Audio plugin host https://kx.studio/carla
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1566 lines
55KB

  1. /*
  2. * Carla FluidSynth Plugin
  3. * Copyright (C) 2011-2013 Filipe Coelho <falktx@falktx.com>
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation; either version 2 of
  8. * the License, or any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * For a full copy of the GNU General Public License see the GPL.txt file
  16. */
  17. #include "CarlaPluginInternal.hpp"
  18. #ifdef WANT_FLUIDSYNTH
  19. #include <fluidsynth.h>
  20. #define FLUIDSYNTH_VERSION_NEW_API (FLUIDSYNTH_VERSION_MAJOR >= 1 && FLUIDSYNTH_VERSION_MINOR >= 1 && FLUIDSYNTH_VERSION_MICRO >= 4)
  21. CARLA_BACKEND_START_NAMESPACE
  22. #if 0
  23. }
  24. #endif
  25. #define FLUID_DEFAULT_POLYPHONY 64
  26. class FluidSynthPlugin : public CarlaPlugin
  27. {
  28. public:
  29. FluidSynthPlugin(CarlaEngine* const engine, const unsigned int id, const bool use16Outs)
  30. : CarlaPlugin(engine, id),
  31. kUses16Outs(use16Outs),
  32. fSettings(nullptr),
  33. fSynth(nullptr),
  34. fSynthId(-1),
  35. fAudio16Buffers(nullptr),
  36. fParamBuffers{0.0f}
  37. {
  38. carla_debug("FluidSynthPlugin::FluidSynthPlugin(%p, %i, %s)", engine, id, bool2str(use16Outs));
  39. // create settings
  40. fSettings = new_fluid_settings();
  41. CARLA_ASSERT(fSettings != nullptr);
  42. // define settings
  43. fluid_settings_setint(fSettings, "synth.audio-channels", use16Outs ? 16 : 1);
  44. fluid_settings_setint(fSettings, "synth.audio-groups", use16Outs ? 16 : 1);
  45. fluid_settings_setnum(fSettings, "synth.sample-rate", kData->engine->getSampleRate());
  46. fluid_settings_setint(fSettings, "synth.threadsafe-api ", 0);
  47. // create synth
  48. fSynth = new_fluid_synth(fSettings);
  49. CARLA_ASSERT(fSynth != nullptr);
  50. #ifdef FLUIDSYNTH_VERSION_NEW_API
  51. fluid_synth_set_sample_rate(fSynth, kData->engine->getSampleRate());
  52. #endif
  53. // set default values
  54. fluid_synth_set_reverb_on(fSynth, 0);
  55. fluid_synth_set_reverb(fSynth, FLUID_REVERB_DEFAULT_ROOMSIZE, FLUID_REVERB_DEFAULT_DAMP, FLUID_REVERB_DEFAULT_WIDTH, FLUID_REVERB_DEFAULT_LEVEL);
  56. fluid_synth_set_chorus_on(fSynth, 0);
  57. fluid_synth_set_chorus(fSynth, FLUID_CHORUS_DEFAULT_N, FLUID_CHORUS_DEFAULT_LEVEL, FLUID_CHORUS_DEFAULT_SPEED, FLUID_CHORUS_DEFAULT_DEPTH, FLUID_CHORUS_DEFAULT_TYPE);
  58. fluid_synth_set_polyphony(fSynth, FLUID_DEFAULT_POLYPHONY);
  59. for (int i=0; i < MAX_MIDI_CHANNELS; ++i)
  60. fluid_synth_set_interp_method(fSynth, i, FLUID_INTERP_DEFAULT);
  61. }
  62. ~FluidSynthPlugin() override
  63. {
  64. carla_debug("FluidSynthPlugin::~FluidSynthPlugin()");
  65. kData->singleMutex.lock();
  66. kData->masterMutex.lock();
  67. delete_fluid_synth(fSynth);
  68. delete_fluid_settings(fSettings);
  69. clearBuffers();
  70. }
  71. // -------------------------------------------------------------------
  72. // Information (base)
  73. PluginType type() const override
  74. {
  75. return PLUGIN_SF2;
  76. }
  77. PluginCategory category() override
  78. {
  79. return PLUGIN_CATEGORY_SYNTH;
  80. }
  81. // -------------------------------------------------------------------
  82. // Information (count)
  83. uint32_t parameterScalePointCount(const uint32_t parameterId) const override
  84. {
  85. CARLA_ASSERT(parameterId < kData->param.count);
  86. switch (parameterId)
  87. {
  88. case FluidSynthChorusType:
  89. return 2;
  90. case FluidSynthInterpolation:
  91. return 4;
  92. default:
  93. return 0;
  94. }
  95. }
  96. // -------------------------------------------------------------------
  97. // Information (per-plugin data)
  98. unsigned int availableOptions() override
  99. {
  100. unsigned int options = 0x0;
  101. options |= PLUGIN_OPTION_MAP_PROGRAM_CHANGES;
  102. options |= PLUGIN_OPTION_SEND_CONTROL_CHANGES;
  103. options |= PLUGIN_OPTION_SEND_CHANNEL_PRESSURE;
  104. options |= PLUGIN_OPTION_SEND_PITCHBEND;
  105. options |= PLUGIN_OPTION_SEND_ALL_SOUND_OFF;
  106. return options;
  107. }
  108. float getParameterValue(const uint32_t parameterId) override
  109. {
  110. CARLA_ASSERT(parameterId < kData->param.count);
  111. return fParamBuffers[parameterId];
  112. }
  113. float getParameterScalePointValue(const uint32_t parameterId, const uint32_t scalePointId) override
  114. {
  115. CARLA_ASSERT(parameterId < kData->param.count);
  116. CARLA_ASSERT(scalePointId < parameterScalePointCount(parameterId));
  117. switch (parameterId)
  118. {
  119. case FluidSynthChorusType:
  120. switch (scalePointId)
  121. {
  122. case 0:
  123. return FLUID_CHORUS_MOD_SINE;
  124. case 1:
  125. return FLUID_CHORUS_MOD_TRIANGLE;
  126. default:
  127. return FLUID_CHORUS_DEFAULT_TYPE;
  128. }
  129. case FluidSynthInterpolation:
  130. switch (scalePointId)
  131. {
  132. case 0:
  133. return FLUID_INTERP_NONE;
  134. case 1:
  135. return FLUID_INTERP_LINEAR;
  136. case 2:
  137. return FLUID_INTERP_4THORDER;
  138. case 3:
  139. return FLUID_INTERP_7THORDER;
  140. default:
  141. return FLUID_INTERP_DEFAULT;
  142. }
  143. default:
  144. return 0.0f;
  145. }
  146. }
  147. void getLabel(char* const strBuf) override
  148. {
  149. if (fLabel.isNotEmpty())
  150. std::strncpy(strBuf, (const char*)fLabel, STR_MAX);
  151. else
  152. CarlaPlugin::getLabel(strBuf);
  153. }
  154. void getMaker(char* const strBuf) override
  155. {
  156. std::strncpy(strBuf, "FluidSynth SF2 engine", STR_MAX);
  157. }
  158. void getCopyright(char* const strBuf) override
  159. {
  160. std::strncpy(strBuf, "GNU GPL v2+", STR_MAX);
  161. }
  162. void getRealName(char* const strBuf) override
  163. {
  164. getLabel(strBuf);
  165. }
  166. void getParameterName(const uint32_t parameterId, char* const strBuf) override
  167. {
  168. CARLA_ASSERT(parameterId < kData->param.count);
  169. switch (parameterId)
  170. {
  171. case FluidSynthReverbOnOff:
  172. std::strncpy(strBuf, "Reverb On/Off", STR_MAX);
  173. break;
  174. case FluidSynthReverbRoomSize:
  175. std::strncpy(strBuf, "Reverb Room Size", STR_MAX);
  176. break;
  177. case FluidSynthReverbDamp:
  178. std::strncpy(strBuf, "Reverb Damp", STR_MAX);
  179. break;
  180. case FluidSynthReverbLevel:
  181. std::strncpy(strBuf, "Reverb Level", STR_MAX);
  182. break;
  183. case FluidSynthReverbWidth:
  184. std::strncpy(strBuf, "Reverb Width", STR_MAX);
  185. break;
  186. case FluidSynthChorusOnOff:
  187. std::strncpy(strBuf, "Chorus On/Off", STR_MAX);
  188. break;
  189. case FluidSynthChorusNr:
  190. std::strncpy(strBuf, "Chorus Voice Count", STR_MAX);
  191. break;
  192. case FluidSynthChorusLevel:
  193. std::strncpy(strBuf, "Chorus Level", STR_MAX);
  194. break;
  195. case FluidSynthChorusSpeedHz:
  196. std::strncpy(strBuf, "Chorus Speed", STR_MAX);
  197. break;
  198. case FluidSynthChorusDepthMs:
  199. std::strncpy(strBuf, "Chorus Depth", STR_MAX);
  200. break;
  201. case FluidSynthChorusType:
  202. std::strncpy(strBuf, "Chorus Type", STR_MAX);
  203. break;
  204. case FluidSynthPolyphony:
  205. std::strncpy(strBuf, "Polyphony", STR_MAX);
  206. break;
  207. case FluidSynthInterpolation:
  208. std::strncpy(strBuf, "Interpolation", STR_MAX);
  209. break;
  210. case FluidSynthVoiceCount:
  211. std::strncpy(strBuf, "Voice Count", STR_MAX);
  212. break;
  213. default:
  214. CarlaPlugin::getParameterName(parameterId, strBuf);
  215. break;
  216. }
  217. }
  218. void getParameterUnit(const uint32_t parameterId, char* const strBuf) override
  219. {
  220. CARLA_ASSERT(parameterId < kData->param.count);
  221. switch (parameterId)
  222. {
  223. case FluidSynthChorusSpeedHz:
  224. std::strncpy(strBuf, "Hz", STR_MAX);
  225. break;
  226. case FluidSynthChorusDepthMs:
  227. std::strncpy(strBuf, "ms", STR_MAX);
  228. break;
  229. default:
  230. CarlaPlugin::getParameterUnit(parameterId, strBuf);
  231. break;
  232. }
  233. }
  234. void getParameterScalePointLabel(const uint32_t parameterId, const uint32_t scalePointId, char* const strBuf) override
  235. {
  236. CARLA_ASSERT(parameterId < kData->param.count);
  237. CARLA_ASSERT(scalePointId < parameterScalePointCount(parameterId));
  238. switch (parameterId)
  239. {
  240. case FluidSynthChorusType:
  241. switch (scalePointId)
  242. {
  243. case 0:
  244. std::strncpy(strBuf, "Sine wave", STR_MAX);
  245. return;
  246. case 1:
  247. std::strncpy(strBuf, "Triangle wave", STR_MAX);
  248. return;
  249. }
  250. case FluidSynthInterpolation:
  251. switch (scalePointId)
  252. {
  253. case 0:
  254. std::strncpy(strBuf, "None", STR_MAX);
  255. return;
  256. case 1:
  257. std::strncpy(strBuf, "Straight-line", STR_MAX);
  258. return;
  259. case 2:
  260. std::strncpy(strBuf, "Fourth-order", STR_MAX);
  261. return;
  262. case 3:
  263. std::strncpy(strBuf, "Seventh-order", STR_MAX);
  264. return;
  265. }
  266. }
  267. CarlaPlugin::getParameterScalePointLabel(parameterId, scalePointId, strBuf);
  268. }
  269. // -------------------------------------------------------------------
  270. // Set data (plugin-specific stuff)
  271. void setParameterValue(const uint32_t parameterId, const float value, const bool sendGui, const bool sendOsc, const bool sendCallback) override
  272. {
  273. CARLA_ASSERT(parameterId < kData->param.count);
  274. const float fixedValue = kData->param.fixValue(parameterId, value);
  275. fParamBuffers[parameterId] = fixedValue;
  276. {
  277. const ScopedSingleProcessLocker spl(this, (sendGui || sendOsc || sendCallback));
  278. switch (parameterId)
  279. {
  280. case FluidSynthReverbOnOff:
  281. fluid_synth_set_reverb_on(fSynth, (fixedValue > 0.5f) ? 1 : 0);
  282. break;
  283. case FluidSynthReverbRoomSize:
  284. case FluidSynthReverbDamp:
  285. case FluidSynthReverbLevel:
  286. case FluidSynthReverbWidth:
  287. fluid_synth_set_reverb(fSynth, fParamBuffers[FluidSynthReverbRoomSize], fParamBuffers[FluidSynthReverbDamp], fParamBuffers[FluidSynthReverbWidth], fParamBuffers[FluidSynthReverbLevel]);
  288. break;
  289. case FluidSynthChorusOnOff:
  290. fluid_synth_set_chorus_on(fSynth, (value > 0.5f) ? 1 : 0);
  291. break;
  292. case FluidSynthChorusNr:
  293. case FluidSynthChorusLevel:
  294. case FluidSynthChorusSpeedHz:
  295. case FluidSynthChorusDepthMs:
  296. case FluidSynthChorusType:
  297. fluid_synth_set_chorus(fSynth, fParamBuffers[FluidSynthChorusNr], fParamBuffers[FluidSynthChorusLevel], fParamBuffers[FluidSynthChorusSpeedHz], fParamBuffers[FluidSynthChorusDepthMs], fParamBuffers[FluidSynthChorusType]);
  298. break;
  299. case FluidSynthPolyphony:
  300. fluid_synth_set_polyphony(fSynth, value);
  301. break;
  302. case FluidSynthInterpolation:
  303. for (int i=0; i < MAX_MIDI_CHANNELS; ++i)
  304. fluid_synth_set_interp_method(fSynth, i, value);
  305. break;
  306. default:
  307. break;
  308. }
  309. }
  310. CarlaPlugin::setParameterValue(parameterId, value, sendGui, sendOsc, sendCallback);
  311. }
  312. void setMidiProgram(int32_t index, const bool sendGui, const bool sendOsc, const bool sendCallback) override
  313. {
  314. CARLA_ASSERT(fSynth != nullptr);
  315. CARLA_ASSERT(index >= -1 && index < static_cast<int32_t>(kData->midiprog.count));
  316. if (index < -1)
  317. index = -1;
  318. else if (index > static_cast<int32_t>(kData->midiprog.count))
  319. return;
  320. if (kData->ctrlChannel < 0 || kData->ctrlChannel >= 16)
  321. return;
  322. if (index >= 0)
  323. {
  324. const uint32_t bank = kData->midiprog.data[index].bank;
  325. const uint32_t program = kData->midiprog.data[index].program;
  326. const ScopedSingleProcessLocker spl(this, (sendGui || sendOsc || sendCallback));
  327. fluid_synth_program_select(fSynth, kData->ctrlChannel, fSynthId, bank, program);
  328. }
  329. CarlaPlugin::setMidiProgram(index, sendGui, sendOsc, sendCallback);
  330. }
  331. // -------------------------------------------------------------------
  332. // Plugin state
  333. void reload() override
  334. {
  335. carla_debug("FluidSynthPlugin::reload() - start");
  336. CARLA_ASSERT(kData->engine != nullptr);
  337. CARLA_ASSERT(fSynth != nullptr);
  338. if (kData->engine == nullptr)
  339. return;
  340. if (fSynth == nullptr)
  341. return;
  342. const ProcessMode processMode(kData->engine->getProccessMode());
  343. // Safely disable plugin for reload
  344. const ScopedDisabler sd(this);
  345. if (kData->active)
  346. deactivate();
  347. clearBuffers();
  348. uint32_t aOuts, params, j;
  349. aOuts = kUses16Outs ? 32 : 2;
  350. params = FluidSynthParametersMax;
  351. kData->audioOut.createNew(aOuts);
  352. kData->param.createNew(params);
  353. const int portNameSize = kData->engine->maxPortNameSize();
  354. CarlaString portName;
  355. // ---------------------------------------
  356. // Audio Outputs
  357. if (kUses16Outs)
  358. {
  359. for (j=0; j < 32; ++j)
  360. {
  361. portName.clear();
  362. if (processMode == PROCESS_MODE_SINGLE_CLIENT)
  363. {
  364. portName = fName;
  365. portName += ":";
  366. }
  367. portName += "out-";
  368. if ((j+2)/2 < 9)
  369. portName += "0";
  370. portName += CarlaString((j+2)/2);
  371. if (j % 2 == 0)
  372. portName += "L";
  373. else
  374. portName += "R";
  375. portName.truncate(portNameSize);
  376. kData->audioOut.ports[j].port = (CarlaEngineAudioPort*)kData->client->addPort(kEnginePortTypeAudio, portName, false);
  377. kData->audioOut.ports[j].rindex = j;
  378. }
  379. fAudio16Buffers = new float*[aOuts];
  380. for (j=0; j < aOuts; ++j)
  381. fAudio16Buffers[j] = nullptr;
  382. }
  383. else
  384. {
  385. // out-left
  386. portName.clear();
  387. if (processMode == PROCESS_MODE_SINGLE_CLIENT)
  388. {
  389. portName = fName;
  390. portName += ":";
  391. }
  392. portName += "out-left";
  393. portName.truncate(portNameSize);
  394. kData->audioOut.ports[0].port = (CarlaEngineAudioPort*)kData->client->addPort(kEnginePortTypeAudio, portName, false);
  395. kData->audioOut.ports[0].rindex = 0;
  396. // out-right
  397. portName.clear();
  398. if (processMode == PROCESS_MODE_SINGLE_CLIENT)
  399. {
  400. portName = fName;
  401. portName += ":";
  402. }
  403. portName += "out-right";
  404. portName.truncate(portNameSize);
  405. kData->audioOut.ports[1].port = (CarlaEngineAudioPort*)kData->client->addPort(kEnginePortTypeAudio, portName, false);
  406. kData->audioOut.ports[1].rindex = 1;
  407. }
  408. // ---------------------------------------
  409. // Event Input
  410. {
  411. portName.clear();
  412. if (processMode == PROCESS_MODE_SINGLE_CLIENT)
  413. {
  414. portName = fName;
  415. portName += ":";
  416. }
  417. portName += "event-in";
  418. portName.truncate(portNameSize);
  419. kData->event.portIn = (CarlaEngineEventPort*)kData->client->addPort(kEnginePortTypeEvent, portName, true);
  420. }
  421. // ---------------------------------------
  422. // Event Output
  423. {
  424. portName.clear();
  425. if (processMode == PROCESS_MODE_SINGLE_CLIENT)
  426. {
  427. portName = fName;
  428. portName += ":";
  429. }
  430. portName += "event-out";
  431. portName.truncate(portNameSize);
  432. kData->event.portOut = (CarlaEngineEventPort*)kData->client->addPort(kEnginePortTypeEvent, portName, false);
  433. }
  434. // ----------------------
  435. j = FluidSynthReverbOnOff;
  436. kData->param.data[j].index = j;
  437. kData->param.data[j].rindex = j;
  438. kData->param.data[j].type = PARAMETER_INPUT;
  439. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE | PARAMETER_IS_BOOLEAN;
  440. kData->param.data[j].midiChannel = 0;
  441. kData->param.data[j].midiCC = -1;
  442. kData->param.ranges[j].min = 0.0f;
  443. kData->param.ranges[j].max = 1.0f;
  444. kData->param.ranges[j].def = 0.0f; // off
  445. kData->param.ranges[j].step = 1.0f;
  446. kData->param.ranges[j].stepSmall = 1.0f;
  447. kData->param.ranges[j].stepLarge = 1.0f;
  448. fParamBuffers[j] = kData->param.ranges[j].def;
  449. // ----------------------
  450. j = FluidSynthReverbRoomSize;
  451. kData->param.data[j].index = j;
  452. kData->param.data[j].rindex = j;
  453. kData->param.data[j].type = PARAMETER_INPUT;
  454. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE;
  455. kData->param.data[j].midiChannel = 0;
  456. kData->param.data[j].midiCC = -1;
  457. kData->param.ranges[j].min = 0.0f;
  458. kData->param.ranges[j].max = 1.2f;
  459. kData->param.ranges[j].def = FLUID_REVERB_DEFAULT_ROOMSIZE;
  460. kData->param.ranges[j].step = 0.01f;
  461. kData->param.ranges[j].stepSmall = 0.0001f;
  462. kData->param.ranges[j].stepLarge = 0.1f;
  463. fParamBuffers[j] = kData->param.ranges[j].def;
  464. // ----------------------
  465. j = FluidSynthReverbDamp;
  466. kData->param.data[j].index = j;
  467. kData->param.data[j].rindex = j;
  468. kData->param.data[j].type = PARAMETER_INPUT;
  469. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE;
  470. kData->param.data[j].midiChannel = 0;
  471. kData->param.data[j].midiCC = -1;
  472. kData->param.ranges[j].min = 0.0f;
  473. kData->param.ranges[j].max = 1.0f;
  474. kData->param.ranges[j].def = FLUID_REVERB_DEFAULT_DAMP;
  475. kData->param.ranges[j].step = 0.01f;
  476. kData->param.ranges[j].stepSmall = 0.0001f;
  477. kData->param.ranges[j].stepLarge = 0.1f;
  478. fParamBuffers[j] = kData->param.ranges[j].def;
  479. // ----------------------
  480. j = FluidSynthReverbLevel;
  481. kData->param.data[j].index = j;
  482. kData->param.data[j].rindex = j;
  483. kData->param.data[j].type = PARAMETER_INPUT;
  484. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE;
  485. kData->param.data[j].midiChannel = 0;
  486. kData->param.data[j].midiCC = MIDI_CONTROL_REVERB_SEND_LEVEL;
  487. kData->param.ranges[j].min = 0.0f;
  488. kData->param.ranges[j].max = 1.0f;
  489. kData->param.ranges[j].def = FLUID_REVERB_DEFAULT_LEVEL;
  490. kData->param.ranges[j].step = 0.01f;
  491. kData->param.ranges[j].stepSmall = 0.0001f;
  492. kData->param.ranges[j].stepLarge = 0.1f;
  493. fParamBuffers[j] = kData->param.ranges[j].def;
  494. // ----------------------
  495. j = FluidSynthReverbWidth;
  496. kData->param.data[j].index = j;
  497. kData->param.data[j].rindex = j;
  498. kData->param.data[j].type = PARAMETER_INPUT;
  499. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE;
  500. kData->param.data[j].midiChannel = 0;
  501. kData->param.data[j].midiCC = -1;
  502. kData->param.ranges[j].min = 0.0f;
  503. kData->param.ranges[j].max = 10.0f; // should be 100, but that sounds too much
  504. kData->param.ranges[j].def = FLUID_REVERB_DEFAULT_WIDTH;
  505. kData->param.ranges[j].step = 0.01f;
  506. kData->param.ranges[j].stepSmall = 0.0001f;
  507. kData->param.ranges[j].stepLarge = 0.1f;
  508. fParamBuffers[j] = kData->param.ranges[j].def;
  509. // ----------------------
  510. j = FluidSynthChorusOnOff;
  511. kData->param.data[j].index = j;
  512. kData->param.data[j].rindex = j;
  513. kData->param.data[j].type = PARAMETER_INPUT;
  514. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_BOOLEAN;
  515. kData->param.data[j].midiChannel = 0;
  516. kData->param.data[j].midiCC = -1;
  517. kData->param.ranges[j].min = 0.0f;
  518. kData->param.ranges[j].max = 1.0f;
  519. kData->param.ranges[j].def = 0.0f; // off
  520. kData->param.ranges[j].step = 1.0f;
  521. kData->param.ranges[j].stepSmall = 1.0f;
  522. kData->param.ranges[j].stepLarge = 1.0f;
  523. fParamBuffers[j] = kData->param.ranges[j].def;
  524. // ----------------------
  525. j = FluidSynthChorusNr;
  526. kData->param.data[j].index = j;
  527. kData->param.data[j].rindex = j;
  528. kData->param.data[j].type = PARAMETER_INPUT;
  529. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_INTEGER;
  530. kData->param.data[j].midiChannel = 0;
  531. kData->param.data[j].midiCC = -1;
  532. kData->param.ranges[j].min = 0.0f;
  533. kData->param.ranges[j].max = 99.0f;
  534. kData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_N;
  535. kData->param.ranges[j].step = 1.0f;
  536. kData->param.ranges[j].stepSmall = 1.0f;
  537. kData->param.ranges[j].stepLarge = 10.0f;
  538. fParamBuffers[j] = kData->param.ranges[j].def;
  539. // ----------------------
  540. j = FluidSynthChorusLevel;
  541. kData->param.data[j].index = j;
  542. kData->param.data[j].rindex = j;
  543. kData->param.data[j].type = PARAMETER_INPUT;
  544. kData->param.data[j].hints = PARAMETER_IS_ENABLED;
  545. kData->param.data[j].midiChannel = 0;
  546. kData->param.data[j].midiCC = 0; //MIDI_CONTROL_CHORUS_SEND_LEVEL;
  547. kData->param.ranges[j].min = 0.0f;
  548. kData->param.ranges[j].max = 10.0f;
  549. kData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_LEVEL;
  550. kData->param.ranges[j].step = 0.01f;
  551. kData->param.ranges[j].stepSmall = 0.0001f;
  552. kData->param.ranges[j].stepLarge = 0.1f;
  553. fParamBuffers[j] = kData->param.ranges[j].def;
  554. // ----------------------
  555. j = FluidSynthChorusSpeedHz;
  556. kData->param.data[j].index = j;
  557. kData->param.data[j].rindex = j;
  558. kData->param.data[j].type = PARAMETER_INPUT;
  559. kData->param.data[j].hints = PARAMETER_IS_ENABLED;
  560. kData->param.data[j].midiChannel = 0;
  561. kData->param.data[j].midiCC = -1;
  562. kData->param.ranges[j].min = 0.29f;
  563. kData->param.ranges[j].max = 5.0f;
  564. kData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_SPEED;
  565. kData->param.ranges[j].step = 0.01f;
  566. kData->param.ranges[j].stepSmall = 0.0001f;
  567. kData->param.ranges[j].stepLarge = 0.1f;
  568. fParamBuffers[j] = kData->param.ranges[j].def;
  569. // ----------------------
  570. j = FluidSynthChorusDepthMs;
  571. kData->param.data[j].index = j;
  572. kData->param.data[j].rindex = j;
  573. kData->param.data[j].type = PARAMETER_INPUT;
  574. kData->param.data[j].hints = PARAMETER_IS_ENABLED;
  575. kData->param.data[j].midiChannel = 0;
  576. kData->param.data[j].midiCC = -1;
  577. kData->param.ranges[j].min = 0.0f;
  578. kData->param.ranges[j].max = 2048000.0 / kData->engine->getSampleRate();
  579. kData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_DEPTH;
  580. kData->param.ranges[j].step = 0.01f;
  581. kData->param.ranges[j].stepSmall = 0.0001f;
  582. kData->param.ranges[j].stepLarge = 0.1f;
  583. fParamBuffers[j] = kData->param.ranges[j].def;
  584. // ----------------------
  585. j = FluidSynthChorusType;
  586. kData->param.data[j].index = j;
  587. kData->param.data[j].rindex = j;
  588. kData->param.data[j].type = PARAMETER_INPUT;
  589. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_INTEGER | PARAMETER_USES_SCALEPOINTS;
  590. kData->param.data[j].midiChannel = 0;
  591. kData->param.data[j].midiCC = -1;
  592. kData->param.ranges[j].min = FLUID_CHORUS_MOD_SINE;
  593. kData->param.ranges[j].max = FLUID_CHORUS_MOD_TRIANGLE;
  594. kData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_TYPE;
  595. kData->param.ranges[j].step = 1.0f;
  596. kData->param.ranges[j].stepSmall = 1.0f;
  597. kData->param.ranges[j].stepLarge = 1.0f;
  598. fParamBuffers[j] = kData->param.ranges[j].def;
  599. // ----------------------
  600. j = FluidSynthPolyphony;
  601. kData->param.data[j].index = j;
  602. kData->param.data[j].rindex = j;
  603. kData->param.data[j].type = PARAMETER_INPUT;
  604. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_INTEGER;
  605. kData->param.data[j].midiChannel = 0;
  606. kData->param.data[j].midiCC = -1;
  607. kData->param.ranges[j].min = 1.0f;
  608. kData->param.ranges[j].max = 512.0f; // max theoric is 65535
  609. kData->param.ranges[j].def = fluid_synth_get_polyphony(fSynth);
  610. kData->param.ranges[j].step = 1.0f;
  611. kData->param.ranges[j].stepSmall = 1.0f;
  612. kData->param.ranges[j].stepLarge = 10.0f;
  613. fParamBuffers[j] = kData->param.ranges[j].def;
  614. // ----------------------
  615. j = FluidSynthInterpolation;
  616. kData->param.data[j].index = j;
  617. kData->param.data[j].rindex = j;
  618. kData->param.data[j].type = PARAMETER_INPUT;
  619. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_INTEGER | PARAMETER_USES_SCALEPOINTS;
  620. kData->param.data[j].midiChannel = 0;
  621. kData->param.data[j].midiCC = -1;
  622. kData->param.ranges[j].min = FLUID_INTERP_NONE;
  623. kData->param.ranges[j].max = FLUID_INTERP_HIGHEST;
  624. kData->param.ranges[j].def = FLUID_INTERP_DEFAULT;
  625. kData->param.ranges[j].step = 1.0f;
  626. kData->param.ranges[j].stepSmall = 1.0f;
  627. kData->param.ranges[j].stepLarge = 1.0f;
  628. fParamBuffers[j] = kData->param.ranges[j].def;
  629. // ----------------------
  630. j = FluidSynthVoiceCount;
  631. kData->param.data[j].index = j;
  632. kData->param.data[j].rindex = j;
  633. kData->param.data[j].type = PARAMETER_OUTPUT;
  634. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE | PARAMETER_IS_INTEGER;
  635. kData->param.data[j].midiChannel = 0;
  636. kData->param.data[j].midiCC = -1;
  637. kData->param.ranges[j].min = 0.0f;
  638. kData->param.ranges[j].max = 65535.0f;
  639. kData->param.ranges[j].def = 0.0f;
  640. kData->param.ranges[j].step = 1.0f;
  641. kData->param.ranges[j].stepSmall = 1.0f;
  642. kData->param.ranges[j].stepLarge = 1.0f;
  643. fParamBuffers[j] = kData->param.ranges[j].def;
  644. // ---------------------------------------
  645. // plugin hints
  646. fHints = 0x0;
  647. fHints |= PLUGIN_IS_RTSAFE;
  648. fHints |= PLUGIN_IS_SYNTH;
  649. fHints |= PLUGIN_CAN_VOLUME;
  650. fHints |= PLUGIN_CAN_BALANCE;
  651. // extra plugin hints
  652. kData->extraHints = 0x0;
  653. kData->extraHints |= PLUGIN_HINT_HAS_MIDI_IN;
  654. kData->extraHints |= PLUGIN_HINT_CAN_RUN_RACK;
  655. bufferSizeChanged(kData->engine->getBufferSize());
  656. reloadPrograms(true);
  657. if (kData->active)
  658. activate();
  659. carla_debug("FluidSynthPlugin::reload() - end");
  660. }
  661. void reloadPrograms(const bool init) override
  662. {
  663. carla_debug("FluidSynthPlugin::reloadPrograms(%s)", bool2str(init));
  664. // Delete old programs
  665. kData->midiprog.clear();
  666. // Query new programs
  667. uint32_t count = 0;
  668. fluid_sfont_t* f_sfont;
  669. fluid_preset_t f_preset;
  670. bool hasDrums = false;
  671. f_sfont = fluid_synth_get_sfont_by_id(fSynth, fSynthId);
  672. // initial check to know how much midi-programs we have
  673. f_sfont->iteration_start(f_sfont);
  674. while (f_sfont->iteration_next(f_sfont, &f_preset))
  675. count += 1;
  676. // soundfonts must always have at least 1 midi-program
  677. CARLA_ASSERT(count > 0);
  678. if (count == 0)
  679. return;
  680. kData->midiprog.createNew(count);
  681. // Update data
  682. uint32_t i = 0;
  683. f_sfont->iteration_start(f_sfont);
  684. while (f_sfont->iteration_next(f_sfont, &f_preset))
  685. {
  686. CARLA_ASSERT(i < kData->midiprog.count);
  687. kData->midiprog.data[i].bank = f_preset.get_banknum(&f_preset);
  688. kData->midiprog.data[i].program = f_preset.get_num(&f_preset);
  689. kData->midiprog.data[i].name = carla_strdup(f_preset.get_name(&f_preset));
  690. if (kData->midiprog.data[i].bank == 128)
  691. hasDrums = true;
  692. ++i;
  693. }
  694. //f_sfont->free(f_sfont);
  695. #ifndef BUILD_BRIDGE
  696. // Update OSC Names
  697. if (kData->engine->isOscControlRegistered())
  698. {
  699. kData->engine->osc_send_control_set_midi_program_count(fId, count);
  700. for (i=0; i < count; ++i)
  701. kData->engine->osc_send_control_set_midi_program_data(fId, i, kData->midiprog.data[i].bank, kData->midiprog.data[i].program, kData->midiprog.data[i].name);
  702. }
  703. #endif
  704. if (init)
  705. {
  706. fluid_synth_program_reset(fSynth);
  707. // select first program, or 128 for ch10
  708. for (i=0; i < 16 && i != 9; ++i)
  709. {
  710. fluid_synth_program_select(fSynth, i, fSynthId, kData->midiprog.data[0].bank, kData->midiprog.data[0].program);
  711. #ifdef FLUIDSYNTH_VERSION_NEW_API
  712. fluid_synth_set_channel_type(fSynth, i, CHANNEL_TYPE_MELODIC);
  713. #endif
  714. }
  715. if (hasDrums)
  716. {
  717. fluid_synth_program_select(fSynth, 9, fSynthId, 128, 0);
  718. #ifdef FLUIDSYNTH_VERSION_NEW_API
  719. fluid_synth_set_channel_type(fSynth, 9, CHANNEL_TYPE_DRUM);
  720. #endif
  721. }
  722. else
  723. {
  724. fluid_synth_program_select(fSynth, 9, fSynthId, kData->midiprog.data[0].bank, kData->midiprog.data[0].program);
  725. #ifdef FLUIDSYNTH_VERSION_NEW_API
  726. fluid_synth_set_channel_type(fSynth, 9, CHANNEL_TYPE_MELODIC);
  727. #endif
  728. }
  729. setMidiProgram(0, false, false, false);
  730. }
  731. else
  732. {
  733. kData->engine->callback(CALLBACK_RELOAD_PROGRAMS, fId, 0, 0, 0.0f, nullptr);
  734. }
  735. }
  736. // -------------------------------------------------------------------
  737. // Plugin processing
  738. void process(float** const, float** const outBuffer, const uint32_t frames) override
  739. {
  740. uint32_t i, k;
  741. // --------------------------------------------------------------------------------------------------------
  742. // Check if active
  743. if (! kData->active)
  744. {
  745. // disable any output sound
  746. for (i=0; i < kData->audioOut.count; ++i)
  747. carla_zeroFloat(outBuffer[i], frames);
  748. return;
  749. }
  750. // --------------------------------------------------------------------------------------------------------
  751. // Check if needs reset
  752. if (kData->needsReset)
  753. {
  754. // TODO
  755. if (fOptions & PLUGIN_OPTION_SEND_ALL_SOUND_OFF)
  756. {
  757. for (int c=0; c < MAX_MIDI_CHANNELS; c++)
  758. {
  759. #ifdef FLUIDSYNTH_VERSION_NEW_API
  760. fluid_synth_all_notes_off(fSynth, c);
  761. fluid_synth_all_sounds_off(fSynth, c);
  762. #else
  763. fluid_synth_cc(f_synth, c, MIDI_CONTROL_ALL_SOUND_OFF, 0);
  764. fluid_synth_cc(f_synth, c, MIDI_CONTROL_ALL_NOTES_OFF, 0);
  765. #endif
  766. }
  767. }
  768. else
  769. {
  770. }
  771. kData->needsReset = false;
  772. }
  773. // --------------------------------------------------------------------------------------------------------
  774. // Event Input and Processing
  775. {
  776. // ----------------------------------------------------------------------------------------------------
  777. // MIDI Input (External)
  778. if (kData->extNotes.mutex.tryLock())
  779. {
  780. while (! kData->extNotes.data.isEmpty())
  781. {
  782. const ExternalMidiNote& note(kData->extNotes.data.getFirst(true));
  783. CARLA_ASSERT(note.channel >= 0 && note.channel < MAX_MIDI_CHANNELS);
  784. if (note.velo > 0)
  785. fluid_synth_noteon(fSynth, note.channel, note.note, note.velo);
  786. else
  787. fluid_synth_noteoff(fSynth,note.channel, note.note);
  788. }
  789. kData->extNotes.mutex.unlock();
  790. } // End of MIDI Input (External)
  791. // ----------------------------------------------------------------------------------------------------
  792. // Event Input (System)
  793. bool allNotesOffSent = false;
  794. uint32_t time, nEvents = kData->event.portIn->getEventCount();
  795. uint32_t timeOffset = 0;
  796. uint32_t nextBankIds[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 128, 0, 0, 0, 0, 0, 0 };
  797. if (kData->midiprog.current >= 0 && kData->midiprog.count > 0 && kData->ctrlChannel >= 0 && kData->ctrlChannel < 16)
  798. nextBankIds[kData->ctrlChannel] = kData->midiprog.data[kData->midiprog.current].bank;
  799. for (i=0; i < nEvents; ++i)
  800. {
  801. const EngineEvent& event = kData->event.portIn->getEvent(i);
  802. time = event.time;
  803. if (time >= frames)
  804. continue;
  805. CARLA_ASSERT_INT2(time >= timeOffset, time, timeOffset);
  806. if (time > timeOffset)
  807. {
  808. if (processSingle(outBuffer, time - timeOffset, timeOffset))
  809. {
  810. timeOffset = time;
  811. if (kData->midiprog.current >= 0 && kData->midiprog.count > 0 && kData->ctrlChannel >= 0 && kData->ctrlChannel < 16)
  812. nextBankIds[kData->ctrlChannel] = kData->midiprog.data[kData->midiprog.current].bank;
  813. }
  814. }
  815. // Control change
  816. switch (event.type)
  817. {
  818. case kEngineEventTypeNull:
  819. break;
  820. case kEngineEventTypeControl:
  821. {
  822. const EngineControlEvent& ctrlEvent = event.ctrl;
  823. switch (ctrlEvent.type)
  824. {
  825. case kEngineControlEventTypeNull:
  826. break;
  827. case kEngineControlEventTypeParameter:
  828. {
  829. // Control backend stuff
  830. if (event.channel == kData->ctrlChannel)
  831. {
  832. float value;
  833. if (MIDI_IS_CONTROL_BREATH_CONTROLLER(ctrlEvent.param) && (fHints & PLUGIN_CAN_DRYWET) > 0)
  834. {
  835. value = ctrlEvent.value;
  836. setDryWet(value, false, false);
  837. postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_DRYWET, 0, value);
  838. continue;
  839. }
  840. if (MIDI_IS_CONTROL_CHANNEL_VOLUME(ctrlEvent.param) && (fHints & PLUGIN_CAN_VOLUME) > 0)
  841. {
  842. value = ctrlEvent.value*127.0f/100.0f;
  843. setVolume(value, false, false);
  844. postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_VOLUME, 0, value);
  845. continue;
  846. }
  847. if (MIDI_IS_CONTROL_BALANCE(ctrlEvent.param) && (fHints & PLUGIN_CAN_BALANCE) > 0)
  848. {
  849. float left, right;
  850. value = ctrlEvent.value/0.5f - 1.0f;
  851. if (value < 0.0f)
  852. {
  853. left = -1.0f;
  854. right = (value*2.0f)+1.0f;
  855. }
  856. else if (value > 0.0f)
  857. {
  858. left = (value*2.0f)-1.0f;
  859. right = 1.0f;
  860. }
  861. else
  862. {
  863. left = -1.0f;
  864. right = 1.0f;
  865. }
  866. setBalanceLeft(left, false, false);
  867. setBalanceRight(right, false, false);
  868. postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_BALANCE_LEFT, 0, left);
  869. postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_BALANCE_RIGHT, 0, right);
  870. continue;
  871. }
  872. }
  873. // Control plugin parameters
  874. for (k=0; k < kData->param.count; ++k)
  875. {
  876. if (kData->param.data[k].midiChannel != event.channel)
  877. continue;
  878. if (kData->param.data[k].midiCC != ctrlEvent.param)
  879. continue;
  880. if (kData->param.data[k].type != PARAMETER_INPUT)
  881. continue;
  882. if ((kData->param.data[k].hints & PARAMETER_IS_AUTOMABLE) == 0)
  883. continue;
  884. float value;
  885. if (kData->param.data[k].hints & PARAMETER_IS_BOOLEAN)
  886. {
  887. value = (ctrlEvent.value < 0.5f) ? kData->param.ranges[k].min : kData->param.ranges[k].max;
  888. }
  889. else
  890. {
  891. value = kData->param.ranges[i].unnormalizeValue(ctrlEvent.value);
  892. if (kData->param.data[k].hints & PARAMETER_IS_INTEGER)
  893. value = std::rint(value);
  894. }
  895. setParameterValue(k, value, false, false, false);
  896. postponeRtEvent(kPluginPostRtEventParameterChange, static_cast<int32_t>(k), 0, value);
  897. }
  898. break;
  899. }
  900. case kEngineControlEventTypeMidiBank:
  901. if (event.channel < 16 && (fOptions & PLUGIN_OPTION_MAP_PROGRAM_CHANGES) != 0)
  902. nextBankIds[event.channel] = ctrlEvent.param;
  903. break;
  904. case kEngineControlEventTypeMidiProgram:
  905. if (event.channel < 16 && (fOptions & PLUGIN_OPTION_MAP_PROGRAM_CHANGES) != 0)
  906. {
  907. const uint32_t bankId = nextBankIds[event.channel];
  908. const uint32_t progId = ctrlEvent.param;
  909. for (k=0; k < kData->midiprog.count; ++k)
  910. {
  911. if (kData->midiprog.data[k].bank == bankId && kData->midiprog.data[k].program == progId)
  912. {
  913. if (event.channel == kData->ctrlChannel)
  914. {
  915. setMidiProgram(k, false, false, false);
  916. postponeRtEvent(kPluginPostRtEventMidiProgramChange, k, 0, 0.0f);
  917. }
  918. else
  919. fluid_synth_program_select(fSynth, event.channel, fSynthId, bankId, progId);
  920. break;
  921. }
  922. }
  923. }
  924. break;
  925. case kEngineControlEventTypeAllSoundOff:
  926. if (event.channel == kData->ctrlChannel)
  927. {
  928. if (! allNotesOffSent)
  929. {
  930. sendMidiAllNotesOff();
  931. allNotesOffSent = true;
  932. }
  933. postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_ACTIVE, 0, 0.0f);
  934. postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_ACTIVE, 0, 1.0f);
  935. if (fOptions & PLUGIN_OPTION_SEND_ALL_SOUND_OFF)
  936. {
  937. #ifdef FLUIDSYNTH_VERSION_NEW_API
  938. fluid_synth_all_sounds_off(fSynth, event.channel);
  939. #else
  940. fluid_synth_cc(f_synth, event.channel, MIDI_CONTROL_ALL_SOUND_OFF, 0);
  941. #endif
  942. }
  943. }
  944. break;
  945. case kEngineControlEventTypeAllNotesOff:
  946. if (event.channel == kData->ctrlChannel)
  947. {
  948. if (! allNotesOffSent)
  949. {
  950. sendMidiAllNotesOff();
  951. allNotesOffSent = true;
  952. }
  953. if (fOptions & PLUGIN_OPTION_SEND_ALL_SOUND_OFF)
  954. {
  955. #ifdef FLUIDSYNTH_VERSION_NEW_API
  956. fluid_synth_all_notes_off(fSynth, event.channel);
  957. #else
  958. fluid_synth_cc(f_synth, event.channel, MIDI_CONTROL_ALL_NOTES_OFF, 0);
  959. #endif
  960. }
  961. }
  962. break;
  963. }
  964. break;
  965. }
  966. case kEngineEventTypeMidi:
  967. {
  968. const EngineMidiEvent& midiEvent = event.midi;
  969. uint8_t status = MIDI_GET_STATUS_FROM_DATA(midiEvent.data);
  970. uint8_t channel = event.channel;
  971. // Fix bad note-off
  972. if (MIDI_IS_STATUS_NOTE_ON(status) && midiEvent.data[2] == 0)
  973. status -= 0x10;
  974. if (MIDI_IS_STATUS_NOTE_OFF(status))
  975. {
  976. const uint8_t note = midiEvent.data[1];
  977. fluid_synth_noteoff(fSynth, channel, note);
  978. postponeRtEvent(kPluginPostRtEventNoteOff, channel, note, 0.0f);
  979. }
  980. else if (MIDI_IS_STATUS_NOTE_ON(status))
  981. {
  982. const uint8_t note = midiEvent.data[1];
  983. const uint8_t velo = midiEvent.data[2];
  984. fluid_synth_noteon(fSynth, channel, note, velo);
  985. postponeRtEvent(kPluginPostRtEventNoteOn, channel, note, velo);
  986. }
  987. else if (MIDI_IS_STATUS_POLYPHONIC_AFTERTOUCH(status) && (fOptions & PLUGIN_OPTION_SEND_NOTE_AFTERTOUCH) != 0)
  988. {
  989. //const uint8_t note = midiEvent.data[1];
  990. //const uint8_t pressure = midiEvent.data[2];
  991. // TODO, not in fluidsynth API
  992. }
  993. else if (MIDI_IS_STATUS_CONTROL_CHANGE(status) && (fOptions & PLUGIN_OPTION_SEND_CONTROL_CHANGES) != 0)
  994. {
  995. const uint8_t control = midiEvent.data[1];
  996. const uint8_t value = midiEvent.data[2];
  997. fluid_synth_cc(fSynth, channel, control, value);
  998. }
  999. else if (MIDI_IS_STATUS_AFTERTOUCH(status) && (fOptions & PLUGIN_OPTION_SEND_CHANNEL_PRESSURE) != 0)
  1000. {
  1001. const uint8_t pressure = midiEvent.data[1];
  1002. fluid_synth_channel_pressure(fSynth, channel, pressure);;
  1003. }
  1004. else if (MIDI_IS_STATUS_PITCH_WHEEL_CONTROL(status) && (fOptions & PLUGIN_OPTION_SEND_PITCHBEND) != 0)
  1005. {
  1006. const uint8_t lsb = midiEvent.data[1];
  1007. const uint8_t msb = midiEvent.data[2];
  1008. fluid_synth_pitch_bend(fSynth, channel, (msb << 7) | lsb);
  1009. }
  1010. break;
  1011. }
  1012. }
  1013. }
  1014. kData->postRtEvents.trySplice();
  1015. if (frames > timeOffset)
  1016. processSingle(outBuffer, frames - timeOffset, timeOffset);
  1017. } // End of Event Input and Processing
  1018. CARLA_PROCESS_CONTINUE_CHECK;
  1019. // --------------------------------------------------------------------------------------------------------
  1020. // Control Output
  1021. {
  1022. k = FluidSynthVoiceCount;
  1023. fParamBuffers[k] = fluid_synth_get_active_voice_count(fSynth);
  1024. kData->param.ranges[k].fixValue(fParamBuffers[k]);
  1025. if (kData->param.data[k].midiCC > 0)
  1026. {
  1027. double value = kData->param.ranges[k].normalizeValue(fParamBuffers[k]);
  1028. kData->event.portOut->writeControlEvent(0, kData->param.data[k].midiChannel, kEngineControlEventTypeParameter, kData->param.data[k].midiCC, value);
  1029. }
  1030. } // End of Control Output
  1031. }
  1032. bool processSingle(float** const outBuffer, const uint32_t frames, const uint32_t timeOffset)
  1033. {
  1034. CARLA_ASSERT(outBuffer != nullptr);
  1035. CARLA_ASSERT(frames > 0);
  1036. if (outBuffer == nullptr)
  1037. return false;
  1038. if (frames == 0)
  1039. return false;
  1040. uint32_t i, k;
  1041. // --------------------------------------------------------------------------------------------------------
  1042. // Try lock, silence otherwise
  1043. if (kData->engine->isOffline())
  1044. {
  1045. kData->singleMutex.lock();
  1046. }
  1047. else if (! kData->singleMutex.tryLock())
  1048. {
  1049. for (i=0; i < kData->audioOut.count; ++i)
  1050. {
  1051. for (k=0; k < frames; ++k)
  1052. outBuffer[i][k+timeOffset] = 0.0f;
  1053. }
  1054. return false;
  1055. }
  1056. // --------------------------------------------------------------------------------------------------------
  1057. // Fill plugin buffers and Run plugin
  1058. if (kUses16Outs)
  1059. {
  1060. for (i=0; i < kData->audioOut.count; ++i)
  1061. carla_zeroFloat(fAudio16Buffers[i], frames);
  1062. fluid_synth_process(fSynth, frames, 0, nullptr, kData->audioOut.count, fAudio16Buffers);
  1063. }
  1064. else
  1065. fluid_synth_write_float(fSynth, frames, outBuffer[0] + timeOffset, 0, 1, outBuffer[1] + timeOffset, 0, 1);
  1066. // --------------------------------------------------------------------------------------------------------
  1067. // Post-processing (volume and balance)
  1068. {
  1069. // note - balance not possible with kUses16Outs, so we can safely skip fAudioOutBuffers
  1070. const bool doVolume = (fHints & PLUGIN_CAN_VOLUME) > 0 && kData->postProc.volume != 1.0f;
  1071. const bool doBalance = (fHints & PLUGIN_CAN_BALANCE) > 0 && (kData->postProc.balanceLeft != -1.0f || kData->postProc.balanceRight != 1.0f);
  1072. float oldBufLeft[doBalance ? frames : 1];
  1073. for (i=0; i < kData->audioOut.count; ++i)
  1074. {
  1075. // Balance
  1076. if (doBalance)
  1077. {
  1078. if (i % 2 == 0)
  1079. carla_copyFloat(oldBufLeft, outBuffer[i]+timeOffset, frames);
  1080. float balRangeL = (kData->postProc.balanceLeft + 1.0f)/2.0f;
  1081. float balRangeR = (kData->postProc.balanceRight + 1.0f)/2.0f;
  1082. for (k=0; k < frames; ++k)
  1083. {
  1084. if (i % 2 == 0)
  1085. {
  1086. // left
  1087. outBuffer[i][k+timeOffset] = oldBufLeft[k] * (1.0f - balRangeL);
  1088. outBuffer[i][k+timeOffset] += outBuffer[i+1][k+timeOffset] * (1.0f - balRangeR);
  1089. }
  1090. else
  1091. {
  1092. // right
  1093. outBuffer[i][k+timeOffset] = outBuffer[i][k+timeOffset] * balRangeR;
  1094. outBuffer[i][k+timeOffset] += oldBufLeft[k] * balRangeL;
  1095. }
  1096. }
  1097. }
  1098. // Volume
  1099. if (kUses16Outs)
  1100. {
  1101. for (k=0; k < frames; ++k)
  1102. outBuffer[i][k+timeOffset] = fAudio16Buffers[i][k] * kData->postProc.volume;
  1103. }
  1104. else if (doVolume)
  1105. {
  1106. for (k=0; k < frames; ++k)
  1107. outBuffer[i][k+timeOffset] *= kData->postProc.volume;
  1108. }
  1109. }
  1110. } // End of Post-processing
  1111. // --------------------------------------------------------------------------------------------------------
  1112. kData->singleMutex.unlock();
  1113. return true;
  1114. }
  1115. void bufferSizeChanged(const uint32_t newBufferSize) override
  1116. {
  1117. if (! kUses16Outs)
  1118. return;
  1119. for (uint32_t i=0; i < kData->audioOut.count; ++i)
  1120. {
  1121. if (fAudio16Buffers[i] != nullptr)
  1122. delete[] fAudio16Buffers[i];
  1123. fAudio16Buffers[i] = new float[newBufferSize];
  1124. }
  1125. }
  1126. // -------------------------------------------------------------------
  1127. // Plugin buffers
  1128. void clearBuffers() override
  1129. {
  1130. carla_debug("FluidSynthPlugin::clearBuffers() - start");
  1131. if (fAudio16Buffers != nullptr)
  1132. {
  1133. for (uint32_t i=0; i < kData->audioOut.count; ++i)
  1134. {
  1135. if (fAudio16Buffers[i] != nullptr)
  1136. {
  1137. delete[] fAudio16Buffers[i];
  1138. fAudio16Buffers[i] = nullptr;
  1139. }
  1140. }
  1141. delete[] fAudio16Buffers;
  1142. fAudio16Buffers = nullptr;
  1143. }
  1144. CarlaPlugin::clearBuffers();
  1145. carla_debug("FluidSynthPlugin::clearBuffers() - end");
  1146. }
  1147. // -------------------------------------------------------------------
  1148. const void* getExtraStuff() override
  1149. {
  1150. return kUses16Outs ? (const void*)0x1 : nullptr;
  1151. }
  1152. bool init(const char* const filename, const char* const name, const char* const label)
  1153. {
  1154. CARLA_ASSERT(fSynth != nullptr);
  1155. CARLA_ASSERT(filename != nullptr);
  1156. CARLA_ASSERT(label != nullptr);
  1157. // ---------------------------------------------------------------
  1158. // first checks
  1159. if (kData->engine == nullptr)
  1160. {
  1161. return false;
  1162. }
  1163. if (kData->client != nullptr)
  1164. {
  1165. kData->engine->setLastError("Plugin client is already registered");
  1166. return false;
  1167. }
  1168. if (fSynth == nullptr)
  1169. {
  1170. kData->engine->setLastError("null synth");
  1171. return false;
  1172. }
  1173. if (filename == nullptr)
  1174. {
  1175. kData->engine->setLastError("null filename");
  1176. return false;
  1177. }
  1178. if (label == nullptr)
  1179. {
  1180. kData->engine->setLastError("null label");
  1181. return false;
  1182. }
  1183. // ---------------------------------------------------------------
  1184. // open soundfont
  1185. fSynthId = fluid_synth_sfload(fSynth, filename, 0);
  1186. if (fSynthId < 0)
  1187. {
  1188. kData->engine->setLastError("Failed to load SoundFont file");
  1189. return false;
  1190. }
  1191. // ---------------------------------------------------------------
  1192. // get info
  1193. fFilename = filename;
  1194. fLabel = label;
  1195. if (name != nullptr)
  1196. fName = kData->engine->getNewUniquePluginName(name);
  1197. else
  1198. fName = kData->engine->getNewUniquePluginName(label);
  1199. // ---------------------------------------------------------------
  1200. // register client
  1201. kData->client = kData->engine->addClient(this);
  1202. if (kData->client == nullptr || ! kData->client->isOk())
  1203. {
  1204. kData->engine->setLastError("Failed to register plugin client");
  1205. return false;
  1206. }
  1207. // ---------------------------------------------------------------
  1208. // load plugin settings
  1209. {
  1210. // set default options
  1211. fOptions = 0x0;
  1212. fOptions |= PLUGIN_OPTION_MAP_PROGRAM_CHANGES;
  1213. fOptions |= PLUGIN_OPTION_SEND_CHANNEL_PRESSURE;
  1214. fOptions |= PLUGIN_OPTION_SEND_NOTE_AFTERTOUCH;
  1215. fOptions |= PLUGIN_OPTION_SEND_PITCHBEND;
  1216. fOptions |= PLUGIN_OPTION_SEND_ALL_SOUND_OFF;
  1217. // load settings
  1218. kData->idStr = "SF2/";
  1219. kData->idStr += label;
  1220. fOptions = kData->loadSettings(fOptions, availableOptions());
  1221. }
  1222. return true;
  1223. }
  1224. private:
  1225. enum FluidSynthInputParameters {
  1226. FluidSynthReverbOnOff = 0,
  1227. FluidSynthReverbRoomSize = 1,
  1228. FluidSynthReverbDamp = 2,
  1229. FluidSynthReverbLevel = 3,
  1230. FluidSynthReverbWidth = 4,
  1231. FluidSynthChorusOnOff = 5,
  1232. FluidSynthChorusNr = 6,
  1233. FluidSynthChorusLevel = 7,
  1234. FluidSynthChorusSpeedHz = 8,
  1235. FluidSynthChorusDepthMs = 9,
  1236. FluidSynthChorusType = 10,
  1237. FluidSynthPolyphony = 11,
  1238. FluidSynthInterpolation = 12,
  1239. FluidSynthVoiceCount = 13,
  1240. FluidSynthParametersMax = 14
  1241. };
  1242. const bool kUses16Outs;
  1243. CarlaString fLabel;
  1244. fluid_settings_t* fSettings;
  1245. fluid_synth_t* fSynth;
  1246. int fSynthId;
  1247. float** fAudio16Buffers;
  1248. float fParamBuffers[FluidSynthParametersMax];
  1249. CARLA_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR(FluidSynthPlugin)
  1250. };
  1251. CARLA_BACKEND_END_NAMESPACE
  1252. #else // WANT_FLUIDSYNTH
  1253. # warning fluidsynth not available (no SF2 support)
  1254. #endif
  1255. CARLA_BACKEND_START_NAMESPACE
  1256. CarlaPlugin* CarlaPlugin::newSF2(const Initializer& init, const bool use16Outs)
  1257. {
  1258. carla_debug("CarlaPlugin::newSF2({%p, \"%s\", \"%s\", \"%s\"}, %s)", init.engine, init.filename, init.name, init.label, bool2str(use16Outs));
  1259. #ifdef WANT_FLUIDSYNTH
  1260. if (! fluid_is_soundfont(init.filename))
  1261. {
  1262. init.engine->setLastError("Requested file is not a valid SoundFont");
  1263. return nullptr;
  1264. }
  1265. if (init.engine->getProccessMode() == PROCESS_MODE_CONTINUOUS_RACK && use16Outs)
  1266. {
  1267. init.engine->setLastError("Carla's rack mode can only work with Stereo modules, please choose the 2-channel only SoundFont version");
  1268. return nullptr;
  1269. }
  1270. FluidSynthPlugin* const plugin(new FluidSynthPlugin(init.engine, init.id, use16Outs));
  1271. if (! plugin->init(init.filename, init.name, init.label))
  1272. {
  1273. delete plugin;
  1274. return nullptr;
  1275. }
  1276. plugin->reload();
  1277. return plugin;
  1278. #else
  1279. init.engine->setLastError("fluidsynth support not available");
  1280. return nullptr;
  1281. // unused
  1282. (void)use16Outs;
  1283. #endif
  1284. }
  1285. CARLA_BACKEND_END_NAMESPACE