Audio plugin host https://kx.studio/carla
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

169 lines
5.5KB

  1. /*
  2. * jfdctflt.c
  3. *
  4. * Copyright (C) 1994-1996, Thomas G. Lane.
  5. * This file is part of the Independent JPEG Group's software.
  6. * For conditions of distribution and use, see the accompanying README file.
  7. *
  8. * This file contains a floating-point implementation of the
  9. * forward DCT (Discrete Cosine Transform).
  10. *
  11. * This implementation should be more accurate than either of the integer
  12. * DCT implementations. However, it may not give the same results on all
  13. * machines because of differences in roundoff behavior. Speed will depend
  14. * on the hardware's floating point capacity.
  15. *
  16. * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
  17. * on each column. Direct algorithms are also available, but they are
  18. * much more complex and seem not to be any faster when reduced to code.
  19. *
  20. * This implementation is based on Arai, Agui, and Nakajima's algorithm for
  21. * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
  22. * Japanese, but the algorithm is described in the Pennebaker & Mitchell
  23. * JPEG textbook (see REFERENCES section in file README). The following code
  24. * is based directly on figure 4-8 in P&M.
  25. * While an 8-point DCT cannot be done in less than 11 multiplies, it is
  26. * possible to arrange the computation so that many of the multiplies are
  27. * simple scalings of the final outputs. These multiplies can then be
  28. * folded into the multiplications or divisions by the JPEG quantization
  29. * table entries. The AA&N method leaves only 5 multiplies and 29 adds
  30. * to be done in the DCT itself.
  31. * The primary disadvantage of this method is that with a fixed-point
  32. * implementation, accuracy is lost due to imprecise representation of the
  33. * scaled quantization values. However, that problem does not arise if
  34. * we use floating point arithmetic.
  35. */
  36. #define JPEG_INTERNALS
  37. #include "jinclude.h"
  38. #include "jpeglib.h"
  39. #include "jdct.h" /* Private declarations for DCT subsystem */
  40. #ifdef DCT_FLOAT_SUPPORTED
  41. /*
  42. * This module is specialized to the case DCTSIZE = 8.
  43. */
  44. #if DCTSIZE != 8
  45. Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
  46. #endif
  47. /*
  48. * Perform the forward DCT on one block of samples.
  49. */
  50. GLOBAL(void)
  51. jpeg_fdct_float (FAST_FLOAT * data)
  52. {
  53. FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  54. FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
  55. FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
  56. FAST_FLOAT *dataptr;
  57. int ctr;
  58. /* Pass 1: process rows. */
  59. dataptr = data;
  60. for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
  61. tmp0 = dataptr[0] + dataptr[7];
  62. tmp7 = dataptr[0] - dataptr[7];
  63. tmp1 = dataptr[1] + dataptr[6];
  64. tmp6 = dataptr[1] - dataptr[6];
  65. tmp2 = dataptr[2] + dataptr[5];
  66. tmp5 = dataptr[2] - dataptr[5];
  67. tmp3 = dataptr[3] + dataptr[4];
  68. tmp4 = dataptr[3] - dataptr[4];
  69. /* Even part */
  70. tmp10 = tmp0 + tmp3; /* phase 2 */
  71. tmp13 = tmp0 - tmp3;
  72. tmp11 = tmp1 + tmp2;
  73. tmp12 = tmp1 - tmp2;
  74. dataptr[0] = tmp10 + tmp11; /* phase 3 */
  75. dataptr[4] = tmp10 - tmp11;
  76. z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
  77. dataptr[2] = tmp13 + z1; /* phase 5 */
  78. dataptr[6] = tmp13 - z1;
  79. /* Odd part */
  80. tmp10 = tmp4 + tmp5; /* phase 2 */
  81. tmp11 = tmp5 + tmp6;
  82. tmp12 = tmp6 + tmp7;
  83. /* The rotator is modified from fig 4-8 to avoid extra negations. */
  84. z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
  85. z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
  86. z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
  87. z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
  88. z11 = tmp7 + z3; /* phase 5 */
  89. z13 = tmp7 - z3;
  90. dataptr[5] = z13 + z2; /* phase 6 */
  91. dataptr[3] = z13 - z2;
  92. dataptr[1] = z11 + z4;
  93. dataptr[7] = z11 - z4;
  94. dataptr += DCTSIZE; /* advance pointer to next row */
  95. }
  96. /* Pass 2: process columns. */
  97. dataptr = data;
  98. for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
  99. tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
  100. tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
  101. tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
  102. tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
  103. tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
  104. tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
  105. tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
  106. tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
  107. /* Even part */
  108. tmp10 = tmp0 + tmp3; /* phase 2 */
  109. tmp13 = tmp0 - tmp3;
  110. tmp11 = tmp1 + tmp2;
  111. tmp12 = tmp1 - tmp2;
  112. dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
  113. dataptr[DCTSIZE*4] = tmp10 - tmp11;
  114. z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
  115. dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
  116. dataptr[DCTSIZE*6] = tmp13 - z1;
  117. /* Odd part */
  118. tmp10 = tmp4 + tmp5; /* phase 2 */
  119. tmp11 = tmp5 + tmp6;
  120. tmp12 = tmp6 + tmp7;
  121. /* The rotator is modified from fig 4-8 to avoid extra negations. */
  122. z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
  123. z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
  124. z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
  125. z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
  126. z11 = tmp7 + z3; /* phase 5 */
  127. z13 = tmp7 - z3;
  128. dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
  129. dataptr[DCTSIZE*3] = z13 - z2;
  130. dataptr[DCTSIZE*1] = z11 + z4;
  131. dataptr[DCTSIZE*7] = z11 - z4;
  132. dataptr++; /* advance pointer to next column */
  133. }
  134. }
  135. #endif /* DCT_FLOAT_SUPPORTED */