Audio plugin host https://kx.studio/carla
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1324 lines
47KB

  1. /*
  2. * Carla FluidSynth Plugin
  3. * Copyright (C) 2011-2013 Filipe Coelho <falktx@falktx.com>
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation; either version 2 of
  8. * the License, or any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * For a full copy of the GNU General Public License see the GPL.txt file
  16. */
  17. #include "carla_plugin_internal.hpp"
  18. #ifdef WANT_FLUIDSYNTH
  19. #include <fluidsynth.h>
  20. #define FLUIDSYNTH_VERSION_NEW_API (FLUIDSYNTH_VERSION_MAJOR >= 1 && FLUIDSYNTH_VERSION_MINOR >= 1 && FLUIDSYNTH_VERSION_MICRO >= 4)
  21. CARLA_BACKEND_START_NAMESPACE
  22. class FluidSynthPlugin : public CarlaPlugin
  23. {
  24. public:
  25. FluidSynthPlugin(CarlaEngine* const engine, const unsigned int id)
  26. : CarlaPlugin(engine, id)
  27. {
  28. qDebug("FluidSynthPlugin::FluidSynthPlugin()");
  29. // create settings
  30. fSettings = new_fluid_settings();
  31. // define settings
  32. fluid_settings_setnum(fSettings, "synth.sample-rate", kData->engine->getSampleRate());
  33. fluid_settings_setint(fSettings, "synth.threadsafe-api ", 0);
  34. // create synth
  35. fSynth = new_fluid_synth(fSettings);
  36. #ifdef FLUIDSYNTH_VERSION_NEW_API
  37. fluid_synth_set_sample_rate(fSynth, kData->engine->getSampleRate());
  38. #endif
  39. // set default values
  40. fluid_synth_set_reverb_on(fSynth, 0);
  41. fluid_synth_set_reverb(fSynth, FLUID_REVERB_DEFAULT_ROOMSIZE, FLUID_REVERB_DEFAULT_DAMP, FLUID_REVERB_DEFAULT_WIDTH, FLUID_REVERB_DEFAULT_LEVEL);
  42. fluid_synth_set_chorus_on(fSynth, 0);
  43. fluid_synth_set_chorus(fSynth, FLUID_CHORUS_DEFAULT_N, FLUID_CHORUS_DEFAULT_LEVEL, FLUID_CHORUS_DEFAULT_SPEED, FLUID_CHORUS_DEFAULT_DEPTH, FLUID_CHORUS_DEFAULT_TYPE);
  44. fluid_synth_set_polyphony(fSynth, 64);
  45. for (int i=0; i < 16; i++)
  46. fluid_synth_set_interp_method(fSynth, i, FLUID_INTERP_DEFAULT);
  47. }
  48. ~FluidSynthPlugin()
  49. {
  50. qDebug("FluidSynthPlugin::~FluidSynthPlugin()");
  51. delete_fluid_synth(fSynth);
  52. delete_fluid_settings(fSettings);
  53. }
  54. // -------------------------------------------------------------------
  55. // Information (base)
  56. PluginType type() const
  57. {
  58. return PLUGIN_SF2;
  59. }
  60. PluginCategory category() const
  61. {
  62. return PLUGIN_CATEGORY_SYNTH;
  63. }
  64. // -------------------------------------------------------------------
  65. // Information (count)
  66. uint32_t parameterScalePointCount(const uint32_t parameterId) const
  67. {
  68. CARLA_ASSERT(parameterId < kData->param.count);
  69. switch (parameterId)
  70. {
  71. case FluidSynthChorusType:
  72. return 2;
  73. case FluidSynthInterpolation:
  74. return 4;
  75. default:
  76. return 0;
  77. }
  78. }
  79. // -------------------------------------------------------------------
  80. // Information (per-plugin data)
  81. float getParameterValue(const uint32_t parameterId)
  82. {
  83. CARLA_ASSERT(parameterId < kData->param.count);
  84. return fParamBuffers[parameterId];
  85. }
  86. float getParameterScalePointValue(const uint32_t parameterId, const uint32_t scalePointId)
  87. {
  88. CARLA_ASSERT(parameterId < kData->param.count);
  89. CARLA_ASSERT(scalePointId < parameterScalePointCount(parameterId));
  90. switch (parameterId)
  91. {
  92. case FluidSynthChorusType:
  93. switch (scalePointId)
  94. {
  95. case 0:
  96. return FLUID_CHORUS_MOD_SINE;
  97. case 1:
  98. return FLUID_CHORUS_MOD_TRIANGLE;
  99. default:
  100. return FLUID_CHORUS_DEFAULT_TYPE;
  101. }
  102. case FluidSynthInterpolation:
  103. switch (scalePointId)
  104. {
  105. case 0:
  106. return FLUID_INTERP_NONE;
  107. case 1:
  108. return FLUID_INTERP_LINEAR;
  109. case 2:
  110. return FLUID_INTERP_4THORDER;
  111. case 3:
  112. return FLUID_INTERP_7THORDER;
  113. default:
  114. return FLUID_INTERP_DEFAULT;
  115. }
  116. default:
  117. return 0.0f;
  118. }
  119. }
  120. void getLabel(char* const strBuf)
  121. {
  122. if (fLabel.isNotEmpty())
  123. std::strncpy(strBuf, (const char*)fLabel, STR_MAX);
  124. else
  125. CarlaPlugin::getLabel(strBuf);
  126. }
  127. void getMaker(char* const strBuf)
  128. {
  129. std::strncpy(strBuf, "FluidSynth SF2 engine", STR_MAX);
  130. }
  131. void getCopyright(char* const strBuf)
  132. {
  133. std::strncpy(strBuf, "GNU GPL v2+", STR_MAX);
  134. }
  135. void getRealName(char* const strBuf)
  136. {
  137. getLabel(strBuf);
  138. }
  139. void getParameterName(const uint32_t parameterId, char* const strBuf)
  140. {
  141. CARLA_ASSERT(parameterId < kData->param.count);
  142. switch (parameterId)
  143. {
  144. case FluidSynthReverbOnOff:
  145. std::strncpy(strBuf, "Reverb On/Off", STR_MAX);
  146. break;
  147. case FluidSynthReverbRoomSize:
  148. std::strncpy(strBuf, "Reverb Room Size", STR_MAX);
  149. break;
  150. case FluidSynthReverbDamp:
  151. std::strncpy(strBuf, "Reverb Damp", STR_MAX);
  152. break;
  153. case FluidSynthReverbLevel:
  154. std::strncpy(strBuf, "Reverb Level", STR_MAX);
  155. break;
  156. case FluidSynthReverbWidth:
  157. std::strncpy(strBuf, "Reverb Width", STR_MAX);
  158. break;
  159. case FluidSynthChorusOnOff:
  160. std::strncpy(strBuf, "Chorus On/Off", STR_MAX);
  161. break;
  162. case FluidSynthChorusNr:
  163. std::strncpy(strBuf, "Chorus Voice Count", STR_MAX);
  164. break;
  165. case FluidSynthChorusLevel:
  166. std::strncpy(strBuf, "Chorus Level", STR_MAX);
  167. break;
  168. case FluidSynthChorusSpeedHz:
  169. std::strncpy(strBuf, "Chorus Speed", STR_MAX);
  170. break;
  171. case FluidSynthChorusDepthMs:
  172. std::strncpy(strBuf, "Chorus Depth", STR_MAX);
  173. break;
  174. case FluidSynthChorusType:
  175. std::strncpy(strBuf, "Chorus Type", STR_MAX);
  176. break;
  177. case FluidSynthPolyphony:
  178. std::strncpy(strBuf, "Polyphony", STR_MAX);
  179. break;
  180. case FluidSynthInterpolation:
  181. std::strncpy(strBuf, "Interpolation", STR_MAX);
  182. break;
  183. case FluidSynthVoiceCount:
  184. std::strncpy(strBuf, "Voice Count", STR_MAX);
  185. break;
  186. default:
  187. CarlaPlugin::getParameterName(parameterId, strBuf);
  188. break;
  189. }
  190. }
  191. void getParameterUnit(const uint32_t parameterId, char* const strBuf)
  192. {
  193. CARLA_ASSERT(parameterId < kData->param.count);
  194. switch (parameterId)
  195. {
  196. case FluidSynthChorusSpeedHz:
  197. std::strncpy(strBuf, "Hz", STR_MAX);
  198. break;
  199. case FluidSynthChorusDepthMs:
  200. std::strncpy(strBuf, "ms", STR_MAX);
  201. break;
  202. default:
  203. CarlaPlugin::getParameterUnit(parameterId, strBuf);
  204. break;
  205. }
  206. }
  207. void getParameterScalePointLabel(const uint32_t parameterId, const uint32_t scalePointId, char* const strBuf)
  208. {
  209. CARLA_ASSERT(parameterId < kData->param.count);
  210. CARLA_ASSERT(scalePointId < parameterScalePointCount(parameterId));
  211. switch (parameterId)
  212. {
  213. case FluidSynthChorusType:
  214. switch (scalePointId)
  215. {
  216. case 0:
  217. std::strncpy(strBuf, "Sine wave", STR_MAX);
  218. return;
  219. case 1:
  220. std::strncpy(strBuf, "Triangle wave", STR_MAX);
  221. return;
  222. }
  223. case FluidSynthInterpolation:
  224. switch (scalePointId)
  225. {
  226. case 0:
  227. std::strncpy(strBuf, "None", STR_MAX);
  228. return;
  229. case 1:
  230. std::strncpy(strBuf, "Straight-line", STR_MAX);
  231. return;
  232. case 2:
  233. std::strncpy(strBuf, "Fourth-order", STR_MAX);
  234. return;
  235. case 3:
  236. std::strncpy(strBuf, "Seventh-order", STR_MAX);
  237. return;
  238. }
  239. }
  240. CarlaPlugin::getParameterScalePointLabel(parameterId, scalePointId, strBuf);
  241. }
  242. // -------------------------------------------------------------------
  243. // Set data (plugin-specific stuff)
  244. void setParameterValue(const uint32_t parameterId, const float value, const bool sendGui, const bool sendOsc, const bool sendCallback)
  245. {
  246. CARLA_ASSERT(parameterId < kData->param.count);
  247. const float fixedValue = kData->param.fixValue(parameterId, value);
  248. fParamBuffers[parameterId] = fixedValue;
  249. switch (parameterId)
  250. {
  251. case FluidSynthReverbOnOff:
  252. fluid_synth_set_reverb_on(fSynth, (fixedValue > 0.5f) ? 1 : 0);
  253. break;
  254. case FluidSynthReverbRoomSize:
  255. case FluidSynthReverbDamp:
  256. case FluidSynthReverbLevel:
  257. case FluidSynthReverbWidth:
  258. fluid_synth_set_reverb(fSynth, fParamBuffers[FluidSynthReverbRoomSize], fParamBuffers[FluidSynthReverbDamp], fParamBuffers[FluidSynthReverbWidth], fParamBuffers[FluidSynthReverbLevel]);
  259. break;
  260. case FluidSynthChorusOnOff:
  261. {
  262. // FIXME
  263. //const ScopedDisabler m(this, ! kData->engine->isOffline());
  264. fluid_synth_set_chorus_on(fSynth, (value > 0.5f) ? 1 : 0);
  265. break;
  266. }
  267. case FluidSynthChorusNr:
  268. case FluidSynthChorusLevel:
  269. case FluidSynthChorusSpeedHz:
  270. case FluidSynthChorusDepthMs:
  271. case FluidSynthChorusType:
  272. {
  273. //FIXME
  274. //const ScopedDisabler m(this, ! kData->engine->isOffline());
  275. fluid_synth_set_chorus(fSynth, fParamBuffers[FluidSynthChorusNr], fParamBuffers[FluidSynthChorusLevel], fParamBuffers[FluidSynthChorusSpeedHz], fParamBuffers[FluidSynthChorusDepthMs], fParamBuffers[FluidSynthChorusType]);
  276. break;
  277. }
  278. case FluidSynthPolyphony:
  279. {
  280. //FIXME
  281. //const ScopedDisabler m(this, ! kData->engine->isOffline());
  282. fluid_synth_set_polyphony(fSynth, value);
  283. break;
  284. }
  285. case FluidSynthInterpolation:
  286. {
  287. //FIXME
  288. //const ScopedDisabler m(this, ! kData->engine->isOffline());
  289. for (int i=0; i < 16; i++)
  290. fluid_synth_set_interp_method(fSynth, i, value);
  291. break;
  292. }
  293. default:
  294. break;
  295. }
  296. CarlaPlugin::setParameterValue(parameterId, value, sendGui, sendOsc, sendCallback);
  297. }
  298. void setMidiProgram(int32_t index, const bool sendGui, const bool sendOsc, const bool sendCallback, const bool block)
  299. {
  300. CARLA_ASSERT(index >= -1 && index < static_cast<int32_t>(kData->midiprog.count));
  301. if (index < -1)
  302. index = -1;
  303. else if (index > static_cast<int32_t>(kData->midiprog.count))
  304. return;
  305. if (kData->ctrlInChannel < 0 || kData->ctrlInChannel >= 16)
  306. return;
  307. // FIXME
  308. if (index >= 0)
  309. {
  310. const uint32_t bank = kData->midiprog.data[index].bank;
  311. const uint32_t program = kData->midiprog.data[index].program;
  312. if (kData->engine->isOffline())
  313. {
  314. //const CarlaEngine::ScopedLocker m(x_engine, block);
  315. fluid_synth_program_select(fSynth, kData->ctrlInChannel, fSynthId, bank, program);
  316. }
  317. else
  318. {
  319. //const ScopedDisabler m(this, block);
  320. fluid_synth_program_select(fSynth, kData->ctrlInChannel, fSynthId, bank, program);
  321. }
  322. }
  323. CarlaPlugin::setMidiProgram(index, sendGui, sendOsc, sendCallback, block);
  324. }
  325. // -------------------------------------------------------------------
  326. // Plugin state
  327. void reload()
  328. {
  329. qDebug("FluidSynthPlugin::reload() - start");
  330. CARLA_ASSERT(kData->engine != nullptr);
  331. CARLA_ASSERT(fSynth != nullptr);
  332. const ProcessMode processMode(kData->engine->getProccessMode());
  333. // Safely disable plugin for reload
  334. const ScopedDisabler sd(this);
  335. if (kData->client->isActive())
  336. kData->client->deactivate();
  337. deleteBuffers();
  338. uint32_t aOuts, params, j;
  339. aOuts = 2;
  340. params = FluidSynthParametersMax;
  341. kData->audioOut.createNew(aOuts);
  342. kData->param.createNew(params);
  343. const int portNameSize = kData->engine->maxPortNameSize();
  344. CarlaString portName;
  345. // ---------------------------------------
  346. // Audio Outputs
  347. {
  348. portName.clear();
  349. if (processMode == PROCESS_MODE_SINGLE_CLIENT)
  350. {
  351. portName = fName;
  352. portName += ":";
  353. }
  354. portName += "out-left";
  355. portName.truncate(portNameSize);
  356. kData->audioOut.ports[0].port = (CarlaEngineAudioPort*)kData->client->addPort(kEnginePortTypeAudio, portName, false);
  357. kData->audioOut.ports[0].rindex = 0;
  358. }
  359. {
  360. portName.clear();
  361. if (processMode == PROCESS_MODE_SINGLE_CLIENT)
  362. {
  363. portName = fName;
  364. portName += ":";
  365. }
  366. portName += "out-right";
  367. portName.truncate(portNameSize);
  368. kData->audioOut.ports[1].port = (CarlaEngineAudioPort*)kData->client->addPort(kEnginePortTypeAudio, portName, false);
  369. kData->audioOut.ports[1].rindex = 1;
  370. }
  371. // ---------------------------------------
  372. // Event Input
  373. {
  374. portName.clear();
  375. if (processMode == PROCESS_MODE_SINGLE_CLIENT)
  376. {
  377. portName = fName;
  378. portName += ":";
  379. }
  380. portName += "event-in";
  381. portName.truncate(portNameSize);
  382. kData->event.portIn = (CarlaEngineEventPort*)kData->client->addPort(kEnginePortTypeEvent, portName, true);
  383. }
  384. // ---------------------------------------
  385. // Event Output
  386. {
  387. portName.clear();
  388. if (processMode == PROCESS_MODE_SINGLE_CLIENT)
  389. {
  390. portName = fName;
  391. portName += ":";
  392. }
  393. portName += "event-out";
  394. portName.truncate(portNameSize);
  395. kData->event.portOut = (CarlaEngineEventPort*)kData->client->addPort(kEnginePortTypeEvent, portName, false);
  396. }
  397. // ----------------------
  398. j = FluidSynthReverbOnOff;
  399. kData->param.data[j].index = j;
  400. kData->param.data[j].rindex = j;
  401. kData->param.data[j].type = PARAMETER_INPUT;
  402. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE | PARAMETER_IS_BOOLEAN;
  403. kData->param.data[j].midiChannel = 0;
  404. kData->param.data[j].midiCC = -1;
  405. kData->param.ranges[j].min = 0.0f;
  406. kData->param.ranges[j].max = 1.0f;
  407. kData->param.ranges[j].def = 0.0f; // off
  408. kData->param.ranges[j].step = 1.0f;
  409. kData->param.ranges[j].stepSmall = 1.0f;
  410. kData->param.ranges[j].stepLarge = 1.0f;
  411. fParamBuffers[j] = kData->param.ranges[j].def;
  412. // ----------------------
  413. j = FluidSynthReverbRoomSize;
  414. kData->param.data[j].index = j;
  415. kData->param.data[j].rindex = j;
  416. kData->param.data[j].type = PARAMETER_INPUT;
  417. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE;
  418. kData->param.data[j].midiChannel = 0;
  419. kData->param.data[j].midiCC = -1;
  420. kData->param.ranges[j].min = 0.0f;
  421. kData->param.ranges[j].max = 1.2f;
  422. kData->param.ranges[j].def = FLUID_REVERB_DEFAULT_ROOMSIZE;
  423. kData->param.ranges[j].step = 0.01f;
  424. kData->param.ranges[j].stepSmall = 0.0001f;
  425. kData->param.ranges[j].stepLarge = 0.1f;
  426. fParamBuffers[j] = kData->param.ranges[j].def;
  427. // ----------------------
  428. j = FluidSynthReverbDamp;
  429. kData->param.data[j].index = j;
  430. kData->param.data[j].rindex = j;
  431. kData->param.data[j].type = PARAMETER_INPUT;
  432. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE;
  433. kData->param.data[j].midiChannel = 0;
  434. kData->param.data[j].midiCC = -1;
  435. kData->param.ranges[j].min = 0.0f;
  436. kData->param.ranges[j].max = 1.0f;
  437. kData->param.ranges[j].def = FLUID_REVERB_DEFAULT_DAMP;
  438. kData->param.ranges[j].step = 0.01f;
  439. kData->param.ranges[j].stepSmall = 0.0001f;
  440. kData->param.ranges[j].stepLarge = 0.1f;
  441. fParamBuffers[j] = kData->param.ranges[j].def;
  442. // ----------------------
  443. j = FluidSynthReverbLevel;
  444. kData->param.data[j].index = j;
  445. kData->param.data[j].rindex = j;
  446. kData->param.data[j].type = PARAMETER_INPUT;
  447. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE;
  448. kData->param.data[j].midiChannel = 0;
  449. kData->param.data[j].midiCC = MIDI_CONTROL_REVERB_SEND_LEVEL;
  450. kData->param.ranges[j].min = 0.0f;
  451. kData->param.ranges[j].max = 1.0f;
  452. kData->param.ranges[j].def = FLUID_REVERB_DEFAULT_LEVEL;
  453. kData->param.ranges[j].step = 0.01f;
  454. kData->param.ranges[j].stepSmall = 0.0001f;
  455. kData->param.ranges[j].stepLarge = 0.1f;
  456. fParamBuffers[j] = kData->param.ranges[j].def;
  457. // ----------------------
  458. j = FluidSynthReverbWidth;
  459. kData->param.data[j].index = j;
  460. kData->param.data[j].rindex = j;
  461. kData->param.data[j].type = PARAMETER_INPUT;
  462. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE;
  463. kData->param.data[j].midiChannel = 0;
  464. kData->param.data[j].midiCC = -1;
  465. kData->param.ranges[j].min = 0.0f;
  466. kData->param.ranges[j].max = 10.0f; // should be 100, but that sounds too much
  467. kData->param.ranges[j].def = FLUID_REVERB_DEFAULT_WIDTH;
  468. kData->param.ranges[j].step = 0.01f;
  469. kData->param.ranges[j].stepSmall = 0.0001f;
  470. kData->param.ranges[j].stepLarge = 0.1f;
  471. fParamBuffers[j] = kData->param.ranges[j].def;
  472. // ----------------------
  473. j = FluidSynthChorusOnOff;
  474. kData->param.data[j].index = j;
  475. kData->param.data[j].rindex = j;
  476. kData->param.data[j].type = PARAMETER_INPUT;
  477. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_BOOLEAN;
  478. kData->param.data[j].midiChannel = 0;
  479. kData->param.data[j].midiCC = -1;
  480. kData->param.ranges[j].min = 0.0f;
  481. kData->param.ranges[j].max = 1.0f;
  482. kData->param.ranges[j].def = 0.0f; // off
  483. kData->param.ranges[j].step = 1.0f;
  484. kData->param.ranges[j].stepSmall = 1.0f;
  485. kData->param.ranges[j].stepLarge = 1.0f;
  486. fParamBuffers[j] = kData->param.ranges[j].def;
  487. // ----------------------
  488. j = FluidSynthChorusNr;
  489. kData->param.data[j].index = j;
  490. kData->param.data[j].rindex = j;
  491. kData->param.data[j].type = PARAMETER_INPUT;
  492. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_INTEGER;
  493. kData->param.data[j].midiChannel = 0;
  494. kData->param.data[j].midiCC = -1;
  495. kData->param.ranges[j].min = 0.0f;
  496. kData->param.ranges[j].max = 99.0f;
  497. kData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_N;
  498. kData->param.ranges[j].step = 1.0f;
  499. kData->param.ranges[j].stepSmall = 1.0f;
  500. kData->param.ranges[j].stepLarge = 10.0f;
  501. fParamBuffers[j] = kData->param.ranges[j].def;
  502. // ----------------------
  503. j = FluidSynthChorusLevel;
  504. kData->param.data[j].index = j;
  505. kData->param.data[j].rindex = j;
  506. kData->param.data[j].type = PARAMETER_INPUT;
  507. kData->param.data[j].hints = PARAMETER_IS_ENABLED;
  508. kData->param.data[j].midiChannel = 0;
  509. kData->param.data[j].midiCC = 0; //MIDI_CONTROL_CHORUS_SEND_LEVEL;
  510. kData->param.ranges[j].min = 0.0f;
  511. kData->param.ranges[j].max = 10.0f;
  512. kData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_LEVEL;
  513. kData->param.ranges[j].step = 0.01f;
  514. kData->param.ranges[j].stepSmall = 0.0001f;
  515. kData->param.ranges[j].stepLarge = 0.1f;
  516. fParamBuffers[j] = kData->param.ranges[j].def;
  517. // ----------------------
  518. j = FluidSynthChorusSpeedHz;
  519. kData->param.data[j].index = j;
  520. kData->param.data[j].rindex = j;
  521. kData->param.data[j].type = PARAMETER_INPUT;
  522. kData->param.data[j].hints = PARAMETER_IS_ENABLED;
  523. kData->param.data[j].midiChannel = 0;
  524. kData->param.data[j].midiCC = -1;
  525. kData->param.ranges[j].min = 0.29f;
  526. kData->param.ranges[j].max = 5.0f;
  527. kData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_SPEED;
  528. kData->param.ranges[j].step = 0.01f;
  529. kData->param.ranges[j].stepSmall = 0.0001f;
  530. kData->param.ranges[j].stepLarge = 0.1f;
  531. fParamBuffers[j] = kData->param.ranges[j].def;
  532. // ----------------------
  533. j = FluidSynthChorusDepthMs;
  534. kData->param.data[j].index = j;
  535. kData->param.data[j].rindex = j;
  536. kData->param.data[j].type = PARAMETER_INPUT;
  537. kData->param.data[j].hints = PARAMETER_IS_ENABLED;
  538. kData->param.data[j].midiChannel = 0;
  539. kData->param.data[j].midiCC = -1;
  540. kData->param.ranges[j].min = 0.0f;
  541. kData->param.ranges[j].max = 2048000.0 / kData->engine->getSampleRate();
  542. kData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_DEPTH;
  543. kData->param.ranges[j].step = 0.01f;
  544. kData->param.ranges[j].stepSmall = 0.0001f;
  545. kData->param.ranges[j].stepLarge = 0.1f;
  546. fParamBuffers[j] = kData->param.ranges[j].def;
  547. // ----------------------
  548. j = FluidSynthChorusType;
  549. kData->param.data[j].index = j;
  550. kData->param.data[j].rindex = j;
  551. kData->param.data[j].type = PARAMETER_INPUT;
  552. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_INTEGER | PARAMETER_USES_SCALEPOINTS;
  553. kData->param.data[j].midiChannel = 0;
  554. kData->param.data[j].midiCC = -1;
  555. kData->param.ranges[j].min = FLUID_CHORUS_MOD_SINE;
  556. kData->param.ranges[j].max = FLUID_CHORUS_MOD_TRIANGLE;
  557. kData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_TYPE;
  558. kData->param.ranges[j].step = 1.0f;
  559. kData->param.ranges[j].stepSmall = 1.0f;
  560. kData->param.ranges[j].stepLarge = 1.0f;
  561. fParamBuffers[j] = kData->param.ranges[j].def;
  562. // ----------------------
  563. j = FluidSynthPolyphony;
  564. kData->param.data[j].index = j;
  565. kData->param.data[j].rindex = j;
  566. kData->param.data[j].type = PARAMETER_INPUT;
  567. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_INTEGER;
  568. kData->param.data[j].midiChannel = 0;
  569. kData->param.data[j].midiCC = -1;
  570. kData->param.ranges[j].min = 1.0f;
  571. kData->param.ranges[j].max = 512.0f; // max theoric is 65535
  572. kData->param.ranges[j].def = fluid_synth_get_polyphony(fSynth);
  573. kData->param.ranges[j].step = 1.0f;
  574. kData->param.ranges[j].stepSmall = 1.0f;
  575. kData->param.ranges[j].stepLarge = 10.0f;
  576. fParamBuffers[j] = kData->param.ranges[j].def;
  577. // ----------------------
  578. j = FluidSynthInterpolation;
  579. kData->param.data[j].index = j;
  580. kData->param.data[j].rindex = j;
  581. kData->param.data[j].type = PARAMETER_INPUT;
  582. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_INTEGER | PARAMETER_USES_SCALEPOINTS;
  583. kData->param.data[j].midiChannel = 0;
  584. kData->param.data[j].midiCC = -1;
  585. kData->param.ranges[j].min = FLUID_INTERP_NONE;
  586. kData->param.ranges[j].max = FLUID_INTERP_HIGHEST;
  587. kData->param.ranges[j].def = FLUID_INTERP_DEFAULT;
  588. kData->param.ranges[j].step = 1.0f;
  589. kData->param.ranges[j].stepSmall = 1.0f;
  590. kData->param.ranges[j].stepLarge = 1.0f;
  591. fParamBuffers[j] = kData->param.ranges[j].def;
  592. // ----------------------
  593. j = FluidSynthVoiceCount;
  594. kData->param.data[j].index = j;
  595. kData->param.data[j].rindex = j;
  596. kData->param.data[j].type = PARAMETER_OUTPUT;
  597. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE | PARAMETER_IS_INTEGER;
  598. kData->param.data[j].midiChannel = 0;
  599. kData->param.data[j].midiCC = -1;
  600. kData->param.ranges[j].min = 0.0f;
  601. kData->param.ranges[j].max = 65535.0f;
  602. kData->param.ranges[j].def = 0.0f;
  603. kData->param.ranges[j].step = 1.0f;
  604. kData->param.ranges[j].stepSmall = 1.0f;
  605. kData->param.ranges[j].stepLarge = 1.0f;
  606. fParamBuffers[j] = kData->param.ranges[j].def;
  607. // ---------------------------------------
  608. // plugin checks
  609. fHints &= ~(PLUGIN_IS_SYNTH | PLUGIN_USES_CHUNKS | PLUGIN_CAN_DRYWET | PLUGIN_CAN_VOLUME | PLUGIN_CAN_BALANCE | PLUGIN_CAN_FORCE_STEREO);
  610. fHints |= PLUGIN_IS_SYNTH;
  611. fHints |= PLUGIN_CAN_VOLUME;
  612. fHints |= PLUGIN_CAN_BALANCE;
  613. fHints |= PLUGIN_CAN_FORCE_STEREO;
  614. reloadPrograms(true);
  615. kData->client->activate();
  616. qDebug("FluidSynthPlugin::reload() - end");
  617. }
  618. void reloadPrograms(const bool init)
  619. {
  620. qDebug("FluidSynthPlugin::reloadPrograms(%s)", bool2str(init));
  621. // Delete old programs
  622. kData->midiprog.clear();
  623. // Query new programs
  624. uint32_t count = 0;
  625. fluid_sfont_t* f_sfont;
  626. fluid_preset_t f_preset;
  627. bool hasDrums = false;
  628. f_sfont = fluid_synth_get_sfont_by_id(fSynth, fSynthId);
  629. // initial check to know how much midi-programs we have
  630. f_sfont->iteration_start(f_sfont);
  631. while (f_sfont->iteration_next(f_sfont, &f_preset))
  632. count += 1;
  633. // soundfonts must always have at least 1 midi-program
  634. CARLA_ASSERT(count > 0);
  635. if (count == 0)
  636. return;
  637. kData->midiprog.createNew(count);
  638. // Update data
  639. uint32_t i = 0;
  640. f_sfont->iteration_start(f_sfont);
  641. while (f_sfont->iteration_next(f_sfont, &f_preset))
  642. {
  643. CARLA_ASSERT(i < kData->midiprog.count);
  644. kData->midiprog.data[i].bank = f_preset.get_banknum(&f_preset);
  645. kData->midiprog.data[i].program = f_preset.get_num(&f_preset);
  646. kData->midiprog.data[i].name = carla_strdup(f_preset.get_name(&f_preset));
  647. if (kData->midiprog.data[i].bank == 128)
  648. hasDrums = true;
  649. i++;
  650. }
  651. //f_sfont->free(f_sfont);
  652. // Update OSC Names
  653. if (kData->engine->isOscControlRegistered())
  654. {
  655. kData->engine->osc_send_control_set_midi_program_count(fId, kData->midiprog.count);
  656. for (i=0; i < kData->midiprog.count; i++)
  657. kData->engine->osc_send_control_set_midi_program_data(fId, i, kData->midiprog.data[i].bank, kData->midiprog.data[i].program, kData->midiprog.data[i].name);
  658. }
  659. if (init)
  660. {
  661. fluid_synth_program_reset(fSynth);
  662. // select first program, or 128 for ch10
  663. for (i=0; i < 16 && i != 9; i++)
  664. {
  665. fluid_synth_program_select(fSynth, i, fSynthId, kData->midiprog.data[0].bank, kData->midiprog.data[0].program);
  666. #ifdef FLUIDSYNTH_VERSION_NEW_API
  667. fluid_synth_set_channel_type(fSynth, i, CHANNEL_TYPE_MELODIC);
  668. #endif
  669. }
  670. if (hasDrums)
  671. {
  672. fluid_synth_program_select(fSynth, 9, fSynthId, 128, 0);
  673. #ifdef FLUIDSYNTH_VERSION_NEW_API
  674. fluid_synth_set_channel_type(fSynth, 9, CHANNEL_TYPE_DRUM);
  675. #endif
  676. }
  677. else
  678. {
  679. fluid_synth_program_select(fSynth, 9, fSynthId, kData->midiprog.data[0].bank, kData->midiprog.data[0].program);
  680. #ifdef FLUIDSYNTH_VERSION_NEW_API
  681. fluid_synth_set_channel_type(fSynth, 9, CHANNEL_TYPE_MELODIC);
  682. #endif
  683. }
  684. setMidiProgram(0, false, false, false, true);
  685. }
  686. else
  687. {
  688. kData->engine->callback(CALLBACK_RELOAD_PROGRAMS, fId, 0, 0, 0.0f, nullptr);
  689. }
  690. }
  691. // -------------------------------------------------------------------
  692. // Plugin processing
  693. void process(float** const, float** const outBuffer, const uint32_t frames, const uint32_t framesOffset)
  694. {
  695. uint32_t i, k;
  696. uint32_t midiEventCount = 0;
  697. // --------------------------------------------------------------------------------------------------------
  698. // Check if active
  699. if (! kData->active)
  700. {
  701. // disable any output sound
  702. for (i=0; i < kData->audioOut.count; i++)
  703. carla_zeroFloat(outBuffer[i], frames);
  704. kData->activeBefore = kData->active;
  705. return;
  706. }
  707. // --------------------------------------------------------------------------------------------------------
  708. // Check if active before
  709. if (! kData->activeBefore)
  710. {
  711. for (int c=0; c < MAX_MIDI_CHANNELS; c++)
  712. {
  713. #ifdef FLUIDSYNTH_VERSION_NEW_API
  714. fluid_synth_all_notes_off(fSynth, c);
  715. fluid_synth_all_sounds_off(fSynth, c);
  716. #else
  717. fluid_synth_cc(f_synth, c, MIDI_CONTROL_ALL_SOUND_OFF, 0);
  718. fluid_synth_cc(f_synth, c, MIDI_CONTROL_ALL_NOTES_OFF, 0);
  719. #endif
  720. }
  721. }
  722. // --------------------------------------------------------------------------------------------------------
  723. // Event Input and Processing
  724. else
  725. {
  726. // ----------------------------------------------------------------------------------------------------
  727. // MIDI Input (External)
  728. if (kData->extNotes.mutex.tryLock())
  729. {
  730. while (! kData->extNotes.data.isEmpty())
  731. {
  732. const ExternalMidiNote& note = kData->extNotes.data.getFirst(true);
  733. CARLA_ASSERT(note.channel >= 0);
  734. if (note.velo > 0)
  735. fluid_synth_noteon(fSynth, note.channel, note.note, note.velo);
  736. else
  737. fluid_synth_noteoff(fSynth,note.channel, note.note);
  738. midiEventCount += 1;
  739. }
  740. kData->extNotes.mutex.unlock();
  741. } // End of MIDI Input (External)
  742. // ----------------------------------------------------------------------------------------------------
  743. // Event Input (System)
  744. bool allNotesOffSent = false;
  745. uint32_t time, nEvents = kData->event.portIn->getEventCount();
  746. uint32_t timeOffset = 0;
  747. uint32_t nextBankIds[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 128, 0, 0, 0, 0, 0, 0 };
  748. if (kData->midiprog.current >= 0 && kData->midiprog.count > 0 && kData->ctrlInChannel >= 0 && kData->ctrlInChannel < 16)
  749. nextBankIds[kData->ctrlInChannel] = kData->midiprog.data[kData->midiprog.current].bank;
  750. for (i=0; i < nEvents; i++)
  751. {
  752. const EngineEvent& event = kData->event.portIn->getEvent(i);
  753. time = event.time - framesOffset;
  754. if (time >= frames)
  755. continue;
  756. CARLA_ASSERT_INT2(time >= timeOffset, time, timeOffset);
  757. if (time > timeOffset)
  758. {
  759. fluid_synth_write_float(fSynth, time - timeOffset, outBuffer[0] + timeOffset, 0, 1, outBuffer[1] + timeOffset, 0, 1);
  760. timeOffset = time;
  761. }
  762. // Control change
  763. switch (event.type)
  764. {
  765. case kEngineEventTypeNull:
  766. break;
  767. case kEngineEventTypeControl:
  768. {
  769. const EngineControlEvent& ctrlEvent = event.ctrl;
  770. switch (ctrlEvent.type)
  771. {
  772. case kEngineControlEventTypeNull:
  773. break;
  774. case kEngineControlEventTypeParameter:
  775. {
  776. // Control backend stuff
  777. if (event.channel == kData->ctrlInChannel)
  778. {
  779. double value;
  780. if (MIDI_IS_CONTROL_BREATH_CONTROLLER(ctrlEvent.param) && (fHints & PLUGIN_CAN_DRYWET) > 0)
  781. {
  782. value = ctrlEvent.value;
  783. setDryWet(value, false, false);
  784. postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_DRYWET, 0, value);
  785. continue;
  786. }
  787. if (MIDI_IS_CONTROL_CHANNEL_VOLUME(ctrlEvent.param) && (fHints & PLUGIN_CAN_VOLUME) > 0)
  788. {
  789. value = ctrlEvent.value*127/100;
  790. setVolume(value, false, false);
  791. postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_VOLUME, 0, value);
  792. continue;
  793. }
  794. if (MIDI_IS_CONTROL_BALANCE(ctrlEvent.param) && (fHints & PLUGIN_CAN_BALANCE) > 0)
  795. {
  796. double left, right;
  797. value = ctrlEvent.value/0.5 - 1.0;
  798. if (value < 0.0)
  799. {
  800. left = -1.0;
  801. right = (value*2)+1.0;
  802. }
  803. else if (value > 0.0)
  804. {
  805. left = (value*2)-1.0;
  806. right = 1.0;
  807. }
  808. else
  809. {
  810. left = -1.0;
  811. right = 1.0;
  812. }
  813. setBalanceLeft(left, false, false);
  814. setBalanceRight(right, false, false);
  815. postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_BALANCE_LEFT, 0, left);
  816. postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_BALANCE_RIGHT, 0, right);
  817. continue;
  818. }
  819. }
  820. // Control plugin parameters
  821. for (k=0; k < kData->param.count; k++)
  822. {
  823. if (kData->param.data[k].midiChannel != event.channel)
  824. continue;
  825. if (kData->param.data[k].midiCC != ctrlEvent.param)
  826. continue;
  827. if (kData->param.data[k].type != PARAMETER_INPUT)
  828. continue;
  829. if ((kData->param.data[k].hints & PARAMETER_IS_AUTOMABLE) == 0)
  830. continue;
  831. double value;
  832. if (kData->param.data[k].hints & PARAMETER_IS_BOOLEAN)
  833. {
  834. value = (ctrlEvent.value < 0.5) ? kData->param.ranges[k].min : kData->param.ranges[k].max;
  835. }
  836. else
  837. {
  838. // FIXME - ranges call for this
  839. value = ctrlEvent.value * (kData->param.ranges[k].max - kData->param.ranges[k].min) + kData->param.ranges[k].min;
  840. if (kData->param.data[k].hints & PARAMETER_IS_INTEGER)
  841. value = std::rint(value);
  842. }
  843. setParameterValue(k, value, false, false, false);
  844. postponeRtEvent(kPluginPostRtEventParameterChange, k, 0, value);
  845. }
  846. break;
  847. }
  848. case kEngineControlEventTypeMidiBank:
  849. if (event.channel < 16 && event.channel != 9) // FIXME
  850. nextBankIds[event.channel] = ctrlEvent.param;
  851. break;
  852. case kEngineControlEventTypeMidiProgram:
  853. if (event.channel < 16)
  854. {
  855. const uint32_t bankId = nextBankIds[event.channel];
  856. const uint32_t progId = ctrlEvent.param;
  857. for (k=0; k < kData->midiprog.count; k++)
  858. {
  859. if (kData->midiprog.data[k].bank == bankId && kData->midiprog.data[k].program == progId)
  860. {
  861. if (event.channel == kData->ctrlInChannel)
  862. {
  863. setMidiProgram(k, false, false, false, false);
  864. postponeRtEvent(kPluginPostRtEventMidiProgramChange, k, 0, 0.0);
  865. }
  866. else
  867. fluid_synth_program_select(fSynth, event.channel, fSynthId, bankId, progId);
  868. break;
  869. }
  870. }
  871. }
  872. break;
  873. case kEngineControlEventTypeAllSoundOff:
  874. if (event.channel == kData->ctrlInChannel)
  875. {
  876. if (! allNotesOffSent)
  877. sendMidiAllNotesOff();
  878. postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_ACTIVE, 0, 0.0);
  879. postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_ACTIVE, 0, 1.0);
  880. allNotesOffSent = true;
  881. }
  882. break;
  883. case kEngineControlEventTypeAllNotesOff:
  884. if (event.channel == kData->ctrlInChannel)
  885. {
  886. if (! allNotesOffSent)
  887. sendMidiAllNotesOff();
  888. allNotesOffSent = true;
  889. }
  890. break;
  891. }
  892. break;
  893. }
  894. case kEngineEventTypeMidi:
  895. {
  896. if (midiEventCount >= MAX_MIDI_EVENTS)
  897. continue;
  898. const EngineMidiEvent& midiEvent = event.midi;
  899. uint8_t status = MIDI_GET_STATUS_FROM_DATA(midiEvent.data);
  900. uint8_t channel = MIDI_GET_CHANNEL_FROM_DATA(midiEvent.data);
  901. // Fix bad note-off
  902. if (MIDI_IS_STATUS_NOTE_ON(status) && midiEvent.data[2] == 0)
  903. status -= 0x10;
  904. if (MIDI_IS_STATUS_NOTE_OFF(status))
  905. {
  906. const uint8_t note = midiEvent.data[1];
  907. fluid_synth_noteoff(fSynth, channel, note);
  908. postponeRtEvent(kPluginPostRtEventNoteOff, channel, note, 0.0);
  909. }
  910. else if (MIDI_IS_STATUS_NOTE_ON(status))
  911. {
  912. const uint8_t note = midiEvent.data[1];
  913. const uint8_t velo = midiEvent.data[2];
  914. fluid_synth_noteon(fSynth, channel, note, velo);
  915. postponeRtEvent(kPluginPostRtEventNoteOn, channel, note, velo);
  916. }
  917. else if (MIDI_IS_STATUS_POLYPHONIC_AFTERTOUCH(status))
  918. {
  919. const uint8_t note = midiEvent.data[1];
  920. const uint8_t pressure = midiEvent.data[2];
  921. // TODO, not in fluidsynth API?
  922. Q_UNUSED(note);
  923. Q_UNUSED(pressure);
  924. }
  925. else if (MIDI_IS_STATUS_AFTERTOUCH(status))
  926. {
  927. const uint8_t pressure = midiEvent.data[1];
  928. fluid_synth_channel_pressure(fSynth, channel, pressure);;
  929. }
  930. else if (MIDI_IS_STATUS_PITCH_WHEEL_CONTROL(status))
  931. {
  932. const uint8_t lsb = midiEvent.data[1];
  933. const uint8_t msb = midiEvent.data[2];
  934. fluid_synth_pitch_bend(fSynth, channel, (msb << 7) | lsb);
  935. }
  936. else
  937. continue;
  938. midiEventCount += 1;
  939. break;
  940. }
  941. }
  942. }
  943. kData->postRtEvents.trySplice();
  944. if (frames > timeOffset)
  945. fluid_synth_write_float(fSynth, frames - timeOffset, outBuffer[0] + timeOffset, 0, 1, outBuffer[1] + timeOffset, 0, 1);
  946. } // End of Event Input and Processing
  947. CARLA_PROCESS_CONTINUE_CHECK;
  948. // --------------------------------------------------------------------------------------------------------
  949. // Post-processing (volume and balance)
  950. {
  951. const bool doVolume = (fHints & PLUGIN_CAN_VOLUME) > 0 && kData->postProc.volume != 1.0f;
  952. const bool doBalance = (fHints & PLUGIN_CAN_BALANCE) > 0 && (kData->postProc.balanceLeft != -1.0f || kData->postProc.balanceRight != 1.0f);
  953. float oldBufLeft[doBalance ? frames : 1];
  954. for (i=0; i < kData->audioOut.count; i++)
  955. {
  956. // Balance
  957. if (doBalance)
  958. {
  959. if (i % 2 == 0)
  960. std::memcpy(oldBufLeft, outBuffer[i], sizeof(float)*frames);
  961. float balRangeL = (kData->postProc.balanceLeft + 1.0f)/2.0f;
  962. float balRangeR = (kData->postProc.balanceRight + 1.0f)/2.0f;
  963. for (k=0; k < frames; k++)
  964. {
  965. if (i % 2 == 0)
  966. {
  967. // left
  968. outBuffer[i][k] = oldBufLeft[k] * (1.0f - balRangeL);
  969. outBuffer[i][k] += outBuffer[i+1][k] * (1.0f - balRangeR);
  970. }
  971. else
  972. {
  973. // right
  974. outBuffer[i][k] = outBuffer[i][k] * balRangeR;
  975. outBuffer[i][k] += oldBufLeft[k] * balRangeL;
  976. }
  977. }
  978. }
  979. // Volume
  980. if (doVolume)
  981. {
  982. for (k=0; k < frames; k++)
  983. outBuffer[i][k] *= kData->postProc.volume;
  984. }
  985. }
  986. } // End of Post-processing
  987. CARLA_PROCESS_CONTINUE_CHECK;
  988. // --------------------------------------------------------------------------------------------------------
  989. // Control Output
  990. {
  991. k = FluidSynthVoiceCount;
  992. fParamBuffers[k] = fluid_synth_get_active_voice_count(fSynth);
  993. kData->param.ranges[k].fixValue(fParamBuffers[k]);
  994. if (kData->param.data[k].midiCC > 0)
  995. {
  996. double value = kData->param.ranges[k].normalizeValue(fParamBuffers[k]);
  997. kData->event.portOut->writeControlEvent(framesOffset, kData->param.data[k].midiChannel, kEngineControlEventTypeParameter, kData->param.data[k].midiCC, value);
  998. }
  999. } // End of Control Output
  1000. // --------------------------------------------------------------------------------------------------------
  1001. kData->activeBefore = kData->active;
  1002. }
  1003. // -------------------------------------------------------------------
  1004. bool init(const char* const filename, const char* const name, const char* const label)
  1005. {
  1006. CARLA_ASSERT(fSynth != nullptr);
  1007. CARLA_ASSERT(filename != nullptr);
  1008. CARLA_ASSERT(label != nullptr);
  1009. // ---------------------------------------------------------------
  1010. // open soundfont
  1011. fSynthId = fluid_synth_sfload(fSynth, filename, 0);
  1012. if (fSynthId < 0)
  1013. {
  1014. kData->engine->setLastError("Failed to load SoundFont file");
  1015. return false;
  1016. }
  1017. // ---------------------------------------------------------------
  1018. // get info
  1019. fFilename = filename;
  1020. fLabel = label;
  1021. if (name != nullptr)
  1022. fName = kData->engine->getNewUniquePluginName(name);
  1023. else
  1024. fName = kData->engine->getNewUniquePluginName(label);
  1025. // ---------------------------------------------------------------
  1026. // register client
  1027. kData->client = kData->engine->addClient(this);
  1028. if (kData->client == nullptr || ! kData->client->isOk())
  1029. {
  1030. kData->engine->setLastError("Failed to register plugin client");
  1031. return false;
  1032. }
  1033. return true;
  1034. }
  1035. private:
  1036. enum FluidSynthInputParameters {
  1037. FluidSynthReverbOnOff = 0,
  1038. FluidSynthReverbRoomSize = 1,
  1039. FluidSynthReverbDamp = 2,
  1040. FluidSynthReverbLevel = 3,
  1041. FluidSynthReverbWidth = 4,
  1042. FluidSynthChorusOnOff = 5,
  1043. FluidSynthChorusNr = 6,
  1044. FluidSynthChorusLevel = 7,
  1045. FluidSynthChorusSpeedHz = 8,
  1046. FluidSynthChorusDepthMs = 9,
  1047. FluidSynthChorusType = 10,
  1048. FluidSynthPolyphony = 11,
  1049. FluidSynthInterpolation = 12,
  1050. FluidSynthVoiceCount = 13,
  1051. FluidSynthParametersMax = 14
  1052. };
  1053. CarlaString fLabel;
  1054. fluid_settings_t* fSettings;
  1055. fluid_synth_t* fSynth;
  1056. int fSynthId;
  1057. double fParamBuffers[FluidSynthParametersMax];
  1058. };
  1059. /**@}*/
  1060. CARLA_BACKEND_END_NAMESPACE
  1061. #else // WANT_FLUIDSYNTH
  1062. # warning fluidsynth not available (no SF2 support)
  1063. #endif
  1064. CARLA_BACKEND_START_NAMESPACE
  1065. CarlaPlugin* CarlaPlugin::newSF2(const Initializer& init)
  1066. {
  1067. qDebug("CarlaPlugin::newSF2({%p, \"%s\", \"%s\", \"%s\"})", init.engine, init.filename, init.name, init.label);
  1068. #ifdef WANT_FLUIDSYNTH
  1069. if (! fluid_is_soundfont(init.filename))
  1070. {
  1071. init.engine->setLastError("Requested file is not a valid SoundFont");
  1072. return nullptr;
  1073. }
  1074. FluidSynthPlugin* const plugin = new FluidSynthPlugin(init.engine, init.id);
  1075. if (! plugin->init(init.filename, init.name, init.label))
  1076. {
  1077. delete plugin;
  1078. return nullptr;
  1079. }
  1080. plugin->reload();
  1081. plugin->registerToOscClient();
  1082. return plugin;
  1083. #else
  1084. init.engine->setLastError("fluidsynth support not available");
  1085. return nullptr;
  1086. #endif
  1087. }
  1088. CARLA_BACKEND_END_NAMESPACE