVEL, FLUID_CHORUS_DEFAULT_SPEED, FLUID_CHORUS_DEFAULT_DEPTH, FLUID_CHORUS_DEFAULT_TYPE);
  51. fluid_synth_set_polyphony(fSynth, 64);
  52. for (int i=0; i < 16; i++)
  53. fluid_synth_set_interp_method(fSynth, i, FLUID_INTERP_DEFAULT);
  54. }
  55. ~FluidSynthPlugin()
  56. {
  57. carla_debug("FluidSynthPlugin::~FluidSynthPlugin()");
  58. kData->singleMutex.lock();
  59. kData->masterMutex.lock();
  60. delete_fluid_synth(fSynth);
  61. delete_fluid_settings(fSettings);
  62. deleteBuffers();
  63. }
  64. // -------------------------------------------------------------------
  65. // Information (base)
  66. PluginType type() const
  67. {
  68. return PLUGIN_SF2;
  69. }
  70. PluginCategory category()
  71. {
  72. return PLUGIN_CATEGORY_SYNTH;
  73. }
  74. // -------------------------------------------------------------------
  75. // Information (count)
  76. uint32_t parameterScalePointCount(const uint32_t parameterId) const
  77. {
  78. CARLA_ASSERT(parameterId < kData->param.count);
  79. switch (parameterId)
  80. {
  81. case FluidSynthChorusType:
  82. return 2;
  83. case FluidSynthInterpolation:
  84. return 4;
  85. default:
  86. return 0;
  87. }
  88. }
  89. // -------------------------------------------------------------------
  90. // Information (per-plugin data)
  91. unsigned int availableOptions()
  92. {
  93. unsigned int options = 0x0;
  94. options |= PLUGIN_OPTION_MAP_PROGRAM_CHANGES;
  95. options |= PLUGIN_OPTION_SEND_CONTROL_CHANGES;
  96. options |= PLUGIN_OPTION_SEND_CHANNEL_PRESSURE;
  97. options |= PLUGIN_OPTION_SEND_PITCHBEND;
  98. options |= PLUGIN_OPTION_SEND_ALL_SOUND_OFF;
  99. return options;
  100. }
  101. float getParameterValue(const uint32_t parameterId)
  102. {
  103. CARLA_ASSERT(parameterId < kData->param.count);
  104. return fParamBuffers[parameterId];
  105. }
  106. float getParameterScalePointValue(const uint32_t parameterId, const uint32_t scalePointId)
  107. {
  108. CARLA_ASSERT(parameterId < kData->param.count);
  109. CARLA_ASSERT(scalePointId < parameterScalePointCount(parameterId));
  110. switch (parameterId)
  111. {
  112. case FluidSynthChorusType:
  113. switch (scalePointId)
  114. {
  115. case 0:
  116. return FLUID_CHORUS_MOD_SINE;
  117. case 1:
  118. return FLUID_CHORUS_MOD_TRIANGLE;
  119. default:
  120. return FLUID_CHORUS_DEFAULT_TYPE;
  121. }
  122. case FluidSynthInterpolation:
  123. switch (scalePointId)
  124. {
  125. case 0:
  126. return FLUID_INTERP_NONE;
  127. case 1:
  128. return FLUID_INTERP_LINEAR;
  129. case 2:
  130. return FLUID_INTERP_4THORDER;
  131. case 3:
  132. return FLUID_INTERP_7THORDER;
  133. default:
  134. return FLUID_INTERP_DEFAULT;
  135. }
  136. default:
  137. return 0.0f;
  138. }
  139. }
  140. void getLabel(char* const strBuf)
  141. {
  142. if (fLabel.isNotEmpty())
  143. std::strncpy(strBuf, (const char*)fLabel, STR_MAX);
  144. else
  145. CarlaPlugin::getLabel(strBuf);
  146. }
  147. void getMaker(char* const strBuf)
  148. {
  149. std::strncpy(strBuf, "FluidSynth SF2 engine", STR_MAX);
  150. }
  151. void getCopyright(char* const strBuf)
  152. {
  153. std::strncpy(strBuf, "GNU GPL v2+", STR_MAX);
  154. }
  155. void getRealName(char* const strBuf)
  156. {
  157. getLabel(strBuf);
  158. }
  159. void getParameterName(const uint32_t parameterId, char* const strBuf)
  160. {
  161. CARLA_ASSERT(parameterId < kData->param.count);
  162. switch (parameterId)
  163. {
  164. case FluidSynthReverbOnOff:
  165. std::strncpy(strBuf, "Reverb On/Off", STR_MAX);
  166. break;
  167. case FluidSynthReverbRoomSize:
  168. std::strncpy(strBuf, "Reverb Room Size", STR_MAX);
  169. break;
  170. case FluidSynthReverbDamp:
  171. std::strncpy(strBuf, "Reverb Damp", STR_MAX);
  172. break;
  173. case FluidSynthReverbLevel:
  174. std::strncpy(strBuf, "Reverb Level", STR_MAX);
  175. break;
  176. case FluidSynthReverbWidth:
  177. std::strncpy(strBuf, "Reverb Width", STR_MAX);
  178. break;
  179. case FluidSynthChorusOnOff:
  180. std::strncpy(strBuf, "Chorus On/Off", STR_MAX);
  181. break;
  182. case FluidSynthChorusNr:
  183. std::strncpy(strBuf, "Chorus Voice Count", STR_MAX);
  184. break;
  185. case FluidSynthChorusLevel:
  186. std::strncpy(strBuf, "Chorus Level", STR_MAX);
  187. break;
  188. case FluidSynthChorusSpeedHz:
  189. std::strncpy(strBuf, "Chorus Speed", STR_MAX);
  190. break;
  191. case FluidSynthChorusDepthMs:
  192. std::strncpy(strBuf, "Chorus Depth", STR_MAX);
  193. break;
  194. case FluidSynthChorusType:
  195. std::strncpy(strBuf, "Chorus Type", STR_MAX);
  196. break;
  197. case FluidSynthPolyphony:
  198. std::strncpy(strBuf, "Polyphony", STR_MAX);
  199. break;
  200. case FluidSynthInterpolation:
  201. std::strncpy(strBuf, "Interpolation", STR_MAX);
  202. break;
  203. case FluidSynthVoiceCount:
  204. std::strncpy(strBuf, "Voice Count", STR_MAX);
  205. break;
  206. default:
  207. CarlaPlugin::getParameterName(parameterId, strBuf);
  208. break;
  209. }
  210. }
  211. void getParameterUnit(const uint32_t parameterId, char* const strBuf)
  212. {
  213. CARLA_ASSERT(parameterId < kData->param.count);
  214. switch (parameterId)
  215. {
  216. case FluidSynthChorusSpeedHz:
  217. std::strncpy(strBuf, "Hz", STR_MAX);
  218. break;
  219. case FluidSynthChorusDepthMs:
  220. std::strncpy(strBuf, "ms", STR_MAX);
  221. break;
  222. default:
  223. CarlaPlugin::getParameterUnit(parameterId, strBuf);
  224. break;
  225. }
  226. }
  227. void getParameterScalePointLabel(const uint32_t parameterId, const uint32_t scalePointId, char* const strBuf)
  228. {
  229. CARLA_ASSERT(parameterId < kData->param.count);
  230. CARLA_ASSERT(scalePointId < parameterScalePointCount(parameterId));
  231. switch (parameterId)
  232. {
  233. case FluidSynthChorusType:
  234. switch (scalePointId)
  235. {
  236. case 0:
  237. std::strncpy(strBuf, "Sine wave", STR_MAX);
  238. return;
  239. case 1:
  240. std::strncpy(strBuf, "Triangle wave", STR_MAX);
  241. return;
  242. }
  243. case FluidSynthInterpolation:
  244. switch (scalePointId)
  245. {
  246. case 0:
  247. std::strncpy(strBuf, "None", STR_MAX);
  248. return;
  249. case 1:
  250. std::strncpy(strBuf, "Straight-line", STR_MAX);
  251. return;
  252. case 2:
  253. std::strncpy(strBuf, "Fourth-order", STR_MAX);
  254. return;
  255. case 3:
  256. std::strncpy(strBuf, "Seventh-order", STR_MAX);
  257. return;
  258. }
  259. }
  260. CarlaPlugin::getParameterScalePointLabel(parameterId, scalePointId, strBuf);
  261. }
  262. // -------------------------------------------------------------------
  263. // Set data (plugin-specific stuff)
  264. void setParameterValue(const uint32_t parameterId, const float value, const bool sendGui, const bool sendOsc, const bool sendCallback)
  265. {
  266. CARLA_ASSERT(parameterId < kData->param.count);
  267. const float fixedValue = kData->param.fixValue(parameterId, value);
  268. fParamBuffers[parameterId] = fixedValue;
  269. {
  270. const ScopedProcessLocker spl(this, (sendGui || sendOsc || sendCallback));
  271. switch (parameterId)
  272. {
  273. case FluidSynthReverbOnOff:
  274. fluid_synth_set_reverb_on(fSynth, (fixedValue > 0.5f) ? 1 : 0);
  275. break;
  276. case FluidSynthReverbRoomSize:
  277. case FluidSynthReverbDamp:
  278. case FluidSynthReverbLevel:
  279. case FluidSynthReverbWidth:
  280. fluid_synth_set_reverb(fSynth, fParamBuffers[FluidSynthReverbRoomSize], fParamBuffers[FluidSynthReverbDamp], fParamBuffers[FluidSynthReverbWidth], fParamBuffers[FluidSynthReverbLevel]);
  281. break;
  282. case FluidSynthChorusOnOff:
  283. fluid_synth_set_chorus_on(fSynth, (value > 0.5f) ? 1 : 0);
  284. break;
  285. case FluidSynthChorusNr:
  286. case FluidSynthChorusLevel:
  287. case FluidSynthChorusSpeedHz:
  288. case FluidSynthChorusDepthMs:
  289. case FluidSynthChorusType:
  290. fluid_synth_set_chorus(fSynth, fParamBuffers[FluidSynthChorusNr], fParamBuffers[FluidSynthChorusLevel], fParamBuffers[FluidSynthChorusSpeedHz], fParamBuffers[FluidSynthChorusDepthMs], fParamBuffers[FluidSynthChorusType]);
  291. break;
  292. case FluidSynthPolyphony:
  293. fluid_synth_set_polyphony(fSynth, value);
  294. break;
  295. case FluidSynthInterpolation:
  296. for (int i=0; i < 16; i++)
  297. fluid_synth_set_interp_method(fSynth, i, value);
  298. break;
  299. default:
  300. break;
  301. }
  302. }
  303. CarlaPlugin::setParameterValue(parameterId, value, sendGui, sendOsc, sendCallback);
  304. }
  305. void setMidiProgram(int32_t index, const bool sendGui, const bool sendOsc, const bool sendCallback)
  306. {
  307. CARLA_ASSERT(fSynth != nullptr);
  308. CARLA_ASSERT(index >= -1 && index < static_cast<int32_t>(kData->midiprog.count));
  309. if (index < -1)
  310. index = -1;
  311. else if (index > static_cast<int32_t>(kData->midiprog.count))
  312. return;
  313. if (kData->ctrlChannel < 0 || kData->ctrlChannel >= 16)
  314. return;
  315. if (index >= 0)
  316. {
  317. const uint32_t bank = kData->midiprog.data[index].bank;
  318. const uint32_t program = kData->midiprog.data[index].program;
  319. const ScopedProcessLocker spl(this, (sendGui || sendOsc || sendCallback));
  320. fluid_synth_program_select(fSynth, kData->ctrlChannel, fSynthId, bank, program);
  321. }
  322. CarlaPlugin::setMidiProgram(index, sendGui, sendOsc, sendCallback);
  323. }
  324. // -------------------------------------------------------------------
  325. // Plugin state
  326. void reload()
  327. {
  328. carla_debug("FluidSynthPlugin::reload() - start");
  329. CARLA_ASSERT(kData->engine != nullptr);
  330. CARLA_ASSERT(fSynth != nullptr);
  331. const ProcessMode processMode(kData->engine->getProccessMode());
  332. // Safely disable plugin for reload
  333. const ScopedDisabler sd(this);
  334. deleteBuffers();
  335. uint32_t aOuts, params, j;
  336. aOuts = kUses16Outs ? 32 : 2;
  337. params = FluidSynthParametersMax;
  338. kData->audioOut.createNew(aOuts);
  339. kData->param.createNew(params);
  340. const int portNameSize = kData->engine->maxPortNameSize();
  341. CarlaString portName;
  342. // ---------------------------------------
  343. // Audio Outputs
  344. if (kUses16Outs)
  345. {
  346. for (j=0; j < 32; j++)
  347. {
  348. portName.clear();
  349. if (processMode == PROCESS_MODE_SINGLE_CLIENT)
  350. {
  351. portName = fName;
  352. portName += ":";
  353. }
  354. portName += "out-";
  355. if ((j+2)/2 < 9)
  356. portName += "0";
  357. portName += CarlaString((j+2)/2);
  358. if (j % 2 == 0)
  359. portName += "L";
  360. else
  361. portName += "R";
  362. portName.truncate(portNameSize);
  363. kData->audioOut.ports[j].port = (CarlaEngineAudioPort*)kData->client->addPort(kEnginePortTypeAudio, portName, false);
  364. kData->audioOut.ports[j].rindex = j;
  365. }
  366. fAudio16Buffers = new float*[aOuts];
  367. for (j=0; j < aOuts; j++)
  368. fAudio16Buffers[j] = nullptr;
  369. }
  370. else
  371. {
  372. // out-left
  373. portName.clear();
  374. if (processMode == PROCESS_MODE_SINGLE_CLIENT)
  375. {
  376. portName = fName;
  377. portName += ":";
  378. }
  379. portName += "out-left";
  380. portName.truncate(portNameSize);
  381. kData->audioOut.ports[0].port = (CarlaEngineAudioPort*)kData->client->addPort(kEnginePortTypeAudio, portName, false);
  382. kData->audioOut.ports[0].rindex = 0;
  383. // out-right
  384. portName.clear();
  385. if (processMode == PROCESS_MODE_SINGLE_CLIENT)
  386. {
  387. portName = fName;
  388. portName += ":";
  389. }
  390. portName += "out-right";
  391. portName.truncate(portNameSize);
  392. kData->audioOut.ports[1].port = (CarlaEngineAudioPort*)kData->client->addPort(kEnginePortTypeAudio, portName, false);
  393. kData->audioOut.ports[1].rindex = 1;
  394. }
  395. // ---------------------------------------
  396. // Event Input
  397. {
  398. portName.clear();
  399. if (processMode == PROCESS_MODE_SINGLE_CLIENT)
  400. {
  401. portName = fName;
  402. portName += ":";
  403. }
  404. portName += "event-in";
  405. portName.truncate(portNameSize);
  406. kData->event.portIn = (CarlaEngineEventPort*)kData->client->addPort(kEnginePortTypeEvent, portName, true);
  407. }
  408. // ---------------------------------------
  409. // Event Output
  410. {
  411. portName.clear();
  412. if (processMode == PROCESS_MODE_SINGLE_CLIENT)
  413. {
  414. portName = fName;
  415. portName += ":";
  416. }
  417. portName += "event-out";
  418. portName.truncate(portNameSize);
  419. kData->event.portOut = (CarlaEngineEventPort*)kData->client->addPort(kEnginePortTypeEvent, portName, false);
  420. }
  421. // ----------------------
  422. j = FluidSynthReverbOnOff;
  423. kData->param.data[j].index = j;
  424. kData->param.data[j].rindex = j;
  425. kData->param.data[j].type = PARAMETER_INPUT;
  426. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE | PARAMETER_IS_BOOLEAN;
  427. kData->param.data[j].midiChannel = 0;
  428. kData->param.data[j].midiCC = -1;
  429. kData->param.ranges[j].min = 0.0f;
  430. kData->param.ranges[j].max = 1.0f;
  431. kData->param.ranges[j].def = 0.0f; // off
  432. kData->param.ranges[j].step = 1.0f;
  433. kData->param.ranges[j].stepSmall = 1.0f;
  434. kData->param.ranges[j].stepLarge = 1.0f;
  435. fParamBuffers[j] = kData->param.ranges[j].def;
  436. // ----------------------
  437. j = FluidSynthReverbRoomSize;
  438. kData->param.data[j].index = j;
  439. kData->param.data[j].rindex = j;
  440. kData->param.data[j].type = PARAMETER_INPUT;
  441. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE;
  442. kData->param.data[j].midiChannel = 0;
  443. kData->param.data[j].midiCC = -1;
  444. kData->param.ranges[j].min = 0.0f;
  445. kData->param.ranges[j].max = 1.2f;
  446. kData->param.ranges[j].def = FLUID_REVERB_DEFAULT_ROOMSIZE;
  447. kData->param.ranges[j].step = 0.01f;
  448. kData->param.ranges[j].stepSmall = 0.0001f;
  449. kData->param.ranges[j].stepLarge = 0.1f;
  450. fParamBuffers[j] = kData->param.ranges[j].def;
  451. // ----------------------
  452. j = FluidSynthReverbDamp;
  453. kData->param.data[j].index = j;
  454. kData->param.data[j].rindex = j;
  455. kData->param.data[j].type = PARAMETER_INPUT;
  456. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE;
  457. kData->param.data[j].midiChannel = 0;
  458. kData->param.data[j].midiCC = -1;
  459. kData->param.ranges[j].min = 0.0f;
  460. kData->param.ranges[j].max = 1.0f;
  461. kData->param.ranges[j].def = FLUID_REVERB_DEFAULT_DAMP;
  462. kData->param.ranges[j].step = 0.01f;
  463. kData->param.ranges[j].stepSmall = 0.0001f;
  464. kData->param.ranges[j].stepLarge = 0.1f;
  465. fParamBuffers[j] = kData->param.ranges[j].def;
  466. // ----------------------
  467. j = FluidSynthReverbLevel;
  468. kData->param.data[j].index = j;
  469. kData->param.data[j].rindex = j;
  470. kData->param.data[j].type = PARAMETER_INPUT;
  471. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE;
  472. kData->param.data[j].midiChannel = 0;
  473. kData->param.data[j].midiCC = MIDI_CONTROL_REVERB_SEND_LEVEL;
  474. kData->param.ranges[j].min = 0.0f;
  475. kData->param.ranges[j].max = 1.0f;
  476. kData->param.ranges[j].def = FLUID_REVERB_DEFAULT_LEVEL;
  477. kData->param.ranges[j].step = 0.01f;
  478. kData->param.ranges[j].stepSmall = 0.0001f;
  479. kData->param.ranges[j].stepLarge = 0.1f;
  480. fParamBuffers[j] = kData->param.ranges[j].def;
  481. // ----------------------
  482. j = FluidSynthReverbWidth;
  483. kData->param.data[j].index = j;
  484. kData->param.data[j].rindex = j;
  485. kData->param.data[j].type = PARAMETER_INPUT;
  486. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE;
  487. kData->param.data[j].midiChannel = 0;
  488. kData->param.data[j].midiCC = -1;
  489. kData->param.ranges[j].min = 0.0f;
  490. kData->param.ranges[j].max = 10.0f; // should be 100, but that sounds too much
  491. kData->param.ranges[j].def = FLUID_REVERB_DEFAULT_WIDTH;
  492. kData->param.ranges[j].step = 0.01f;
  493. kData->param.ranges[j].stepSmall = 0.0001f;
  494. kData->param.ranges[j].stepLarge = 0.1f;
  495. fParamBuffers[j] = kData->param.ranges[j].def;
  496. // ----------------------
  497. j = FluidSynthChorusOnOff;
  498. kData->param.data[j].index = j;
  499. kData->param.data[j].rindex = j;
  500. kData->param.data[j].type = PARAMETER_INPUT;
  501. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_BOOLEAN;
  502. kData->param.data[j].midiChannel = 0;
  503. kData->param.data[j].midiCC = -1;
  504. kData->param.ranges[j].min = 0.0f;
  505. kData->param.ranges[j].max = 1.0f;
  506. kData->param.ranges[j].def = 0.0f; // off
  507. kData->param.ranges[j].step = 1.0f;
  508. kData->param.ranges[j].stepSmall = 1.0f;
  509. kData->param.ranges[j].stepLarge = 1.0f;
  510. fParamBuffers[j] = kData->param.ranges[j].def;
  511. // ----------------------
  512. j = FluidSynthChorusNr;
  513. kData->param.data[j].index = j;
  514. kData->param.data[j].rindex = j;
  515. kData->param.data[j].type = PARAMETER_INPUT;
  516. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_INTEGER;
  517. kData->param.data[j].midiChannel = 0;
  518. kData->param.data[j].midiCC = -1;
  519. kData->param.ranges[j].min = 0.0f;
  520. kData->param.ranges[j].max = 99.0f;
  521. kData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_N;
  522. kData->param.ranges[j].step = 1.0f;
  523. kData->param.ranges[j].stepSmall = 1.0f;
  524. kData->param.ranges[j].stepLarge = 10.0f;
  525. fParamBuffers[j] = kData->param.ranges[j].def;
  526. // ----------------------
  527. j = FluidSynthChorusLevel;
  528. kData->param.data[j].index = j;
  529. kData->param.data[j].rindex = j;
  530. kData->param.data[j].type = PARAMETER_INPUT;
  531. kData->param.data[j].hints = PARAMETER_IS_ENABLED;
  532. kData->param.data[j].midiChannel = 0;
  533. kData->param.data[j].midiCC = 0; //MIDI_CONTROL_CHORUS_SEND_LEVEL;
  534. kData->param.ranges[j].min = 0.0f;
  535. kData->param.ranges[j].max = 10.0f;
  536. kData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_LEVEL;
  537. kData->param.ranges[j].step = 0.01f;
  538. kData->param.ranges[j].stepSmall = 0.0001f;
  539. kData->param.ranges[j].stepLarge = 0.1f;
  540. fParamBuffers[j] = kData->param.ranges[j].def;
  541. // ----------------------
  542. j = FluidSynthChorusSpeedHz;
  543. kData->param.data[j].index = j;
  544. kData->param.data[j].rindex = j;
  545. kData->param.data[j].type = PARAMETER_INPUT;
  546. kData->param.data[j].hints = PARAMETER_IS_ENABLED;
  547. kData->param.data[j].midiChannel = 0;
  548. kData->param.data[j].midiCC = -1;
  549. kData->param.ranges[j].min = 0.29f;
  550. kData->param.ranges[j].max = 5.0f;
  551. kData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_SPEED;
  552. kData->param.ranges[j].step = 0.01f;
  553. kData->param.ranges[j].stepSmall = 0.0001f;
  554. kData->param.ranges[j].stepLarge = 0.1f;
  555. fParamBuffers[j] = kData->param.ranges[j].def;
  556. // ----------------------
  557. j = FluidSynthChorusDepthMs;
  558. kData->param.data[j].index = j;
  559. kData->param.data[j].rindex = j;
  560. kData->param.data[j].type = PARAMETER_INPUT;
  561. kData->param.data[j].hints = PARAMETER_IS_ENABLED;
  562. kData->param.data[j].midiChannel = 0;
  563. kData->param.data[j].midiCC = -1;
  564. kData->param.ranges[j].min = 0.0f;
  565. kData->param.ranges[j].max = 2048000.0 / kData->engine->getSampleRate();
  566. kData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_DEPTH;
  567. kData->param.ranges[j].step = 0.01f;
  568. kData->param.ranges[j].stepSmall = 0.0001f;
  569. kData->param.ranges[j].stepLarge = 0.1f;
  570. fParamBuffers[j] = kData->param.ranges[j].def;
  571. // ----------------------
  572. j = FluidSynthChorusType;
  573. kData->param.data[j].index = j;
  574. kData->param.data[j].rindex = j;
  575. kData->param.data[j].type = PARAMETER_INPUT;
  576. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_INTEGER | PARAMETER_USES_SCALEPOINTS;
  577. kData->param.data[j].midiChannel = 0;
  578. kData->param.data[j].midiCC = -1;
  579. kData->param.ranges[j].min = FLUID_CHORUS_MOD_SINE;
  580. kData->param.ranges[j].max = FLUID_CHORUS_MOD_TRIANGLE;
  581. kData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_TYPE;
  582. kData->param.ranges[j].step = 1.0f;
  583. kData->param.ranges[j].stepSmall = 1.0f;
  584. kData->param.ranges[j].stepLarge = 1.0f;
  585. fParamBuffers[j] = kData->param.ranges[j].def;
  586. // ----------------------
  587. j = FluidSynthPolyphony;
  588. kData->param.data[j].index = j;
  589. kData->param.data[j].rindex = j;
  590. kData->param.data[j].type = PARAMETER_INPUT;
  591. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_INTEGER;
  592. kData->param.data[j].midiChannel = 0;
  593. kData->param.data[j].midiCC = -1;
  594. kData->param.ranges[j].min = 1.0f;
  595. kData->param.ranges[j].max = 512.0f; // max theoric is 65535
  596. kData->param.ranges[j].def = fluid_synth_get_polyphony(fSynth);
  597. kData->param.ranges[j].step = 1.0f;
  598. kData->param.ranges[j].stepSmall = 1.0f;
  599. kData->param.ranges[j].stepLarge = 10.0f;
  600. fParamBuffers[j] = kData->param.ranges[j].def;
  601. // ----------------------
  602. j = FluidSynthInterpolation;
  603. kData->param.data[j].index = j;
  604. kData->param.data[j].rindex = j;
  605. kData->param.data[j].type = PARAMETER_INPUT;
  606. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_INTEGER | PARAMETER_USES_SCALEPOINTS;
  607. kData->param.data[j].midiChannel = 0;
  608. kData->param.data[j].midiCC = -1;
  609. kData->param.ranges[j].min = FLUID_INTERP_NONE;
  610. kData->param.ranges[j].max = FLUID_INTERP_HIGHEST;
  611. kData->param.ranges[j].def = FLUID_INTERP_DEFAULT;
  612. kData->param.ranges[j].step = 1.0f;
  613. kData->param.ranges[j].stepSmall = 1.0f;
  614. kData->param.ranges[j].stepLarge = 1.0f;
  615. fParamBuffers[j] = kData->param.ranges[j].def;
  616. // ----------------------
  617. j = FluidSynthVoiceCount;
  618. kData->param.data[j].index = j;
  619. kData->param.data[j].rindex = j;
  620. kData->param.data[j].type = PARAMETER_OUTPUT;
  621. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE | PARAMETER_IS_INTEGER;
  622. kData->param.data[j].midiChannel = 0;
  623. kData->param.data[j].midiCC = -1;
  624. kData->param.ranges[j].min = 0.0f;
  625. kData->param.ranges[j].max = 65535.0f;
  626. kData->param.ranges[j].def = 0.0f;
  627. kData->param.ranges[j].step = 1.0f;
  628. kData->param.ranges[j].stepSmall = 1.0f;
  629. kData->param.ranges[j].stepLarge = 1.0f;
  630. fParamBuffers[j] = kData->param.ranges[j].def;
  631. // ---------------------------------------
  632. // plugin hints
  633. fHints = 0x0;
  634. fHints |= PLUGIN_IS_RTSAFE;
  635. fHints |= PLUGIN_IS_SYNTH;
  636. fHints |= PLUGIN_CAN_VOLUME;
  637. fHints |= PLUGIN_CAN_BALANCE;
  638. // extra plugin hints
  639. kData->extraHints = 0x0;
  640. kData->extraHints |= PLUGIN_HINT_CAN_RUN_RACK;
  641. // plugin options
  642. fOptions = 0x0;
  643. fOptions |= PLUGIN_OPTION_MAP_PROGRAM_CHANGES;
  644. fOptions |= PLUGIN_OPTION_SEND_CONTROL_CHANGES;
  645. fOptions |= PLUGIN_OPTION_SEND_CHANNEL_PRESSURE;
  646. fOptions |= PLUGIN_OPTION_SEND_PITCHBEND;
  647. fOptions |= PLUGIN_OPTION_SEND_ALL_SOUND_OFF;
  648. bufferSizeChanged(kData->engine->getBufferSize());
  649. reloadPrograms(true);
  650. carla_debug("FluidSynthPlugin::reload() - end");
  651. }
  652. void reloadPrograms(const bool init)
  653. {
  654. carla_debug("FluidSynthPlugin::reloadPrograms(%s)", bool2str(init));
  655. // Delete old programs
  656. kData->midiprog.clear();
  657. // Query new programs
  658. uint32_t count = 0;
  659. fluid_sfont_t* f_sfont;
  660. fluid_preset_t f_preset;
  661. bool hasDrums = false;
  662. f_sfont = fluid_synth_get_sfont_by_id(fSynth, fSynthId);
  663. // initial check to know how much midi-programs we have
  664. f_sfont->iteration_start(f_sfont);
  665. while (f_sfont->iteration_next(f_sfont, &f_preset))
  666. count += 1;
  667. // soundfonts must always have at least 1 midi-program
  668. CARLA_ASSERT(count > 0);
  669. if (count == 0)
  670. return;
  671. kData->midiprog.createNew(count);
  672. // Update data
  673. uint32_t i = 0;
  674. f_sfont->iteration_start(f_sfont);
  675. while (f_sfont->iteration_next(f_sfont, &f_preset))
  676. {
  677. CARLA_ASSERT(i < kData->midiprog.count);
  678. kData->midiprog.data[i].bank = f_preset.get_banknum(&f_preset);
  679. kData->midiprog.data[i].program = f_preset.get_num(&f_preset);
  680. kData->midiprog.data[i].name = carla_strdup(f_preset.get_name(&f_preset));
  681. if (kData->midiprog.data[i].bank == 128)
  682. hasDrums = true;
  683. i++;
  684. }
  685. //f_sfont->free(f_sfont);
  686. #ifndef BUILD_BRIDGE
  687. // Update OSC Names
  688. if (kData->engine->isOscControlRegistered())
  689. {
  690. kData->engine->osc_send_control_set_midi_program_count(fId, count);
  691. for (i=0; i < count; i++)
  692. kData->engine->osc_send_control_set_midi_program_data(fId, i, kData->midiprog.data[i].bank, kData->midiprog.data[i].program, kData->midiprog.data[i].name);
  693. }
  694. #endif
  695. if (init)
  696. {
  697. fluid_synth_program_reset(fSynth);
  698. // select first program, or 128 for ch10
  699. for (i=0; i < 16 && i != 9; i++)
  700. {
  701. fluid_synth_program_select(fSynth, i, fSynthId, kData->midiprog.data[0].bank, kData->midiprog.data[0].program);
  702. #ifdef FLUIDSYNTH_VERSION_NEW_API
  703. fluid_synth_set_channel_type(fSynth, i, CHANNEL_TYPE_MELODIC);
  704. #endif
  705. }
  706. if (hasDrums)
  707. {
  708. fluid_synth_program_select(fSynth, 9, fSynthId, 128, 0);
  709. #ifdef FLUIDSYNTH_VERSION_NEW_API
  710. fluid_synth_set_channel_type(fSynth, 9, CHANNEL_TYPE_DRUM);
  711. #endif
  712. }
  713. else
  714. {
  715. fluid_synth_program_select(fSynth, 9, fSynthId, kData->midiprog.data[0].bank, kData->midiprog.data[0].program);
  716. #ifdef FLUIDSYNTH_VERSION_NEW_API
  717. fluid_synth_set_channel_type(fSynth, 9, CHANNEL_TYPE_MELODIC);
  718. #endif
  719. }
  720. setMidiProgram(0, false, false, false);
  721. }
  722. else
  723. {
  724. kData->engine->callback(CALLBACK_RELOAD_PROGRAMS, fId, 0, 0, 0.0f, nullptr);
  725. }
  726. }
  727. // -------------------------------------------------------------------
  728. // Plugin processing
  729. void process(float** const, float** const outBuffer, const uint32_t frames)
  730. {
  731. uint32_t i, k;
  732. // --------------------------------------------------------------------------------------------------------
  733. // Check if active
  734. if (! kData->active)
  735. {
  736. // disable any output sound
  737. for (i=0; i < kData->audioOut.count; i++)
  738. carla_zeroFloat(outBuffer[i], frames);
  739. kData->activeBefore = kData->active;
  740. return;
  741. }
  742. // --------------------------------------------------------------------------------------------------------
  743. // Check if not active before
  744. if (kData->needsReset || ! kData->activeBefore)
  745. {
  746. if (fOptions & PLUGIN_OPTION_SEND_ALL_SOUND_OFF)
  747. {
  748. for (int c=0; c < MAX_MIDI_CHANNELS; c++)
  749. {
  750. #ifdef FLUIDSYNTH_VERSION_NEW_API
  751. fluid_synth_all_notes_off(fSynth, c);
  752. fluid_synth_all_sounds_off(fSynth, c);
  753. #else
  754. fluid_synth_cc(f_synth, c, MIDI_CONTROL_ALL_SOUND_OFF, 0);
  755. fluid_synth_cc(f_synth, c, MIDI_CONTROL_ALL_NOTES_OFF, 0);
  756. #endif
  757. }
  758. }
  759. kData->needsReset = false;
  760. }
  761. // --------------------------------------------------------------------------------------------------------
  762. // Event Input and Processing
  763. if (kData->activeBefore)
  764. {
  765. // ----------------------------------------------------------------------------------------------------
  766. // MIDI Input (External)
  767. if (kData->extNotes.mutex.tryLock())
  768. {
  769. while (! kData->extNotes.data.isEmpty())
  770. {
  771. const ExternalMidiNote& note = kData->extNotes.data.getFirst(true);
  772. CARLA_ASSERT(note.channel >= 0);
  773. if (note.velo > 0)
  774. fluid_synth_noteon(fSynth, note.channel, note.note, note.velo);
  775. else
  776. fluid_synth_noteoff(fSynth,note.channel, note.note);
  777. }
  778. kData->extNotes.mutex.unlock();
  779. } // End of MIDI Input (External)
  780. // ----------------------------------------------------------------------------------------------------
  781. // Event Input (System)
  782. bool allNotesOffSent = false;
  783. uint32_t time, nEvents = kData->event.portIn->getEventCount();
  784. uint32_t timeOffset = 0;
  785. uint32_t nextBankIds[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 128, 0, 0, 0, 0, 0, 0 };
  786. if (kData->midiprog.current >= 0 && kData->midiprog.count > 0 && kData->ctrlChannel >= 0 && kData->ctrlChannel < 16)
  787. nextBankIds[kData->ctrlChannel] = kData->midiprog.data[kData->midiprog.current].bank;
  788. for (i=0; i < nEvents; i++)
  789. {
  790. const EngineEvent& event = kData->event.portIn->getEvent(i);
  791. time = event.time;
  792. if (time >= frames)
  793. continue;
  794. CARLA_ASSERT_INT2(time >= timeOffset, time, timeOffset);
  795. if (time > timeOffset)
  796. {
  797. if (processSingle(outBuffer, time - timeOffset, timeOffset))
  798. {
  799. timeOffset = time;
  800. if (kData->midiprog.current >= 0 && kData->midiprog.count > 0 && kData->ctrlChannel >= 0 && kData->ctrlChannel < 16)
  801. nextBankIds[kData->ctrlChannel] = kData->midiprog.data[kData->midiprog.current].bank;
  802. }
  803. }
  804. // Control change
  805. switch (event.type)
  806. {
  807. case kEngineEventTypeNull:
  808. break;
  809. case kEngineEventTypeControl:
  810. {
  811. const EngineControlEvent& ctrlEvent = event.ctrl;
  812. switch (ctrlEvent.type)
  813. {
  814. case kEngineControlEventTypeNull:
  815. break;
  816. case kEngineControlEventTypeParameter:
  817. {
  818. // Control backend stuff
  819. if (event.channel == kData->ctrlChannel)
  820. {
  821. float value;
  822. if (MIDI_IS_CONTROL_BREATH_CONTROLLER(ctrlEvent.param) && (fHints & PLUGIN_CAN_DRYWET) > 0)
  823. {
  824. value = ctrlEvent.value;
  825. setDryWet(value, false, false);
  826. postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_DRYWET, 0, value);
  827. continue;
  828. }
  829. if (MIDI_IS_CONTROL_CHANNEL_VOLUME(ctrlEvent.param) && (fHints & PLUGIN_CAN_VOLUME) > 0)
  830. {
  831. value = ctrlEvent.value*127.0f/100.0f;
  832. setVolume(value, false, false);
  833. postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_VOLUME, 0, value);
  834. continue;
  835. }
  836. if (MIDI_IS_CONTROL_BALANCE(ctrlEvent.param) && (fHints & PLUGIN_CAN_BALANCE) > 0)
  837. {
  838. float left, right;
  839. value = ctrlEvent.value/0.5f - 1.0f;
  840. if (value < 0.0f)
  841. {
  842. left = -1.0f;
  843. right = (value*2.0f)+1.0f;
  844. }
  845. else if (value > 0.0f)
  846. {
  847. left = (value*2.0f)-1.0f;
  848. right = 1.0f;
  849. }
  850. else
  851. {
  852. left = -1.0f;
  853. right = 1.0f;
  854. }
  855. setBalanceLeft(left, false, false);
  856. setBalanceRight(right, false, false);
  857. postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_BALANCE_LEFT, 0, left);
  858. postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_BALANCE_RIGHT, 0, right);
  859. continue;
  860. }
  861. }
  862. // Control plugin parameters
  863. for (k=0; k < kData->param.count; k++)
  864. {
  865. if (kData->param.data[k].midiChannel != event.channel)
  866. continue;
  867. if (kData->param.data[k].midiCC != ctrlEvent.param)
  868. continue;
  869. if (kData->param.data[k].type != PARAMETER_INPUT)
  870. continue;
  871. if ((kData->param.data[k].hints & PARAMETER_IS_AUTOMABLE) == 0)
  872. continue;
  873. float value;
  874. if (kData->param.data[k].hints & PARAMETER_IS_BOOLEAN)
  875. {
  876. value = (ctrlEvent.value < 0.5f) ? kData->param.ranges[k].min : kData->param.ranges[k].max;
  877. }
  878. else
  879. {
  880. value = kData->param.ranges[i].unnormalizeValue(ctrlEvent.value);
  881. if (kData->param.data[k].hints & PARAMETER_IS_INTEGER)
  882. value = std::rint(value);
  883. }
  884. setParameterValue(k, value, false, false, false);
  885. postponeRtEvent(kPluginPostRtEventParameterChange, static_cast<int32_t>(k), 0, value);
  886. }
  887. break;
  888. }
  889. case kEngineControlEventTypeMidiBank:
  890. if (event.channel < 16 && (fOptions & PLUGIN_OPTION_MAP_PROGRAM_CHANGES) != 0)
  891. nextBankIds[event.channel] = ctrlEvent.param;
  892. break;
  893. case kEngineControlEventTypeMidiProgram:
  894. if (event.channel < 16 && (fOptions & PLUGIN_OPTION_MAP_PROGRAM_CHANGES) != 0)
  895. {
  896. const uint32_t bankId = nextBankIds[event.channel];
  897. const uint32_t progId = ctrlEvent.param;
  898. for (k=0; k < kData->midiprog.count; k++)
  899. {
  900. if (kData->midiprog.data[k].bank == bankId && kData->midiprog.data[k].program == progId)
  901. {
  902. if (event.channel == kData->ctrlChannel)
  903. {
  904. setMidiProgram(k, false, false, false);
  905. postponeRtEvent(kPluginPostRtEventMidiProgramChange, k, 0, 0.0f);
  906. }
  907. else
  908. fluid_synth_program_select(fSynth, event.channel, fSynthId, bankId, progId);
  909. break;
  910. }
  911. }
  912. }
  913. break;
  914. case kEngineControlEventTypeAllSoundOff:
  915. if (event.channel == kData->ctrlChannel)
  916. {
  917. if (! allNotesOffSent)
  918. {
  919. allNotesOffSent = true;
  920. sendMidiAllNotesOff();
  921. }
  922. postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_ACTIVE, 0, 0.0f);
  923. postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_ACTIVE, 0, 1.0f);
  924. if (fOptions & PLUGIN_OPTION_SEND_ALL_SOUND_OFF)
  925. {
  926. #ifdef FLUIDSYNTH_VERSION_NEW_API
  927. fluid_synth_all_sounds_off(fSynth, event.channel);
  928. #else
  929. fluid_synth_cc(f_synth, event.channel, MIDI_CONTROL_ALL_SOUND_OFF, 0);
  930. #endif
  931. }
  932. }
  933. break;
  934. case kEngineControlEventTypeAllNotesOff:
  935. if (event.channel == kData->ctrlChannel)
  936. {
  937. if (! allNotesOffSent)
  938. {
  939. allNotesOffSent = true;
  940. sendMidiAllNotesOff();
  941. }
  942. if (fOptions & PLUGIN_OPTION_SEND_ALL_SOUND_OFF)
  943. {
  944. #ifdef FLUIDSYNTH_VERSION_NEW_API
  945. fluid_synth_all_notes_off(fSynth, event.channel);
  946. #else
  947. fluid_synth_cc(f_synth, event.channel, MIDI_CONTROL_ALL_NOTES_OFF, 0);
  948. #endif
  949. }
  950. }
  951. break;
  952. }
  953. break;
  954. }
  955. case kEngineEventTypeMidi:
  956. {
  957. const EngineMidiEvent& midiEvent = event.midi;
  958. uint8_t status = MIDI_GET_STATUS_FROM_DATA(midiEvent.data);
  959. uint8_t channel = event.channel;
  960. // Fix bad note-off
  961. if (MIDI_IS_STATUS_NOTE_ON(status) && midiEvent.data[2] == 0)
  962. status -= 0x10;
  963. if (MIDI_IS_STATUS_NOTE_OFF(status))
  964. {
  965. const uint8_t note = midiEvent.data[1];
  966. fluid_synth_noteoff(fSynth, channel, note);
  967. postponeRtEvent(kPluginPostRtEventNoteOff, channel, note, 0.0f);
  968. }
  969. else if (MIDI_IS_STATUS_NOTE_ON(status))
  970. {
  971. const uint8_t note = midiEvent.data[1];
  972. const uint8_t velo = midiEvent.data[2];
  973. fluid_synth_noteon(fSynth, channel, note, velo);
  974. postponeRtEvent(kPluginPostRtEventNoteOn, channel, note, velo);
  975. }
  976. else if (MIDI_IS_STATUS_POLYPHONIC_AFTERTOUCH(status) && (fOptions & PLUGIN_OPTION_SEND_NOTE_AFTERTOUCH) != 0)
  977. {
  978. //const uint8_t note = midiEvent.data[1];
  979. //const uint8_t pressure = midiEvent.data[2];
  980. // TODO, not in fluidsynth API
  981. }
  982. else if (MIDI_IS_STATUS_CONTROL_CHANGE(status) && (fOptions & PLUGIN_OPTION_SEND_CONTROL_CHANGES) != 0)
  983. {
  984. const uint8_t control = midiEvent.data[1];
  985. const uint8_t value = midiEvent.data[2];
  986. fluid_synth_cc(fSynth, channel, control, value);
  987. }
  988. else if (MIDI_IS_STATUS_AFTERTOUCH(status) && (fOptions & PLUGIN_OPTION_SEND_CHANNEL_PRESSURE) != 0)
  989. {
  990. const uint8_t pressure = midiEvent.data[1];
  991. fluid_synth_channel_pressure(fSynth, channel, pressure);;
  992. }
  993. else if (MIDI_IS_STATUS_PITCH_WHEEL_CONTROL(status) && (fOptions & PLUGIN_OPTION_SEND_PITCHBEND) != 0)
  994. {
  995. const uint8_t lsb = midiEvent.data[1];
  996. const uint8_t msb = midiEvent.data[2];
  997. fluid_synth_pitch_bend(fSynth, channel, (msb << 7) | lsb);
  998. }
  999. break;
  1000. }
  1001. }
  1002. }
  1003. kData->postRtEvents.trySplice();
  1004. if (frames > timeOffset)
  1005. processSingle(outBuffer, frames - timeOffset, timeOffset);
  1006. } // End of Event Input and Processing
  1007. CARLA_PROCESS_CONTINUE_CHECK;
  1008. // --------------------------------------------------------------------------------------------------------
  1009. // Control Output
  1010. {
  1011. k = FluidSynthVoiceCount;
  1012. fParamBuffers[k] = fluid_synth_get_active_voice_count(fSynth);
  1013. kData->param.ranges[k].fixValue(fParamBuffers[k]);
  1014. if (kData->param.data[k].midiCC > 0)
  1015. {
  1016. double value = kData->param.ranges[k].normalizeValue(fParamBuffers[k]);
  1017. kData->event.portOut->writeControlEvent(0, kData->param.data[k].midiChannel, kEngineControlEventTypeParameter, kData->param.data[k].midiCC, value);
  1018. }
  1019. } // End of Control Output
  1020. // --------------------------------------------------------------------------------------------------------
  1021. kData->activeBefore = kData->active;
  1022. }
  1023. bool processSingle(float** const outBuffer, const uint32_t frames, const uint32_t timeOffset)
  1024. {
  1025. uint32_t i, k;
  1026. // --------------------------------------------------------------------------------------------------------
  1027. // Try lock, silence otherwise
  1028. if (kData->engine->isOffline())
  1029. {
  1030. kData->singleMutex.lock();
  1031. }
  1032. else if (! kData->singleMutex.tryLock())
  1033. {
  1034. for (i=0; i < kData->audioOut.count; i++)
  1035. {
  1036. for (k=0; k < frames; k++)
  1037. outBuffer[i][k+timeOffset] = 0.0f;
  1038. }
  1039. return false;
  1040. }
  1041. // --------------------------------------------------------------------------------------------------------
  1042. // Fill plugin buffers and Run plugin
  1043. if (kUses16Outs)
  1044. {
  1045. for (i=0; i < kData->audioOut.count; i++)
  1046. carla_zeroFloat(fAudio16Buffers[i], frames);
  1047. fluid_synth_process(fSynth, frames, 0, nullptr, kData->audioOut.count, fAudio16Buffers);
  1048. }
  1049. else
  1050. fluid_synth_write_float(fSynth, frames, outBuffer[0] + timeOffset, 0, 1, outBuffer[1] + timeOffset, 0, 1);
  1051. // --------------------------------------------------------------------------------------------------------
  1052. // Post-processing (volume and balance)
  1053. {
  1054. // note - balance not possible with kUses16Outs, so we can safely skip fAudioOutBuffers
  1055. const bool doVolume = (fHints & PLUGIN_CAN_VOLUME) > 0 && kData->postProc.volume != 1.0f;
  1056. const bool doBalance = (fHints & PLUGIN_CAN_BALANCE) > 0 && (kData->postProc.balanceLeft != -1.0f || kData->postProc.balanceRight != 1.0f);
  1057. float oldBufLeft[doBalance ? frames : 1];
  1058. for (i=0; i < kData->audioOut.count; i++)
  1059. {
  1060. // Balance
  1061. if (doBalance)
  1062. {
  1063. if (i % 2 == 0)
  1064. carla_copyFloat(oldBufLeft, outBuffer[i]+timeOffset, frames);
  1065. float balRangeL = (kData->postProc.balanceLeft + 1.0f)/2.0f;
  1066. float balRangeR = (kData->postProc.balanceRight + 1.0f)/2.0f;
  1067. for (k=0; k < frames; k++)
  1068. {
  1069. if (i % 2 == 0)
  1070. {
  1071. // left
  1072. outBuffer[i][k+timeOffset] = oldBufLeft[k] * (1.0f - balRangeL);
  1073. outBuffer[i][k+timeOffset] += outBuffer[i+1][k+timeOffset] * (1.0f - balRangeR);
  1074. }
  1075. else
  1076. {
  1077. // right
  1078. outBuffer[i][k+timeOffset] = outBuffer[i][k+timeOffset] * balRangeR;
  1079. outBuffer[i][k+timeOffset] += oldBufLeft[k] * balRangeL;
  1080. }
  1081. }
  1082. }
  1083. // Volume
  1084. if (kUses16Outs)
  1085. {
  1086. for (k=0; k < frames; k++)
  1087. outBuffer[i][k+timeOffset] = fAudio16Buffers[i][k] * kData->postProc.volume;
  1088. }
  1089. else if (doVolume)
  1090. {
  1091. for (k=0; k < frames; k++)
  1092. outBuffer[i][k+timeOffset] *= kData->postProc.volume;
  1093. }
  1094. }
  1095. } // End of Post-processing
  1096. // --------------------------------------------------------------------------------------------------------
  1097. kData->singleMutex.unlock();
  1098. return true;
  1099. }
  1100. void bufferSizeChanged(const uint32_t newBufferSize)
  1101. {
  1102. if (! kUses16Outs)
  1103. return;
  1104. for (uint32_t i=0; i < kData->audioOut.count; i++)
  1105. {
  1106. if (fAudio16Buffers[i] != nullptr)
  1107. delete[] fAudio16Buffers[i];
  1108. fAudio16Buffers[i] = new float[newBufferSize];
  1109. }
  1110. }
  1111. // -------------------------------------------------------------------
  1112. // Cleanup
  1113. void deleteBuffers()
  1114. {
  1115. carla_debug("FluidSynthPlugin::deleteBuffers() - start");
  1116. if (fAudio16Buffers != nullptr)
  1117. {
  1118. for (uint32_t i=0; i < kData->audioOut.count; i++)
  1119. {
  1120. if (fAudio16Buffers[i] != nullptr)
  1121. {
  1122. delete[] fAudio16Buffers[i];
  1123. fAudio16Buffers[i] = nullptr;
  1124. }
  1125. }
  1126. delete[] fAudio16Buffers;
  1127. fAudio16Buffers = nullptr;
  1128. }
  1129. CarlaPlugin::deleteBuffers();
  1130. carla_debug("FluidSynthPlugin::deleteBuffers() - end");
  1131. }
  1132. // -------------------------------------------------------------------
  1133. bool init(const char* const filename, const char* const name, const char* const label)
  1134. {
  1135. CARLA_ASSERT(fSynth != nullptr);
  1136. CARLA_ASSERT(filename != nullptr);
  1137. CARLA_ASSERT(label != nullptr);
  1138. // ---------------------------------------------------------------
  1139. // open soundfont
  1140. fSynthId = fluid_synth_sfload(fSynth, filename, 0);
  1141. if (fSynthId < 0)
  1142. {
  1143. kData->engine->setLastError("Failed to load SoundFont file");
  1144. return false;
  1145. }
  1146. // ---------------------------------------------------------------
  1147. // get info
  1148. fFilename = filename;
  1149. fLabel = label;
  1150. if (name != nullptr)
  1151. fName = kData->engine->getNewUniquePluginName(name);
  1152. else
  1153. fName = kData->engine->getNewUniquePluginName(label);
  1154. // ---------------------------------------------------------------
  1155. // register client
  1156. kData->client = kData->engine->addClient(this);
  1157. if (kData->client == nullptr || ! kData->client->isOk())
  1158. {
  1159. kData->engine->setLastError("Failed to register plugin client");
  1160. return false;
  1161. }
  1162. return true;
  1163. }
  1164. private:
  1165. enum FluidSynthInputParameters {
  1166. FluidSynthReverbOnOff = 0,
  1167. FluidSynthReverbRoomSize = 1,
  1168. FluidSynthReverbDamp = 2,
  1169. FluidSynthReverbLevel = 3,
  1170. FluidSynthReverbWidth = 4,
  1171. FluidSynthChorusOnOff = 5,
  1172. FluidSynthChorusNr = 6,
  1173. FluidSynthChorusLevel = 7,
  1174. FluidSynthChorusSpeedHz = 8,
  1175. FluidSynthChorusDepthMs = 9,
  1176. FluidSynthChorusType = 10,
  1177. FluidSynthPolyphony = 11,
  1178. FluidSynthInterpolation = 12,
  1179. FluidSynthVoiceCount = 13,
  1180. FluidSynthParametersMax = 14
  1181. };
  1182. const bool kUses16Outs;
  1183. CarlaString fLabel;
  1184. fluid_settings_t* fSettings;
  1185. fluid_synth_t* fSynth;
  1186. int fSynthId;
  1187. float** fAudio16Buffers;
  1188. double fParamBuffers[FluidSynthParametersMax];
  1189. CARLA_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR(FluidSynthPlugin)
  1190. };
  1191. CARLA_BACKEND_END_NAMESPACE
  1192. #else // WANT_FLUIDSYNTH
  1193. # warning fluidsynth not available (no SF2 support)
  1194. #endif
  1195. CARLA_BACKEND_START_NAMESPACE
  1196. CarlaPlugin* CarlaPlugin::newSF2(const Initializer& init, const bool use16Outs)
  1197. {
  1198. carla_debug("CarlaPlugin::newSF2({%p, \"%s\", \"%s\", \"%s\"}, %s)", init.engine, init.filename, init.name, init.label, bool2str(use16Outs));
  1199. #ifdef WANT_FLUIDSYNTH
  1200. if (! fluid_is_soundfont(init.filename))
  1201. {
  1202. init.engine->setLastError("Requested file is not a valid SoundFont");
  1203. return nullptr;
  1204. }
  1205. if (init.engine->getProccessMode() == PROCESS_MODE_CONTINUOUS_RACK && use16Outs)
  1206. {
  1207. init.engine->setLastError("Carla's rack mode can only work with Stereo modules, please choose the 2-channel only SoundFont version");
  1208. return nullptr;
  1209. }
  1210. FluidSynthPlugin* const plugin = new FluidSynthPlugin(init.engine, init.id, use16Outs);
  1211. if (! plugin->init(init.filename, init.name, init.label))
  1212. {
  1213. delete plugin;
  1214. return nullptr;
  1215. }
  1216. plugin->reload();
  1217. return plugin;
  1218. #else
  1219. init.engine->setLastError("fluidsynth support not available");
  1220. return nullptr;
  1221. // unused
  1222. (void)use16Outs;
  1223. #endif
  1224. }
  1225. CARLA_BACKEND_END_NAMESPACE