| 
							- /*
 -  * jdct.h
 -  *
 -  * Copyright (C) 1994-1996, Thomas G. Lane.
 -  * This file is part of the Independent JPEG Group's software.
 -  * For conditions of distribution and use, see the accompanying README file.
 -  *
 -  * This include file contains common declarations for the forward and
 -  * inverse DCT modules.  These declarations are private to the DCT managers
 -  * (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms.
 -  * The individual DCT algorithms are kept in separate files to ease
 -  * machine-dependent tuning (e.g., assembly coding).
 -  */
 - 
 - 
 - /*
 -  * A forward DCT routine is given a pointer to a work area of type DCTELEM[];
 -  * the DCT is to be performed in-place in that buffer.  Type DCTELEM is int
 -  * for 8-bit samples, INT32 for 12-bit samples.  (NOTE: Floating-point DCT
 -  * implementations use an array of type FAST_FLOAT, instead.)
 -  * The DCT inputs are expected to be signed (range +-CENTERJSAMPLE).
 -  * The DCT outputs are returned scaled up by a factor of 8; they therefore
 -  * have a range of +-8K for 8-bit data, +-128K for 12-bit data.  This
 -  * convention improves accuracy in integer implementations and saves some
 -  * work in floating-point ones.
 -  * Quantization of the output coefficients is done by jcdctmgr.c.
 -  */
 - 
 - #ifndef __jdct_h__
 - #define __jdct_h__
 - 
 - #if BITS_IN_JSAMPLE == 8
 - typedef int DCTELEM;		/* 16 or 32 bits is fine */
 - #else
 - typedef INT32 DCTELEM;		/* must have 32 bits */
 - #endif
 - 
 - typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data));
 - typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data));
 - 
 - 
 - /*
 -  * An inverse DCT routine is given a pointer to the input JBLOCK and a pointer
 -  * to an output sample array.  The routine must dequantize the input data as
 -  * well as perform the IDCT; for dequantization, it uses the multiplier table
 -  * pointed to by compptr->dct_table.  The output data is to be placed into the
 -  * sample array starting at a specified column.  (Any row offset needed will
 -  * be applied to the array pointer before it is passed to the IDCT code.)
 -  * Note that the number of samples emitted by the IDCT routine is
 -  * DCT_scaled_size * DCT_scaled_size.
 -  */
 - 
 - /* typedef inverse_DCT_method_ptr is declared in jpegint.h */
 - 
 - /*
 -  * Each IDCT routine has its own ideas about the best dct_table element type.
 -  */
 - 
 - typedef MULTIPLIER ISLOW_MULT_TYPE; /* short or int, whichever is faster */
 - #if BITS_IN_JSAMPLE == 8
 - typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */
 - #define IFAST_SCALE_BITS  2	/* fractional bits in scale factors */
 - #else
 - typedef INT32 IFAST_MULT_TYPE;	/* need 32 bits for scaled quantizers */
 - #define IFAST_SCALE_BITS  13	/* fractional bits in scale factors */
 - #endif
 - typedef FAST_FLOAT FLOAT_MULT_TYPE; /* preferred floating type */
 - 
 - 
 - /*
 -  * Each IDCT routine is responsible for range-limiting its results and
 -  * converting them to unsigned form (0..MAXJSAMPLE).  The raw outputs could
 -  * be quite far out of range if the input data is corrupt, so a bulletproof
 -  * range-limiting step is required.  We use a mask-and-table-lookup method
 -  * to do the combined operations quickly.  See the comments with
 -  * prepare_range_limit_table (in jdmaster.c) for more info.
 -  */
 - 
 - #define IDCT_range_limit(cinfo)  ((cinfo)->sample_range_limit + CENTERJSAMPLE)
 - 
 - #define RANGE_MASK  (MAXJSAMPLE * 4 + 3) /* 2 bits wider than legal samples */
 - 
 - 
 - /* Short forms of external names for systems with brain-damaged linkers. */
 - 
 - #ifdef NEED_SHORT_EXTERNAL_NAMES
 - #define jpeg_fdct_islow		jFDislow
 - #define jpeg_fdct_ifast		jFDifast
 - #define jpeg_fdct_float		jFDfloat
 - #define jpeg_idct_islow		jRDislow
 - #define jpeg_idct_ifast		jRDifast
 - #define jpeg_idct_float		jRDfloat
 - #define jpeg_idct_4x4		jRD4x4
 - #define jpeg_idct_2x2		jRD2x2
 - #define jpeg_idct_1x1		jRD1x1
 - #endif /* NEED_SHORT_EXTERNAL_NAMES */
 - 
 - /* Extern declarations for the forward and inverse DCT routines. */
 - 
 - EXTERN(void) jpeg_fdct_islow JPP((DCTELEM * data));
 - EXTERN(void) jpeg_fdct_ifast JPP((DCTELEM * data));
 - EXTERN(void) jpeg_fdct_float JPP((FAST_FLOAT * data));
 - 
 - EXTERN(void) jpeg_idct_islow
 -     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
 - 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
 - EXTERN(void) jpeg_idct_ifast
 -     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
 - 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
 - EXTERN(void) jpeg_idct_float
 -     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
 - 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
 - EXTERN(void) jpeg_idct_4x4
 -     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
 - 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
 - EXTERN(void) jpeg_idct_2x2
 -     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
 - 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
 - EXTERN(void) jpeg_idct_1x1
 -     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
 - 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
 - 
 - 
 - /*
 -  * Macros for handling fixed-point arithmetic; these are used by many
 -  * but not all of the DCT/IDCT modules.
 -  *
 -  * All values are expected to be of type INT32.
 -  * Fractional constants are scaled left by CONST_BITS bits.
 -  * CONST_BITS is defined within each module using these macros,
 -  * and may differ from one module to the next.
 -  */
 - 
 - #define ONE	((INT32) 1)
 - #define CONST_SCALE (ONE << CONST_BITS)
 - 
 - /* Convert a positive real constant to an integer scaled by CONST_SCALE.
 -  * Caution: some C compilers fail to reduce "FIX(constant)" at compile time,
 -  * thus causing a lot of useless floating-point operations at run time.
 -  */
 - 
 - #define FIX(x)	((INT32) ((x) * CONST_SCALE + 0.5))
 - 
 - /* Descale and correctly round an INT32 value that's scaled by N bits.
 -  * We assume RIGHT_SHIFT rounds towards minus infinity, so adding
 -  * the fudge factor is correct for either sign of X.
 -  */
 - 
 - #define DESCALE(x,n)  RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
 - 
 - /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
 -  * This macro is used only when the two inputs will actually be no more than
 -  * 16 bits wide, so that a 16x16->32 bit multiply can be used instead of a
 -  * full 32x32 multiply.  This provides a useful speedup on many machines.
 -  * Unfortunately there is no way to specify a 16x16->32 multiply portably
 -  * in C, but some C compilers will do the right thing if you provide the
 -  * correct combination of casts.
 -  */
 - 
 - #ifdef SHORTxSHORT_32		/* may work if 'int' is 32 bits */
 - #define MULTIPLY16C16(var,const)  (((INT16) (var)) * ((INT16) (const)))
 - #endif
 - #ifdef SHORTxLCONST_32		/* known to work with Microsoft C 6.0 */
 - #define MULTIPLY16C16(var,const)  (((INT16) (var)) * ((INT32) (const)))
 - #endif
 - 
 - #ifndef MULTIPLY16C16		/* default definition */
 - #define MULTIPLY16C16(var,const)  ((var) * (const))
 - #endif
 - 
 - /* Same except both inputs are variables. */
 - 
 - #ifdef SHORTxSHORT_32		/* may work if 'int' is 32 bits */
 - #define MULTIPLY16V16(var1,var2)  (((INT16) (var1)) * ((INT16) (var2)))
 - #endif
 - 
 - #ifndef MULTIPLY16V16		/* default definition */
 - #define MULTIPLY16V16(var1,var2)  ((var1) * (var2))
 - #endif
 - 
 - 
 - #endif
 
 
  |