Audio plugin host https://kx.studio/carla
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1572 lines
55KB

  1. /*
  2. * Carla FluidSynth Plugin
  3. * Copyright (C) 2011-2013 Filipe Coelho <falktx@falktx.com>
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation; either version 2 of
  8. * the License, or any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * For a full copy of the GNU General Public License see the GPL.txt file
  16. */
  17. #include "CarlaPluginInternal.hpp"
  18. #ifdef WANT_FLUIDSYNTH
  19. #include <fluidsynth.h>
  20. #define FLUIDSYNTH_VERSION_NEW_API (FLUIDSYNTH_VERSION_MAJOR >= 1 && FLUIDSYNTH_VERSION_MINOR >= 1 && FLUIDSYNTH_VERSION_MICRO >= 4)
  21. CARLA_BACKEND_START_NAMESPACE
  22. #if 0
  23. }
  24. #endif
  25. #define FLUID_DEFAULT_POLYPHONY 64
  26. class FluidSynthPlugin : public CarlaPlugin
  27. {
  28. public:
  29. FluidSynthPlugin(CarlaEngine* const engine, const unsigned int id, const bool use16Outs)
  30. : CarlaPlugin(engine, id),
  31. kUses16Outs(use16Outs),
  32. fSettings(nullptr),
  33. fSynth(nullptr),
  34. fSynthId(-1),
  35. fAudio16Buffers(nullptr),
  36. fParamBuffers{0.0f}
  37. {
  38. carla_debug("FluidSynthPlugin::FluidSynthPlugin(%p, %i, %s)", engine, id, bool2str(use16Outs));
  39. // create settings
  40. fSettings = new_fluid_settings();
  41. CARLA_ASSERT(fSettings != nullptr);
  42. // define settings
  43. fluid_settings_setint(fSettings, "synth.audio-channels", use16Outs ? 16 : 1);
  44. fluid_settings_setint(fSettings, "synth.audio-groups", use16Outs ? 16 : 1);
  45. fluid_settings_setnum(fSettings, "synth.sample-rate", kData->engine->getSampleRate());
  46. fluid_settings_setint(fSettings, "synth.threadsafe-api ", 0);
  47. // create synth
  48. fSynth = new_fluid_synth(fSettings);
  49. CARLA_ASSERT(fSynth != nullptr);
  50. #ifdef FLUIDSYNTH_VERSION_NEW_API
  51. fluid_synth_set_sample_rate(fSynth, kData->engine->getSampleRate());
  52. #endif
  53. // set default values
  54. fluid_synth_set_reverb_on(fSynth, 0);
  55. fluid_synth_set_reverb(fSynth, FLUID_REVERB_DEFAULT_ROOMSIZE, FLUID_REVERB_DEFAULT_DAMP, FLUID_REVERB_DEFAULT_WIDTH, FLUID_REVERB_DEFAULT_LEVEL);
  56. fluid_synth_set_chorus_on(fSynth, 0);
  57. fluid_synth_set_chorus(fSynth, FLUID_CHORUS_DEFAULT_N, FLUID_CHORUS_DEFAULT_LEVEL, FLUID_CHORUS_DEFAULT_SPEED, FLUID_CHORUS_DEFAULT_DEPTH, FLUID_CHORUS_DEFAULT_TYPE);
  58. fluid_synth_set_polyphony(fSynth, FLUID_DEFAULT_POLYPHONY);
  59. for (int i=0; i < MAX_MIDI_CHANNELS; ++i)
  60. fluid_synth_set_interp_method(fSynth, i, FLUID_INTERP_DEFAULT);
  61. }
  62. ~FluidSynthPlugin() override
  63. {
  64. carla_debug("FluidSynthPlugin::~FluidSynthPlugin()");
  65. kData->singleMutex.lock();
  66. kData->masterMutex.lock();
  67. if (kData->active)
  68. {
  69. deactivate();
  70. kData->active = false;
  71. }
  72. delete_fluid_synth(fSynth);
  73. delete_fluid_settings(fSettings);
  74. clearBuffers();
  75. }
  76. // -------------------------------------------------------------------
  77. // Information (base)
  78. PluginType type() const override
  79. {
  80. return PLUGIN_SF2;
  81. }
  82. PluginCategory category() override
  83. {
  84. return PLUGIN_CATEGORY_SYNTH;
  85. }
  86. // -------------------------------------------------------------------
  87. // Information (count)
  88. uint32_t parameterScalePointCount(const uint32_t parameterId) const override
  89. {
  90. CARLA_ASSERT(parameterId < kData->param.count);
  91. switch (parameterId)
  92. {
  93. case FluidSynthChorusType:
  94. return 2;
  95. case FluidSynthInterpolation:
  96. return 4;
  97. default:
  98. return 0;
  99. }
  100. }
  101. // -------------------------------------------------------------------
  102. // Information (per-plugin data)
  103. unsigned int availableOptions() override
  104. {
  105. unsigned int options = 0x0;
  106. options |= PLUGIN_OPTION_MAP_PROGRAM_CHANGES;
  107. options |= PLUGIN_OPTION_SEND_CONTROL_CHANGES;
  108. options |= PLUGIN_OPTION_SEND_CHANNEL_PRESSURE;
  109. options |= PLUGIN_OPTION_SEND_PITCHBEND;
  110. options |= PLUGIN_OPTION_SEND_ALL_SOUND_OFF;
  111. return options;
  112. }
  113. float getParameterValue(const uint32_t parameterId) override
  114. {
  115. CARLA_ASSERT(parameterId < kData->param.count);
  116. return fParamBuffers[parameterId];
  117. }
  118. float getParameterScalePointValue(const uint32_t parameterId, const uint32_t scalePointId) override
  119. {
  120. CARLA_ASSERT(parameterId < kData->param.count);
  121. CARLA_ASSERT(scalePointId < parameterScalePointCount(parameterId));
  122. switch (parameterId)
  123. {
  124. case FluidSynthChorusType:
  125. switch (scalePointId)
  126. {
  127. case 0:
  128. return FLUID_CHORUS_MOD_SINE;
  129. case 1:
  130. return FLUID_CHORUS_MOD_TRIANGLE;
  131. default:
  132. return FLUID_CHORUS_DEFAULT_TYPE;
  133. }
  134. case FluidSynthInterpolation:
  135. switch (scalePointId)
  136. {
  137. case 0:
  138. return FLUID_INTERP_NONE;
  139. case 1:
  140. return FLUID_INTERP_LINEAR;
  141. case 2:
  142. return FLUID_INTERP_4THORDER;
  143. case 3:
  144. return FLUID_INTERP_7THORDER;
  145. default:
  146. return FLUID_INTERP_DEFAULT;
  147. }
  148. default:
  149. return 0.0f;
  150. }
  151. }
  152. void getLabel(char* const strBuf) override
  153. {
  154. if (fLabel.isNotEmpty())
  155. std::strncpy(strBuf, (const char*)fLabel, STR_MAX);
  156. else
  157. CarlaPlugin::getLabel(strBuf);
  158. }
  159. void getMaker(char* const strBuf) override
  160. {
  161. std::strncpy(strBuf, "FluidSynth SF2 engine", STR_MAX);
  162. }
  163. void getCopyright(char* const strBuf) override
  164. {
  165. std::strncpy(strBuf, "GNU GPL v2+", STR_MAX);
  166. }
  167. void getRealName(char* const strBuf) override
  168. {
  169. getLabel(strBuf);
  170. }
  171. void getParameterName(const uint32_t parameterId, char* const strBuf) override
  172. {
  173. CARLA_ASSERT(parameterId < kData->param.count);
  174. switch (parameterId)
  175. {
  176. case FluidSynthReverbOnOff:
  177. std::strncpy(strBuf, "Reverb On/Off", STR_MAX);
  178. break;
  179. case FluidSynthReverbRoomSize:
  180. std::strncpy(strBuf, "Reverb Room Size", STR_MAX);
  181. break;
  182. case FluidSynthReverbDamp:
  183. std::strncpy(strBuf, "Reverb Damp", STR_MAX);
  184. break;
  185. case FluidSynthReverbLevel:
  186. std::strncpy(strBuf, "Reverb Level", STR_MAX);
  187. break;
  188. case FluidSynthReverbWidth:
  189. std::strncpy(strBuf, "Reverb Width", STR_MAX);
  190. break;
  191. case FluidSynthChorusOnOff:
  192. std::strncpy(strBuf, "Chorus On/Off", STR_MAX);
  193. break;
  194. case FluidSynthChorusNr:
  195. std::strncpy(strBuf, "Chorus Voice Count", STR_MAX);
  196. break;
  197. case FluidSynthChorusLevel:
  198. std::strncpy(strBuf, "Chorus Level", STR_MAX);
  199. break;
  200. case FluidSynthChorusSpeedHz:
  201. std::strncpy(strBuf, "Chorus Speed", STR_MAX);
  202. break;
  203. case FluidSynthChorusDepthMs:
  204. std::strncpy(strBuf, "Chorus Depth", STR_MAX);
  205. break;
  206. case FluidSynthChorusType:
  207. std::strncpy(strBuf, "Chorus Type", STR_MAX);
  208. break;
  209. case FluidSynthPolyphony:
  210. std::strncpy(strBuf, "Polyphony", STR_MAX);
  211. break;
  212. case FluidSynthInterpolation:
  213. std::strncpy(strBuf, "Interpolation", STR_MAX);
  214. break;
  215. case FluidSynthVoiceCount:
  216. std::strncpy(strBuf, "Voice Count", STR_MAX);
  217. break;
  218. default:
  219. CarlaPlugin::getParameterName(parameterId, strBuf);
  220. break;
  221. }
  222. }
  223. void getParameterUnit(const uint32_t parameterId, char* const strBuf) override
  224. {
  225. CARLA_ASSERT(parameterId < kData->param.count);
  226. switch (parameterId)
  227. {
  228. case FluidSynthChorusSpeedHz:
  229. std::strncpy(strBuf, "Hz", STR_MAX);
  230. break;
  231. case FluidSynthChorusDepthMs:
  232. std::strncpy(strBuf, "ms", STR_MAX);
  233. break;
  234. default:
  235. CarlaPlugin::getParameterUnit(parameterId, strBuf);
  236. break;
  237. }
  238. }
  239. void getParameterScalePointLabel(const uint32_t parameterId, const uint32_t scalePointId, char* const strBuf) override
  240. {
  241. CARLA_ASSERT(parameterId < kData->param.count);
  242. CARLA_ASSERT(scalePointId < parameterScalePointCount(parameterId));
  243. switch (parameterId)
  244. {
  245. case FluidSynthChorusType:
  246. switch (scalePointId)
  247. {
  248. case 0:
  249. std::strncpy(strBuf, "Sine wave", STR_MAX);
  250. return;
  251. case 1:
  252. std::strncpy(strBuf, "Triangle wave", STR_MAX);
  253. return;
  254. }
  255. case FluidSynthInterpolation:
  256. switch (scalePointId)
  257. {
  258. case 0:
  259. std::strncpy(strBuf, "None", STR_MAX);
  260. return;
  261. case 1:
  262. std::strncpy(strBuf, "Straight-line", STR_MAX);
  263. return;
  264. case 2:
  265. std::strncpy(strBuf, "Fourth-order", STR_MAX);
  266. return;
  267. case 3:
  268. std::strncpy(strBuf, "Seventh-order", STR_MAX);
  269. return;
  270. }
  271. }
  272. CarlaPlugin::getParameterScalePointLabel(parameterId, scalePointId, strBuf);
  273. }
  274. // -------------------------------------------------------------------
  275. // Set data (plugin-specific stuff)
  276. void setParameterValue(const uint32_t parameterId, const float value, const bool sendGui, const bool sendOsc, const bool sendCallback) override
  277. {
  278. CARLA_ASSERT(parameterId < kData->param.count);
  279. const float fixedValue = kData->param.fixValue(parameterId, value);
  280. fParamBuffers[parameterId] = fixedValue;
  281. {
  282. const ScopedSingleProcessLocker spl(this, (sendGui || sendOsc || sendCallback));
  283. switch (parameterId)
  284. {
  285. case FluidSynthReverbOnOff:
  286. fluid_synth_set_reverb_on(fSynth, (fixedValue > 0.5f) ? 1 : 0);
  287. break;
  288. case FluidSynthReverbRoomSize:
  289. case FluidSynthReverbDamp:
  290. case FluidSynthReverbLevel:
  291. case FluidSynthReverbWidth:
  292. fluid_synth_set_reverb(fSynth, fParamBuffers[FluidSynthReverbRoomSize], fParamBuffers[FluidSynthReverbDamp], fParamBuffers[FluidSynthReverbWidth], fParamBuffers[FluidSynthReverbLevel]);
  293. break;
  294. case FluidSynthChorusOnOff:
  295. fluid_synth_set_chorus_on(fSynth, (value > 0.5f) ? 1 : 0);
  296. break;
  297. case FluidSynthChorusNr:
  298. case FluidSynthChorusLevel:
  299. case FluidSynthChorusSpeedHz:
  300. case FluidSynthChorusDepthMs:
  301. case FluidSynthChorusType:
  302. fluid_synth_set_chorus(fSynth, fParamBuffers[FluidSynthChorusNr], fParamBuffers[FluidSynthChorusLevel], fParamBuffers[FluidSynthChorusSpeedHz], fParamBuffers[FluidSynthChorusDepthMs], fParamBuffers[FluidSynthChorusType]);
  303. break;
  304. case FluidSynthPolyphony:
  305. fluid_synth_set_polyphony(fSynth, value);
  306. break;
  307. case FluidSynthInterpolation:
  308. for (int i=0; i < MAX_MIDI_CHANNELS; ++i)
  309. fluid_synth_set_interp_method(fSynth, i, value);
  310. break;
  311. default:
  312. break;
  313. }
  314. }
  315. CarlaPlugin::setParameterValue(parameterId, value, sendGui, sendOsc, sendCallback);
  316. }
  317. void setMidiProgram(int32_t index, const bool sendGui, const bool sendOsc, const bool sendCallback) override
  318. {
  319. CARLA_ASSERT(fSynth != nullptr);
  320. CARLA_ASSERT(index >= -1 && index < static_cast<int32_t>(kData->midiprog.count));
  321. if (index < -1)
  322. index = -1;
  323. else if (index > static_cast<int32_t>(kData->midiprog.count))
  324. return;
  325. if (kData->ctrlChannel < 0 || kData->ctrlChannel >= 16)
  326. return;
  327. if (index >= 0)
  328. {
  329. const uint32_t bank = kData->midiprog.data[index].bank;
  330. const uint32_t program = kData->midiprog.data[index].program;
  331. const ScopedSingleProcessLocker spl(this, (sendGui || sendOsc || sendCallback));
  332. fluid_synth_program_select(fSynth, kData->ctrlChannel, fSynthId, bank, program);
  333. }
  334. CarlaPlugin::setMidiProgram(index, sendGui, sendOsc, sendCallback);
  335. }
  336. // -------------------------------------------------------------------
  337. // Plugin state
  338. void reload() override
  339. {
  340. carla_debug("FluidSynthPlugin::reload() - start");
  341. CARLA_ASSERT(kData->engine != nullptr);
  342. CARLA_ASSERT(fSynth != nullptr);
  343. if (kData->engine == nullptr)
  344. return;
  345. if (fSynth == nullptr)
  346. return;
  347. const ProcessMode processMode(kData->engine->getProccessMode());
  348. // Safely disable plugin for reload
  349. const ScopedDisabler sd(this);
  350. if (kData->active)
  351. deactivate();
  352. clearBuffers();
  353. uint32_t aOuts, params, j;
  354. aOuts = kUses16Outs ? 32 : 2;
  355. params = FluidSynthParametersMax;
  356. kData->audioOut.createNew(aOuts);
  357. kData->param.createNew(params);
  358. const int portNameSize = kData->engine->maxPortNameSize();
  359. CarlaString portName;
  360. // ---------------------------------------
  361. // Audio Outputs
  362. if (kUses16Outs)
  363. {
  364. for (j=0; j < 32; ++j)
  365. {
  366. portName.clear();
  367. if (processMode == PROCESS_MODE_SINGLE_CLIENT)
  368. {
  369. portName = fName;
  370. portName += ":";
  371. }
  372. portName += "out-";
  373. if ((j+2)/2 < 9)
  374. portName += "0";
  375. portName += CarlaString((j+2)/2);
  376. if (j % 2 == 0)
  377. portName += "L";
  378. else
  379. portName += "R";
  380. portName.truncate(portNameSize);
  381. kData->audioOut.ports[j].port = (CarlaEngineAudioPort*)kData->client->addPort(kEnginePortTypeAudio, portName, false);
  382. kData->audioOut.ports[j].rindex = j;
  383. }
  384. fAudio16Buffers = new float*[aOuts];
  385. for (j=0; j < aOuts; ++j)
  386. fAudio16Buffers[j] = nullptr;
  387. }
  388. else
  389. {
  390. // out-left
  391. portName.clear();
  392. if (processMode == PROCESS_MODE_SINGLE_CLIENT)
  393. {
  394. portName = fName;
  395. portName += ":";
  396. }
  397. portName += "out-left";
  398. portName.truncate(portNameSize);
  399. kData->audioOut.ports[0].port = (CarlaEngineAudioPort*)kData->client->addPort(kEnginePortTypeAudio, portName, false);
  400. kData->audioOut.ports[0].rindex = 0;
  401. // out-right
  402. portName.clear();
  403. if (processMode == PROCESS_MODE_SINGLE_CLIENT)
  404. {
  405. portName = fName;
  406. portName += ":";
  407. }
  408. portName += "out-right";
  409. portName.truncate(portNameSize);
  410. kData->audioOut.ports[1].port = (CarlaEngineAudioPort*)kData->client->addPort(kEnginePortTypeAudio, portName, false);
  411. kData->audioOut.ports[1].rindex = 1;
  412. }
  413. // ---------------------------------------
  414. // Event Input
  415. {
  416. portName.clear();
  417. if (processMode == PROCESS_MODE_SINGLE_CLIENT)
  418. {
  419. portName = fName;
  420. portName += ":";
  421. }
  422. portName += "event-in";
  423. portName.truncate(portNameSize);
  424. kData->event.portIn = (CarlaEngineEventPort*)kData->client->addPort(kEnginePortTypeEvent, portName, true);
  425. }
  426. // ---------------------------------------
  427. // Event Output
  428. {
  429. portName.clear();
  430. if (processMode == PROCESS_MODE_SINGLE_CLIENT)
  431. {
  432. portName = fName;
  433. portName += ":";
  434. }
  435. portName += "event-out";
  436. portName.truncate(portNameSize);
  437. kData->event.portOut = (CarlaEngineEventPort*)kData->client->addPort(kEnginePortTypeEvent, portName, false);
  438. }
  439. // ----------------------
  440. j = FluidSynthReverbOnOff;
  441. kData->param.data[j].index = j;
  442. kData->param.data[j].rindex = j;
  443. kData->param.data[j].type = PARAMETER_INPUT;
  444. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE | PARAMETER_IS_BOOLEAN;
  445. kData->param.data[j].midiChannel = 0;
  446. kData->param.data[j].midiCC = -1;
  447. kData->param.ranges[j].min = 0.0f;
  448. kData->param.ranges[j].max = 1.0f;
  449. kData->param.ranges[j].def = 0.0f; // off
  450. kData->param.ranges[j].step = 1.0f;
  451. kData->param.ranges[j].stepSmall = 1.0f;
  452. kData->param.ranges[j].stepLarge = 1.0f;
  453. fParamBuffers[j] = kData->param.ranges[j].def;
  454. // ----------------------
  455. j = FluidSynthReverbRoomSize;
  456. kData->param.data[j].index = j;
  457. kData->param.data[j].rindex = j;
  458. kData->param.data[j].type = PARAMETER_INPUT;
  459. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE;
  460. kData->param.data[j].midiChannel = 0;
  461. kData->param.data[j].midiCC = -1;
  462. kData->param.ranges[j].min = 0.0f;
  463. kData->param.ranges[j].max = 1.2f;
  464. kData->param.ranges[j].def = FLUID_REVERB_DEFAULT_ROOMSIZE;
  465. kData->param.ranges[j].step = 0.01f;
  466. kData->param.ranges[j].stepSmall = 0.0001f;
  467. kData->param.ranges[j].stepLarge = 0.1f;
  468. fParamBuffers[j] = kData->param.ranges[j].def;
  469. // ----------------------
  470. j = FluidSynthReverbDamp;
  471. kData->param.data[j].index = j;
  472. kData->param.data[j].rindex = j;
  473. kData->param.data[j].type = PARAMETER_INPUT;
  474. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE;
  475. kData->param.data[j].midiChannel = 0;
  476. kData->param.data[j].midiCC = -1;
  477. kData->param.ranges[j].min = 0.0f;
  478. kData->param.ranges[j].max = 1.0f;
  479. kData->param.ranges[j].def = FLUID_REVERB_DEFAULT_DAMP;
  480. kData->param.ranges[j].step = 0.01f;
  481. kData->param.ranges[j].stepSmall = 0.0001f;
  482. kData->param.ranges[j].stepLarge = 0.1f;
  483. fParamBuffers[j] = kData->param.ranges[j].def;
  484. // ----------------------
  485. j = FluidSynthReverbLevel;
  486. kData->param.data[j].index = j;
  487. kData->param.data[j].rindex = j;
  488. kData->param.data[j].type = PARAMETER_INPUT;
  489. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE;
  490. kData->param.data[j].midiChannel = 0;
  491. kData->param.data[j].midiCC = MIDI_CONTROL_REVERB_SEND_LEVEL;
  492. kData->param.ranges[j].min = 0.0f;
  493. kData->param.ranges[j].max = 1.0f;
  494. kData->param.ranges[j].def = FLUID_REVERB_DEFAULT_LEVEL;
  495. kData->param.ranges[j].step = 0.01f;
  496. kData->param.ranges[j].stepSmall = 0.0001f;
  497. kData->param.ranges[j].stepLarge = 0.1f;
  498. fParamBuffers[j] = kData->param.ranges[j].def;
  499. // ----------------------
  500. j = FluidSynthReverbWidth;
  501. kData->param.data[j].index = j;
  502. kData->param.data[j].rindex = j;
  503. kData->param.data[j].type = PARAMETER_INPUT;
  504. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE;
  505. kData->param.data[j].midiChannel = 0;
  506. kData->param.data[j].midiCC = -1;
  507. kData->param.ranges[j].min = 0.0f;
  508. kData->param.ranges[j].max = 10.0f; // should be 100, but that sounds too much
  509. kData->param.ranges[j].def = FLUID_REVERB_DEFAULT_WIDTH;
  510. kData->param.ranges[j].step = 0.01f;
  511. kData->param.ranges[j].stepSmall = 0.0001f;
  512. kData->param.ranges[j].stepLarge = 0.1f;
  513. fParamBuffers[j] = kData->param.ranges[j].def;
  514. // ----------------------
  515. j = FluidSynthChorusOnOff;
  516. kData->param.data[j].index = j;
  517. kData->param.data[j].rindex = j;
  518. kData->param.data[j].type = PARAMETER_INPUT;
  519. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_BOOLEAN;
  520. kData->param.data[j].midiChannel = 0;
  521. kData->param.data[j].midiCC = -1;
  522. kData->param.ranges[j].min = 0.0f;
  523. kData->param.ranges[j].max = 1.0f;
  524. kData->param.ranges[j].def = 0.0f; // off
  525. kData->param.ranges[j].step = 1.0f;
  526. kData->param.ranges[j].stepSmall = 1.0f;
  527. kData->param.ranges[j].stepLarge = 1.0f;
  528. fParamBuffers[j] = kData->param.ranges[j].def;
  529. // ----------------------
  530. j = FluidSynthChorusNr;
  531. kData->param.data[j].index = j;
  532. kData->param.data[j].rindex = j;
  533. kData->param.data[j].type = PARAMETER_INPUT;
  534. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_INTEGER;
  535. kData->param.data[j].midiChannel = 0;
  536. kData->param.data[j].midiCC = -1;
  537. kData->param.ranges[j].min = 0.0f;
  538. kData->param.ranges[j].max = 99.0f;
  539. kData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_N;
  540. kData->param.ranges[j].step = 1.0f;
  541. kData->param.ranges[j].stepSmall = 1.0f;
  542. kData->param.ranges[j].stepLarge = 10.0f;
  543. fParamBuffers[j] = kData->param.ranges[j].def;
  544. // ----------------------
  545. j = FluidSynthChorusLevel;
  546. kData->param.data[j].index = j;
  547. kData->param.data[j].rindex = j;
  548. kData->param.data[j].type = PARAMETER_INPUT;
  549. kData->param.data[j].hints = PARAMETER_IS_ENABLED;
  550. kData->param.data[j].midiChannel = 0;
  551. kData->param.data[j].midiCC = 0; //MIDI_CONTROL_CHORUS_SEND_LEVEL;
  552. kData->param.ranges[j].min = 0.0f;
  553. kData->param.ranges[j].max = 10.0f;
  554. kData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_LEVEL;
  555. kData->param.ranges[j].step = 0.01f;
  556. kData->param.ranges[j].stepSmall = 0.0001f;
  557. kData->param.ranges[j].stepLarge = 0.1f;
  558. fParamBuffers[j] = kData->param.ranges[j].def;
  559. // ----------------------
  560. j = FluidSynthChorusSpeedHz;
  561. kData->param.data[j].index = j;
  562. kData->param.data[j].rindex = j;
  563. kData->param.data[j].type = PARAMETER_INPUT;
  564. kData->param.data[j].hints = PARAMETER_IS_ENABLED;
  565. kData->param.data[j].midiChannel = 0;
  566. kData->param.data[j].midiCC = -1;
  567. kData->param.ranges[j].min = 0.29f;
  568. kData->param.ranges[j].max = 5.0f;
  569. kData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_SPEED;
  570. kData->param.ranges[j].step = 0.01f;
  571. kData->param.ranges[j].stepSmall = 0.0001f;
  572. kData->param.ranges[j].stepLarge = 0.1f;
  573. fParamBuffers[j] = kData->param.ranges[j].def;
  574. // ----------------------
  575. j = FluidSynthChorusDepthMs;
  576. kData->param.data[j].index = j;
  577. kData->param.data[j].rindex = j;
  578. kData->param.data[j].type = PARAMETER_INPUT;
  579. kData->param.data[j].hints = PARAMETER_IS_ENABLED;
  580. kData->param.data[j].midiChannel = 0;
  581. kData->param.data[j].midiCC = -1;
  582. kData->param.ranges[j].min = 0.0f;
  583. kData->param.ranges[j].max = 2048000.0 / kData->engine->getSampleRate();
  584. kData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_DEPTH;
  585. kData->param.ranges[j].step = 0.01f;
  586. kData->param.ranges[j].stepSmall = 0.0001f;
  587. kData->param.ranges[j].stepLarge = 0.1f;
  588. fParamBuffers[j] = kData->param.ranges[j].def;
  589. // ----------------------
  590. j = FluidSynthChorusType;
  591. kData->param.data[j].index = j;
  592. kData->param.data[j].rindex = j;
  593. kData->param.data[j].type = PARAMETER_INPUT;
  594. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_INTEGER | PARAMETER_USES_SCALEPOINTS;
  595. kData->param.data[j].midiChannel = 0;
  596. kData->param.data[j].midiCC = -1;
  597. kData->param.ranges[j].min = FLUID_CHORUS_MOD_SINE;
  598. kData->param.ranges[j].max = FLUID_CHORUS_MOD_TRIANGLE;
  599. kData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_TYPE;
  600. kData->param.ranges[j].step = 1.0f;
  601. kData->param.ranges[j].stepSmall = 1.0f;
  602. kData->param.ranges[j].stepLarge = 1.0f;
  603. fParamBuffers[j] = kData->param.ranges[j].def;
  604. // ----------------------
  605. j = FluidSynthPolyphony;
  606. kData->param.data[j].index = j;
  607. kData->param.data[j].rindex = j;
  608. kData->param.data[j].type = PARAMETER_INPUT;
  609. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_INTEGER;
  610. kData->param.data[j].midiChannel = 0;
  611. kData->param.data[j].midiCC = -1;
  612. kData->param.ranges[j].min = 1.0f;
  613. kData->param.ranges[j].max = 512.0f; // max theoric is 65535
  614. kData->param.ranges[j].def = fluid_synth_get_polyphony(fSynth);
  615. kData->param.ranges[j].step = 1.0f;
  616. kData->param.ranges[j].stepSmall = 1.0f;
  617. kData->param.ranges[j].stepLarge = 10.0f;
  618. fParamBuffers[j] = kData->param.ranges[j].def;
  619. // ----------------------
  620. j = FluidSynthInterpolation;
  621. kData->param.data[j].index = j;
  622. kData->param.data[j].rindex = j;
  623. kData->param.data[j].type = PARAMETER_INPUT;
  624. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_INTEGER | PARAMETER_USES_SCALEPOINTS;
  625. kData->param.data[j].midiChannel = 0;
  626. kData->param.data[j].midiCC = -1;
  627. kData->param.ranges[j].min = FLUID_INTERP_NONE;
  628. kData->param.ranges[j].max = FLUID_INTERP_HIGHEST;
  629. kData->param.ranges[j].def = FLUID_INTERP_DEFAULT;
  630. kData->param.ranges[j].step = 1.0f;
  631. kData->param.ranges[j].stepSmall = 1.0f;
  632. kData->param.ranges[j].stepLarge = 1.0f;
  633. fParamBuffers[j] = kData->param.ranges[j].def;
  634. // ----------------------
  635. j = FluidSynthVoiceCount;
  636. kData->param.data[j].index = j;
  637. kData->param.data[j].rindex = j;
  638. kData->param.data[j].type = PARAMETER_OUTPUT;
  639. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE | PARAMETER_IS_INTEGER;
  640. kData->param.data[j].midiChannel = 0;
  641. kData->param.data[j].midiCC = -1;
  642. kData->param.ranges[j].min = 0.0f;
  643. kData->param.ranges[j].max = 65535.0f;
  644. kData->param.ranges[j].def = 0.0f;
  645. kData->param.ranges[j].step = 1.0f;
  646. kData->param.ranges[j].stepSmall = 1.0f;
  647. kData->param.ranges[j].stepLarge = 1.0f;
  648. fParamBuffers[j] = kData->param.ranges[j].def;
  649. // ---------------------------------------
  650. // plugin hints
  651. fHints = 0x0;
  652. fHints |= PLUGIN_IS_RTSAFE;
  653. fHints |= PLUGIN_IS_SYNTH;
  654. fHints |= PLUGIN_CAN_VOLUME;
  655. fHints |= PLUGIN_CAN_BALANCE;
  656. // extra plugin hints
  657. kData->extraHints = 0x0;
  658. kData->extraHints |= PLUGIN_HINT_HAS_MIDI_IN;
  659. kData->extraHints |= PLUGIN_HINT_CAN_RUN_RACK;
  660. bufferSizeChanged(kData->engine->getBufferSize());
  661. reloadPrograms(true);
  662. if (kData->active)
  663. activate();
  664. carla_debug("FluidSynthPlugin::reload() - end");
  665. }
  666. void reloadPrograms(const bool init) override
  667. {
  668. carla_debug("FluidSynthPlugin::reloadPrograms(%s)", bool2str(init));
  669. // Delete old programs
  670. kData->midiprog.clear();
  671. // Query new programs
  672. uint32_t count = 0;
  673. fluid_sfont_t* f_sfont;
  674. fluid_preset_t f_preset;
  675. bool hasDrums = false;
  676. f_sfont = fluid_synth_get_sfont_by_id(fSynth, fSynthId);
  677. // initial check to know how much midi-programs we have
  678. f_sfont->iteration_start(f_sfont);
  679. while (f_sfont->iteration_next(f_sfont, &f_preset))
  680. count += 1;
  681. // soundfonts must always have at least 1 midi-program
  682. CARLA_ASSERT(count > 0);
  683. if (count == 0)
  684. return;
  685. kData->midiprog.createNew(count);
  686. // Update data
  687. uint32_t i = 0;
  688. f_sfont->iteration_start(f_sfont);
  689. while (f_sfont->iteration_next(f_sfont, &f_preset))
  690. {
  691. CARLA_ASSERT(i < kData->midiprog.count);
  692. kData->midiprog.data[i].bank = f_preset.get_banknum(&f_preset);
  693. kData->midiprog.data[i].program = f_preset.get_num(&f_preset);
  694. kData->midiprog.data[i].name = carla_strdup(f_preset.get_name(&f_preset));
  695. if (kData->midiprog.data[i].bank == 128)
  696. hasDrums = true;
  697. ++i;
  698. }
  699. //f_sfont->free(f_sfont);
  700. #ifndef BUILD_BRIDGE
  701. // Update OSC Names
  702. if (kData->engine->isOscControlRegistered())
  703. {
  704. kData->engine->osc_send_control_set_midi_program_count(fId, count);
  705. for (i=0; i < count; ++i)
  706. kData->engine->osc_send_control_set_midi_program_data(fId, i, kData->midiprog.data[i].bank, kData->midiprog.data[i].program, kData->midiprog.data[i].name);
  707. }
  708. #endif
  709. if (init)
  710. {
  711. fluid_synth_program_reset(fSynth);
  712. // select first program, or 128 for ch10
  713. for (i=0; i < 16 && i != 9; ++i)
  714. {
  715. fluid_synth_program_select(fSynth, i, fSynthId, kData->midiprog.data[0].bank, kData->midiprog.data[0].program);
  716. #ifdef FLUIDSYNTH_VERSION_NEW_API
  717. fluid_synth_set_channel_type(fSynth, i, CHANNEL_TYPE_MELODIC);
  718. #endif
  719. }
  720. if (hasDrums)
  721. {
  722. fluid_synth_program_select(fSynth, 9, fSynthId, 128, 0);
  723. #ifdef FLUIDSYNTH_VERSION_NEW_API
  724. fluid_synth_set_channel_type(fSynth, 9, CHANNEL_TYPE_DRUM);
  725. #endif
  726. }
  727. else
  728. {
  729. fluid_synth_program_select(fSynth, 9, fSynthId, kData->midiprog.data[0].bank, kData->midiprog.data[0].program);
  730. #ifdef FLUIDSYNTH_VERSION_NEW_API
  731. fluid_synth_set_channel_type(fSynth, 9, CHANNEL_TYPE_MELODIC);
  732. #endif
  733. }
  734. setMidiProgram(0, false, false, false);
  735. }
  736. else
  737. {
  738. kData->engine->callback(CALLBACK_RELOAD_PROGRAMS, fId, 0, 0, 0.0f, nullptr);
  739. }
  740. }
  741. // -------------------------------------------------------------------
  742. // Plugin processing
  743. void process(float** const, float** const outBuffer, const uint32_t frames) override
  744. {
  745. uint32_t i, k;
  746. // --------------------------------------------------------------------------------------------------------
  747. // Check if active
  748. if (! kData->active)
  749. {
  750. // disable any output sound
  751. for (i=0; i < kData->audioOut.count; ++i)
  752. carla_zeroFloat(outBuffer[i], frames);
  753. return;
  754. }
  755. // --------------------------------------------------------------------------------------------------------
  756. // Check if needs reset
  757. if (kData->needsReset)
  758. {
  759. // TODO
  760. if (fOptions & PLUGIN_OPTION_SEND_ALL_SOUND_OFF)
  761. {
  762. for (int c=0; c < MAX_MIDI_CHANNELS; c++)
  763. {
  764. #ifdef FLUIDSYNTH_VERSION_NEW_API
  765. fluid_synth_all_notes_off(fSynth, c);
  766. fluid_synth_all_sounds_off(fSynth, c);
  767. #else
  768. fluid_synth_cc(f_synth, c, MIDI_CONTROL_ALL_SOUND_OFF, 0);
  769. fluid_synth_cc(f_synth, c, MIDI_CONTROL_ALL_NOTES_OFF, 0);
  770. #endif
  771. }
  772. }
  773. else
  774. {
  775. }
  776. kData->needsReset = false;
  777. }
  778. // --------------------------------------------------------------------------------------------------------
  779. // Event Input and Processing
  780. {
  781. // ----------------------------------------------------------------------------------------------------
  782. // MIDI Input (External)
  783. if (kData->extNotes.mutex.tryLock())
  784. {
  785. while (! kData->extNotes.data.isEmpty())
  786. {
  787. const ExternalMidiNote& note(kData->extNotes.data.getFirst(true));
  788. CARLA_ASSERT(note.channel >= 0 && note.channel < MAX_MIDI_CHANNELS);
  789. if (note.velo > 0)
  790. fluid_synth_noteon(fSynth, note.channel, note.note, note.velo);
  791. else
  792. fluid_synth_noteoff(fSynth,note.channel, note.note);
  793. }
  794. kData->extNotes.mutex.unlock();
  795. } // End of MIDI Input (External)
  796. // ----------------------------------------------------------------------------------------------------
  797. // Event Input (System)
  798. bool allNotesOffSent = false;
  799. uint32_t time, nEvents = kData->event.portIn->getEventCount();
  800. uint32_t timeOffset = 0;
  801. uint32_t nextBankIds[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 128, 0, 0, 0, 0, 0, 0 };
  802. if (kData->midiprog.current >= 0 && kData->midiprog.count > 0 && kData->ctrlChannel >= 0 && kData->ctrlChannel < 16)
  803. nextBankIds[kData->ctrlChannel] = kData->midiprog.data[kData->midiprog.current].bank;
  804. for (i=0; i < nEvents; ++i)
  805. {
  806. const EngineEvent& event = kData->event.portIn->getEvent(i);
  807. time = event.time;
  808. if (time >= frames)
  809. continue;
  810. CARLA_ASSERT_INT2(time >= timeOffset, time, timeOffset);
  811. if (time > timeOffset)
  812. {
  813. if (processSingle(outBuffer, time - timeOffset, timeOffset))
  814. {
  815. timeOffset = time;
  816. if (kData->midiprog.current >= 0 && kData->midiprog.count > 0 && kData->ctrlChannel >= 0 && kData->ctrlChannel < 16)
  817. nextBankIds[kData->ctrlChannel] = kData->midiprog.data[kData->midiprog.current].bank;
  818. }
  819. }
  820. // Control change
  821. switch (event.type)
  822. {
  823. case kEngineEventTypeNull:
  824. break;
  825. case kEngineEventTypeControl:
  826. {
  827. const EngineControlEvent& ctrlEvent = event.ctrl;
  828. switch (ctrlEvent.type)
  829. {
  830. case kEngineControlEventTypeNull:
  831. break;
  832. case kEngineControlEventTypeParameter:
  833. {
  834. // Control backend stuff
  835. if (event.channel == kData->ctrlChannel)
  836. {
  837. float value;
  838. if (MIDI_IS_CONTROL_BREATH_CONTROLLER(ctrlEvent.param) && (fHints & PLUGIN_CAN_DRYWET) > 0)
  839. {
  840. value = ctrlEvent.value;
  841. setDryWet(value, false, false);
  842. postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_DRYWET, 0, value);
  843. continue;
  844. }
  845. if (MIDI_IS_CONTROL_CHANNEL_VOLUME(ctrlEvent.param) && (fHints & PLUGIN_CAN_VOLUME) > 0)
  846. {
  847. value = ctrlEvent.value*127.0f/100.0f;
  848. setVolume(value, false, false);
  849. postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_VOLUME, 0, value);
  850. continue;
  851. }
  852. if (MIDI_IS_CONTROL_BALANCE(ctrlEvent.param) && (fHints & PLUGIN_CAN_BALANCE) > 0)
  853. {
  854. float left, right;
  855. value = ctrlEvent.value/0.5f - 1.0f;
  856. if (value < 0.0f)
  857. {
  858. left = -1.0f;
  859. right = (value*2.0f)+1.0f;
  860. }
  861. else if (value > 0.0f)
  862. {
  863. left = (value*2.0f)-1.0f;
  864. right = 1.0f;
  865. }
  866. else
  867. {
  868. left = -1.0f;
  869. right = 1.0f;
  870. }
  871. setBalanceLeft(left, false, false);
  872. setBalanceRight(right, false, false);
  873. postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_BALANCE_LEFT, 0, left);
  874. postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_BALANCE_RIGHT, 0, right);
  875. continue;
  876. }
  877. }
  878. // Control plugin parameters
  879. for (k=0; k < kData->param.count; ++k)
  880. {
  881. if (kData->param.data[k].midiChannel != event.channel)
  882. continue;
  883. if (kData->param.data[k].midiCC != ctrlEvent.param)
  884. continue;
  885. if (kData->param.data[k].type != PARAMETER_INPUT)
  886. continue;
  887. if ((kData->param.data[k].hints & PARAMETER_IS_AUTOMABLE) == 0)
  888. continue;
  889. float value;
  890. if (kData->param.data[k].hints & PARAMETER_IS_BOOLEAN)
  891. {
  892. value = (ctrlEvent.value < 0.5f) ? kData->param.ranges[k].min : kData->param.ranges[k].max;
  893. }
  894. else
  895. {
  896. value = kData->param.ranges[i].unnormalizeValue(ctrlEvent.value);
  897. if (kData->param.data[k].hints & PARAMETER_IS_INTEGER)
  898. value = std::rint(value);
  899. }
  900. setParameterValue(k, value, false, false, false);
  901. postponeRtEvent(kPluginPostRtEventParameterChange, static_cast<int32_t>(k), 0, value);
  902. }
  903. break;
  904. }
  905. case kEngineControlEventTypeMidiBank:
  906. if (event.channel < 16 && (fOptions & PLUGIN_OPTION_MAP_PROGRAM_CHANGES) != 0)
  907. nextBankIds[event.channel] = ctrlEvent.param;
  908. break;
  909. case kEngineControlEventTypeMidiProgram:
  910. if (event.channel < 16 && (fOptions & PLUGIN_OPTION_MAP_PROGRAM_CHANGES) != 0)
  911. {
  912. const uint32_t bankId = nextBankIds[event.channel];
  913. const uint32_t progId = ctrlEvent.param;
  914. for (k=0; k < kData->midiprog.count; ++k)
  915. {
  916. if (kData->midiprog.data[k].bank == bankId && kData->midiprog.data[k].program == progId)
  917. {
  918. if (event.channel == kData->ctrlChannel)
  919. {
  920. setMidiProgram(k, false, false, false);
  921. postponeRtEvent(kPluginPostRtEventMidiProgramChange, k, 0, 0.0f);
  922. }
  923. else
  924. fluid_synth_program_select(fSynth, event.channel, fSynthId, bankId, progId);
  925. break;
  926. }
  927. }
  928. }
  929. break;
  930. case kEngineControlEventTypeAllSoundOff:
  931. if (event.channel == kData->ctrlChannel)
  932. {
  933. if (! allNotesOffSent)
  934. {
  935. sendMidiAllNotesOff();
  936. allNotesOffSent = true;
  937. }
  938. postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_ACTIVE, 0, 0.0f);
  939. postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_ACTIVE, 0, 1.0f);
  940. if (fOptions & PLUGIN_OPTION_SEND_ALL_SOUND_OFF)
  941. {
  942. #ifdef FLUIDSYNTH_VERSION_NEW_API
  943. fluid_synth_all_sounds_off(fSynth, event.channel);
  944. #else
  945. fluid_synth_cc(f_synth, event.channel, MIDI_CONTROL_ALL_SOUND_OFF, 0);
  946. #endif
  947. }
  948. }
  949. break;
  950. case kEngineControlEventTypeAllNotesOff:
  951. if (event.channel == kData->ctrlChannel)
  952. {
  953. if (! allNotesOffSent)
  954. {
  955. sendMidiAllNotesOff();
  956. allNotesOffSent = true;
  957. }
  958. if (fOptions & PLUGIN_OPTION_SEND_ALL_SOUND_OFF)
  959. {
  960. #ifdef FLUIDSYNTH_VERSION_NEW_API
  961. fluid_synth_all_notes_off(fSynth, event.channel);
  962. #else
  963. fluid_synth_cc(f_synth, event.channel, MIDI_CONTROL_ALL_NOTES_OFF, 0);
  964. #endif
  965. }
  966. }
  967. break;
  968. }
  969. break;
  970. }
  971. case kEngineEventTypeMidi:
  972. {
  973. const EngineMidiEvent& midiEvent = event.midi;
  974. uint8_t status = MIDI_GET_STATUS_FROM_DATA(midiEvent.data);
  975. uint8_t channel = event.channel;
  976. // Fix bad note-off
  977. if (MIDI_IS_STATUS_NOTE_ON(status) && midiEvent.data[2] == 0)
  978. status -= 0x10;
  979. if (MIDI_IS_STATUS_NOTE_OFF(status))
  980. {
  981. const uint8_t note = midiEvent.data[1];
  982. fluid_synth_noteoff(fSynth, channel, note);
  983. postponeRtEvent(kPluginPostRtEventNoteOff, channel, note, 0.0f);
  984. }
  985. else if (MIDI_IS_STATUS_NOTE_ON(status))
  986. {
  987. const uint8_t note = midiEvent.data[1];
  988. const uint8_t velo = midiEvent.data[2];
  989. fluid_synth_noteon(fSynth, channel, note, velo);
  990. postponeRtEvent(kPluginPostRtEventNoteOn, channel, note, velo);
  991. }
  992. else if (MIDI_IS_STATUS_POLYPHONIC_AFTERTOUCH(status) && (fOptions & PLUGIN_OPTION_SEND_NOTE_AFTERTOUCH) != 0)
  993. {
  994. //const uint8_t note = midiEvent.data[1];
  995. //const uint8_t pressure = midiEvent.data[2];
  996. // TODO, not in fluidsynth API
  997. }
  998. else if (MIDI_IS_STATUS_CONTROL_CHANGE(status) && (fOptions & PLUGIN_OPTION_SEND_CONTROL_CHANGES) != 0)
  999. {
  1000. const uint8_t control = midiEvent.data[1];
  1001. const uint8_t value = midiEvent.data[2];
  1002. fluid_synth_cc(fSynth, channel, control, value);
  1003. }
  1004. else if (MIDI_IS_STATUS_AFTERTOUCH(status) && (fOptions & PLUGIN_OPTION_SEND_CHANNEL_PRESSURE) != 0)
  1005. {
  1006. const uint8_t pressure = midiEvent.data[1];
  1007. fluid_synth_channel_pressure(fSynth, channel, pressure);;
  1008. }
  1009. else if (MIDI_IS_STATUS_PITCH_WHEEL_CONTROL(status) && (fOptions & PLUGIN_OPTION_SEND_PITCHBEND) != 0)
  1010. {
  1011. const uint8_t lsb = midiEvent.data[1];
  1012. const uint8_t msb = midiEvent.data[2];
  1013. fluid_synth_pitch_bend(fSynth, channel, (msb << 7) | lsb);
  1014. }
  1015. break;
  1016. }
  1017. }
  1018. }
  1019. kData->postRtEvents.trySplice();
  1020. if (frames > timeOffset)
  1021. processSingle(outBuffer, frames - timeOffset, timeOffset);
  1022. } // End of Event Input and Processing
  1023. CARLA_PROCESS_CONTINUE_CHECK;
  1024. // --------------------------------------------------------------------------------------------------------
  1025. // Control Output
  1026. {
  1027. k = FluidSynthVoiceCount;
  1028. fParamBuffers[k] = fluid_synth_get_active_voice_count(fSynth);
  1029. kData->param.ranges[k].fixValue(fParamBuffers[k]);
  1030. if (kData->param.data[k].midiCC > 0)
  1031. {
  1032. double value = kData->param.ranges[k].normalizeValue(fParamBuffers[k]);
  1033. kData->event.portOut->writeControlEvent(0, kData->param.data[k].midiChannel, kEngineControlEventTypeParameter, kData->param.data[k].midiCC, value);
  1034. }
  1035. } // End of Control Output
  1036. }
  1037. bool processSingle(float** const outBuffer, const uint32_t frames, const uint32_t timeOffset)
  1038. {
  1039. CARLA_ASSERT(outBuffer != nullptr);
  1040. CARLA_ASSERT(frames > 0);
  1041. if (outBuffer == nullptr)
  1042. return false;
  1043. if (frames == 0)
  1044. return false;
  1045. uint32_t i, k;
  1046. // --------------------------------------------------------------------------------------------------------
  1047. // Try lock, silence otherwise
  1048. if (kData->engine->isOffline())
  1049. {
  1050. kData->singleMutex.lock();
  1051. }
  1052. else if (! kData->singleMutex.tryLock())
  1053. {
  1054. for (i=0; i < kData->audioOut.count; ++i)
  1055. {
  1056. for (k=0; k < frames; ++k)
  1057. outBuffer[i][k+timeOffset] = 0.0f;
  1058. }
  1059. return false;
  1060. }
  1061. // --------------------------------------------------------------------------------------------------------
  1062. // Fill plugin buffers and Run plugin
  1063. if (kUses16Outs)
  1064. {
  1065. for (i=0; i < kData->audioOut.count; ++i)
  1066. carla_zeroFloat(fAudio16Buffers[i], frames);
  1067. fluid_synth_process(fSynth, frames, 0, nullptr, kData->audioOut.count, fAudio16Buffers);
  1068. }
  1069. else
  1070. fluid_synth_write_float(fSynth, frames, outBuffer[0] + timeOffset, 0, 1, outBuffer[1] + timeOffset, 0, 1);
  1071. // --------------------------------------------------------------------------------------------------------
  1072. // Post-processing (volume and balance)
  1073. {
  1074. // note - balance not possible with kUses16Outs, so we can safely skip fAudioOutBuffers
  1075. const bool doVolume = (fHints & PLUGIN_CAN_VOLUME) > 0 && kData->postProc.volume != 1.0f;
  1076. const bool doBalance = (fHints & PLUGIN_CAN_BALANCE) > 0 && (kData->postProc.balanceLeft != -1.0f || kData->postProc.balanceRight != 1.0f);
  1077. float oldBufLeft[doBalance ? frames : 1];
  1078. for (i=0; i < kData->audioOut.count; ++i)
  1079. {
  1080. // Balance
  1081. if (doBalance)
  1082. {
  1083. if (i % 2 == 0)
  1084. carla_copyFloat(oldBufLeft, outBuffer[i]+timeOffset, frames);
  1085. float balRangeL = (kData->postProc.balanceLeft + 1.0f)/2.0f;
  1086. float balRangeR = (kData->postProc.balanceRight + 1.0f)/2.0f;
  1087. for (k=0; k < frames; ++k)
  1088. {
  1089. if (i % 2 == 0)
  1090. {
  1091. // left
  1092. outBuffer[i][k+timeOffset] = oldBufLeft[k] * (1.0f - balRangeL);
  1093. outBuffer[i][k+timeOffset] += outBuffer[i+1][k+timeOffset] * (1.0f - balRangeR);
  1094. }
  1095. else
  1096. {
  1097. // right
  1098. outBuffer[i][k+timeOffset] = outBuffer[i][k+timeOffset] * balRangeR;
  1099. outBuffer[i][k+timeOffset] += oldBufLeft[k] * balRangeL;
  1100. }
  1101. }
  1102. }
  1103. // Volume
  1104. if (kUses16Outs)
  1105. {
  1106. for (k=0; k < frames; ++k)
  1107. outBuffer[i][k+timeOffset] = fAudio16Buffers[i][k] * kData->postProc.volume;
  1108. }
  1109. else if (doVolume)
  1110. {
  1111. for (k=0; k < frames; ++k)
  1112. outBuffer[i][k+timeOffset] *= kData->postProc.volume;
  1113. }
  1114. }
  1115. } // End of Post-processing
  1116. // --------------------------------------------------------------------------------------------------------
  1117. kData->singleMutex.unlock();
  1118. return true;
  1119. }
  1120. void bufferSizeChanged(const uint32_t newBufferSize) override
  1121. {
  1122. if (! kUses16Outs)
  1123. return;
  1124. for (uint32_t i=0; i < kData->audioOut.count; ++i)
  1125. {
  1126. if (fAudio16Buffers[i] != nullptr)
  1127. delete[] fAudio16Buffers[i];
  1128. fAudio16Buffers[i] = new float[newBufferSize];
  1129. }
  1130. }
  1131. // -------------------------------------------------------------------
  1132. // Plugin buffers
  1133. void clearBuffers() override
  1134. {
  1135. carla_debug("FluidSynthPlugin::clearBuffers() - start");
  1136. if (fAudio16Buffers != nullptr)
  1137. {
  1138. for (uint32_t i=0; i < kData->audioOut.count; ++i)
  1139. {
  1140. if (fAudio16Buffers[i] != nullptr)
  1141. {
  1142. delete[] fAudio16Buffers[i];
  1143. fAudio16Buffers[i] = nullptr;
  1144. }
  1145. }
  1146. delete[] fAudio16Buffers;
  1147. fAudio16Buffers = nullptr;
  1148. }
  1149. CarlaPlugin::clearBuffers();
  1150. carla_debug("FluidSynthPlugin::clearBuffers() - end");
  1151. }
  1152. // -------------------------------------------------------------------
  1153. const void* getExtraStuff() override
  1154. {
  1155. return kUses16Outs ? (const void*)0x1 : nullptr;
  1156. }
  1157. bool init(const char* const filename, const char* const name, const char* const label)
  1158. {
  1159. CARLA_ASSERT(fSynth != nullptr);
  1160. CARLA_ASSERT(filename != nullptr);
  1161. CARLA_ASSERT(label != nullptr);
  1162. // ---------------------------------------------------------------
  1163. // first checks
  1164. if (kData->engine == nullptr)
  1165. {
  1166. return false;
  1167. }
  1168. if (kData->client != nullptr)
  1169. {
  1170. kData->engine->setLastError("Plugin client is already registered");
  1171. return false;
  1172. }
  1173. if (fSynth == nullptr)
  1174. {
  1175. kData->engine->setLastError("null synth");
  1176. return false;
  1177. }
  1178. if (filename == nullptr)
  1179. {
  1180. kData->engine->setLastError("null filename");
  1181. return false;
  1182. }
  1183. if (label == nullptr)
  1184. {
  1185. kData->engine->setLastError("null label");
  1186. return false;
  1187. }
  1188. // ---------------------------------------------------------------
  1189. // open soundfont
  1190. fSynthId = fluid_synth_sfload(fSynth, filename, 0);
  1191. if (fSynthId < 0)
  1192. {
  1193. kData->engine->setLastError("Failed to load SoundFont file");
  1194. return false;
  1195. }
  1196. // ---------------------------------------------------------------
  1197. // get info
  1198. fFilename = filename;
  1199. fLabel = label;
  1200. if (name != nullptr)
  1201. fName = kData->engine->getUniquePluginName(name);
  1202. else
  1203. fName = kData->engine->getUniquePluginName(label);
  1204. // ---------------------------------------------------------------
  1205. // register client
  1206. kData->client = kData->engine->addClient(this);
  1207. if (kData->client == nullptr || ! kData->client->isOk())
  1208. {
  1209. kData->engine->setLastError("Failed to register plugin client");
  1210. return false;
  1211. }
  1212. // ---------------------------------------------------------------
  1213. // load plugin settings
  1214. {
  1215. // set default options
  1216. fOptions = 0x0;
  1217. fOptions |= PLUGIN_OPTION_MAP_PROGRAM_CHANGES;
  1218. fOptions |= PLUGIN_OPTION_SEND_CHANNEL_PRESSURE;
  1219. fOptions |= PLUGIN_OPTION_SEND_NOTE_AFTERTOUCH;
  1220. fOptions |= PLUGIN_OPTION_SEND_PITCHBEND;
  1221. fOptions |= PLUGIN_OPTION_SEND_ALL_SOUND_OFF;
  1222. // load settings
  1223. kData->idStr = "SF2/";
  1224. kData->idStr += label;
  1225. fOptions = kData->loadSettings(fOptions, availableOptions());
  1226. }
  1227. return true;
  1228. }
  1229. private:
  1230. enum FluidSynthInputParameters {
  1231. FluidSynthReverbOnOff = 0,
  1232. FluidSynthReverbRoomSize = 1,
  1233. FluidSynthReverbDamp = 2,
  1234. FluidSynthReverbLevel = 3,
  1235. FluidSynthReverbWidth = 4,
  1236. FluidSynthChorusOnOff = 5,
  1237. FluidSynthChorusNr = 6,
  1238. FluidSynthChorusLevel = 7,
  1239. FluidSynthChorusSpeedHz = 8,
  1240. FluidSynthChorusDepthMs = 9,
  1241. FluidSynthChorusType = 10,
  1242. FluidSynthPolyphony = 11,
  1243. FluidSynthInterpolation = 12,
  1244. FluidSynthVoiceCount = 13,
  1245. FluidSynthParametersMax = 14
  1246. };
  1247. const bool kUses16Outs;
  1248. CarlaString fLabel;
  1249. fluid_settings_t* fSettings;
  1250. fluid_synth_t* fSynth;
  1251. int fSynthId;
  1252. float** fAudio16Buffers;
  1253. float fParamBuffers[FluidSynthParametersMax];
  1254. CARLA_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR(FluidSynthPlugin)
  1255. };
  1256. CARLA_BACKEND_END_NAMESPACE
  1257. #else // WANT_FLUIDSYNTH
  1258. # warning fluidsynth not available (no SF2 support)
  1259. #endif
  1260. CARLA_BACKEND_START_NAMESPACE
  1261. CarlaPlugin* CarlaPlugin::newSF2(const Initializer& init, const bool use16Outs)
  1262. {
  1263. carla_debug("CarlaPlugin::newSF2({%p, \"%s\", \"%s\", \"%s\"}, %s)", init.engine, init.filename, init.name, init.label, bool2str(use16Outs));
  1264. #ifdef WANT_FLUIDSYNTH
  1265. if (! fluid_is_soundfont(init.filename))
  1266. {
  1267. init.engine->setLastError("Requested file is not a valid SoundFont");
  1268. return nullptr;
  1269. }
  1270. if (init.engine->getProccessMode() == PROCESS_MODE_CONTINUOUS_RACK && use16Outs)
  1271. {
  1272. init.engine->setLastError("Carla's rack mode can only work with Stereo modules, please choose the 2-channel only SoundFont version");
  1273. return nullptr;
  1274. }
  1275. FluidSynthPlugin* const plugin(new FluidSynthPlugin(init.engine, init.id, use16Outs));
  1276. if (! plugin->init(init.filename, init.name, init.label))
  1277. {
  1278. delete plugin;
  1279. return nullptr;
  1280. }
  1281. plugin->reload();
  1282. return plugin;
  1283. #else
  1284. init.engine->setLastError("fluidsynth support not available");
  1285. return nullptr;
  1286. // unused
  1287. (void)use16Outs;
  1288. #endif
  1289. }
  1290. CARLA_BACKEND_END_NAMESPACE