Audio plugin host https://kx.studio/carla
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1681 lines
59KB

  1. /*
  2. * Carla FluidSynth Plugin
  3. * Copyright (C) 2011-2013 Filipe Coelho <falktx@falktx.com>
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation; either version 2 of
  8. * the License, or any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * For a full copy of the GNU General Public License see the GPL.txt file
  16. */
  17. #include "CarlaPluginInternal.hpp"
  18. #ifdef WANT_FLUIDSYNTH
  19. #include <fluidsynth.h>
  20. #include <QtCore/QStringList>
  21. #define FLUIDSYNTH_VERSION_NEW_API (FLUIDSYNTH_VERSION_MAJOR >= 1 && FLUIDSYNTH_VERSION_MINOR >= 1 && FLUIDSYNTH_VERSION_MICRO >= 4)
  22. CARLA_BACKEND_START_NAMESPACE
  23. #if 0
  24. }
  25. #endif
  26. #define FLUID_DEFAULT_POLYPHONY 64
  27. class FluidSynthPlugin : public CarlaPlugin
  28. {
  29. public:
  30. FluidSynthPlugin(CarlaEngine* const engine, const unsigned int id, const bool use16Outs)
  31. : CarlaPlugin(engine, id),
  32. kUses16Outs(use16Outs),
  33. fSettings(nullptr),
  34. fSynth(nullptr),
  35. fSynthId(-1),
  36. fAudio16Buffers(nullptr),
  37. fParamBuffers{0.0f},
  38. fCurMidiProgs{0}
  39. {
  40. carla_debug("FluidSynthPlugin::FluidSynthPlugin(%p, %i, %s)", engine, id, bool2str(use16Outs));
  41. // create settings
  42. fSettings = new_fluid_settings();
  43. CARLA_ASSERT(fSettings != nullptr);
  44. // define settings
  45. fluid_settings_setint(fSettings, "synth.audio-channels", use16Outs ? 16 : 1);
  46. fluid_settings_setint(fSettings, "synth.audio-groups", use16Outs ? 16 : 1);
  47. fluid_settings_setnum(fSettings, "synth.sample-rate", kData->engine->getSampleRate());
  48. fluid_settings_setint(fSettings, "synth.threadsafe-api ", 0);
  49. // create synth
  50. fSynth = new_fluid_synth(fSettings);
  51. CARLA_ASSERT(fSynth != nullptr);
  52. #ifdef FLUIDSYNTH_VERSION_NEW_API
  53. fluid_synth_set_sample_rate(fSynth, kData->engine->getSampleRate());
  54. #endif
  55. // set default values
  56. fluid_synth_set_reverb_on(fSynth, 0);
  57. fluid_synth_set_reverb(fSynth, FLUID_REVERB_DEFAULT_ROOMSIZE, FLUID_REVERB_DEFAULT_DAMP, FLUID_REVERB_DEFAULT_WIDTH, FLUID_REVERB_DEFAULT_LEVEL);
  58. fluid_synth_set_chorus_on(fSynth, 0);
  59. fluid_synth_set_chorus(fSynth, FLUID_CHORUS_DEFAULT_N, FLUID_CHORUS_DEFAULT_LEVEL, FLUID_CHORUS_DEFAULT_SPEED, FLUID_CHORUS_DEFAULT_DEPTH, FLUID_CHORUS_DEFAULT_TYPE);
  60. fluid_synth_set_polyphony(fSynth, FLUID_DEFAULT_POLYPHONY);
  61. fluid_synth_set_gain(fSynth, 1.0f);
  62. for (int i=0; i < MAX_MIDI_CHANNELS; ++i)
  63. fluid_synth_set_interp_method(fSynth, i, FLUID_INTERP_DEFAULT);
  64. }
  65. ~FluidSynthPlugin() override
  66. {
  67. carla_debug("FluidSynthPlugin::~FluidSynthPlugin()");
  68. kData->singleMutex.lock();
  69. kData->masterMutex.lock();
  70. if (kData->active)
  71. {
  72. deactivate();
  73. kData->active = false;
  74. }
  75. delete_fluid_synth(fSynth);
  76. delete_fluid_settings(fSettings);
  77. clearBuffers();
  78. }
  79. // -------------------------------------------------------------------
  80. // Information (base)
  81. PluginType type() const override
  82. {
  83. return PLUGIN_SF2;
  84. }
  85. PluginCategory category() override
  86. {
  87. return PLUGIN_CATEGORY_SYNTH;
  88. }
  89. // -------------------------------------------------------------------
  90. // Information (count)
  91. uint32_t parameterScalePointCount(const uint32_t parameterId) const override
  92. {
  93. CARLA_ASSERT(parameterId < kData->param.count);
  94. switch (parameterId)
  95. {
  96. case FluidSynthChorusType:
  97. return 2;
  98. case FluidSynthInterpolation:
  99. return 4;
  100. default:
  101. return 0;
  102. }
  103. }
  104. // -------------------------------------------------------------------
  105. // Information (current data)
  106. // nothing
  107. // -------------------------------------------------------------------
  108. // Information (per-plugin data)
  109. unsigned int availableOptions() override
  110. {
  111. unsigned int options = 0x0;
  112. options |= PLUGIN_OPTION_MAP_PROGRAM_CHANGES;
  113. options |= PLUGIN_OPTION_SEND_CONTROL_CHANGES;
  114. options |= PLUGIN_OPTION_SEND_CHANNEL_PRESSURE;
  115. options |= PLUGIN_OPTION_SEND_PITCHBEND;
  116. options |= PLUGIN_OPTION_SEND_ALL_SOUND_OFF;
  117. return options;
  118. }
  119. float getParameterValue(const uint32_t parameterId) override
  120. {
  121. CARLA_ASSERT(parameterId < kData->param.count);
  122. return fParamBuffers[parameterId];
  123. }
  124. float getParameterScalePointValue(const uint32_t parameterId, const uint32_t scalePointId) override
  125. {
  126. CARLA_ASSERT(parameterId < kData->param.count);
  127. CARLA_ASSERT(scalePointId < parameterScalePointCount(parameterId));
  128. switch (parameterId)
  129. {
  130. case FluidSynthChorusType:
  131. switch (scalePointId)
  132. {
  133. case 0:
  134. return FLUID_CHORUS_MOD_SINE;
  135. case 1:
  136. return FLUID_CHORUS_MOD_TRIANGLE;
  137. default:
  138. return FLUID_CHORUS_DEFAULT_TYPE;
  139. }
  140. case FluidSynthInterpolation:
  141. switch (scalePointId)
  142. {
  143. case 0:
  144. return FLUID_INTERP_NONE;
  145. case 1:
  146. return FLUID_INTERP_LINEAR;
  147. case 2:
  148. return FLUID_INTERP_4THORDER;
  149. case 3:
  150. return FLUID_INTERP_7THORDER;
  151. default:
  152. return FLUID_INTERP_DEFAULT;
  153. }
  154. default:
  155. return 0.0f;
  156. }
  157. }
  158. void getLabel(char* const strBuf) override
  159. {
  160. if (fLabel.isNotEmpty())
  161. std::strncpy(strBuf, (const char*)fLabel, STR_MAX);
  162. else
  163. CarlaPlugin::getLabel(strBuf);
  164. }
  165. void getMaker(char* const strBuf) override
  166. {
  167. std::strncpy(strBuf, "FluidSynth SF2 engine", STR_MAX);
  168. }
  169. void getCopyright(char* const strBuf) override
  170. {
  171. std::strncpy(strBuf, "GNU GPL v2+", STR_MAX);
  172. }
  173. void getRealName(char* const strBuf) override
  174. {
  175. getLabel(strBuf);
  176. }
  177. void getParameterName(const uint32_t parameterId, char* const strBuf) override
  178. {
  179. CARLA_ASSERT(parameterId < kData->param.count);
  180. switch (parameterId)
  181. {
  182. case FluidSynthReverbOnOff:
  183. std::strncpy(strBuf, "Reverb On/Off", STR_MAX);
  184. break;
  185. case FluidSynthReverbRoomSize:
  186. std::strncpy(strBuf, "Reverb Room Size", STR_MAX);
  187. break;
  188. case FluidSynthReverbDamp:
  189. std::strncpy(strBuf, "Reverb Damp", STR_MAX);
  190. break;
  191. case FluidSynthReverbLevel:
  192. std::strncpy(strBuf, "Reverb Level", STR_MAX);
  193. break;
  194. case FluidSynthReverbWidth:
  195. std::strncpy(strBuf, "Reverb Width", STR_MAX);
  196. break;
  197. case FluidSynthChorusOnOff:
  198. std::strncpy(strBuf, "Chorus On/Off", STR_MAX);
  199. break;
  200. case FluidSynthChorusNr:
  201. std::strncpy(strBuf, "Chorus Voice Count", STR_MAX);
  202. break;
  203. case FluidSynthChorusLevel:
  204. std::strncpy(strBuf, "Chorus Level", STR_MAX);
  205. break;
  206. case FluidSynthChorusSpeedHz:
  207. std::strncpy(strBuf, "Chorus Speed", STR_MAX);
  208. break;
  209. case FluidSynthChorusDepthMs:
  210. std::strncpy(strBuf, "Chorus Depth", STR_MAX);
  211. break;
  212. case FluidSynthChorusType:
  213. std::strncpy(strBuf, "Chorus Type", STR_MAX);
  214. break;
  215. case FluidSynthPolyphony:
  216. std::strncpy(strBuf, "Polyphony", STR_MAX);
  217. break;
  218. case FluidSynthInterpolation:
  219. std::strncpy(strBuf, "Interpolation", STR_MAX);
  220. break;
  221. case FluidSynthVoiceCount:
  222. std::strncpy(strBuf, "Voice Count", STR_MAX);
  223. break;
  224. default:
  225. CarlaPlugin::getParameterName(parameterId, strBuf);
  226. break;
  227. }
  228. }
  229. void getParameterUnit(const uint32_t parameterId, char* const strBuf) override
  230. {
  231. CARLA_ASSERT(parameterId < kData->param.count);
  232. switch (parameterId)
  233. {
  234. case FluidSynthChorusSpeedHz:
  235. std::strncpy(strBuf, "Hz", STR_MAX);
  236. break;
  237. case FluidSynthChorusDepthMs:
  238. std::strncpy(strBuf, "ms", STR_MAX);
  239. break;
  240. default:
  241. CarlaPlugin::getParameterUnit(parameterId, strBuf);
  242. break;
  243. }
  244. }
  245. void getParameterScalePointLabel(const uint32_t parameterId, const uint32_t scalePointId, char* const strBuf) override
  246. {
  247. CARLA_ASSERT(parameterId < kData->param.count);
  248. CARLA_ASSERT(scalePointId < parameterScalePointCount(parameterId));
  249. switch (parameterId)
  250. {
  251. case FluidSynthChorusType:
  252. switch (scalePointId)
  253. {
  254. case 0:
  255. std::strncpy(strBuf, "Sine wave", STR_MAX);
  256. return;
  257. case 1:
  258. std::strncpy(strBuf, "Triangle wave", STR_MAX);
  259. return;
  260. }
  261. case FluidSynthInterpolation:
  262. switch (scalePointId)
  263. {
  264. case 0:
  265. std::strncpy(strBuf, "None", STR_MAX);
  266. return;
  267. case 1:
  268. std::strncpy(strBuf, "Straight-line", STR_MAX);
  269. return;
  270. case 2:
  271. std::strncpy(strBuf, "Fourth-order", STR_MAX);
  272. return;
  273. case 3:
  274. std::strncpy(strBuf, "Seventh-order", STR_MAX);
  275. return;
  276. }
  277. }
  278. CarlaPlugin::getParameterScalePointLabel(parameterId, scalePointId, strBuf);
  279. }
  280. // -------------------------------------------------------------------
  281. // Set data (state)
  282. void prepareForSave() override
  283. {
  284. CARLA_ASSERT(fSynth != nullptr);
  285. char strBuf[STR_MAX+1];
  286. std::snprintf(strBuf, STR_MAX, "%i:%i:%i:%i:%i:%i:%i:%i:%i:%i:%i:%i:%i:%i:%i:%i", fCurMidiProgs[0], fCurMidiProgs[1], fCurMidiProgs[2], fCurMidiProgs[3],
  287. fCurMidiProgs[4], fCurMidiProgs[5], fCurMidiProgs[6], fCurMidiProgs[7],
  288. fCurMidiProgs[8], fCurMidiProgs[9], fCurMidiProgs[10], fCurMidiProgs[11],
  289. fCurMidiProgs[12], fCurMidiProgs[13], fCurMidiProgs[14], fCurMidiProgs[15]);
  290. CarlaPlugin::setCustomData(CUSTOM_DATA_STRING, "midiPrograms", strBuf, false);
  291. }
  292. // -------------------------------------------------------------------
  293. // Set data (internal stuff)
  294. void setCtrlChannel(const int8_t channel, const bool sendOsc, const bool sendCallback) override
  295. {
  296. if (channel < MAX_MIDI_CHANNELS)
  297. kData->midiprog.current = fCurMidiProgs[channel];
  298. CarlaPlugin::setCtrlChannel(channel, sendOsc, sendCallback);
  299. }
  300. // -------------------------------------------------------------------
  301. // Set data (plugin-specific stuff)
  302. void setParameterValue(const uint32_t parameterId, const float value, const bool sendGui, const bool sendOsc, const bool sendCallback) override
  303. {
  304. CARLA_ASSERT(parameterId < kData->param.count);
  305. const float fixedValue(kData->param.fixValue(parameterId, value));
  306. fParamBuffers[parameterId] = fixedValue;
  307. {
  308. const ScopedSingleProcessLocker spl(this, (sendGui || sendOsc || sendCallback));
  309. switch (parameterId)
  310. {
  311. case FluidSynthReverbOnOff:
  312. fluid_synth_set_reverb_on(fSynth, (fixedValue > 0.5f) ? 1 : 0);
  313. break;
  314. case FluidSynthReverbRoomSize:
  315. case FluidSynthReverbDamp:
  316. case FluidSynthReverbLevel:
  317. case FluidSynthReverbWidth:
  318. fluid_synth_set_reverb(fSynth, fParamBuffers[FluidSynthReverbRoomSize], fParamBuffers[FluidSynthReverbDamp], fParamBuffers[FluidSynthReverbWidth], fParamBuffers[FluidSynthReverbLevel]);
  319. break;
  320. case FluidSynthChorusOnOff:
  321. fluid_synth_set_chorus_on(fSynth, (value > 0.5f) ? 1 : 0);
  322. break;
  323. case FluidSynthChorusNr:
  324. case FluidSynthChorusLevel:
  325. case FluidSynthChorusSpeedHz:
  326. case FluidSynthChorusDepthMs:
  327. case FluidSynthChorusType:
  328. fluid_synth_set_chorus(fSynth, fParamBuffers[FluidSynthChorusNr], fParamBuffers[FluidSynthChorusLevel], fParamBuffers[FluidSynthChorusSpeedHz], fParamBuffers[FluidSynthChorusDepthMs], fParamBuffers[FluidSynthChorusType]);
  329. break;
  330. case FluidSynthPolyphony:
  331. fluid_synth_set_polyphony(fSynth, value);
  332. break;
  333. case FluidSynthInterpolation:
  334. for (int i=0; i < MAX_MIDI_CHANNELS; ++i)
  335. fluid_synth_set_interp_method(fSynth, i, value);
  336. break;
  337. default:
  338. break;
  339. }
  340. }
  341. CarlaPlugin::setParameterValue(parameterId, value, sendGui, sendOsc, sendCallback);
  342. }
  343. void setCustomData(const char* const type, const char* const key, const char* const value, const bool sendGui) override
  344. {
  345. CARLA_ASSERT(fSynth != nullptr);
  346. CARLA_ASSERT(type != nullptr);
  347. CARLA_ASSERT(key != nullptr);
  348. CARLA_ASSERT(value != nullptr);
  349. carla_debug("DssiPlugin::setCustomData(%s, %s, %s, %s)", type, key, value, bool2str(sendGui));
  350. if (type == nullptr)
  351. return carla_stderr2("DssiPlugin::setCustomData(\"%s\", \"%s\", \"%s\", %s) - type is invalid", type, key, value, bool2str(sendGui));
  352. if (std::strcmp(type, CUSTOM_DATA_STRING) != 0)
  353. return carla_stderr2("DssiPlugin::setCustomData(\"%s\", \"%s\", \"%s\", %s) - type is not string", type, key, value, bool2str(sendGui));
  354. if (key == nullptr)
  355. return carla_stderr2("DssiPlugin::setCustomData(\"%s\", \"%s\", \"%s\", %s) - key is null", type, key, value, bool2str(sendGui));
  356. if (std::strcmp(key, "midiPrograms") != 0)
  357. return carla_stderr2("DssiPlugin::setCustomData(\"%s\", \"%s\", \"%s\", %s) - type is not string", type, key, value, bool2str(sendGui));
  358. if (value == nullptr)
  359. return carla_stderr2("DssiPlugin::setCustomData(\"%s\", \"%s\", \"%s\", %s) - value is null", type, key, value, bool2str(sendGui));
  360. QStringList midiProgramList(QString(value).split(":", QString::SkipEmptyParts));
  361. if (midiProgramList.count() == MAX_MIDI_CHANNELS)
  362. {
  363. uint i = 0;
  364. foreach (const QString& midiProg, midiProgramList)
  365. {
  366. bool ok;
  367. uint index = midiProg.toUInt(&ok);
  368. if (ok && index < kData->midiprog.count)
  369. {
  370. const uint32_t bank = kData->midiprog.data[index].bank;
  371. const uint32_t program = kData->midiprog.data[index].program;
  372. fluid_synth_program_select(fSynth, i, fSynthId, bank, program);
  373. fCurMidiProgs[i] = index;
  374. if (kData->ctrlChannel == static_cast<int32_t>(i))
  375. {
  376. kData->midiprog.current = index;
  377. kData->engine->callback(CALLBACK_MIDI_PROGRAM_CHANGED, fId, index, 0, 0.0f, nullptr);
  378. }
  379. }
  380. ++i;
  381. }
  382. }
  383. CarlaPlugin::setCustomData(type, key, value, sendGui);
  384. }
  385. void setMidiProgram(int32_t index, const bool sendGui, const bool sendOsc, const bool sendCallback) override
  386. {
  387. CARLA_ASSERT(fSynth != nullptr);
  388. CARLA_ASSERT(index >= -1 && index < static_cast<int32_t>(kData->midiprog.count));
  389. if (index < -1)
  390. index = -1;
  391. else if (index > static_cast<int32_t>(kData->midiprog.count))
  392. return;
  393. if (kData->ctrlChannel < 0 || kData->ctrlChannel >= MAX_MIDI_CHANNELS)
  394. return;
  395. if (index >= 0)
  396. {
  397. const uint32_t bank = kData->midiprog.data[index].bank;
  398. const uint32_t program = kData->midiprog.data[index].program;
  399. //const ScopedSingleProcessLocker spl(this, (sendGui || sendOsc || sendCallback));
  400. fluid_synth_program_select(fSynth, kData->ctrlChannel, fSynthId, bank, program);
  401. fCurMidiProgs[kData->ctrlChannel] = index;
  402. }
  403. CarlaPlugin::setMidiProgram(index, sendGui, sendOsc, sendCallback);
  404. }
  405. // -------------------------------------------------------------------
  406. // Set gui stuff
  407. // nothing
  408. // -------------------------------------------------------------------
  409. // Plugin state
  410. void reload() override
  411. {
  412. carla_debug("FluidSynthPlugin::reload() - start");
  413. CARLA_ASSERT(kData->engine != nullptr);
  414. CARLA_ASSERT(fSynth != nullptr);
  415. if (kData->engine == nullptr)
  416. return;
  417. if (fSynth == nullptr)
  418. return;
  419. const ProcessMode processMode(kData->engine->getProccessMode());
  420. // Safely disable plugin for reload
  421. const ScopedDisabler sd(this);
  422. if (kData->active)
  423. deactivate();
  424. clearBuffers();
  425. uint32_t aOuts, params, j;
  426. aOuts = kUses16Outs ? 32 : 2;
  427. params = FluidSynthParametersMax;
  428. kData->audioOut.createNew(aOuts);
  429. kData->param.createNew(params);
  430. const int portNameSize = kData->engine->maxPortNameSize();
  431. CarlaString portName;
  432. // ---------------------------------------
  433. // Audio Outputs
  434. if (kUses16Outs)
  435. {
  436. for (j=0; j < 32; ++j)
  437. {
  438. portName.clear();
  439. if (processMode == PROCESS_MODE_SINGLE_CLIENT)
  440. {
  441. portName = fName;
  442. portName += ":";
  443. }
  444. portName += "out-";
  445. if ((j+2)/2 < 9)
  446. portName += "0";
  447. portName += CarlaString((j+2)/2);
  448. if (j % 2 == 0)
  449. portName += "L";
  450. else
  451. portName += "R";
  452. portName.truncate(portNameSize);
  453. kData->audioOut.ports[j].port = (CarlaEngineAudioPort*)kData->client->addPort(kEnginePortTypeAudio, portName, false);
  454. kData->audioOut.ports[j].rindex = j;
  455. }
  456. fAudio16Buffers = new float*[aOuts];
  457. for (j=0; j < aOuts; ++j)
  458. fAudio16Buffers[j] = nullptr;
  459. }
  460. else
  461. {
  462. // out-left
  463. portName.clear();
  464. if (processMode == PROCESS_MODE_SINGLE_CLIENT)
  465. {
  466. portName = fName;
  467. portName += ":";
  468. }
  469. portName += "out-left";
  470. portName.truncate(portNameSize);
  471. kData->audioOut.ports[0].port = (CarlaEngineAudioPort*)kData->client->addPort(kEnginePortTypeAudio, portName, false);
  472. kData->audioOut.ports[0].rindex = 0;
  473. // out-right
  474. portName.clear();
  475. if (processMode == PROCESS_MODE_SINGLE_CLIENT)
  476. {
  477. portName = fName;
  478. portName += ":";
  479. }
  480. portName += "out-right";
  481. portName.truncate(portNameSize);
  482. kData->audioOut.ports[1].port = (CarlaEngineAudioPort*)kData->client->addPort(kEnginePortTypeAudio, portName, false);
  483. kData->audioOut.ports[1].rindex = 1;
  484. }
  485. // ---------------------------------------
  486. // Event Input
  487. {
  488. portName.clear();
  489. if (processMode == PROCESS_MODE_SINGLE_CLIENT)
  490. {
  491. portName = fName;
  492. portName += ":";
  493. }
  494. portName += "event-in";
  495. portName.truncate(portNameSize);
  496. kData->event.portIn = (CarlaEngineEventPort*)kData->client->addPort(kEnginePortTypeEvent, portName, true);
  497. }
  498. // ---------------------------------------
  499. // Event Output
  500. {
  501. portName.clear();
  502. if (processMode == PROCESS_MODE_SINGLE_CLIENT)
  503. {
  504. portName = fName;
  505. portName += ":";
  506. }
  507. portName += "event-out";
  508. portName.truncate(portNameSize);
  509. kData->event.portOut = (CarlaEngineEventPort*)kData->client->addPort(kEnginePortTypeEvent, portName, false);
  510. }
  511. // ----------------------
  512. j = FluidSynthReverbOnOff;
  513. kData->param.data[j].index = j;
  514. kData->param.data[j].rindex = j;
  515. kData->param.data[j].type = PARAMETER_INPUT;
  516. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE | PARAMETER_IS_BOOLEAN;
  517. kData->param.data[j].midiChannel = 0;
  518. kData->param.data[j].midiCC = -1;
  519. kData->param.ranges[j].min = 0.0f;
  520. kData->param.ranges[j].max = 1.0f;
  521. kData->param.ranges[j].def = 0.0f; // off
  522. kData->param.ranges[j].step = 1.0f;
  523. kData->param.ranges[j].stepSmall = 1.0f;
  524. kData->param.ranges[j].stepLarge = 1.0f;
  525. fParamBuffers[j] = kData->param.ranges[j].def;
  526. // ----------------------
  527. j = FluidSynthReverbRoomSize;
  528. kData->param.data[j].index = j;
  529. kData->param.data[j].rindex = j;
  530. kData->param.data[j].type = PARAMETER_INPUT;
  531. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE;
  532. kData->param.data[j].midiChannel = 0;
  533. kData->param.data[j].midiCC = -1;
  534. kData->param.ranges[j].min = 0.0f;
  535. kData->param.ranges[j].max = 1.2f;
  536. kData->param.ranges[j].def = FLUID_REVERB_DEFAULT_ROOMSIZE;
  537. kData->param.ranges[j].step = 0.01f;
  538. kData->param.ranges[j].stepSmall = 0.0001f;
  539. kData->param.ranges[j].stepLarge = 0.1f;
  540. fParamBuffers[j] = kData->param.ranges[j].def;
  541. // ----------------------
  542. j = FluidSynthReverbDamp;
  543. kData->param.data[j].index = j;
  544. kData->param.data[j].rindex = j;
  545. kData->param.data[j].type = PARAMETER_INPUT;
  546. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE;
  547. kData->param.data[j].midiChannel = 0;
  548. kData->param.data[j].midiCC = -1;
  549. kData->param.ranges[j].min = 0.0f;
  550. kData->param.ranges[j].max = 1.0f;
  551. kData->param.ranges[j].def = FLUID_REVERB_DEFAULT_DAMP;
  552. kData->param.ranges[j].step = 0.01f;
  553. kData->param.ranges[j].stepSmall = 0.0001f;
  554. kData->param.ranges[j].stepLarge = 0.1f;
  555. fParamBuffers[j] = kData->param.ranges[j].def;
  556. // ----------------------
  557. j = FluidSynthReverbLevel;
  558. kData->param.data[j].index = j;
  559. kData->param.data[j].rindex = j;
  560. kData->param.data[j].type = PARAMETER_INPUT;
  561. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE;
  562. kData->param.data[j].midiChannel = 0;
  563. kData->param.data[j].midiCC = MIDI_CONTROL_REVERB_SEND_LEVEL;
  564. kData->param.ranges[j].min = 0.0f;
  565. kData->param.ranges[j].max = 1.0f;
  566. kData->param.ranges[j].def = FLUID_REVERB_DEFAULT_LEVEL;
  567. kData->param.ranges[j].step = 0.01f;
  568. kData->param.ranges[j].stepSmall = 0.0001f;
  569. kData->param.ranges[j].stepLarge = 0.1f;
  570. fParamBuffers[j] = kData->param.ranges[j].def;
  571. // ----------------------
  572. j = FluidSynthReverbWidth;
  573. kData->param.data[j].index = j;
  574. kData->param.data[j].rindex = j;
  575. kData->param.data[j].type = PARAMETER_INPUT;
  576. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE;
  577. kData->param.data[j].midiChannel = 0;
  578. kData->param.data[j].midiCC = -1;
  579. kData->param.ranges[j].min = 0.0f;
  580. kData->param.ranges[j].max = 10.0f; // should be 100, but that sounds too much
  581. kData->param.ranges[j].def = FLUID_REVERB_DEFAULT_WIDTH;
  582. kData->param.ranges[j].step = 0.01f;
  583. kData->param.ranges[j].stepSmall = 0.0001f;
  584. kData->param.ranges[j].stepLarge = 0.1f;
  585. fParamBuffers[j] = kData->param.ranges[j].def;
  586. // ----------------------
  587. j = FluidSynthChorusOnOff;
  588. kData->param.data[j].index = j;
  589. kData->param.data[j].rindex = j;
  590. kData->param.data[j].type = PARAMETER_INPUT;
  591. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_BOOLEAN;
  592. kData->param.data[j].midiChannel = 0;
  593. kData->param.data[j].midiCC = -1;
  594. kData->param.ranges[j].min = 0.0f;
  595. kData->param.ranges[j].max = 1.0f;
  596. kData->param.ranges[j].def = 0.0f; // off
  597. kData->param.ranges[j].step = 1.0f;
  598. kData->param.ranges[j].stepSmall = 1.0f;
  599. kData->param.ranges[j].stepLarge = 1.0f;
  600. fParamBuffers[j] = kData->param.ranges[j].def;
  601. // ----------------------
  602. j = FluidSynthChorusNr;
  603. kData->param.data[j].index = j;
  604. kData->param.data[j].rindex = j;
  605. kData->param.data[j].type = PARAMETER_INPUT;
  606. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_INTEGER;
  607. kData->param.data[j].midiChannel = 0;
  608. kData->param.data[j].midiCC = -1;
  609. kData->param.ranges[j].min = 0.0f;
  610. kData->param.ranges[j].max = 99.0f;
  611. kData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_N;
  612. kData->param.ranges[j].step = 1.0f;
  613. kData->param.ranges[j].stepSmall = 1.0f;
  614. kData->param.ranges[j].stepLarge = 10.0f;
  615. fParamBuffers[j] = kData->param.ranges[j].def;
  616. // ----------------------
  617. j = FluidSynthChorusLevel;
  618. kData->param.data[j].index = j;
  619. kData->param.data[j].rindex = j;
  620. kData->param.data[j].type = PARAMETER_INPUT;
  621. kData->param.data[j].hints = PARAMETER_IS_ENABLED;
  622. kData->param.data[j].midiChannel = 0;
  623. kData->param.data[j].midiCC = 0; //MIDI_CONTROL_CHORUS_SEND_LEVEL;
  624. kData->param.ranges[j].min = 0.0f;
  625. kData->param.ranges[j].max = 10.0f;
  626. kData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_LEVEL;
  627. kData->param.ranges[j].step = 0.01f;
  628. kData->param.ranges[j].stepSmall = 0.0001f;
  629. kData->param.ranges[j].stepLarge = 0.1f;
  630. fParamBuffers[j] = kData->param.ranges[j].def;
  631. // ----------------------
  632. j = FluidSynthChorusSpeedHz;
  633. kData->param.data[j].index = j;
  634. kData->param.data[j].rindex = j;
  635. kData->param.data[j].type = PARAMETER_INPUT;
  636. kData->param.data[j].hints = PARAMETER_IS_ENABLED;
  637. kData->param.data[j].midiChannel = 0;
  638. kData->param.data[j].midiCC = -1;
  639. kData->param.ranges[j].min = 0.29f;
  640. kData->param.ranges[j].max = 5.0f;
  641. kData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_SPEED;
  642. kData->param.ranges[j].step = 0.01f;
  643. kData->param.ranges[j].stepSmall = 0.0001f;
  644. kData->param.ranges[j].stepLarge = 0.1f;
  645. fParamBuffers[j] = kData->param.ranges[j].def;
  646. // ----------------------
  647. j = FluidSynthChorusDepthMs;
  648. kData->param.data[j].index = j;
  649. kData->param.data[j].rindex = j;
  650. kData->param.data[j].type = PARAMETER_INPUT;
  651. kData->param.data[j].hints = PARAMETER_IS_ENABLED;
  652. kData->param.data[j].midiChannel = 0;
  653. kData->param.data[j].midiCC = -1;
  654. kData->param.ranges[j].min = 0.0f;
  655. kData->param.ranges[j].max = 2048000.0 / kData->engine->getSampleRate();
  656. kData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_DEPTH;
  657. kData->param.ranges[j].step = 0.01f;
  658. kData->param.ranges[j].stepSmall = 0.0001f;
  659. kData->param.ranges[j].stepLarge = 0.1f;
  660. fParamBuffers[j] = kData->param.ranges[j].def;
  661. // ----------------------
  662. j = FluidSynthChorusType;
  663. kData->param.data[j].index = j;
  664. kData->param.data[j].rindex = j;
  665. kData->param.data[j].type = PARAMETER_INPUT;
  666. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_INTEGER | PARAMETER_USES_SCALEPOINTS;
  667. kData->param.data[j].midiChannel = 0;
  668. kData->param.data[j].midiCC = -1;
  669. kData->param.ranges[j].min = FLUID_CHORUS_MOD_SINE;
  670. kData->param.ranges[j].max = FLUID_CHORUS_MOD_TRIANGLE;
  671. kData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_TYPE;
  672. kData->param.ranges[j].step = 1.0f;
  673. kData->param.ranges[j].stepSmall = 1.0f;
  674. kData->param.ranges[j].stepLarge = 1.0f;
  675. fParamBuffers[j] = kData->param.ranges[j].def;
  676. // ----------------------
  677. j = FluidSynthPolyphony;
  678. kData->param.data[j].index = j;
  679. kData->param.data[j].rindex = j;
  680. kData->param.data[j].type = PARAMETER_INPUT;
  681. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_INTEGER;
  682. kData->param.data[j].midiChannel = 0;
  683. kData->param.data[j].midiCC = -1;
  684. kData->param.ranges[j].min = 1.0f;
  685. kData->param.ranges[j].max = 512.0f; // max theoric is 65535
  686. kData->param.ranges[j].def = fluid_synth_get_polyphony(fSynth);
  687. kData->param.ranges[j].step = 1.0f;
  688. kData->param.ranges[j].stepSmall = 1.0f;
  689. kData->param.ranges[j].stepLarge = 10.0f;
  690. fParamBuffers[j] = kData->param.ranges[j].def;
  691. // ----------------------
  692. j = FluidSynthInterpolation;
  693. kData->param.data[j].index = j;
  694. kData->param.data[j].rindex = j;
  695. kData->param.data[j].type = PARAMETER_INPUT;
  696. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_INTEGER | PARAMETER_USES_SCALEPOINTS;
  697. kData->param.data[j].midiChannel = 0;
  698. kData->param.data[j].midiCC = -1;
  699. kData->param.ranges[j].min = FLUID_INTERP_NONE;
  700. kData->param.ranges[j].max = FLUID_INTERP_HIGHEST;
  701. kData->param.ranges[j].def = FLUID_INTERP_DEFAULT;
  702. kData->param.ranges[j].step = 1.0f;
  703. kData->param.ranges[j].stepSmall = 1.0f;
  704. kData->param.ranges[j].stepLarge = 1.0f;
  705. fParamBuffers[j] = kData->param.ranges[j].def;
  706. // ----------------------
  707. j = FluidSynthVoiceCount;
  708. kData->param.data[j].index = j;
  709. kData->param.data[j].rindex = j;
  710. kData->param.data[j].type = PARAMETER_OUTPUT;
  711. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE | PARAMETER_IS_INTEGER;
  712. kData->param.data[j].midiChannel = 0;
  713. kData->param.data[j].midiCC = -1;
  714. kData->param.ranges[j].min = 0.0f;
  715. kData->param.ranges[j].max = 65535.0f;
  716. kData->param.ranges[j].def = 0.0f;
  717. kData->param.ranges[j].step = 1.0f;
  718. kData->param.ranges[j].stepSmall = 1.0f;
  719. kData->param.ranges[j].stepLarge = 1.0f;
  720. fParamBuffers[j] = kData->param.ranges[j].def;
  721. // ---------------------------------------
  722. // plugin hints
  723. fHints = 0x0;
  724. fHints |= PLUGIN_IS_SYNTH;
  725. fHints |= PLUGIN_CAN_VOLUME;
  726. fHints |= PLUGIN_CAN_BALANCE;
  727. // extra plugin hints
  728. kData->extraHints = 0x0;
  729. kData->extraHints |= PLUGIN_HINT_HAS_MIDI_IN;
  730. kData->extraHints |= PLUGIN_HINT_CAN_RUN_RACK;
  731. bufferSizeChanged(kData->engine->getBufferSize());
  732. reloadPrograms(true);
  733. if (kData->active)
  734. activate();
  735. carla_debug("FluidSynthPlugin::reload() - end");
  736. }
  737. void reloadPrograms(const bool init) override
  738. {
  739. carla_debug("FluidSynthPlugin::reloadPrograms(%s)", bool2str(init));
  740. // Delete old programs
  741. kData->midiprog.clear();
  742. // Query new programs
  743. uint32_t count = 0;
  744. fluid_sfont_t* f_sfont;
  745. fluid_preset_t f_preset;
  746. bool hasDrums = false;
  747. uint32_t drumIndex, drumProg;
  748. f_sfont = fluid_synth_get_sfont_by_id(fSynth, fSynthId);
  749. // initial check to know how much midi-programs we have
  750. f_sfont->iteration_start(f_sfont);
  751. while (f_sfont->iteration_next(f_sfont, &f_preset))
  752. count += 1;
  753. // soundfonts must always have at least 1 midi-program
  754. CARLA_ASSERT(count > 0);
  755. if (count == 0)
  756. return;
  757. kData->midiprog.createNew(count);
  758. // Update data
  759. uint32_t i = 0;
  760. f_sfont->iteration_start(f_sfont);
  761. while (f_sfont->iteration_next(f_sfont, &f_preset))
  762. {
  763. CARLA_ASSERT(i < kData->midiprog.count);
  764. kData->midiprog.data[i].bank = f_preset.get_banknum(&f_preset);
  765. kData->midiprog.data[i].program = f_preset.get_num(&f_preset);
  766. kData->midiprog.data[i].name = carla_strdup(f_preset.get_name(&f_preset));
  767. if (kData->midiprog.data[i].bank == 128 && ! hasDrums)
  768. {
  769. hasDrums = true;
  770. drumIndex = i;
  771. drumProg = kData->midiprog.data[i].program;
  772. }
  773. ++i;
  774. }
  775. //f_sfont->free(f_sfont);
  776. #ifndef BUILD_BRIDGE
  777. // Update OSC Names
  778. if (kData->engine->isOscControlRegistered())
  779. {
  780. kData->engine->osc_send_control_set_midi_program_count(fId, count);
  781. for (i=0; i < count; ++i)
  782. kData->engine->osc_send_control_set_midi_program_data(fId, i, kData->midiprog.data[i].bank, kData->midiprog.data[i].program, kData->midiprog.data[i].name);
  783. }
  784. #endif
  785. if (init)
  786. {
  787. fluid_synth_program_reset(fSynth);
  788. // select first program, or 128 for ch10
  789. for (i=0; i < MAX_MIDI_CHANNELS && i != 9; ++i)
  790. {
  791. #ifdef FLUIDSYNTH_VERSION_NEW_API
  792. fluid_synth_set_channel_type(fSynth, i, CHANNEL_TYPE_MELODIC);
  793. #endif
  794. fluid_synth_program_select(fSynth, i, fSynthId, kData->midiprog.data[0].bank, kData->midiprog.data[0].program);
  795. fCurMidiProgs[i] = 0;
  796. }
  797. if (hasDrums)
  798. {
  799. #ifdef FLUIDSYNTH_VERSION_NEW_API
  800. fluid_synth_set_channel_type(fSynth, 9, CHANNEL_TYPE_DRUM);
  801. #endif
  802. fluid_synth_program_select(fSynth, 9, fSynthId, 128, drumProg);
  803. fCurMidiProgs[9] = drumIndex;
  804. }
  805. else
  806. {
  807. #ifdef FLUIDSYNTH_VERSION_NEW_API
  808. fluid_synth_set_channel_type(fSynth, 9, CHANNEL_TYPE_MELODIC);
  809. #endif
  810. fluid_synth_program_select(fSynth, 9, fSynthId, kData->midiprog.data[0].bank, kData->midiprog.data[0].program);
  811. fCurMidiProgs[9] = 0;
  812. }
  813. kData->midiprog.current = 0;
  814. }
  815. else
  816. {
  817. kData->engine->callback(CALLBACK_RELOAD_PROGRAMS, fId, 0, 0, 0.0f, nullptr);
  818. }
  819. }
  820. // -------------------------------------------------------------------
  821. // Plugin processing
  822. void process(float** const, float** const outBuffer, const uint32_t frames) override
  823. {
  824. uint32_t i, k;
  825. // --------------------------------------------------------------------------------------------------------
  826. // Check if active
  827. if (! kData->active)
  828. {
  829. // disable any output sound
  830. for (i=0; i < kData->audioOut.count; ++i)
  831. carla_zeroFloat(outBuffer[i], frames);
  832. return;
  833. }
  834. // --------------------------------------------------------------------------------------------------------
  835. // Check if needs reset
  836. if (kData->needsReset)
  837. {
  838. if (fOptions & PLUGIN_OPTION_SEND_ALL_SOUND_OFF)
  839. {
  840. for (int c=0; c < MAX_MIDI_CHANNELS; ++c)
  841. {
  842. #ifdef FLUIDSYNTH_VERSION_NEW_API
  843. fluid_synth_all_notes_off(fSynth, c);
  844. fluid_synth_all_sounds_off(fSynth, c);
  845. #else
  846. fluid_synth_cc(fSynth, c, MIDI_CONTROL_ALL_SOUND_OFF, 0);
  847. fluid_synth_cc(fSynth, c, MIDI_CONTROL_ALL_NOTES_OFF, 0);
  848. #endif
  849. }
  850. }
  851. else if (kData->ctrlChannel >= 0 && kData->ctrlChannel < MAX_MIDI_CHANNELS)
  852. {
  853. for (k=0; k < MAX_MIDI_NOTE; ++k)
  854. fluid_synth_noteoff(fSynth, kData->ctrlChannel, k);
  855. }
  856. kData->needsReset = false;
  857. }
  858. // --------------------------------------------------------------------------------------------------------
  859. // Event Input and Processing
  860. {
  861. // ----------------------------------------------------------------------------------------------------
  862. // MIDI Input (External)
  863. if (kData->extNotes.mutex.tryLock())
  864. {
  865. while (! kData->extNotes.data.isEmpty())
  866. {
  867. const ExternalMidiNote& note(kData->extNotes.data.getFirst(true));
  868. CARLA_ASSERT(note.channel >= 0 && note.channel < MAX_MIDI_CHANNELS);
  869. if (note.velo > 0)
  870. fluid_synth_noteon(fSynth, note.channel, note.note, note.velo);
  871. else
  872. fluid_synth_noteoff(fSynth,note.channel, note.note);
  873. }
  874. kData->extNotes.mutex.unlock();
  875. } // End of MIDI Input (External)
  876. // ----------------------------------------------------------------------------------------------------
  877. // Event Input (System)
  878. bool allNotesOffSent = false;
  879. uint32_t time, nEvents = kData->event.portIn->getEventCount();
  880. uint32_t timeOffset = 0;
  881. uint32_t nextBankIds[MAX_MIDI_CHANNELS] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 128, 0, 0, 0, 0, 0, 0 };
  882. if (kData->midiprog.current >= 0 && kData->midiprog.count > 0 && kData->ctrlChannel >= 0 && kData->ctrlChannel < MAX_MIDI_CHANNELS)
  883. nextBankIds[kData->ctrlChannel] = kData->midiprog.data[kData->midiprog.current].bank;
  884. for (i=0; i < nEvents; ++i)
  885. {
  886. const EngineEvent& event(kData->event.portIn->getEvent(i));
  887. time = event.time;
  888. if (time >= frames)
  889. continue;
  890. CARLA_ASSERT_INT2(time >= timeOffset, time, timeOffset);
  891. if (time > timeOffset)
  892. {
  893. if (processSingle(outBuffer, time - timeOffset, timeOffset))
  894. {
  895. timeOffset = time;
  896. if (kData->midiprog.current >= 0 && kData->midiprog.count > 0 && kData->ctrlChannel >= 0 && kData->ctrlChannel < 16)
  897. nextBankIds[kData->ctrlChannel] = kData->midiprog.data[kData->midiprog.current].bank;
  898. }
  899. }
  900. // Control change
  901. switch (event.type)
  902. {
  903. case kEngineEventTypeNull:
  904. break;
  905. case kEngineEventTypeControl:
  906. {
  907. const EngineControlEvent& ctrlEvent = event.ctrl;
  908. switch (ctrlEvent.type)
  909. {
  910. case kEngineControlEventTypeNull:
  911. break;
  912. case kEngineControlEventTypeParameter:
  913. {
  914. #ifndef BUILD_BRIDGE
  915. // Control backend stuff
  916. if (event.channel == kData->ctrlChannel)
  917. {
  918. float value;
  919. if (MIDI_IS_CONTROL_BREATH_CONTROLLER(ctrlEvent.param) && (fHints & PLUGIN_CAN_DRYWET) > 0)
  920. {
  921. value = ctrlEvent.value;
  922. setDryWet(value, false, false);
  923. postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_DRYWET, 0, value);
  924. }
  925. if (MIDI_IS_CONTROL_CHANNEL_VOLUME(ctrlEvent.param) && (fHints & PLUGIN_CAN_VOLUME) > 0)
  926. {
  927. value = ctrlEvent.value*127.0f/100.0f;
  928. setVolume(value, false, false);
  929. postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_VOLUME, 0, value);
  930. }
  931. if (MIDI_IS_CONTROL_BALANCE(ctrlEvent.param) && (fHints & PLUGIN_CAN_BALANCE) > 0)
  932. {
  933. float left, right;
  934. value = ctrlEvent.value/0.5f - 1.0f;
  935. if (value < 0.0f)
  936. {
  937. left = -1.0f;
  938. right = (value*2.0f)+1.0f;
  939. }
  940. else if (value > 0.0f)
  941. {
  942. left = (value*2.0f)-1.0f;
  943. right = 1.0f;
  944. }
  945. else
  946. {
  947. left = -1.0f;
  948. right = 1.0f;
  949. }
  950. setBalanceLeft(left, false, false);
  951. setBalanceRight(right, false, false);
  952. postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_BALANCE_LEFT, 0, left);
  953. postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_BALANCE_RIGHT, 0, right);
  954. }
  955. }
  956. #endif
  957. // Control plugin parameters
  958. for (k=0; k < kData->param.count; ++k)
  959. {
  960. if (kData->param.data[k].midiChannel != event.channel)
  961. continue;
  962. if (kData->param.data[k].midiCC != ctrlEvent.param)
  963. continue;
  964. if (kData->param.data[k].type != PARAMETER_INPUT)
  965. continue;
  966. if ((kData->param.data[k].hints & PARAMETER_IS_AUTOMABLE) == 0)
  967. continue;
  968. float value;
  969. if (kData->param.data[k].hints & PARAMETER_IS_BOOLEAN)
  970. {
  971. value = (ctrlEvent.value < 0.5f) ? kData->param.ranges[k].min : kData->param.ranges[k].max;
  972. }
  973. else
  974. {
  975. value = kData->param.ranges[i].unnormalizeValue(ctrlEvent.value);
  976. if (kData->param.data[k].hints & PARAMETER_IS_INTEGER)
  977. value = std::rint(value);
  978. }
  979. setParameterValue(k, value, false, false, false);
  980. postponeRtEvent(kPluginPostRtEventParameterChange, static_cast<int32_t>(k), 0, value);
  981. }
  982. if ((fOptions & PLUGIN_OPTION_SEND_CONTROL_CHANGES) != 0 && ctrlEvent.param <= 0x5F)
  983. {
  984. fluid_synth_cc(fSynth, event.channel, ctrlEvent.param, ctrlEvent.value*127.0f);
  985. }
  986. break;
  987. }
  988. case kEngineControlEventTypeMidiBank:
  989. if (event.channel < MAX_MIDI_CHANNELS && (fOptions & PLUGIN_OPTION_MAP_PROGRAM_CHANGES) != 0)
  990. nextBankIds[event.channel] = ctrlEvent.param;
  991. break;
  992. case kEngineControlEventTypeMidiProgram:
  993. if (event.channel < MAX_MIDI_CHANNELS && (fOptions & PLUGIN_OPTION_MAP_PROGRAM_CHANGES) != 0)
  994. {
  995. const uint32_t bankId(nextBankIds[event.channel]);
  996. const uint32_t progId(ctrlEvent.param);
  997. for (k=0; k < kData->midiprog.count; ++k)
  998. {
  999. if (kData->midiprog.data[k].bank == bankId && kData->midiprog.data[k].program == progId)
  1000. {
  1001. fluid_synth_program_select(fSynth, event.channel, fSynthId, bankId, progId);
  1002. fCurMidiProgs[event.channel] = k;
  1003. if (event.channel == kData->ctrlChannel)
  1004. postponeRtEvent(kPluginPostRtEventMidiProgramChange, k, 0, 0.0f);
  1005. break;
  1006. }
  1007. }
  1008. }
  1009. break;
  1010. case kEngineControlEventTypeAllSoundOff:
  1011. if (fOptions & PLUGIN_OPTION_SEND_ALL_SOUND_OFF)
  1012. {
  1013. #ifdef FLUIDSYNTH_VERSION_NEW_API
  1014. fluid_synth_all_sounds_off(fSynth, event.channel);
  1015. #else
  1016. fluid_synth_cc(fSynth, event.channel, MIDI_CONTROL_ALL_SOUND_OFF, 0);
  1017. #endif
  1018. }
  1019. break;
  1020. case kEngineControlEventTypeAllNotesOff:
  1021. if (fOptions & PLUGIN_OPTION_SEND_ALL_SOUND_OFF)
  1022. {
  1023. if (event.channel == kData->ctrlChannel && ! allNotesOffSent)
  1024. {
  1025. allNotesOffSent = true;
  1026. sendMidiAllNotesOffToCallback();
  1027. }
  1028. #ifdef FLUIDSYNTH_VERSION_NEW_API
  1029. fluid_synth_all_notes_off(fSynth, event.channel);
  1030. #else
  1031. fluid_synth_cc(fSynth, event.channel, MIDI_CONTROL_ALL_NOTES_OFF, 0);
  1032. #endif
  1033. }
  1034. break;
  1035. }
  1036. break;
  1037. }
  1038. case kEngineEventTypeMidi:
  1039. {
  1040. const EngineMidiEvent& midiEvent(event.midi);
  1041. uint8_t status = MIDI_GET_STATUS_FROM_DATA(midiEvent.data);
  1042. uint8_t channel = event.channel;
  1043. // Fix bad note-off
  1044. if (MIDI_IS_STATUS_NOTE_ON(status) && midiEvent.data[2] == 0)
  1045. status -= 0x10;
  1046. if (MIDI_IS_STATUS_NOTE_OFF(status))
  1047. {
  1048. const uint8_t note = midiEvent.data[1];
  1049. fluid_synth_noteoff(fSynth, channel, note);
  1050. postponeRtEvent(kPluginPostRtEventNoteOff, channel, note, 0.0f);
  1051. }
  1052. else if (MIDI_IS_STATUS_NOTE_ON(status))
  1053. {
  1054. const uint8_t note = midiEvent.data[1];
  1055. const uint8_t velo = midiEvent.data[2];
  1056. fluid_synth_noteon(fSynth, channel, note, velo);
  1057. postponeRtEvent(kPluginPostRtEventNoteOn, channel, note, velo);
  1058. }
  1059. else if (MIDI_IS_STATUS_POLYPHONIC_AFTERTOUCH(status) && (fOptions & PLUGIN_OPTION_SEND_NOTE_AFTERTOUCH) != 0)
  1060. {
  1061. //const uint8_t note = midiEvent.data[1];
  1062. //const uint8_t pressure = midiEvent.data[2];
  1063. // TODO, not in fluidsynth API
  1064. }
  1065. else if (MIDI_IS_STATUS_CONTROL_CHANGE(status) && (fOptions & PLUGIN_OPTION_SEND_CONTROL_CHANGES) != 0)
  1066. {
  1067. const uint8_t control = midiEvent.data[1];
  1068. const uint8_t value = midiEvent.data[2];
  1069. fluid_synth_cc(fSynth, channel, control, value);
  1070. }
  1071. else if (MIDI_IS_STATUS_AFTERTOUCH(status) && (fOptions & PLUGIN_OPTION_SEND_CHANNEL_PRESSURE) != 0)
  1072. {
  1073. const uint8_t pressure = midiEvent.data[1];
  1074. fluid_synth_channel_pressure(fSynth, channel, pressure);;
  1075. }
  1076. else if (MIDI_IS_STATUS_PITCH_WHEEL_CONTROL(status) && (fOptions & PLUGIN_OPTION_SEND_PITCHBEND) != 0)
  1077. {
  1078. const uint8_t lsb = midiEvent.data[1];
  1079. const uint8_t msb = midiEvent.data[2];
  1080. fluid_synth_pitch_bend(fSynth, channel, (msb << 7) | lsb);
  1081. }
  1082. break;
  1083. }
  1084. }
  1085. }
  1086. kData->postRtEvents.trySplice();
  1087. if (frames > timeOffset)
  1088. processSingle(outBuffer, frames - timeOffset, timeOffset);
  1089. } // End of Event Input and Processing
  1090. CARLA_PROCESS_CONTINUE_CHECK;
  1091. // --------------------------------------------------------------------------------------------------------
  1092. // Control Output
  1093. {
  1094. k = FluidSynthVoiceCount;
  1095. fParamBuffers[k] = fluid_synth_get_active_voice_count(fSynth);
  1096. kData->param.ranges[k].fixValue(fParamBuffers[k]);
  1097. if (kData->param.data[k].midiCC > 0)
  1098. {
  1099. float value(kData->param.ranges[k].normalizeValue(fParamBuffers[k]));
  1100. kData->event.portOut->writeControlEvent(0, kData->param.data[k].midiChannel, kEngineControlEventTypeParameter, kData->param.data[k].midiCC, value);
  1101. }
  1102. } // End of Control Output
  1103. }
  1104. bool processSingle(float** const outBuffer, const uint32_t frames, const uint32_t timeOffset)
  1105. {
  1106. CARLA_ASSERT(outBuffer != nullptr);
  1107. CARLA_ASSERT(frames > 0);
  1108. if (outBuffer == nullptr)
  1109. return false;
  1110. if (frames == 0)
  1111. return false;
  1112. uint32_t i, k;
  1113. // --------------------------------------------------------------------------------------------------------
  1114. // Try lock, silence otherwise
  1115. if (kData->engine->isOffline())
  1116. {
  1117. kData->singleMutex.lock();
  1118. }
  1119. else if (! kData->singleMutex.tryLock())
  1120. {
  1121. for (i=0; i < kData->audioOut.count; ++i)
  1122. {
  1123. for (k=0; k < frames; ++k)
  1124. outBuffer[i][k+timeOffset] = 0.0f;
  1125. }
  1126. return false;
  1127. }
  1128. // --------------------------------------------------------------------------------------------------------
  1129. // Fill plugin buffers and Run plugin
  1130. if (kUses16Outs)
  1131. {
  1132. for (i=0; i < kData->audioOut.count; ++i)
  1133. carla_zeroFloat(fAudio16Buffers[i], frames);
  1134. fluid_synth_process(fSynth, frames, 0, nullptr, kData->audioOut.count, fAudio16Buffers);
  1135. }
  1136. else
  1137. fluid_synth_write_float(fSynth, frames, outBuffer[0] + timeOffset, 0, 1, outBuffer[1] + timeOffset, 0, 1);
  1138. #ifndef BUILD_BRIDGE
  1139. // --------------------------------------------------------------------------------------------------------
  1140. // Post-processing (volume and balance)
  1141. {
  1142. // note - balance not possible with kUses16Outs, so we can safely skip fAudioOutBuffers
  1143. const bool doVolume = (fHints & PLUGIN_CAN_VOLUME) > 0 && kData->postProc.volume != 1.0f;
  1144. const bool doBalance = (fHints & PLUGIN_CAN_BALANCE) > 0 && (kData->postProc.balanceLeft != -1.0f || kData->postProc.balanceRight != 1.0f);
  1145. float oldBufLeft[doBalance ? frames : 1];
  1146. for (i=0; i < kData->audioOut.count; ++i)
  1147. {
  1148. // Balance
  1149. if (doBalance)
  1150. {
  1151. if (i % 2 == 0)
  1152. carla_copyFloat(oldBufLeft, outBuffer[i]+timeOffset, frames);
  1153. float balRangeL = (kData->postProc.balanceLeft + 1.0f)/2.0f;
  1154. float balRangeR = (kData->postProc.balanceRight + 1.0f)/2.0f;
  1155. for (k=0; k < frames; ++k)
  1156. {
  1157. if (i % 2 == 0)
  1158. {
  1159. // left
  1160. outBuffer[i][k+timeOffset] = oldBufLeft[k] * (1.0f - balRangeL);
  1161. outBuffer[i][k+timeOffset] += outBuffer[i+1][k+timeOffset] * (1.0f - balRangeR);
  1162. }
  1163. else
  1164. {
  1165. // right
  1166. outBuffer[i][k+timeOffset] = outBuffer[i][k+timeOffset] * balRangeR;
  1167. outBuffer[i][k+timeOffset] += oldBufLeft[k] * balRangeL;
  1168. }
  1169. }
  1170. }
  1171. // Volume
  1172. if (kUses16Outs)
  1173. {
  1174. for (k=0; k < frames; ++k)
  1175. outBuffer[i][k+timeOffset] = fAudio16Buffers[i][k] * kData->postProc.volume;
  1176. }
  1177. else if (doVolume)
  1178. {
  1179. for (k=0; k < frames; ++k)
  1180. outBuffer[i][k+timeOffset] *= kData->postProc.volume;
  1181. }
  1182. }
  1183. } // End of Post-processing
  1184. #else
  1185. if (kUses16Outs)
  1186. {
  1187. for (i=0; i < kData->audioOut.count; ++i)
  1188. {
  1189. for (k=0; k < frames; ++k)
  1190. outBuffer[i][k+timeOffset] = fAudio16Buffers[i][k];
  1191. }
  1192. }
  1193. #endif
  1194. // --------------------------------------------------------------------------------------------------------
  1195. kData->singleMutex.unlock();
  1196. return true;
  1197. }
  1198. void bufferSizeChanged(const uint32_t newBufferSize) override
  1199. {
  1200. if (! kUses16Outs)
  1201. return;
  1202. for (uint32_t i=0; i < kData->audioOut.count; ++i)
  1203. {
  1204. if (fAudio16Buffers[i] != nullptr)
  1205. delete[] fAudio16Buffers[i];
  1206. fAudio16Buffers[i] = new float[newBufferSize];
  1207. }
  1208. }
  1209. // -------------------------------------------------------------------
  1210. // Plugin buffers
  1211. void clearBuffers() override
  1212. {
  1213. carla_debug("FluidSynthPlugin::clearBuffers() - start");
  1214. if (fAudio16Buffers != nullptr)
  1215. {
  1216. for (uint32_t i=0; i < kData->audioOut.count; ++i)
  1217. {
  1218. if (fAudio16Buffers[i] != nullptr)
  1219. {
  1220. delete[] fAudio16Buffers[i];
  1221. fAudio16Buffers[i] = nullptr;
  1222. }
  1223. }
  1224. delete[] fAudio16Buffers;
  1225. fAudio16Buffers = nullptr;
  1226. }
  1227. CarlaPlugin::clearBuffers();
  1228. carla_debug("FluidSynthPlugin::clearBuffers() - end");
  1229. }
  1230. // -------------------------------------------------------------------
  1231. const void* getExtraStuff() override
  1232. {
  1233. return kUses16Outs ? (const void*)0x1 : nullptr;
  1234. }
  1235. bool init(const char* const filename, const char* const name, const char* const label)
  1236. {
  1237. CARLA_ASSERT(fSynth != nullptr);
  1238. CARLA_ASSERT(filename != nullptr);
  1239. CARLA_ASSERT(label != nullptr);
  1240. // ---------------------------------------------------------------
  1241. // first checks
  1242. if (kData->engine == nullptr)
  1243. {
  1244. return false;
  1245. }
  1246. if (kData->client != nullptr)
  1247. {
  1248. kData->engine->setLastError("Plugin client is already registered");
  1249. return false;
  1250. }
  1251. if (fSynth == nullptr)
  1252. {
  1253. kData->engine->setLastError("null synth");
  1254. return false;
  1255. }
  1256. if (filename == nullptr)
  1257. {
  1258. kData->engine->setLastError("null filename");
  1259. return false;
  1260. }
  1261. if (label == nullptr)
  1262. {
  1263. kData->engine->setLastError("null label");
  1264. return false;
  1265. }
  1266. // ---------------------------------------------------------------
  1267. // open soundfont
  1268. fSynthId = fluid_synth_sfload(fSynth, filename, 0);
  1269. if (fSynthId < 0)
  1270. {
  1271. kData->engine->setLastError("Failed to load SoundFont file");
  1272. return false;
  1273. }
  1274. // ---------------------------------------------------------------
  1275. // get info
  1276. fFilename = filename;
  1277. fLabel = label;
  1278. if (name != nullptr)
  1279. fName = kData->engine->getUniquePluginName(name);
  1280. else
  1281. fName = kData->engine->getUniquePluginName(label);
  1282. // ---------------------------------------------------------------
  1283. // register client
  1284. kData->client = kData->engine->addClient(this);
  1285. if (kData->client == nullptr || ! kData->client->isOk())
  1286. {
  1287. kData->engine->setLastError("Failed to register plugin client");
  1288. return false;
  1289. }
  1290. // ---------------------------------------------------------------
  1291. // load plugin settings
  1292. {
  1293. // set default options
  1294. fOptions = 0x0;
  1295. fOptions |= PLUGIN_OPTION_MAP_PROGRAM_CHANGES;
  1296. fOptions |= PLUGIN_OPTION_SEND_CHANNEL_PRESSURE;
  1297. fOptions |= PLUGIN_OPTION_SEND_NOTE_AFTERTOUCH;
  1298. fOptions |= PLUGIN_OPTION_SEND_PITCHBEND;
  1299. fOptions |= PLUGIN_OPTION_SEND_ALL_SOUND_OFF;
  1300. // load settings
  1301. kData->idStr = "SF2/";
  1302. kData->idStr += label;
  1303. fOptions = kData->loadSettings(fOptions, availableOptions());
  1304. }
  1305. return true;
  1306. }
  1307. private:
  1308. enum FluidSynthInputParameters {
  1309. FluidSynthReverbOnOff = 0,
  1310. FluidSynthReverbRoomSize = 1,
  1311. FluidSynthReverbDamp = 2,
  1312. FluidSynthReverbLevel = 3,
  1313. FluidSynthReverbWidth = 4,
  1314. FluidSynthChorusOnOff = 5,
  1315. FluidSynthChorusNr = 6,
  1316. FluidSynthChorusLevel = 7,
  1317. FluidSynthChorusSpeedHz = 8,
  1318. FluidSynthChorusDepthMs = 9,
  1319. FluidSynthChorusType = 10,
  1320. FluidSynthPolyphony = 11,
  1321. FluidSynthInterpolation = 12,
  1322. FluidSynthVoiceCount = 13,
  1323. FluidSynthParametersMax = 14
  1324. };
  1325. const bool kUses16Outs;
  1326. CarlaString fLabel;
  1327. fluid_settings_t* fSettings;
  1328. fluid_synth_t* fSynth;
  1329. int fSynthId;
  1330. float** fAudio16Buffers;
  1331. float fParamBuffers[FluidSynthParametersMax];
  1332. int32_t fCurMidiProgs[MAX_MIDI_CHANNELS];
  1333. CARLA_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR(FluidSynthPlugin)
  1334. };
  1335. CARLA_BACKEND_END_NAMESPACE
  1336. #else // WANT_FLUIDSYNTH
  1337. # warning fluidsynth not available (no SF2 support)
  1338. #endif
  1339. CARLA_BACKEND_START_NAMESPACE
  1340. CarlaPlugin* CarlaPlugin::newSF2(const Initializer& init, const bool use16Outs)
  1341. {
  1342. carla_debug("CarlaPlugin::newSF2({%p, \"%s\", \"%s\", \"%s\"}, %s)", init.engine, init.filename, init.name, init.label, bool2str(use16Outs));
  1343. #ifdef WANT_FLUIDSYNTH
  1344. if (! fluid_is_soundfont(init.filename))
  1345. {
  1346. init.engine->setLastError("Requested file is not a valid SoundFont");
  1347. return nullptr;
  1348. }
  1349. if (init.engine->getProccessMode() == PROCESS_MODE_CONTINUOUS_RACK && use16Outs)
  1350. {
  1351. init.engine->setLastError("Carla's rack mode can only work with Stereo modules, please choose the 2-channel only SoundFont version");
  1352. return nullptr;
  1353. }
  1354. FluidSynthPlugin* const plugin(new FluidSynthPlugin(init.engine, init.id, use16Outs));
  1355. if (! plugin->init(init.filename, init.name, init.label))
  1356. {
  1357. delete plugin;
  1358. return nullptr;
  1359. }
  1360. plugin->reload();
  1361. return plugin;
  1362. #else
  1363. init.engine->setLastError("fluidsynth support not available");
  1364. return nullptr;
  1365. // unused
  1366. (void)use16Outs;
  1367. #endif
  1368. }
  1369. CARLA_BACKEND_END_NAMESPACE